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Abstract

The original motivation of this work comes from a classic problem in finance and insurance: that of
computing the value-at-risk (VaR) of a portfolio of dependent risky positions, i.e. the quantile at a
certain level of confidence of the loss distribution. In fact, it is difficult to overestimate the importance
of the concept of VaR in modern finance and insurance: it has been recommended, although with
several warnings, as a measure of risk and the basis for capital requirement determination both by the
guidelines of international committees (such as Basel 2 and 3, Solvency 2 etc.) and the internal models
adopted by major banks and insurance companies. However the actual computation of the VaR of a
portfolio constituted by several dependent risky assets is often a hard practical and theoretical task.
To this purpose here we prove the convergence of a geometric algorithm (alternative to Monte Carlo
and quasi Monte Carlo methods) for computing the value-at-risk of a portfolio of any dimension, i.e.the
distribution of the sum of its components, which can exhibit any dependence structure. Moreover our
result has a relevant measure-theoretical meaning. What we prove, in fact, is that the H-measure of a
d-dimensional simplex (for any d ≥ 2 and any absolutely continuous with respect to Lebesgue measure
H) can be approximated by convergent algebraic sums of H-measures of hypercubes (obtained through
a self-similar construction).

Keywords: finance; applied probability; algorithm convergence; measure theory
JEL: :C6 (Mathematical and Quantitative Methods)

1. Introduction and preliminaries

1.1. Statement of the problem

A portfolio P of risky positions, in finance and insurance models, can be represented as a vector
of random losses, i.e. P = (X1, ..., Xd) (to be precise, each Xi represents the random profit-and-loss
result of an investment, within a given horizon, a negative value corresponding to a profit, a positive
value to a loss).

Then the total loss of the portfolio is given by the random variable X = X1 + ... + Xd. As a
consequence, the value-at-risk (VaR) of the portfolio at a confidence level α ∈ (0, 1) (e.g. α = 0.95, 0.99
etc.) is defined as the α-quantile of X, i.e.

V aRα(X) = inf {l : prob(X > l) ≤ 1− α} = inf {l : prob(X ≤ l) ≥ α}
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Hence V aRα(X) has been interpreted as the reserve (regulatory) capital that a bank or an insurance
company must hold when it undertakes the risk represented by the portfolio P in order to avoid with
probability at least α a negative budget result at the end of the given horizon. Although failing, in some
circumstances, to be sub-additive (thus, according to a most quoted definition Artzner, Delbaen, Eber
and Heath, 1999, coherent) the value-at-risk has been recommended, although with several warnings,
as a measure of risk and the basic criterion for capital adequacy calculation both by the guidelines of
international committees (such as Basel 2 and 3, Solvency 2 etc.) and the internal models adopted
by major banks and insurance companies. However the actual computation of the VaR of a portfolio
constituted by several dependent risky assets is often a hard practical and theoretical task

To this purpose, in an article published in 2011 Arbenz, Embrechts and Puccetti have proposed a
new algorithm, called AEP after the names of the authors, to compute numerically the distribution
function of the sum of d dependent, non negative random variables with given absolutely continuous
joint distribution. Briefly, given a joint distribution H, the algorithm approximates the H-measure
of a simplex (hence the distribution of the sum of the random variables) by an algebraic sum of
H-measures of hypercubes (which can be easily calculated). Besides providing the motivations for
the algorithm (in particular as far as the calculation of value-at-risk, in finance and insurance, is
concerned), the authors have underlined the novelties of the AEP algorithm, with respect to more
usual Monte Carlo and quasi-Monte Carlo methods Glasserman (2004). Precisely such an algorithm,
first, is deterministic (hence independent from sample choice), and, secondly, it is also independent
from the specific distribution H, that is from the dependence structure (i.e. copula) of the random
variables. Moreover, the AEP algorithm is beautifully self-similar, i.e. the same algorithm is applied
to each newly generated simplex: a property which will be most exploited in the following.

In front of these advantages, two open problems were detected (see Arbenz, Embrechts and Puc-
cetti, 2011):

1. The numerical complexity of the algorithm increases, at each step, exponentially, making it
hardly manageable for dimension d > 5.

2. In the original article Arbenz, Embrechts and Puccetti (2011) the convergence of the algorithm
was proven only for dimension d ≤ 8 (under further differentiability assumptions on the function
H and for a particular choice of a pivotal parameter α).

In the present paper we solve Problem 2, proving that the AEP algorithm converges for any d ≥ 2
and any absolutely continuous distribution H (with bounded density in a neighborhood of the simplex
diagonal), when the above mentioned parameter α varies in a specified interval. We do not exclude
that such a result may be also preliminary to a partial solution of Problem 1, for example through
some efficient extrapolation of the AEP Arbenz, Embrechts and Puccetti (2012).

1.2. Notations

In the article we adopt basically the notations of Arbenz, Embrechts and Puccetti (2011).
First of all, we denote vectors in boldface, i.e. x = . (x1, ..., xd) ∈ Rd, d ≥ 2. In particular we

indicate by i0, ..., iN , N = 2d − 1, the 2d vectors in {0, 1}d (e.g. i0 = (0, ..., 0), iN = (1, ..., 1)) and by
#i the number of 1’s in the vector i (e.g. #i0 = 0, #iN = d). Moreover we set λ (x) = x1 + ...+ xd.
As in the following we will consider vectors x ∈Rd+ (the non-negative orthant of Rd), λ (x) can be seen
as the l1norm in Rd+.

Then, fixed h > 0 and b = (b1, ..., bd), we define the following simplexes:

S (b, h) :=
{
x ∈ Rd : λ (b) < λ (x) ≤ λ (b) + h, xk − bk > 0, k = 1, ..., d

}
and

S (b,−h) :=
{
x ∈ Rd : λ (b)− h < λ (x) ≤ λ (b) , xk − bk ≤ 0, k = 1, ..., d

}
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Analogously we define the hypercubes

Q (b, h) :=
{
x ∈ Rd : bk < xk ≤ bk + h, k = 1, ..., d

}
and

Q (b,−h) :=
{
x ∈ Rd : bk − h < xk ≤ bk, k = 1, ..., d

}
Clearly h is the side length of the above hypercubes, while, as our arguments will be developed in Rd+,
where λ (x) represents the l1norm, h will be called the radius of S (b, h) (and S (b,−h)).

Then, given an absolutely continuous joint distribution H (x1, ..., xd) (with support in Rd+), we will
denote by vH the relative probability measure, while vol will indicate the Lebesgue measure. Hence

vol (Q (b,±h)) = hd and vol (S (b,±h)) = hd

d! . For sake of completeness, we define also S (b, 0) =
Q (b, 0) = ∅. Obviously vH (S (b, 0)) = vH (Q (b, 0)) = 0.

1.3. The AEP algorithm

The aim of the AEP algorithm is to approximate the H-measure of a d-dimensional simplex
(where H is an absolutely continuous joint distribution in Rd) by an algebraic sum of H-measures
of hypercubes (overlapping when d > 2). The reason is that the H-measure of a hypercube is easily
computed. In fact, by the notations of the previous paragraph, consider Q (b, l), l ≶ 0. Then, as it is
well-known,

vH (Q (b, l)) =

N∑
k=0

(−1)
d(1+sgn(l))

2 −#ik H (b + lik)

Hence let us sum up the scenario described in Arbenz, Embrechts and Puccetti (2011) . X1, ..., Xd

are non-negative (or, what is the same after a translation, bounded from below) random variables
and H (x1, ..., xd) is their joint absolutely continuous distribution function. Hence, H being known,
the aim is to compute, for a positive s, Prob (X1 + ...+Xd ≤ s) = vH (S (0, s)). In the following,
having fixed s, we will consider the rescaling xi → xi

s , so that our problem will be the computation
of vH (S (0, 1)). The first step of the AEP algorithm consists in replacing S (0, 1) by a hypercube
Q1

1 = Q (0, α) with 1
d ≤ α < 1. Then, among the vertices of the hypercube different from 0, i.e.

αik, k = 1, ..., N = 2d − 1, there are those lying in S (0, 1), when #ik ≤ 1
α , and (possibly) those

lying outside the simplex, when #ik >
1
α . To each such vertex corresponds a simplex given, with the

previous notations, by S2
k := S (αik, 1− α (#ik)). Pose lk = 1 − α (#ik): hence lk T 0. It is easily

calculated that

vH (S (0, 1)) = vH
(
Q1

1

)
+

N∑
k=1

σ2
kvH

(
S2
k

)
(1)

where σ2
k = (−1)

µk , µk = #ik + 1− d 1−sgn(lk)
2 , if lk ≷ 0, σ2

k = 0 if lk = 0.

P1 := vH
(
Q1

1

)
is the first approximation of vH (S (0, 1)). Then the algorithm proceeds recursively,

by replacing each simplex S2
k of radius |lk| with a corresponding hypercube Q2

k := Q (αik, (1− α (#ik))α)
of side length α |lk|. Therefore

P2 := P1 +

N∑
k=1

σ2
kvH

(
Q2
k

)
(2)

and so on (Figure 1 illustrates the simplest case d = 2, when the new simplexes generated, at each
step, by the algorithm do not overlap). In particular, denote by Sn+1

k , k = 1, ..., Nn, the simplexes
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received as input by the algorithm at the beginning of the (n+ 1)− th iteration. Then the following
recursive formula is proven in Arbenz, Embrechts and Puccetti (2011) :

vH (S (0, 1)) = Pn +

Nn∑
k=1

σn+1
k vH

(
Sn+1
k

)
(3)

Figure 1: The AEP algorithm for d = 2.

1.4. Steps of the convergence proof

As we mentioned, in the original article Arbenz, Embrechts and Puccetti (2011) the convergence
of the AEP was proven, when α = 2

d+1 , for d ≤ 5 and any absolutely continuos distribution H (with
bounded density in a neighborhood of the simplex diagonal) and for d ≤ 8 with further conditions
(differentiability) on H. In this work, instead, we prove that the AEP algorithm converges, when

α ∈
[
1
d ,

2
d+1

]
, in any dimension d for any absolutely continuos distribution H with bounded density

in a neighborhood of the simplex diagonal.
The proof is given through a Lemma and a Theorem. The Lemma proves that the algorithm

converges for the Lebesgue measure when d ≥ 2 and α ∈
[
1
d ,

1
d√
d!

)
. Then the Theorem states that

such a result holds for any absolutely continuous (with respect to Lebesgue one) measure as well, when

α ∈
[
1
d ,

2
d+1

]
(observe that 2

d+1 <
1
d√
d!

when d ≥ 2). The basic idea underlying the Theorem’s proof is

fairly simple. Suppose one can show that, at any step of the algorithm, a corresponding sub-simplex
of S is exactly filled up, by summing positive and negative hypercubes, while in a suitably chosen
strip outside the simplex positive and negative hypercubes exactly compensate. Then, if this way
the simplex S is geometrically approximated, the convergence eventually follows from the assumed
boundedness of the density in a neighborhood of the simplex diagonal. However such a proof cannot
be so direct (e.g. merely combinatorial), due to the growing intricacy of hypercube overlapping when
the dimension d increases. Therefore the Theorem’s proof will be divided into five steps, which can
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appear rather technical, since they are, precisely, designed to overcome technical difficulties, but, on
the other hand, follow a natural path of argumentation. Below we illustrate them, in order to help
the comprehension of the actual proof.

First step The scope of this step is to provide an algebraic construction which allows to directly
add and subtract the hypercubes of the algorithm, rather than their volumes in some absolutely
continuous measure. This way, grossly speaking, we can think of such hypercubes as sort of ”bricks”,
which are ”brought in” when their coefficient is +1 and ”taken away” when their coefficient is −1. To
this end we construct a Z-module Ω, generated by the Lebesgue measurable subsets of Rd. Precisely,
Ω = {a1A1 + ...+ akAk}, where a1, ..., ak ∈ Z and A1, ..., Ak are Lebesgue measurable subsets of Rd+,
defining in a suitable way the sum in Ω. At the n − th step of the AEP the algebraic sum of the

hypercubes Qn
k is given by Πn =

ρ(n)∑
k=1

σnkQn
k , where ρ(n) = Nn−1

N−1 , N = 2d − 1, and σnk = ±1 according

to the algorithm rules. Hence Πn ∈ Ω. Moreover in Ω a partial ordering, denoted by the symbol
�, is defined. Without entering, for the moment, into details, we observe that, since any absolutely
continuous measure vH can be extended by linearity to Ω, A � B implies vH (A) > vH (B) and
A ' B implies vH (A) = vH (B).

Second step We will consider, for any α ∈
[
1
d ,

2
d+1

]
, a sequence of sub-simplexes of S (0, 1)

defined by
Sn = {0 ≤ x1 + ...+ xd ≤ 1− (1− α)

n
, x1, ..., xd ≥ 0, n ≥ 1}

Then we take α = 1
d and prove that, for any n ≥ 1, the following equivalence holds:

ρ(n)∑
k=1

σnk (Qn
k ∩ Sn) ' Sn (4)

The meaning of the equivalence is, roughly speaking, that, for α = 1
d , the algebraic sum of the

hypercubes at each n−th step of the algorithm produces an exact filling (with respect to any absolutely
continuous measure) of the corresponding sub-simplex Sn.

The proof exploits an induction argument to show that for any n ≥ 1

ρ(n)∑
k=1

σnk (Qn
k ∩ Sn) � Sn

and, subsequently, the equivalence follows from the Lemma.
Third step We consider now α = 1+ε

d , where 0 < ε << 1
d−1 , so that each hypercube generated

inside S (0, 1) has only one vertex lying (just) outside the simplex. In fact, we take a sequence of
εm (satisfying the above inequalities) tending to zero. Then, through combinatorial arguments and
exploiting again the Lemma, an extension of the equivalence (4) is proven for any εm. As a matter of
fact, in the end, we prove the following. Consider the strips

Tn = {0 ≤ x1 + ...+ xd ≤ 1− (1− α)
n}

and

T ′n =
{

1 + (dα− 1) (1− α)
n−1 ≤ x1 + ...+ xd ≤ dα

}
Then

ρ(n)∑
k=1

σnk (Qn
k ∩ (Tn ∪ T ′n)) ' Sn (5)
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where Sn is defined as above and α = 1+εm
d (observe that, for α = 1

d , dα = 1 and T ′n is reduced to the
hyperplane x1 + ...+ xd = 1).

Fourth step Here we use the elementary property of one-variable analytic functions, which are
identically zero if their zeroes have an accumulation point, in order to extend the measure equality

derived from the above equivalence. Let α ∈
[
1
d ,

2
d+1

]
and consider (in Rd+) an analytic distribution

H. Let us define, for any n ≥ 1,

gHn (α) =

ρ(n)∑
k=1

σnk vH (Qn
k ∩ (Tn ∪ T ′n))− vH (Sn)

It is easily checked that gH1 (α) = gH2 (α) ≡ 0 as α ∈
[
1
d ,

2
d+1

]
. Moreover, when n ≥ 3, gHn (α) has

a sequence of zeroes αm → 1
d . Hence, due to the analyticity of H, gHn (α) is identically zero in an

interval of analyticity
[
1
d , α̂

]
. A value where gHn (α) might loose analyticity corresponds to the case

of some hypercubes Qn
k crossing Tn (α) or T ′n (α), when α crosses α̂. However a rather technical

argument allows to prove that gHn (α) is still zero in a right neighborhood of α̂. Hence

gHn (α) ≡ 0 (6)

for any n ≥ 1, any α ∈
[
1
d ,

2
d+1

]
and any analytic distribution H. But since an absolutely

continuous function can be approximated as well as we want by analytic functions, (6) holds for any
absolutely continuous distribution as well.

Fifth step Having proven(6), the conclusion of the Theorem appears quite close. In fact the last
step consists, precisely, in proving that

lim
n→+∞

ρ(n)∑
k=1

σnk vH (Qn
k ) = vH(S) (7)

for any α ∈
[
1
d ,

2
d+1

]
and any absolutely continuous distribution H whose density is bounded in a

neighborhood of the simplex diagonal

D = {x1 + ...+ xd = 1, x1, ..., xd ≥ 0}

Such a final step is rather straightforward, even if a fairly subtle argument is still required.

1.5. The (almost) trivial case d = 2

In the case d = 2 we also proceed by the first step. However the squares considered at each step,
when α = 1

2 , do not overlap (i.e. their intersections have zero Lebesgue measure): in fact 2α = 1.
Hence the equivalence (4) is immediately checked (see Figure 2). By self-similarity the equivalence

(5), i.e.
ρ(n)∑
k=1

σnk (Qn
k ∩ (Tn ∪ T ′n)) ' Sn, is also easily verified for any n ≥ 1and α ∈

[
1
2 ,

2
3

]
(see Figure3).

Hence the equality gHn (α) ≡ 0 follows for any absolutely continuous distribution H. The fifth step
requires, finally, the general argument described in the Theorem’s proof. Therefore the convergence
proof when d = 2 still needs the assumption of density boundedness on the triangle diagonal but not
the Lemma below on the convergence in the Lebesgue case.
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Figure 2: Convergence of the algorithm when d=2 and α = 1
2

.

1.6. A useful Proposition

We end the Section by proving the following

Proposition 1. For any d ≥ 2 and any α ∈
[
1
d ,

2
d+1

]
the sub-simplex

Sn = {0 ≤ x1 + ...+ xd ≤ 1− (1− α)
n
, x1, ..., xd ≥ 0}

is covered by the hypercubes of Πn with sides α (1− α)
s
, 0 ≤ s ≤ n− 1

Proof. Recall λ (x) = x1 + ... + xd. We prove the Proposition by induction. Clearly the property
holds for n = 1. So, assume it holds for some n ≥ 1 and consider x = (x1, ..., xd) ∈ Sn+1 − Sn.

Then λ (x) ≤ 1 − (1− α)
n+1

. Take the max (x1, ..., xd). To fix the ideas, assume it is x1. Hence
there exists x1, 0 < x1 < x1, such that λ (x) = 1 − (1− α)

n
and, by the induction hypothesis, a

point y = (y1, ..., yd) with y1 + ... + yd = α + α (1− α) + ... + α (1− α)
t
, 0 ≤ t < n − 1, satisfying

y1 ≤ x1 ≤ y1 + α (1− α)
t+1

, ..., yd ≤ xd ≤ yd + α (1− α)
t+1

.

Then, in case x1 > y1 + α (1− α)
t+1

, replace y1 by y1 + α (1− α)
t+1

and proceed recursively,

considering the max (x1 − y1, ..., xd − yd). Therefore, since λ (x) ≤ 1− (1− α)
n+1

, we will eventually
find y = (y1, ..., yd) with y1 + ... + yd = α + α (1− α) + ... + α (1− α)

t+r
, t + r ≤ n − 1, such that

yk ≤ xk ≤ yk + α (1− α)
t+r+1

for k = 1, ..., d

Remark 2. The convergence problem arises precisely from the fact that the above hypercubes overlap

(i.e. they have intersections of positive volume) for some n > 2 when d > 2 and α ∈
[
1
d ,

2
d+1

)
(when

d > 3 if α = 2
d+1).
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Figure 3: Convergence of the algorithm when d=2 and α = 2
3

.

2. Convergence of the algorithm in any dimension

2.1. Convergence for the Lebesgue measure

Lemma 3. The AEP algorithm converges for the Lebesgue measure when d ≥ 2 and α ∈
[
1
d ,

1
d√
d!

)
.

Proof. Let us denote by vol(A) the Lebesgue measure (volume) of a Lebesgue measurable set A ⊆ Rd.
Then, with the above choice of α,

vol (S)− P1 =
1

d!
− αd =

∑
k

σ2
kvol

(
S2
k

)
> 0

where the S2
k are simplexes and σ2

k = ±1.
Set

∑
k

σ2
kvol

(
S2
k

)
= R1, so that

vol(S) = P1 +R1 (8)

Add and subtract to the second member of (8)
∑
k

σ2
kvol

(
Q2
k

)
, where Q2

k are hypercubes and vol
(
Q2
k

)
=

vol
(
S2
k

)
αdd!

Hence

vol(S) = P2 +
∑
k

σ2
kvol

(
S2
k

)
d!

(
1

d!
− αd

)
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where P2 = P1 +
∑
k

σ2
kvol

(
Q2
k

)
.

So

R2 :=
∑
k

σ2
kvol

(
S2
k

)
d!

(
1

d!
− αd

)
=
(
1− αdd!

)( 1

d!
− αd

)
(9)

and moreover R2 =
∑
h

σ3
hvol

(
S3
h

)
, with σ3

h = ±1 and S3
h simplexes.

Hence, recursively,

0 < vol (S)− Pn+1 = Rn+1 =
(
1− αdd!

)n( 1

d!
− αd

)
→ 0 as n→ +∞

Remark 4. It is easily checked that for any d ≥ 2 2
d+1 <

1
d√
d!

.

2.2. The main Theorem

Theorem 5. Let H be a probability distribution with support in Rd+, d ≥ 2, absolutely continuous
with bounded density in a neighborhood of the simplex diagonal. Then the AEP algorithm converges

for any α ∈
[
1
d ,

2
d+1

]
.

The proof will be divided in five steps

2.2.1. First step: construction of a Z-module

First of all, we want to define an algebraic operation (called sum) among extended sets, where
positive sets are generated by Lebesgue measurable subsets of Rd and negative sets are generated by
subsets of −Rd, the negative copy of Rd. To be precise, called M the family of Lebesgue measurable
subsets of Rd, we define

Ω = {a1A1 + ...+ akAk, A1, ..., Ak ∈M, a1, ..., ak ∈ Z} .

Then the elements of Ω are finite sequences of measurable subsets of Rd, each one multiplied by
an integer (positive, negative or zero). At the moment + is just a punctuation sign. We also set
(−1)A = −A and A+ (−B) = A−B.

Then we define a sum in Ω, still denoted by +, commutative and associative, by the following
rules:

1) for any A ∈ Ω and h ∈ Z, hA = A + ... + A h times if h > 0, hA = − |h|A if h < 0, 0A = ∅,
−∅ = ∅, A+ ∅ = A;

2) for any A,B ∈M A+B = A ∪B +A ∩B;
3) for any A,B ∈M A−B = A/B −B/A, where A/B = A ∩Bc.
It follows, in particular, A−A = ∅ ∀A ∈ Ω. Hence Ω is a Z-module.
This way we can extend the Lebesgue (and any equivalent) measure to Ω as a linear functional. In

fact, denote by vol(A) the Lebesgue measure of A ∈M. Then, for a1A1 + ...+ akAk ∈ Ω, we define

vol (a1A1 + ...+ akAk,) := a1vol (A1) + ...+ akvol (Ak) (10)

Moreover the sum operation induces a partial ordering in Ω as follows.
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If A ∈ Ω we say that A � ∅ if A = a1A1 + ...+ ahAh + ah+1Ah+1 + ...+ asAs, with a1, ..., ah > 0,
A1, ..., Ah, Ah+1, ..., As ∈ M, vol (A1) , ..., vol (Ah) > 0, vol (Ah+1) = ... = vol (As) = 0. We say that
A ' ∅ if in the above expression h = 0. Then, if A,B ∈ Ω, we say that A � B, A ' B if, respectively,
A − B � ∅, A − B ' ∅. In particular, observe that, for A,B ∈ M, A ⊆ B =⇒ A - B, but not
vice-versa. Then A � B ⇒ vol (A) > vol(B) and A ' B ⇒ vol (A) = vol(B)

By the above definitions, considering the AEP algorithm for d ≥ 2 and α ∈
[
1
d ,

2
d+1

]
, we can

replace, at the n− th step, the sum Pn of volumes with a sum Πn of elements of Ω, i.e.

Πn =
∑
k

σnkQn
k

where σnk = ±1 and Qn
k are hypercubes, so that Pn = vol (Πn).

2.2.2. Second step: proof of an equivalence when α = 1
d

Now, take as in the Lemma S = S (0, 1). We start by considering the case α = 1
d , although in the

following we will continue to use the symbol α, as most arguments apply to all α ∈
[
1
d ,

2
d+1

]
.

Then define

Sn =

{
0 ≤ x1 + ...+ xd ≤ 1− (1− α)

n
= 1−

(
1− 1

d

)n
, x1, ..., xd ≥ 0

}
(11)

We recall that, given x = (x1, ..., xd), λ (x) = x1 + ...+ xd.
We want to prove that, at any step of the AEP algorithm,

Sn '
∑
k

σnk (Qn
k ∩ Sn) (12)

where ' is the above defined equivalence in Ω.
We will prove (12) by induction. In fact (12) holds for any n when d = 2 and for n = 1, 2 when

d > 2, as it is easily checked. Therefore, fixed d > 2, assume (12) holds for some n ≥ 2. Since we have
seen (Proposition 1) that Sn+1 is covered by the hypercubes of Πn+1 with sides α (1− α)

s
, 0 ≤ s ≤ n,

having a positive sign in Πn+1, we have to consider the contribution of hypercubes with a negative
sign in Πn+1. Let us illustrate the situation by taking the second step of the algorithm and considering
a hypercube Qr = Q (br, α (1− rα)), where br has r coordinates equal to α and d− r equal to zero,

2 ≤ r ≤ d− 1 (if α ∈
[
1
d ,

2
d+1

]
, 2 ≤ r < 1

α ). Thus we can find n ≥ 2 such that

1− (1− α)
n

< rα ≤ 1− (1− α)
n+1

Then, consider Ql = Q (bl, α (1− lα)), 1 ≤ l < r, where bl is obtained from br by replacing r− l
α′s with 0′s: to fix the ideas,

br =

(
r times︷ ︸︸ ︷
α, ..., α, 0..., 0

)
,bl =

 l times︷ ︸︸ ︷
α, ..., α, 0..., 0

 (13)

Next, consider the hypercube Q1
l = Q

(
b1
l , α (1− lα) (1− α

)r−l
), where

b1
l =

(
α, ..., α, α (1− lα) , ..., α (1− lα) (1− α)r−l−1, 0..., 0

)
.

10



Hence Q1
l has, in the development of the AEP, the same sign as Q (bl, α (1− lα)). By adding

α (1− lα) (1− α)r−l and then , if necessary, α (1− lα) (1− α)r−l+1 and so on to the smallest coordi-
nate between the (l + 1)− th and the r − th place of the vertex bjl of Qj

l , finally we get a hypercube
Qt
l = Q (btl , α (1− lα) (1− α)

m
) such that br ∈ Qt

l and m < n.
Thus Qr ∩ Sn+1 can be covered by positive hypercubes of the AEP approximation of a simplex

S̃l = S (bl, 1− lα). Then, by applying the AEP to S̃l, we can find

m = inf
{
m : lα+ (1− lα) (1− (1− α)

m
) ≥ 1− (1− α)

n+1 ≥ rα
}

Hence m ≤ n, i.e. m corresponds to a step < n+ 1 of the algorithm. Therefore, by the induction
hypothesis ∑

h

σmh

(
Q̃m
h ∩Qr ∩ S̃m

)
' Qr ∩ S̃m

and the same holds replacing S̃m by Sn+1, since Qr ∩ S̃m � Qr ∩ Sn+1.
However such a Qr ∩ Sn+1 must be accounted for, in the analogous expression relative to original

AEP, with a sign (−1)
1+l

and clearly that must be repeated
(
r
l

)
times (the number of ways by which

r− l α′s can be replaced by 0′s). As a consequence, in the AEP expression relative to the (n+ 1)− th
step, Qr ∩ Sn+1 is multiplied by an integer

zr = (−1)
1+r

+ (−1)
2+r

(
r

1

)
+ ...+ (−1)

2r

(
r

r − 1

)
= 1 (14)

since from (1− 1)
r

= 0 it follows

1−
(
r

1

)
+ ...+ (−1)

r−1
(

r

r − 1

)
= (−1)

r+1
(15)

and (14) is obtained from (15) by multiplying both members of the equality by (−1)
r+1

.
The above argument can be implemented recursively. In fact, consider, with the above no-

tations, the simplex S̃r = S (br, 1− rα), 2 ≤ r < 1
α . Then, for 1 ≤ l < r, take a simplex

S̃lt = S
(
btl , (1− lα) (1− α)

m∗
)

, where btl corresponds, for example, to our previous construction

and
m∗ = sup {m/ (1− lα) (1− α)

m
> 1− rα}

.
Hence it is easily checked that S̃r ⊆ S̃lt . Thus take, by self-similarity, the application of the

AEP to both the above simplexes. Consider, for any sufficient high n, the intersection Q̃ ∩ Sn+1 of a

hypercube Q̃ belonging, with a positive sign, to the AEP development relative to S̃r with

Sn+1 =
{

0 ≤ x1 + ...+ xd ≤ 1− (1− α)
n+1

, x1, ..., xd ≥ 0
}

Then, as Q̃ ∩ Sn+1 corresponds to a step p < n + 1 of the AEP algorithm applied to S̃r, by the
induction hypothesis ∑

h

σph

(
Q̃p
h ∩ Q̃ ∩ Sn+1

)
' Q̃ ∩ Sn+1

As above, this implies that Q̃∩Sn+1 will be accounted for, in the analogous expression relative to the

AEP approximation of S = S (0, 1), with a sign (−1)
1+r

. Similarly, as S̃r ⊆ S̃lt ⊆ S̃l = S (bl, 1− lα),

11



where bl is defined as in (13), Q̃∩Sn+1 will be accounted again with a coefficient (−1)
1+l

. Therefore,

as above, recalling (14), we can conclude that in
∑
k

σn+1
k

(
Qn+1
k ∩ Q̃ ∩ Sn+1

)
Q̃ ∩ Sn+1 is accounted

for with coefficient 1.
Moreover the same argument holds if we replace the simplex S (0, 1) by some S (b, (1− α)

q
), where

λ (b) = α+ α (1− α) + ...+ α (1− α)
q−1

= 1− (1− α)
q
, q ≥ 1.

Finally
∑
k

σn+1
k

(
Qn+1
k ∩ Sn+1

)
includes the intersections with Sn+1 of the hypercubes generated at

the (n+ 1)−th step with vertices on the axes, say Q
(
bh, α (1− α)

n)
, bh =

0, ...,

h−th place︷ ︸︸ ︷
1− (1− α)

n
, ..., 0

,

h = 1, ..., d. Thus, clearly, Q
(
bh, α (1− α)

n) ∩ Sn+1 is accounted for with a positive sign.
What we have proven, in fact, is that Sp '

∑
k

σpk (Qp
k ∩ Sp) for p ≤ n (and we know the equivalence

holds for p = 1, 2) implies Sn+1 �
∑
k

σn+1
k

(
Qn+1
k ∩ Sn+1

)
. So assume by contradiction that there is a

first n∗ > 2 such that
Sn∗ ≺

∑
k

σn
∗

k

(
Qn∗

k ∩ Sn∗
)

(16)

Consequently there will be an excess of volume measured by
∑
k

σn
∗

k vol
(

Qn∗

k ∩ Sn∗
)
− vol (Sn∗). We

want to show that such an excess does not decrease (in fact it increases) through the subsequent
iterations of the algorithm.

To this end recall that, by Proposition 1, Sn∗ is covered by hypercubes of sides α (1− α)
s
, 0 ≤

s < n∗. Therefore we can detect one of them, say Q∗, such that∑
k

σn
∗

k

(
Qn∗

k ∩Q∗ ∩ Sn∗
)
−Q∗ ∩ Sn∗ � A

where A ∈M and vol(A) > 0.

Hence consider the AEP applied to S̃r, 2 ≤ r ≤ d − 1, defined as above. Then, after n∗ steps
(corresponding to n∗+mr ones, for a suitable mr, of the original algorithm) there will be a hypercube

Q̃∗ such that ∑
k

σn
∗

k

(
Q̃n∗

k ∩ Q̃∗ ∩ S̃n∗
)
− Q̃∗ ∩ S̃n∗ � Ã

where vol(Ã) = (1− rα)
d
vol(A). Therefore, by the above arguments, recalling (14),∑

k

σn
∗+mr

k

(
Qn∗+mr
k ∩ Q̃∗ ∩ (Sn∗+mr − Sn∗)

)
−Q∗ ∩ (Sn∗+mr − Sn∗) � Ã

In other words, for any m ≥ n∗, ∑
k

σmk (Qm
k ∩ Sm)− Sm � A (17)

where vol(A) > 0.
Now, let n be sufficiently high and p ≥ 1. We indicate by ρ (m) = Nm−1

N−1 , N = 2d − 1, the number
of hypercubes produced by the AEP in the first m steps. Then, as it is easily checked,

ρ(n+p)∑
k=1

σn+pk

(
Qn+p
k ∩ Sn+p

)
=
ρ(n)∑
k=1

σnk (Qn
k ∩ Sn) +

ρ(n)∑
k=1

σnk (Qn
k ∩ (Sn+p − Sn)) +

+
ρ(n+p)∑
k=ρ(n)+1

σn+pk

(
Qn+p
k ∩ (Sn+p − Sn)

)
12



Choose p = tn, in such a way that (1− α)
t ≤

(
1
4

)d
. Then, fixed q ≥ 1, for any 1 ≤ k ≤ ρ(n),

vol (Qn
k ∩ (Sn+p+q − Sn+p)) ≤

(
1
4

)dn
.

Hence

∣∣∣∣∣ρ(n)∑k=1

σnk vol (Qn
k ∩ (Sn+p+q − Sn+p))

∣∣∣∣∣ < ( 12)dn, as ρ (n) ≤ 2dn.

Thus

ρ(n+p)∑
k=ρ(n)+1

σn+pk vol
(
Qn+p
k ∩ (Sn+p+q − Sn+p)

)
=
ρ(n+p+q)∑
h=1

σn+p+qk vol
(
Qn+p+q
k ∩ Sn+p+q

)
−

−
ρ(n+p)∑
k=1

σn+pk vol
(
Qn+p
k ∩ Sn+p

)
+ 0

((
1
2

)dn)

Since we have shown that
ρ(m)∑
k=1

σmk vol (Q
m
k ∩ Sm) is increasing withm, it follows through straightforward

steps that

lim sup

ρ(m)∑
k=1

σmk vol (Qm
k ) ≥ lim

m→+∞

ρ(m)∑
k=1

σmk vol (Q
m
k ∩ Sm) (18)

Therefore, because of (17)

lim sup
m→+∞

ρ(m)∑
k=1

σmk vol (Qm
k )− vol(S) ≥ vol(A) > 0

which, being α = 1
d , contradicts the Lemma.

Hence we have proven that, when α = 1
d , for any n, (12) holds, i.e.∑

k

σnk (Qn
k ∩ Sn) ' Sn

2.2.3. Third step: extension of the above equivalence

Now we want to prove that for any α ∈
(

1
d ,

2
d+1

]
an analogous equivalence holds, when, however,

the totality of the hypercubes relative to the n−th step of the AEP is replaced by a selection (or extrap-

olation) consisting in those hypercubes, say Q̂
n

k , whose sides are of the type α (1− l1α) .... (1− lqα),
where 0 ≤ l1, ..., lq < 1

α .
To this purpose we start by taking α = 1+ε

d , where ε > 0 is sufficiently small and in any case
ε << 1

d−1 . As a matter of fact, for sake of simplification, we take ε satisfying(
1− 1 + ε

d

)m
= ε (19)

which can be done choosing a suitable ε (m), when m is large enough: in fact
(
1− 1

d

)m+1
< ε (m) <(

1− 1
d

)m
. Hence each hypercube with the main (i.e. the one with the smallest l1norm) vertex in the

strip {0 ≤ x1 + ...+ xd < 1} has only one vertex in the strip {1 < x1 + ...+ xd ≤ 1 + ε}.
Consider, then, the above mentioned extrapolation. When n = 1, 2, as we have often recalled, the

following equivalence holds: ∑
k

σnk

(
Q̂
n

k ∩ Sn
)
' Sn

13



and the above arguments show that for any n∑
k

σnk

(
Q̂
n

k ∩ Sn
)
� Sn

Suppose, then, there exists a first n∗ > 2 for which∑
k

σn
∗

k

(
Q̂
n∗

k ∩ Sn∗
)
� Sn∗ (20)

and let∑
k

σn
∗

k

(
Q̂
n∗

k ∩ Sn∗
)
−Sn∗ ' A, whereA = a1A1+...+ahAh, with a1, ..., ah > 0, vol (A1) , ..., vol (Ah) >

0.
The problem now is that, in order to be able to utilize the Lemma, we have to consider as well the

excesses produced, via self-similarity, by the application of the algorithm to the exterior simplexes
generated in the strip {1 < x1 + ...xd ≤ 1 + ε}, which, in their turn, generate new simplexes lying
inside S (0, 1) and so on. The following construction allows, precisely, to deal with this problem.

Take m∗ = min(n∗,m), recalling (19).

Consider the sub-simplexes Sp = S
(
bp, (1− α)

m∗
)

, where λ (bp) = α+α (1− α)+...+α (1− α)
m∗−1

,

so that, as it is easily seen, 1 ≤ p ≤ dm
∗
. Hence we can compare the distinct (i.e. not contained

in previous ones) simplexes generated, by the extrapolated hypercubes, at the (j + 1) − th step of
the AEP, j = 1, ...,m∗, in the strip {1 < x1 + ...xd ≤ 1 + ε}, with the ones produced at the j − th
extrapolation relative to the sub-simplex Sjd.

For example, consider the simplex S̃lε = S(c, − ε (1− lα)), where λ (c) = lα + dα(1 − lα) =

1 + ε (1− lα). Then, applying the extrapolated AEP to S̃lε , after n∗ steps we get

∑
k

σn
∗

k vol

(̂̃
Q
n∗

k ∩ S̃n∗
)
− vol

(
S̃n∗
)

= ε (1− lα) vol (A)

which will be accounted for with a sign (−1)
2+l

in the overall algorithm. However this contribution

will be compensated by one equal to (−1)
1+l

(1− α)
m∗

(1− lα) vol (A) (as ε ≤ (1− α)
m∗

) provided
by the AEP development of the corresponding simplex we have picked up (in this case a sub-simplex
of S2d).

Moreover, observe that, for α = 1+ε
d ,

d (1− α)−
(
d

2

)
(1− 2α) + ...+ (−1)

d
d (1− (d− 1)α) = 1 + (−1)

d−1
ε (21)

This implies that, if the extrapolated algorithm applied, say, to one of the above simplexes Sp

produces after n∗ steps an excess (in the sense of (20)) of volume q > 0, then after a sufficiently
higher number of steps the excess of volume will be at least q + (1− ε) q. For example, denote by h
the radius of Sp and apply the extrapolated algorithm both to Sp and to the sub-simplexes of radii
h (1− α) , h (1− 2α) , ..., h (1− (d− 1)α) (recall α = 1+ε

d and ε << 1
d−1 ). As we have seen in § 2.2.2,

if, after a certain number of steps, an excess of volume is accumulated, then it does not decrease in
the following steps. Hence we can put aside (save) such excesses and sum them up, algebraically, at
the end (i.e. when the one relative to the simplex with radius h (1− (d− 1)α) is, for the first time,
produced). Clearly the process is recursive and we can combine it with the above construction, which

14



allows to compensate the negative excesses of volume produced by the application of the extrapolated
AEP to exterior simplexes. To fix the ideas, consider, after a suitable partition, the first d sub-
simplexes Sp, 1 ≤ p ≤ d. Then, following formula (21), after a sufficiently high number of steps, they
will contribute to the excess of volume of the overall extrapolated algorithm in measure, say, µ (1− ε)
(e.g. µ = (1− α)

m∗−1
vol (A)). But, for our construction, we have to subtract a quantity, due to the

corresponding excess of volume caused by the first exterior simplex, at most µ (1− α) = µ
(
1− 1+ε

d

)
(since ε ≤ (1− α)

m∗
). Hence, if ε << 1

2d , the contribution will be in any case greater than µε. The
results holds, a fortiori, for the other strings, of length d, of sub-simplexes Sp, as in those cases the
quantities to be subtracted are, for the same number of steps, smaller. As an example, consider the
string {Sp, d+ 1 ≤ p ≤ 2d}. After a convenient number of steps, recalling the above arguments, we
can denote the excess of volume produced by the application of the extrapolated algorithm to any Sp

as, say, [ρ+ ρ (1± ε)] (1− α) (e.g. ρ = (1− α)
m∗−1

vol (A)). Then, after a sufficiently high number of
steps, we will have, due to (21), an excess of volume originated from the string {Sp, d+ 1 ≤ p ≤ 2d}
which is (at least) [ρ+ ρ (1± ε)] (1± ε). But now, applying our comparison, what we have to subtract
is (at most) ρ (1± ε) (1− α) .

Hence, recall the arguments of § 2.2.2 and consider the two strips

Tq =
{

0 ≤ x1 + ...+ xd ≤ 1− (1− α)
m∗

(1− α)
q
}

and
T ′q = {1 + ε (1− α)

q ≤ x1 + ...+ xd ≤ 1 + ε}

Then it follows through straightforward steps that, for a sufficiently high q̃,∑
k

σq̃+m
∗

k vol
(

Qq̃+m∗

k ∩
(
Tq̃ ∪ T ′q̃

))
− vol (Sq̃+m∗) ≥ vol (A) + cε+ 0

(
ε2
)

(22)

where c > 0, and we can go on recursively.
Eventually, by the same arguments we utilized above, it follows

lim sup
m→+∞

ρ(m)∑
k=1

σmk vol (Q
m
k )− vol(S) > 0

contradicting, once again, the Lemma.

2.2.4. Fourth step: analytic measures

Then we have proven that for α = 1+ε(m)
d , with lim

m→+∞
ε(m) = 0,

∑
k

σnk

(
Q̂
n

k ∩ Sn
)
' Sn

(23)

holds for any n ≥ 1, where Q̂
n

k are hypercubes of the above defined extrapolation. Hence, if we
consider an analytic distribution H in Rd+, the function

fHn (α) =
∑
k

σnk vH

(
Q̂
n

k ∩ Sn
)
− vH (Sn) (24)
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analytic in
[
1
d , α̂n

]
, is zero on a sequence of values tending to 1

d . Therefore fHn (α) ≡ 0 in
[
1
d , α̂n

]
.

As it is easily seen, a value α̂ (we drop the pedex in order to simplify the notation) where fHn (α) may

loose analyticity is such that there exist hypercubes Q̂
n

j (α̂) = Q
(
bj , α̂ (1− l1α̂) ...

(
1− lqj α̂

))
with

λ (bj) = 1−(1− l1α̂) ...
(
1− lqj α̂

)
= 1−(1− α̂)

n
, but l1 + ...+ lqj < n1. Therefore, assume this is the

case and take a sufficiently small interval of α̂, say [α̂− δ, α̂+ δ] for a small δ > 0. Choose a suitable
analytic function ϕ (α) defined in [α̂− δ, α̂+ δ], ϕ (α) having the sign of α− α̂, such that the simplex
S∗ (α) = {0 ≤ x1 + ...+ xd ≤ 1− (1− α)

n
+ ϕ (α) , x1, ..., xd ≥ 0}, α ∈ [α̂− δ, α̂+ δ], intersects each

hypercube Q̂
n

j (α) at most at one point. Now we want to show that, for α ∈ [α̂− δ, α̂]

f̃Hn (α) =
∑
k

σnk vH

(
Q̂
n

k ∩ S∗ (α)
)
− vH (S∗ (α)) = 0 (25)

In fact, this is true when α = α̂, since in this case S∗ (α̂) = Sn (α̂), while for α ∈ [α̂− δ, α̂)

fH
′

n (α) =
∑
k

σnk vH′
(

Q̂
n

k ∩ Sn (α)
)
− vH′ (Sn (α)) = 0

for any analytic measure (equivalent to Lebesgue) H ′.
Hence, posed ϕ (α) = −β, β > 0, we can choose, for any m > 1, an analytic distribution H ′m and

a number ρ, 0 < ρ << β, such that, called δH′m (x) and δH (x) the densities, respectively, of H ′m and
H, ∣∣δH′m (x)− δH (x)

∣∣ ≤ 2−dnρm when x ∈ S∗ (α)
and

δH′m (x) < 2−dnρm when 1− (1− α)
n ≥ λ (x) ≥ 1− (1− α)

n − β + ρm, x ≥ 0
(26)

It follows that

0 =
∑
k

σnk vH′m

(
Q̂
n

k ∩ Sn (α)
)
− vH′m (Sn (α)) =

∑
k

σnk vH

(
Q̂
n

k ∩ S∗ (α)
)
− vH (S∗ (α)) + 0 (ρm) (27)

implying (25) when m→ +∞.

Hence, because of analyticity, f̃Hn (α) ≡ 0 in [α̂− δ, α̂+ δ]. But for any α ∈ (â, â+ δ] ϕ (α) can
be chosen arbitrarily small, e.g. ϕ (α) < ρm for an arbitrary 0 < ρ << 1. So, in fact, fHn (α) ≡ 0 in
[α̂− δ, α̂+ δ], which extends the analyticity of fHn (α).

As a consequence, for any n ≥ 1, any α ∈
[
1
d ,

2
d+1

]
and any analytic distribution H

fHn (α) = 0. (28)

Remark 6. The above arguments show in particular that, for a given α ∈
[
1
d ,

2
d+1

]
and an analytic

distribution H, if a sub-simplex S∗ (α) satisfies Sn−1 (α) ⊂ S∗ (α) ⊂ Sn (α), then
∑
k

σnk vH

(
Q̂
n

k ∩ S∗ (α)
)
−

vH (S∗ (α)) = 0, where Q̂
n

k denote the hypercubes of the above described extrapolation.

Remark 7. Recall the definition (24) of fHn (α). Then we observed that, for an analytic H, fHn (α) is
analytic in

[
1
d , α̂n

]
, where α̂n denotes the first value at which fHn (α) might loose analyticity. In fact,

it is easily checked that such α̂n constitute a non-increasing sequence (in particular α̂1 = α̂2 = 2
d+1).

1if, say, rα̂ = 1 − (1 − α̂)n, 2 ≤ r < 1
α̂

and consequently n > r, then, set ψ (α) = rα − 1 + (1 − α)n, it is easily
checked that ψ′ (α̂) < 0
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Moreover a conclusion analogous to (28) holds if the extrapolation is replaced by the whole AEP
development and we consider, instead of fHn (α),

gHn (α) =
∑
k

σnk vH (Qn
k ∩ (Tn ∪ T ′n))− vH (Sn)

where
Tn = {0 ≤ x1 + ...+ xd ≤ 1− (1− α)

n}

and
T ′n =

{
1 + (dα− 1) (1− α)

n−1 ≤ x1 + ...+ xd ≤ dα
}

In fact we observe, first of all, that gH1 (α) = gH2 (α) = 0 for any α ∈
[
1
d ,

2
d+1

]
(this follows from the

fact that, when α ∈
[
1
d ,

2
d+1

]
, dα − 1 ≤ 1 − α). Then we can proceed by induction. Assume, for

some n ≥ 2, gHn (α) ≡ 0 in
[
1
d ,

2
d+1

]
. Then, exploiting the self-similarity of the AEP algorithm and

the above Remark 6, it is proven through straightforward arguments that gHn+1 (α) ≡ 0 in the same
interval of analyticity

[
1
d , α̂n+1

]
of fHn+1 (α). Consequently the analytic extension is proven exactly in

the same way as above.

Hence for any n ≥ 1, α ∈
[
1
d ,

2
d+1

]
and analytic distribution H

gHn (α) =
∑
k

σnk vH (Qn
k ∩ (Tn ∪ T ′n))− vH (Sn) = 0 (29)

Now recall that an absolutely continuous function H can be approximated as well as we want by
some analytic function H ′. Then fix an absolutely continuous distribution H, n ≥ 3 and (an arbitrarily
small) ε > 0. By straightforward arguments it follows that there exists an analytic distribution H ′

such that, for any α ∈
[
1
d ,

2
d+1

]
, ∣∣∣gHn (α)− gH

′

n (α)
∣∣∣ < ε (30)

(in fact a detailed proof of this statement, such as the one given in Appendix, requires a result known
as the absolute continuity of the Lebesgue integral (see, e.g., Kolmogorov and Fomin, 1977, p.294).

Hence(29) holds for any absolutely continuous distribution H.

2.2.5. Fifth step: concluding the convergence proof

The last step consists in computing the lim
n→+∞

ρ(n)∑
k=1

σnk vol (Qn) when α ∈
[
1
d ,

2
d+1

]
. To this end we

utilize an argument we have already introduced and here we repeat in detail.
Let n be sufficiently high and p ≥ 1. Indicate by ρ (m) = Nm−1

N−1 , N = 2d − 1, the number of
hypercubes produced by the AEP in the first m steps. Then it is easily checked that

ρ(n+p)∑
k=1

σn+pk

(
Qn+p
k ∩

(
Tn+p ∪ T ′n+p

))
=
ρ(n)∑
k=1

σnk (Qn
k ∩ (Tn ∪ T ′n)) +

ρ(n)∑
k=1

σnk
(
Qn
k ∩

[
(Tn+p − Tn) ∪ (T ′n+p − T ′n)

])
+

+
ρ(n+p)∑
k=ρ(n)+1

σn+pk

(
Qn+p
k ∩

[
(Tn+p − Tn) ∪ (T ′n+p − T ′n)

])
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Choose p = tn in such a way that (1− α)
t ≤

(
1
4

)d
. Then, fixed q ≥ 1, recalling that the density of

H is bounded in a neighborhood of the diagonal {x1 + ...+ xd = 1, x1, ..., xd ≥ 0}, for a sufficiently

high n and any 1 ≤ k ≤ ρ(n) it follows vH
(
Qn
k ∩

[
(Tn+p − Tn) ∪ (T ′n+p − T ′n)

])
≤ C

(
1
4

)dn
, for some

C > 0.
Hence, being ρ (n) ≤ 2dn,∣∣∣∣∣∣

ρ(n)∑
k=1

σnk vH
(
Qn
k ∩

[
(Tn+p+q − Tn+p) ∪ (T ′n+p+q − T ′n+p)

])∣∣∣∣∣∣ < C

(
1

2

)dn
Thus

ρ(n+p)∑
k=ρ(n)+1

σn+pk vH
(
Qn+p
k ∩

[
(Tn+p+q − Tn+p) ∪ (T ′n+p+q − T ′n+p)

])
=

ρ(n+p+q)∑
h=1

σn+p+qk vH
(
Qn+p+q
k ∩ (Tn+p+q ∪ T ′n+p+q

)
)−

−
ρ(n+p)∑
k=1

σn+pk vH
(
Qn+p
k ∩ (Tn+p ∪ T ′n+p

)
) + 0

((
1
2

)dn)

In fact, posed n+ p = n (t+ 1) = m, then n = m
t+1 . So, recalling (29), as

vH (Sm+q)− vH (Sm) ≤ C∗ (1− α)
m

for a suitable C∗ > 0,

ρ(m)∑
k=1

σmk vH
(
Qm
k ∩

[
(Tm+q − Tm) ∪ (T ′m+q − T ′m)

])
= 0

((
1

2

) dm
t+1

)
(31)

for any q ≥ 1. Therefore, finally,

lim
m→+∞

ρ(m)∑
k=1

σmk vH (Qm
k ) = vH(S) (32)

which concludes the proof of the Theorem.

Remark 8. We believe that the restriction, in the proof of the Theorem, of the density boundedness
in a neighborhood of the simplex diagonal could be removed.

3. Conclusions

What has been proven, i.e. the convergence of the above geometric algorithm, is, in our perspective,
only the first stage of a fairly ambitious program of research. The goal is, in fact, to develop a whole
family of deterministic (possibly geometric) algorithms, which, besides presenting the advantages
recalled in the Introduction, can also compete in velocity with Monte Carlo methods. Hence specific
algorithms of such a type could be applied for computing not only the distribution of the sum of
dependent random variables (equivalent, when the variables are non-negative, to the l1 norm), but
also other distributions (e.g., distributions relative to the norms l2, l∞, in general lp with p > 1,
extreme value distributions etc..) of relevant interest in finance and insurance.
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4. Appendix

Proposition 9. With the notations of § 2.2.4, for any absolutely continuous distribution H, gHn (α) =

0 ∀ n ≥ 1 and α ∈
[
1
d ,

2
d+1

]
Proof. Thanks to self-similarity, it suffices to prove that, for any absolutely continuous distribution
H,

fHn (α) =

ρ̂(n)∑
k=1

σnk vH

(
Q̂
n

k ∩ Sn (α)
)
− vH (Sn (α)) = 0

where Q̂
n

k are the hypercubes of the extrapolation defined in § 2.2.3 (in fact we can assume n ≥ 3,
as the cases n = 1, 2 are trivial).

To this end we start by considering, in the hypercube [0, 1]
d
, the trapezoid T defined by

T =
{

x′ = (x1, ..., xd−1) ∈ [0, 1]
d−1

, 0 ≤ xd ≤ 1− λ (x′)
}

Then the Theorem on the absolute continuity of the Lebesgue integral (see Kolmogorov and Fomin,
1977), implies that we can find δ > 0 such that:

• letting Tδ =
{

x′ = (x1, ..., xd−1) ∈ [0, 1]
d−1

, 0 ≤ xd ≤ 1− λ (x′)− δ
}

, vH (T ) − vH (Tδ) <
ε

16ρ̂(n) ;

• we can tile [0, 1]
d−1

by hypercubes of side length 1
m , m being sufficiently high, in such a way

that for each tile Qt, 1 ≤ t ≤ md, we can consider a rectangular hyperprism Rt having basis Qt

and height ht = 1− δ− minλ (x) ≤ 1− δ
2 −max

Qt
λ (x): hence vH (Tδ) ≤ vH

(
md

∪
t=1

Rt

)
≤ vH (T ).

Now, fixed n and α ∈
[
1
d ,

2
d+1

]
, by the mentioned Theorem the above construction can be re-

produced (i.e. rescaled) for any trapezoid Q̂
n

k ∩ Sn, replacing 1 by 1 − (1− α)
n

and 1 − δ by

(1− (1− α)
n
) (1− δ). Moreover, set Q̂

n

k = Q (b, l), l > 0, and define Q′ = Q (b, l) ∩ {xd = bd}.
Then

Q̂
n

k ∩ Sn =

{
x′ = (x1, ..., xd−1) ∈ Q′, bd ≤ xd ≤ (1− (1− α)

n
)

(
1− δ

2

)
− λ (x′)

}
We can also choose δ so small that, if Q̂

n

k has an intersection of positive volume with Sn, then it has
an intersection of positive volume also with Sδn = {0 ≤ λ (x) ≤ 1− (1− α)

n − δ, x1, ..., xd ≥ 0}.
Now we can consider an analytic distribution H ′ such that in

T δ
2

=

{
x′ = (x1, ..., xd−1) ∈ [0, 1]

d−1
, 0 ≤ xd ≤ (1− (1− α)

n
)

(
1− δ

2

)
− λ (x′)

}
|H ′ (x)−H (x)| < ε

16ρ̂(n)(2m)d
, while in T0 − T( δ2−σ), for any arbitrarily small σ > 0, the density

of H ′ can be chosen as small as we want. Moreover, by Proposition 1 of § 1.4, Sn has a cover of
hypercubes, from which we can extract a cover of p ≤ ρ̂ (n) not overlapping rectangular hyperprisms,
to which the above construction can be analogously applied.

Then, through straightforward steps, it follows that for any arbitrarily small ε > 0∣∣fHn (α)
∣∣ < ε

Hence fHn (α) = 0
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