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Abstract

We consider a univariate semimartingale model for (the logarithm of) an asset price, containing jumps
having possibly infinite activity (IA). The nonparametric threshold estimator I V. of the integrated variance
1V = fOT o2ds proposed in [6] is constructed using observations on a discrete time grid, and precisely it sums
up the squared increments of the process when they are under a threshold, a deterministic function of the
observation step and possibly of the coefficients of X. All the threshold functions satisfying given conditions
allow asymptotically consistent estimates of IV, however the finite sample properties of IV, can depend on
the specific choice of the threshold. We aim here at optimally selecting the threshold by minimizing either the
estimation mean square error (MSE) or the conditional mean square error (¢cMSE). The last criterion allows to
reach a threshold which is optimal not in mean but for the specific path at hand.

A parsimonious characterization of the optimum is established, which turns out to be asymptotically pro-
portional to the Lévy’s modulus of continuity of the underlying Brownian motion. Moreover, minimizing the
cMSE enables us to propose a novel implementation scheme for the optimal threshold sequence. Monte Carlo

simulations illustrate the superior performance of the proposed method.

Keywords: Threshold estimator, integrated variance, Lévy jumps, mean square error, conditional mean square

error, modulus of continuity of the Brownian motion paths, numerical scheme

JEL classification codes: C6, C13

1 Introduction

We consider the model
dXt = O'tth + th (1)

where W is a standard Brownian motion, o is a cadlag process, and J is a pure jump semimartingale (SM) process.
Assume we have at our disposal a record {zg, X3,,.., Xt} of discrete observations of X spanned on the fixed time
interval [0, T], define A;Z or A" Z the increment Z;, — Z;,_, for any process Z, and define threshold function r(c, h)
any deterministic non-negative function of the observation step h, and possibly of the coefficients of X, such that

for any value 0 € R

h
lim r(o,h) =0, lim r(o, 1)
h—0 h—0 hlog

We know that then the Threshold Realized Variance (or Truncated Realized Variance)

n

IV, = Z(Az’X)QI{(AiX)@r(UtH,hi)}, (2)

i=1
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where h; :=t; —t;_1, gives a consistent estimator of the Integrated Variance

T
v :z/ o2ds,
0

as sup; h; — 0, as soon as o is a.s. bounded away from zero on [0,7]. In the case where the jump process J has
finite activity (FA) and the observations are evenly spaced, the estimator is also asymptotically Gaussian. However
the finite sample properties of I V, can depend on the specific choice of the threshold (TH). The estimation error
is large when either the threshold is too small or when it is too large. In the first case too many increments are
discarded, included the increments bearing only small and negligible jumps, and TRV underestimates IV. In the
second case too many increments are kept within TRV, included many increments containing jumps, leading to an
overestimation of IV.
In this paper we look for an optimal threshold, by considering the following two optimality criteria: minimization
of MSE, the expected quadratic error in the estimation of IV; and minimization of cMSE, the expected quadratic
error conditional to the realized paths of the jump process J and of the volatility process (os)s>0. Assuming evenly
spaced observations, the two quantities MSE and cMSE are explicit functions of the TH and under each criterion
it turns out that for any semimartingale X, for which the volatility and the jump processes are independent on the
underlying Brownian motion, an optimal TH exists, and is a solution of an explicitly given equation, the equation
being different under the two criteria. Further, under each criterion the optimal TH is unique, at least for given
classes of processes X.
The characterizing equation depends on the observation step h and so does its solution. The optimal TH has to
tend to 0 as h tends to zero and, under each criterion, an asymptotic expansion with respect to h is possible for
some terms within the equation, which in turn implies an asymptotic expansion of the optimal TH. Under the
MSE criterion, when X is Lévy and J has either finite activity jumps or the activity is infinite but J is symmetric
strictly stable, the leading term of the expansion is explicit in h, and in both cases is proportional to the modulus
of continuity of the Brownian motion paths and to the spot volatility of X, the proportionality constant being
V2 =Y, where Y is the jump activity index of X Thus the higher the jump activity is, the lower the optimal
threshold has to be to discard the higher noise represented by the jumps, in order to catch information about IV.

The leading term of the optimal TH does not satisfy the classical assumptions under which the truncation
method has been shown in [6] to consistently estimate IV, however at least in the finite activity jumps case it turns
out that the threshold estimator of IV constructed with the optimal TH is still consistent.

The assumptions needed for the cMSE criterion are a little bit less restrictive, and we find that, for constant
o and FA jumps, the leading term of the optimal TH still has to be proportional to the modulus of continuity of
the Brownian motion paths and to 0. One of the main motivations for considering the cMSE arises from a novel
application of this to tuneup the threshold parameter. The idea consists in iteratively updating the optimal TH
and estimates of the increments of the continuous and jump components X; = fot osdWy and {J; }1>0, respectively.
We illustrate this method on simulated data. Minimization of the conditional mean square estimation error in the

presence of infinite activity jumps in X is object of further research.

An outline of the paper is as follows. Section 2 deals with the MSE: the existence of an optimal threshold
e*(h) is established for a quite general SM X; for a Lévy process X, uniqueness is also established (Subsection
2.1) and the asymptotic expansion for the optimal TH is found in Section 2.3, in both the cases of a finite jump
activity Lévy X and of an infinite activity symmetric strictly stable X. In Section 3, for any finite jump activity
SM X, consistency of I V}, is verified even when the threshold function consists of the leading term of the optimal
threshold, which does not satisfy the classical hypothesis. Section 4 deals with the cMSE in the case where X is a
SM with constant volatility and FA jumps: existence of an optimal TH £(h) is established, its asymptotic expansion
is found, then uniqueness is obtained. In Section 5 the results of Section 4 are used to construct a new method for
iteratively determine the optimal threshold value in finite samples, and a reliability check is executed on simulated



data. Section 6 concludes and Section 7 contains the proofs not given in the main text.
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2 MEAN SQUARE ERROR: general results

We compute and optimize the mean square error (MSE) of v, passing through the conditional expectation with

respect to the paths of o and J:
MSE := E[(IV, — IV)?| = E|E[(IV,, — IV)?|0, J]|.

Conditioning on o, as well as assuming no drift in X, is standard in papers where MSE-optimality is looked for, in
the absence of jumps (see e.g. [1]). We assume evenly spaced observation over a fixed time horizon [0, T}, so that
t; = tin = thy, for any i = 1...n, with h = h,, = T'/n. Denote by ¢ the square root of a given threshold function:
e := \/r(0,h). IV, and MSE are in fact functions of & (other than of h), and we indicate them by IV, (¢), MSE(e).
Note that for € = 0 we have IV, = 0, so MSE(c) = E[IV?]; as ¢ increases some squared increments (A;X)? are
included within IAVn, so IV, becomes closer to IV and MSE(e) decreases. However, if J # 0, for e — 400 the
quantity MSE(e) increases again, since IV}, includes all the squared increments (A;X)? and thus IV}, estimates
the global quadratic variation IV + >, AX? of X at time T, and M SE(e) becomes close to E[(>, ., AX?Z)?].
We look for a threshold £* giving - -
MSE(e*) = min MSE(e).

e€[0,00[
In this section we analyze the first derivative M SE’(¢) and we find that an optimal threshold exists, in the general
framework where X is a semimartingale satisfying A1 below, and we furnish an equation to which £* is a solution,
while in Section 2.1, we find that €* is even unique. The equation has no explicit solution, but £* is a function of
h and we can explicitly characterize the first order term of its asymptotic expansion in h. Clearly we can always
find an approximation of the optimal threshold with arbitrary precision making use of numerical methods.
Let us denote

(3

t;
A Xy = A X T A, x)2<e2) o? ::/ o2ds, m; = AJ.
ti—1

To guarantee that W remains a Brownian motion conditionally to o and .J, we need to assume the following

Al. As. 02 >0 for all s, and o, J are independent on W.

Theorem 1. Under A1 and the finiteness of the expectation of the terms below, for fixred h and € > 0, we have
MSE'(e) = £2G(e), where

—(s_"’;‘)Q _(€+m2i)2
ST Y CYAIENES NS R
g ,L J#i ’ ’ ' Jim ’

) _(5—77121')2 _(€+mz7;)2 o m2 +O'2 % 22
bi(e) == E[(A; X ) o, J z—(e i (e4+my)+e 0 (e—my )74—# e~ zdu.
() = El(A:X.)%o, J] (e +my) €= m0) ot T o

It clearly follows that MSE’(e) > 0 if and only if G(¢) > 0 and, thus, to our aim of finding an optimal threshold,
it suffices to study the sign of G(e) as ¢ varies.



Notation. For brevity we sometimes omit to precise the dependence on e of a;(¢) and b;(¢).

For a function f(e¢) we sometimes use f(+oo) for lim._, . f(e).

For two functions f(z), g(z) of a non-negative variable x which tends to 0 (respectively to +00), by f < g, or g > f
we mean that f = o(g) as x — 0 (respectively x — +00), by f =< ¢g we mean that both f = O(g) and g = O(f) as
x—0 (respectlvely x *) +00), while by f ~ g we mean that f and g are asymptotically equivalent (i.e. f/g — 1).
We denote ¢(z) = \/7 , ®(x) = f:oo o(s)ds.

h.o.t means higher order terms

Proof of Theorem 1. Under A1l we have that conditionally to (o, .J) the increment A; X = f:i osdWs+ A;J is a

Gaussian r.v. with law A (m;, 0?), which allows to compute the conditional expectation F [I V|0, J]. We have

(e=my)? (e+my)?
_fe=mp? _(ermy)? o
E[IV,|o, 0] =S bi( (e 27 (c4my)te 2 E_mi)it
(EEDSCES Dl Can A (e m)) 2
e—m; e+m;
m U \Fﬂl 42 fﬂl t2
dt
B ([T e
and
E[(IVi(e))?|o, J] = > Bl(AiX) o, 1 +2) > E[(AiX.)*(A;X,)%]0, ]
i i j>i
_(e—my )2
= Z { B o (53 +mie? + mie +m? + 5mo? + 30?6)
_ (e+m;)?
—e 7 oy (53 — me® +mie —md — bmyo? + 302-25)
e—m; e+m;
Vao; Vo;
([T e [T ) Va(mt +omEo? +30)| = +2 30 S b, 3)
0 0 ,
i g>i

having used that conditionally to o and J, A; X, and A;X, are independent. It follows that

(a—nw)z
T T 5,2
g [ —e i o0 (53 +mie? + mie +m? + bmo? + 30?5)

%

MSE(s) = E

_(etmy)?
2
—e 7 g (53 —me® +mie —md — bmo? + 30?5)

e—m; et+m;

V2o, V2o, 1
/ et + / e at) V3 (md + mdo? + 30%) |
0 V2T
(s m; >2 _(etmp?

+23° S bi(e)bs (e) _2IVZ[ (¢ > ctmy+e = (5—mi))%

i g>i

+M(/ ’ e_tht—&—/ ’ e‘t2dt>}+IV2
ﬁ 0 0

MSE(e) is a differentiable functions of e, therefore to find the minimum on [0, 4o0o[ of MSE(e) we can study
the sign of its first derivative MSE’(¢). Since MSE'(g) = d%E[(IVn(E))Q] — QIV%E[IVL(E)], we begin to compute
%E[IAVH(E”O', J]. Note that

. Cemp? et (c4m) (e — m)

d—sbi(s)Z(e 27 e 2 ) P




(e=mp)? _ (e+my)?

—m;)2 my)2 —m;)? m;)? o2 o
GS. _(etmp) o; m?+ o2, —C —my) ~Ledmp) ,e ¥ 4e )
—(e i +te i + ——e i He i =¢ = e”a;(e),
V2T oV 2T oV 2T

so that

L ACIEE SNe (4)

is strictly greater than zero for all values of ¢ > 0. As for d%E[(IVn (£))?|o, J], note that the term 2", > j>ibibj in
(3) can be written as >, >, bibj, so its derivative coincides with 37, Zj#(a%ibj + bie%a;), however

Zbizaj = (zi:bizj:aj—zi:biai>

i g

(et 3] =S 3

i j#i
so that Y-, 37, (e%a;bj +bic?a;) = 2370, 30,4, %aiby,

A ol =t Lt ) +2(3 b ) 5

i=1 j>1

—Z[E a; + 2¢ asz}

J#i

and

d%MSE _522E[E az+2ang —2IVa}
JFL

_ ey E[al(e +23 b 2]V)}
= £2G(e). =
Remark 1. If also J # 0, we have
MSE(0) = E[IV?*] >0 and, for small h, lim MSE(e) > 0.

Corollary 1. Under the same assumptions of Theorem 1, even in the absence of jumps, an optimal threshold exists
and is solution of G(g) = 0.

Proof. Note that a;(¢) and b;(¢) are continuously differentiable functions of £, and, with fixed h = L,

2¢ 27
a;(0) = Py bi(0) =0,
a;(+00) =0, bi(+00) = E[(A;X,)?|0, J] = m + o,
ai(e) = L { %(5 —m;) + ei%(s + mi)}, b (e) = e2a,(e),
i Jf’\/TT i
we find that G(0) = 27r Z E[e 27 IV} < 0, and lim., 4o, G(¢) = 0, so there exists e, > 0 :

MSE'(e) > 0 on [e4, +oo) On the compact set [0,e.] the continuous function MSE has necessarily absolute
minimum value MSE, and since on [e4,400) MSE is increasing we have that on [0, +00) the absolute minimum
is MSE.

MSE'(¢) is continuous and assumes both negative and positive values, thus equation G(¢) = 0 has a solution. Any

minimum point of MSE on [0, +00) has to be a stationary point, so it has to solve the equation. O



Remark 2. In principle M SE(g) could even have many points e where the absolute minimum value M SE of MSE

on [0, +00) is reached; MSE could even have an infinite number of local not absolute minima.

To determine the number of solutions to G(¢) = 0, we need to study the sign of G’(¢) (corresponding to the

convexity properties of M SE(g)), but this is not easy. Define

gi(e) :=¢€? —I—Qij — 21V,
J#i
so that

G(e) =) Elai(e)gi(e))-
We can easily study the functions g;, since we know that ¢;(0) = —2IV < 0, lim._, y gi(¢) = +o0 and g.(e) =
26(1+¢€32;4;a;) >0 for all € > 0. However within the joint function G(e) the presence of the terms a;(e) makes
it difficult even to know whether (a;g;)’ is positive.
2.1 When X is Lévy
Let us assume

A2. X is Lévy.

We now have that o > 0 is constant and A; X, are i.i.d., so the equation characterizing MSE’(e) = 0 is much

simpler: from (6), since within a; 3, ; b; the term m; of a; is independent on the terms m; of b;, we have
MSE'(¢) = £2G(e) = e*nElay (¢)] (82 +2(n—1)E[b(e)] — QIV).
Theorem 2. If X is Lévy, equation
€2 4+2(n—1)E[b1 ()] —2IV =0 (7)
has a unique solution €* and, thus, there exists a unique optimal threshold, which is e*.
Proof. For € > 0 we have MSE’'(¢) > 0 if and only if G(¢) > 0, which in turn is true if and only if
gle) :==e? +2(n—1)E[b] —2IV >0

where, setting m :=my; = A1J, we recall that we have

Vor

m2 -+ oZh \/%:;E 2 \/E’;zrr% 2
+7</ e~ dt+/ e dt)]
ﬁ 0 0

£—m 2 ETm 2 h
Bl = B[ = (755 (e +m) + e 5 (e - m))

The sign of g(e) is studied as follows:
g(0) = —20°T < 0,

lim g(e) = +o0,

£——+o0
g'(e) =2e(1+ (n — 1)eE[a1])

so that ¢’(¢) > 0 for all € > 0, n > 1. That implies that g(e) starts at ¢ = 0 from a negative value and strictly
increases towards +o00, as ¢ increases, so that there exists a unique €* such that g(¢) < 0 for ¢ € [0,*[, g(¢*) =0
and g(g) > 0 for ¢ €]e*,+o0[. That implies in turn that MSE(e) has a unique minimum point in €*, which
*

is then the optimal threshold we were looking for: &* is the unique solution of equation (7), corresponding to
g(e) = G(e) =0. O

The equation in (7) has no explicit solution, however we can give some important indications to approximate &*.



2.2 Asymptotic behavior of E (b;(¢))

For the rest of Section 2 we assume that € := e(h) = ¢, even when for brevity we omit to indicate the dependence
on h. We still are under A2, so recall that

E[bi(e)] = E [[oAMW + AP L amw s arsfey] -

is constant in 7. Note that E[b;(¢)] is finite for any Lévy process J, regardless of whether J has bounded first
moment or not. We consider two cases: the case where J is a finite jump activity process and the one where this
is a symmetric strictly stable process. The asymptotic characterization of E [b;(g)] will be used in Subsection 2.3
to deduce the asymptotic behavior of the optimal threshold e*.
We anticipate that in Subsection 2.3 we will also see that an optimal threshold * has to tend to 0 as h — 0
o

and in such a way that N ~+00.

2.2.1 Finite Jump Activity Lévy process

Theorem 3. Let X be a finite jump activity Lévy process with jump size density f and with jump intensity
A. Suppose also that the restrictions of f on (0,00) and (—o0,0) admit Cy extensions on [0,00) and (—o0,0],
respectively. Then, for any e = e(h) such that e — 0 and € > V'h, as h — 0, we have

2 3 2
E[by(e)] = 0%h — \/%aex/ﬁe_ﬁ + Ah%()(f) +0 (h?) +o (m/ﬁe—m) + o0 (he?),

where above C(f) := f(0T) + f(07).
Proof. By definition,
E b1 ()] = E [(ATX)*1{jap x|<c,apn=0}] + E [(ATX)*1(janx|<c,arnz01] =1 G + L. (8)

By Lemma S.2 and Lemma S.5 with k = 2 in [3], provided that ¢ — 0, we have

3
€
L:=E[(ATX)1japx|<c,apn0}] ~ )\th(f% (h = 0), (9)
G :=0o%h— 2 UE\/ﬁt?i% +0 (hg) +o0 (5\@67%) ,
V2T

which shows the result. O

2.2.2 Strictly stable symmetric Lévy process

Let us start by noting that

Elb: ()] = E [(0Wh + 1) Low, i<

= 0B [Wilgow, +an1<c}] + 20E [Wadnl(ow, 1ani<ey) + E [Ji 110w, +n/<e}]
=: Cy(e) + Dp(e) + En(e).

The first term above can be written as
Chn(e) = 0*h — 0®E [WEL{jow, 40, 5c}] = 0°h — 0k (CF (e) + C; (¢))
where

C}T(E) =E [W121{W1+a—1h—1/2Jh>o—1h—1/25}] y C}:(é‘) =E [W121{W1+o—1h—1/2Jh<fa—1h—1/25}] .



By conditioning on J and using the fact that E[W7 1w, s.] = 2¢(x) + ®(2), for all z € R, we have

-l ) a2 o ()

In what follows, we determine the behavior of the above quantities under the assumption that € > v/h. The proofs

of the following Lemma 1 and Lemma 2 are in an Appendix.

Lemma 1. Suppose that {J;};>0 is a symmetric Y-stable process with Y € (0,2). Then, there exist constants K
and K5 such that:

I/ | B e

o (2 - Y] - Lo et ha w0
€ Jn _ 1-Y

E[thb(\/ﬁ \/ﬁﬂ Kohe'™Y + ho.t.. (11)

Lemma 2. Suppose that {J;};>0 is a symmetric strictly stable process with Lévy measure C|z|~Y ~1dz. Then,
the following asymptotics hold:

) -GGl (&) o
22_CY hetY 0 (W) 10 (05 ) 40 (). (13)

We are ready to show our main result in this part:

S

E [J21 0w, 1, <] =

Theorem 4. Let Xy = oWy + Ji, where W is a Wiener process and J is a symmetric strictly stable Lévy process
with Lévy measure Clz|~Y 1. Then, for any e = e(h) such that € — 0 and € > v/'h, as h — 0, we have

2 e2 2
E[bi(e)] = o®h — 27 Vhee w4+ %h{—:zfy + h.o.t..
po _

Ver

Proof. From Lemmas 1 and 2,

() = e g_Jh> <€_Jhﬂ
are=e|(;m- ) G o) e G
= < ! e_mithlelyhg)1(K2h51Y)+Ch6Y+h.o.t.

- ovh \V2r1 ovh Y
3 _ 2 Ky 1 _
— = eTmEn — 2Rl 2.1-Y + h.o.t.,
ovVh2r o
where above we used that e Y h < h'/2¢'=Y . Therefore, using that Dj, = 0 and Lemma 2, with K5 = %,
E[b, ()] = E [@Wh + ) 1{‘(,Wh+(,h|§5}} = Ch(e) + Du(e) + En(e)
2 2 € S Ko, 1Y> 2-Y
=0°h—20°h | —=——=—=€ 22 — —h /"¢ + Kshe + h.o.t.
<U\/E\/27r o ?
20' 2
2 - 2-Y
= 02h — —V'hee 27 + Kshe + h.o.t.,
V2T ’
where above we used that he?~Y > p3/2e1-Y, O

2.3 Asymptotic behavior of ¢*

We now assume

A3. J # 0 and the support of any AJ; is R.

We firstly see that an optimal threshold e* = £*(h) has to tend to 0 as h — 0 and in such a way that \5/—% — 4-00.

Then we will show the asymptotic behavior of €* in more detail.



Remark 3. Note that under A3, if ¢*(h) minimizes MSE, then necessarily €*(h) — 0 as h — 0. Indeed, if
liminf e*(h) = ¢ > 0, then on a sequence £*(h) converging to ¢ we would have IV,, — IV — 3 AJ2IA g, <c in
probability, rather than IV, — IV — 0; since P{ZSST AJ?I'A.]S‘SC > 0} > 0, the MSE could not be minimized.

Lemma 3. Suppose X; = cW; + J;, where W is a Brownian motion and J is a pure-jump Lévy process of bounded

variation or, more generally, such that, for some Y € (0,2), h, Y YJ;M £ J, for a real-valued random variable J.

Then, € /v hy, — 00, as n — 0.

Remark. If J has FA jumps and drift n, J; = nt + Zi\il Y&, then we have h=1.J, EA 1 and, thus, the above

assumption is satisfied with Y = 1.

Proof. We show the result by contradiction. Suppose that lim inf,, ., \/5% < oo. For simplicity and without loss of

generality, we further assume that lim,,_, % =: L < oo as all the statements below are valid on a subsequence

{ni}r>0. Let M € (0,00) be such that sup,, j}% < M. Also, for simplicity, let us write &, for €} and assume that

T =1 so that h, = 1/n. Consider the decomposition

Efs1 ()] = E [(0Wh + J1)* Low, 4y <))

= 0’E [Wil{ow,+<et] + 20E [Whdhlgow, +i<e}] +E [Tl {jowi 1l <e}]
=: Ch(&‘) —+ dh(e’:‘) + eh(a).

Note that dominated convergence implies that

1 2 2 n—go 2 2 2
Echn({—:n) =c“E [Wl 1{|UW1+h;1/2J;Ln\Shgl/zen}} — o°E [Wl 1{\W1\§L/o}] < o7,
. —1/2 o v—3.-1)Y . -
since hyp, ' “Jp, = hy Z(hn ' Jp,) — 0, in probability. For dj, note that

o|Wih Y20, |1 o2 Wh |2 + o|Wy|h Y %e, < 02 |Wh|? 4+ o|Wi| M,

{oWitha /2 g, 1<hi eny =
therefore, again by dominated convergence

n—roo

holdp, (en) = 20 {Wlh,;l/?Jh 1 =37,

n {\oW1+h;1/2Jh,n|§h;1/2sn}}

Similarly, since (h;l/QJhn)21{‘UW1+h;1/2J}L <nil2ey 202WE + 2h,;1e2 < 2W32 + 2M?2,

2
hyten, (en) =E [(hyjlmc}hn) Lowrthi /2, <hn1/2en}:| =3 0.
Finally, let us write the equation €2 + 2(n — 1)E[b; (g,,)] — 2nh,0? = 0 as

5%—1—2

n—1(dp, (gn) en,(en) 9 n—1cp,(en)
- - =20% -2 o) 14

The right-hand side of the equation converges to 202 (1 —E [W121{|W1\§L/a}]) > 0, while the left hand side con-

verges to 0 and this leads to a contradiction and therefore lim,, % = 0. O

We are now ready to show more precisely the asymptotic behavior of e*. The following result covers the FA

case.

Proposition 1. Let J have FA jumps and let e* = ¢*(h) be the optimal threshold. Then,

1
e ~ \/202hlnﬁ, as h — 0.



(e%)? +2(n — DE[by (¢¥)] — 2nho? = 0.
Throughout, we shall use that e* > v/h, as proved in the above lemma. For simplicity, we write ¢ instead of &
By the asymptotic behavior of E [b; ()] described above
g2 +2(n—1) (UQh ~ 2 oevhe 4 /\h€30
V2T
and, thus, using that h = 1/n

Proof. For simplicity, in what follows we take T'= 1 so that h = 1/n. Again, recall that * is the solution of

(1) +0 (1) + o (eVhe 5577 ) + o0 (he )) ~9nho? =0

&3
15 —202hf—a—e 2a2h +2/\ C
vz Vh

(f)+0(h)+o( € 3

\/Ee_zuf%> +0(e?) =0 (15)
Now, since h = o(¢?) (as assumed at the beginning), we can write the previous equation as
9 4 € _ 2 € 2
£ —Eaﬁe 202h +0<
Dividing by ¢ and rearranging the terms

—— 202h +O — U.

—e 202h 1+o(1
V 271 \/E ( ( ))
Then, taking logarithms of both sides and since ln(l + 0(1))

= o(1),

(16)
2
Ine+o(1) = ——
which can be written as

4o
S Chh+ln|—— 1).
22h 2 +n’<xﬂk¢> +oll)

(17)
2 e? 8
Defining @ = £2/(0%h), we can write
b 2 WI o) o)
w w w w w
Therefore, making h — 0 and using that @ — oo (since £ > V/h),
w
Recalling that @ = £2/(0?h), we conclude the result

The following result specifies the asymptotic behavior of £* for symmetric strictly stable processes

Proposition 2. Under the conditions of Theorem 4, the optimal threshold e* = *(h) is such that
e~

(2—Y)o2hln 1

Y as h—0.
Proof. For simplicity, we again take T'= 1 so that h = 1/n and write ¢ instead of ¢
of E [by(¢)] described in Theorem 4, we can write (

By the asymptotic behavior
)2 +2(n — 1)E[by(e*)] — 2nho? = 0 as
9 9 20 2
2 +2(n—1)(0?h— ——eVhe 27 +

he ™Y + h.o.t.) —2nho? =0
Vor 2-Y
and, thus, using that h = o(¢?) and £? = 0 (¢27Y"), we have
40 EQ_Y 4 56253}1+0<6625§h
— o——e 2 — ¢ 3
2-Y V2r Vh Vh

)+o@”y)=o

(18)
10



Dividing by € and rearranging the terms,

Then, taking logarithms of both sides and since In(1 + o(1)) = o(1),

(1-Y)lne+o(1) = —% — %lnh—&—ln (%) +o(1),

which can be written as

1-Y g2 1-Y 5 1-Y g2 1 (2-Y)o

Equivalently, writing @ = £2/(0%h) and dividing by —,

_(1_Y)1nw+(2—Y)ln% _£:1+0(1)

w w —w w

and using that @ — oo (since £ > v/h), we get

w

Recalling that @ = £2/(0?h), we conclude the result. O

3 Threshold criterion when ¢, = /2Mh log%

Under the framework described in [6], in the case of equally spaced observations, the threshold criterion allows

convergence of

IV, =Y (AX)*Tjax)2<r(on,_, )
i=1

h) = r(h) and r(h) is a deterministic function of h

i—17

to IVp = fOT o2ds when, for all i = 1,...,n, we have r(o;

s.t. r(h) — 0, hrk()g)%

consistent in the case (o, h) = 2M;hlog %, where M; are proper random numbers. Concretely, assume the following

— o0, as h — 0. Here we show that, under finite activity jumps, the same estimator is also

A4. Let
dXt = Cltdt+0'tth +th, (19)

N . . .
where J; = > ."", v; for a non-explosive counting process N and real-valued random variables v;, a,o

2

are cadlag and a.s. g 1= inf,c(o 7y o2 > 0.

Recall that a.s., the paths of a and of o are bounded on [0,T]. Define 6% := SUP¢o,7] o2, then, the following

Proposition and Corollary hold true.

Proposition 3. Under A4, if we choose r;(h) = 2M;hlog 4, with any M;(w) such that M;(w) € [infsep, , . 02 (w), 5],
we have:

a.s. Vi > 0, for sufficiently small h: Vi=1,....n, Iya,x)2<@+nrim)} = l{a,N=0}-
Corollary 2. For alln >0, we have Y7 (A X)?Ti(a, x)2<(140)rs (h)} B IV, as h — 0.

Proof of Proposition 3. In order to prove the proposition, we follow and modify the proof of Theorem 1 in [6], in

that we show that a.s., for all n > 0, for sufficiently small h, we have

)Vi=1,....n,I1a,n=0} < I{a,x)2<(14n)r:(h)}

11



2)Vi=1,....,n,Iia,n=0} > L{a,x)2<(14n)ri(h)}-
Then the thesis follows.

Call A; Xy = j;j"_l asds + ftt;_l 05sdWs, @ = supe(o 1) |as|, & = sup,e(o 1) 05 and y(w) = ming.an, 2o [ve(w)], and
note that under our assumptions P(y # 0) = 1. To show 1) a 2) we use the following key fact:

1A, Xo| av'h
sup < sup

—_— < 7+
i€{l,...,n} 2M¢hlog% i 2M; log%
|Brv,, — Brv,,_,| 2841V log 57y 2hlog 577

sup sup sup ,
i 2AiIVlogA‘IV ¢ ,/QMihlogﬁ ie{l,...,n} ,/2hlog%

where B is a standard Brownian motion and we used the fact that o- W is a time changed Brownian motion ([7],

theorems 1.9 and 1.10), meaning that we can represent A; (o W) = Byy, — By, . By the Paul Lévy law on
the modulus of continuity of the BM paths ([5], theorem 9.25) and the monotonicity of the function z1n(1/x) on
(0,1/e), it follows that for sufficiently small h the first two factors of the last line of last display are bounded above
by 1, so that

ap Xl avh o
i\ J2Mihlogt ¢ /2Miloglt iV logg
< M, = avh N
202 log %
which tends to 1, as h — 0.
Now, in order to show 1) we define {J} = {i € {1,2 n} AN # O} and it is sufficient to prove that for h

A |4 Xo|
small enough sup;g ¢y \/7 < 1+n. Indeed, sup;g¢ 5y \/T plg{J} \/— < SUPje(1,..n} \/70 < M — 1,
thus for all > 0 for sufficiently small h, it is ensured that sup,g .y m < 1+ mn, that is: for all 4, if A,;,N =0

then necessarily we have |A; X| < (1 +n)y/7i(h), and 1) follows.

In order to show 2) we prove that, for sufficiently small h, inf;cq \/T’LI) > 1+ 7. In fact firstly note that for
sufficiently small h all the increments of N are either 0 or 1. It follows that if A;N #£ 0, then A;N =1, and A;J
1A X] < vl 1A Xo|

Vi) = \fri(h)  \/ri(h)

and

coincides with the size, say 7,, of a single jump A;J = 7y,. Then

AX| ol |Ai Xo
= — sup = (1+n)
zE{J} \/T y/2hlog L i€ts} | /2M;hlog & a 2hlog%

and this tends to +oo when h — 0, thus inf;cq ) \I/A%
|A; X | > \/ri(h)(1+n), as we needed. O

> 1+ 7, meaning that if A;N # 0 then necessarily

Proof of Corollary 2. The proof of the Corollary is straightforward, in that a.s. we fix any n > 0, and for
sufficiently small h we have

n n n n p
D AX)PIgaxr<qimrmy = 2 (AiX) Tian=oy = > _(AiXo) = Y (AiX0)*I{a,nz0y = Vi,
i=1 i=1 i=1 i=1
since the last term tends to 0 in probability, as E[>."" | (AiX0)*I{a,nz0y) < NrO(h) — 0. O

12



4 CONDITIONAL MEAN SQUARE ERROR: FA jumps case

We now put ourselves under A1. The quantity of our interest here, cMSE(e) = E[(IV — IV)?|o, J], is such that
Yw, eMSE(0) = IV? and as soon as J # 0 then ¢MSE(+00) > 0, because IV “X%° QV. Further, from the proof
of Theorem 1, we have

cMSE' () = e*F(e), with F(e Zazg“ gi =€ +2Zb —2IV.
J#i

We analyze the sign of F(¢): for n, h fixed, 02 and m; also are fixed, and we have F(0) = —2IV >_""  a; < 0, since
b;(0) = 0. Further we have F(+oo) = 07T: to see it, first note that, from the expression of b; (), b;(+o00) = m? + o2,
then g;(e) ~ % + ZZJ# — 202 ~ €2, as ¢ — +o00. Moreover, each a; ~ 2(21)"1/25;* exp( e’ ) thus, for

sufficiently large e, F' = 7| a;g; is a finite sum of n positive terms a;g9; < K (27)"'/20;

le exp( 02 ) for some
constant K and fixed o;, so F(g) — 0T, as € — +00. Since F is continuous, it follows that, even in the absence of

jumps, an optimal threshold exists and solves F'(g) = 0.

We now assume also A3.

Remark 4. As in Remark 3, if £ = £(h) minimizes ¢MSE, then it has to be true that £ — 0, as h — 0. In what

follows we again also find that necessarily 5\(/%) — 4o00.

A4’. We assume A4 with a = 0, constant ¢ > 0 and nh = 1.

When considering h — 0, we assume to have a sufficiently small & so that a.s. the number of jumps occurring
during Jt; 1,;] is at most 1; note that for any ¢ we have m;lycy, _, +,) — AJy, so when considering a jump time ¢ we
assume that h is sufficiently small so that the sign of any m;licyy, , ;,) is the same as the one of AJy, in particular

if AJ; # 0 then the increments m; approaching it are non-zero.

4.1 Asymptotic behavior of b;(¢) and F

Proposition 4. Under A1, A3, A4’ if #=Z(h) solves F(¢) =0 and & = &(h) — 0, then 5\(}) — +00.

Proof. & is such that 2" | a;g; = 0, i.e. 331 ai(8° +237,,; bj — 2IV) = 0. For simplicity let us rename & by e. If
lim inf, .o \(/hﬁ) = L € [0,400) we can find a subsequence (that we recall (h)) such that lim =) — I, Note that

=
n 2 2% b, 2 n
=S (5 2 arta) =S Y 2w Yy -2 nzal,
i=1 i=1 i=1 Ve
1.e. n
g2 2 i i > jzi b o Dic1 Wiz b
—fZJnffn—:2n[o ,n—] (20)
h h D e G D i @i
Now we show that o2 — % tends to a strictly positive constant, which in turn means that equality (20)
i=1

is impossible, since on any sequence €(h) such that \(f) — L the left term tends to L2, while the right one tends

to +o0.
noa by . - .
Let us then check that o2 — % tends to a strictly positive constant. Since J has FA, a.s. we only

have finitely many AJ; # 0, and, for small h, Nt coincides with Z?Zl I, +0. Recalling the explicit expression of

b; (also reported below), we have

av'h e2 o’h [o7m 22
b; = b: + b: < —(n—N 2¢e” 202n + (n — N e 2 dx
>0, doobit Y b= T)\/ﬂ ( T)m L

i j#i,m;=0 Gi,m;£0

13



(e=1m;1)? _(e+lm D2 _(e=lm;D? _ (eFIm;D? m? +o2h oVh 22
_ § ( 202n + e 202h ) + ‘mj|<€ 202 — e 202h ) + E — ez dw.
Vor V2m o Jme

i m; #0 Ji,m;#0

e _ (e=lm;D? _ (e4Im;D? _(e=lmyD? _ (s+ImyD) N )
oW e factors e 202n and (e 2021 e 202h mi|le 202 — e 202h of &2 are stric
Now, the fact 2 d 2 + 2 + |m; 2 2 f ‘\’/% trictly

positive, so
’ 2 2 mjte

o2h _ﬁ m;+o h oVh a2
E b < )\/7 2 dx + E T e 2 d.T,
m.;—§&
& v

J#i J#i,m;#0

where if £ f — L as h — 0 then the first term of the rhs above tends to d := F f L e~ T daz < o2, while each

[my

term of the latter finite sum tends to 0, since U 7 00, 80 the finite sum tends to 0. It follows that, for all ¢,

>, bj < d+o(1), where d < 02, s0 % < d+o(1), and 027% >o%2—d+o(l) = o?—d >0,
i=1 i=1

as we wanted. O

We now check the asymptotic behavior of b; and a; when ¢ = ¢(h) tends to 0 as h — 0 in such a way that

ﬁ — 4o00. To this end, for fixed o, we define
n
ovh (e=m)? _ (etm)? m2+o2h [ovi _ 2
ble,m,h) = — 202 (e4+m)+e 22h (e—m) | + —F—— e 2y 21
(eom ) = = T2 (58 e m) o) [ 21
ale,m,h) = : —, (22)

so that b;(e) = b(e, m;,h) and a;j(e) = a(e, m;, h), and note that, as h — 0, we have (see the Appendix for the

simple proof),

oh — %s\/ﬁe_ﬁzh + h.o.t., if m=0,

b(e,m,h) = (23)
lm“\’/%EQ\/EeJ@;?z +h.o.t., if m#0.
N%ﬁe—giih, if m=0,

ale,m,h) = (24)
Uﬁﬁg“lﬁ‘ﬁ?z thot, if m£0,

It follows that

e)=e"+2) bie) -2V =242 > bie)+2 Y. (bhle)—o*h) =2 D o’h—20"h
J#i JALm;#0 J#iim;=0 JFimm;#£0
2 o (Imjl—e)? 2
2 - — 5 2 2
=2+ —Vhe ——ce” 3T —2 oe 3% | —2 o?h —20%h +h.o.t.. 25
V27 2 j#gn:j—o j?’égn:j?éo )

Given any sequence € = e(h) = €, which tends to 0 as h — 0 in such a way that 6\(/%) — 400, we now show that

F(en) = Folen) + R(ep), where Fy(ep,) is constituted by the leading terms of F, while R(ep) gives the remainder
higher order terms. A solution £ of F' = 0 non necessarily is such that Fy(&) = 0, however if with the &}, above we

have Fy(ep,) — 0 then the whole F(g},) — 0, so it has to be true that ¢, is close (in a way that will become explicit

later) to one of the solutions € of F' = 0.

Proposition 5. Under A4’, if ¢, — 0 as h — 0 in such a way that 5\(}” — +oo then F(e,) = Fy(ep) + h.o.t.,
where
€ 7 e~ 25%:’1 4o 1
h _ €% o2
Fo(ep) := e 202h (a — ) .
b(en) hWh g Vh V2r/ o2
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Proof. For simplicity, in what follows, we omit the dependence on h in the functions a(e,m,h) and b(e,m,h)
defined in (21-22). Let us recall that, under Assumption A4’, N, is the number of jumps by time ¢, {y¢}¢>1 are
the consecutive jumps of J and {J} = {J}(,) := {i : A} N # 0}. It follows that, for h is small enough,

n

F(ep) = Za(e,mi) e? + QZ b(e,m;) —2IV

i=1 j#i

= ale,mi) [ 2+2 > blemy)+2 Y ble,my) - 20V
i {1} jHije{ T} AT}

+ > alem) (242 >0 bemy)+2 Y ble,my) =21V

ie{J} JjAuje{J} JjAujE{ T}
Nt
= (n — Nr)a(e,0) [52 —2ho*(Np +1) +2 (Z b(e, ) + (n — Np — 1)(b(e, 0) — th)> +
k=1
Nt
+ Z a(e,ve) |e% — 2ho® Ny + 2 Z b(e,vk) + (n — N7)(b(e,0) — o%h)
(=1 kL
2 e2 0'5\/7
=(n—Np)———e 22 |2 = 2ho®(Np + 1) —4(n — Np — 1 e2c2h
( T)J\/E\/ﬂ [ ( T ) ( T ) \/ﬂ
2 o —e)2
+2 Z z E\f o
el V2
Nt
1 _Uwl=2? | 9 oevh _
+ —————¢ " 2:2n | —2ho“*Np —4(n — N e 20%h
; oVh 271 [ T ( 7) V2T
o gQ\f Ugl—)2
+92 “202n | + h.o.t..
g;é vkl V2
In what follows we use the following notation:
2
En 1 ("h"%%‘) 1 Ll (gl Vi)
Vp = ——,  Upp = ——€ 20 , Sp= e 207, =e o2n )
h Jh th Jon h Jon Den
Now, since ugp, = sppen, and pgp, — 0, as h — 0,
2 [ Jroq
F(&Zh) = (TL — NT)E\/ES}L 'U;Ql — 202(NT + 1) + 20'7)h8h (EZ mpkh - 2(71 — NT — 1))
k
L k=1
1 Jro |
+ =Vhsp Zpeh — 202Ny + 20up8h Z —prn — 2(n — Nr) + h.o.t.
g (=1 L k0 [l
2 [ 1 Jr
=(n-— NT)f\Fhsh v% — dovpspn| + =Vhsy, Zpgh [vh 4ovpspn| + h.o.t.
o o
L =1
19z
- (n — Np + 5 e_zlpgh> ZVhsp, lvh 4ovpspn| + hoo.t.
2n
= Z"Vhspon lvh —4ospn| + h.o.t.
o
%
En _i( e 2°n 4o ) 1
= e 22n (g — . g 26
hWh h Vh V2r/ ovor (26)
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Note that v, < n, but s;, — 0, so which is the leading term between v, and nsj, depends on the choice of vy,.

Remark 5. The asymptotic behavior (26) also holds for any drift process {a;}+>o that has almost surely locally
bounded paths (recall that any cadlag a satisfies such a requirement) and that is independent on W. Indeed, for

nonzero drift, by conditioning also on a, we have that

Nt
F(en) = Y ale,ha;) |£® = 2ho®(Np + 1)+ 2 [ > b(e,ye + has,)+ Y (ble,ha;) —o®h) | | +
i#{J} k=1 i#iig {7}
Nt
+Y ale, e+ hai,) |e® — 20N +2 [ D ble, v+ has, )+ > (b(e, hay) — o’h) | |
=1 kel j#iei¢{J}

where a; = fttil asds/h and the indices i1 < ig < -+ < iy, are defined such that A;, J # 0, while A;J = 0 for any
other i ¢ {i1,42,...,in,}. Next, we can follow the same arguments as above using the facts that, if a has locally
bounded paths, for any 7 and &

1
\E/E) +hot., ale, v+ ha;,) = ;h_1/2¢ (

|7k—5> LA
— | e -2 4+ h.o.t..
avh

— Yk %ig
b(e, ha;) = o2h — 20eVh (E)+h.o.t.7 b(e, v + ha;, ) = —— 2V ('7’“ E)e =" L hot..
(e ) o (== (e + hay) = et (P

2
ale, ha;) = =h~2¢ (
g

g

4.2 Asymptotic behavior of ¢

Corollary 3. Under A1, A3, A4’ we have that

1
§~1/202hlnﬁ, as h— 0.

Proof. In fact, from Proposition 4 and (26), we have that

2

F(éh) = 7n§h@h\/ﬁ(1_)h — NSy, -40) + h.o.t. =0,
(o

2

_ _°h
e 2ho?2

where vy, := éh/\/ﬁ and 3, = NeTEE Thus,
Up — nsp - 4o +h.ot. =0, (27)
or, equivalently, .
g — e mT 4o +h.o.t. =0,

Vi V2r

which is exactly the condition in (16), entailing that

1
EhN\/QUthnE, as h— 0. O

Now we aim at approximating any optimal £ := &, which is such that F'(¢) = 0, using a sequence g5, = NI
To this end, we aim at making F'(g;) — 0 as quickly as possible, the only possible way being rendering vj, and nsy,

(26) of the same order. So we want to choose v, such that

4o

+ h.o.t., 28
o (28)

Vp = NSy, -

which is exactly the condition in (27).
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Remark 6. There exists a deterministic function wy, of h such that w : (0,1] — (0, 4+00) and

1) wp, — o0

2) wh\f h—0 (29)
3) AN ‘f

whh

as h — 0. In fact, for example a function of type w, = \/ ln% — %ln ln% — Inyp, with any continuous function

yp, tending to @ as h — 0, satisfies the 3 conditions'. Then v, = V20w, satisfies (28). However the quickest

convergence speed of F' to 0 would be reached by choosing a function wy, which satisfies the following three more
restrictive conditions, as h — 0,
1) wp, = 400

2) wh\f h— 0 (30)
3/) e,[;:;: = L

where condition 3’) means that Fy(e) = 0. In fact such a wy, exists, since the following holds true?.

Theorem 5. There exists a unique deterministic function wy, of h such that wy, : (0,1] — (0,+00) and the three
conditions 1), 2) and 3’°) are satisfied. Such a wyp turns out to be differentiable and to satisfy also the ODE

wph
1+2w2 )

w’h which entails that wy, < wy + 2\[ log 7

We finally reach the uniqueness of the optimal threshold € as a consequence of the following Proposition, whose
proof is in Appendix.

Proposition 6. The first derivative d%F (e) of F is such that, when evaluated at a function e, of h such that

ep — 0, N and €5, = 405—\/% + h.o.t., as h — 0, then
1 4 _i E%L
F'(en) = Fi(en) + hoot,, as h — 0, where Fi(ep) = —m—e =2 5.
o2 h

Remark 7. Uniqueness of &. Since F(gp,) > 0 for any ¢, we reach that for sufficiently small h we have U%F(Eh) >0

on any sequence 5 as in the above Proposition. That entails that for any sufficiently small A the cMSE optimal &
(1) _ (2 ~(0) &

is unique. In fact if there existed two optimal &, * < &,”’ we would necessarily have that &, — 0, f — 400 and
52) = 4‘7 \S} + h.o.t., but then, for small i, on such sequences F’ > 0, and then on such sequences F is strictly

increablng, and thus F(& El)) < F (52 )), which is a contradiction, because in order to be optimal both sequences
have to satisfy F(g 33 )) =0.

Remark 8. The asymptotic behavior of the optimal threshold & = £(h) for the cMSE criterion is the same as the
one of the optimal threshold e* for the MSE criterion under FA jumps.
This is due to the fact that & solves ' = 0, €* solves G = 0, F = Fy + h.o.t., G = Gg + h.o.t., and the leading
terms in F' are the ones with m; = 0, which do not depend on w, thus they are the same as for G. It follows
that, in the case of Lévy FA jumps, we have F' = Foz—i; h.ot. = E[Fy] + h.o.t. = G + h.o.t.. Also, an alternative
i=1aigi
n

heuristic justification is that we expect that F(g) = -n ~ nEla;g;], thus the asymptotic behavior of the

e* satisfying G = nE[a;g;] = 0 is the same as any ¢ satistfying F'(¢) = 0.

Remark 9. Comparison with the results in [2]. In [2] a FA jumps process X is considered, either of Lévy type, with
jumps sizes having distribution density satisfying given conditions, or of It6 SM type, with deterministic absolutely

1We thank Andrey Sarychev for having provided such nice examples.
2We thank Salvatore Federico for having provided a such nice result. The proof is available upon request.
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continuous local characteristics (additive process). The estimators

I =Y AiXTaxisenys Vo= T{jaxisen)
i=1 i=1
are considered, and, as h — 0, firstly it is shown that the condition % — 400 is necessary and sufficient for the
convergence to 0 of both MSE(IV, — IV) (stronger condition implying consistency of IV,) and MSE(J, — Jr).
Secondly, the authors show that

2
__%h
e 202h

Vhey,

meaning that in order to have L?(§, P) convergence to 0 of the estimation error N, — Nr a stronger condition on

MSE(N, — Np) = 0 &

— 0,

ep, is needed, implying % — o0. Thirdly, existence and uniqueness of an optimal threshold &(h) minimizing
E[|IV, —IV|]? + N, — Ng|?]

for fixed h is obtained, and the asymptotic expansion in h of £(h) has leading term /302hlog % The factor 3 is

higher than the factor 2 of the leading terms of £ and £*: that is due to the fact that the minimization criterion for

¢(h) includes also the error on Np, which requires that g\(/%) is higher than %, and thus &(h) > &(h) is necessary.

5 A NEW METHOD FOR FINITE JUMP ACTIVITY PROCESSES

In this section, we propose a new method to tuneup the threshold parameter ¢ := \/r(o,h) of the Threshold
Realized Variance (TRV) introduced in (2). This is based on the conditional mean square error cMSE(g) =
E[(IV —1V)?|o, J] studied in Section 4. We illustrate the method for a driftless FA process with constant volatility
0. As proved therein, the optimal threshold £ is such that

F(E) =) ai(6)gi(e) =0, gi(5) =& +2) b;(8) —2nho®,

i=1 j#i

where a;(¢) and b;(e) are rewritten here for easy reference:

_<e—n;n2 n _<s+v;i>2
e 202h e 202h
ai(e) :==ale,m;,0) = s ,
h 2 2 2 2h mite
(e—m;) (e+m;) : oVh
bile) = ble,my, o) i= — = <€ 2%h (e +my) +e 27 (e — m¢)> fRitoh e 2y,
27T /27T m;—¢

VR

For future reference we set m = (mq,...,m,) and

F(g;0,m) = ale,mi o) | €2 +2 Z b(e,mj,0) — 2nho?

1 j#i

n
1=

The main issue with the optimal threshold £ lies on the fact that this depends on ¢ and the increments m =
(mq,...,my) of the jump process, which we don’t know. Note also that, for h small enough, each m; will be either
0 or one of the jumps of the process and a good proxy of m; is actually (A?X)].{IA?X|>§}. The idea is then to

iteratively estimating &, o, and m as follows: 2

1. Start with some initial ‘guesses’ of ¢ and m, which we call 65 and my. In the sequel, we obtain 6y by

assuming that there is no jump; that is, we set mg = (0,...,0) and 63 = T~ 3" (ArX)2.

3To be consistent with section 4, I corrected * here with & and put & for the optimal threshold of [2]. Check whether you approve.
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2. Using 69 and mg, we then find an initial estimate for the optimum & that we denote £y. Thus, under the
no-jump initial guess of the previous item, £ is such that F'(&y; &9, mo) = 0 or, more specifically, &, solves
the equation:

260vVh —=52-  G3h [FovE

2 - —z2/2 )
e“4+2n—-1) | — e *%"e + e dr | — 2nhog = 0. 31
( ) ous V2 =< 0 31
0'0\/,

It is easy to see that & is of the form v,,69V/h, where v,, is the unique solution of the equation:

1 02 1 Un 2
2 -2 —x°/2 _
vy +4(n—1) [ —v,—=e 2—|——/ e dm>—2n—0. 32
( ) ( V2r V2r Jo (32
Figure 1 shows that v,, ranges from about 3 to 4 when n ranges from 100 to 10000.

3. Once we have an initial estimate of £y, we can update our estimates of ¢ and m using the estimators:

61 = 1Va(20) = Y (AiX)*L{ja,xizy, 1= (AT X)1garx)se)s - (AnX)1janx|>e))  (33)
=1

4. We continue this procedure iteratively by setting & such that F(&y; 6%, my) = 0, which is then used to get

Gy = Z(AiX)Ql{mixggk}, my1 = (AT X)1ganxse)s -5 (AR X)1ganx|>e,1)- (34)
i=1
We stop when the sequence of estimates 61 stabilizes (e.g., when |6441 — 6| < tol, for some desired small

tolerance tol).

4.0

34 36 38

3.2
1

3.0

T T T
0 2000 4000 6000 8000 10000

n, number of observations

Figure 1: The solution v, of equation (32) as a function of n.

The previous procedure resembles the one introduced in [2], which is based on choosing the threshold e so to

minimize E[|IV, — IV |?> +|N,, — Np|?], or equivalently the expected number of jumps miss-classifications:

Loss(e) := FE

Z (1ganx|>e,ann=0} + L{jarx|<c,arn>0}) | - (35)
1=1

It was proved therein that, for a FA Lévy processes, the optimal threshold, denoted €,, is asymptotically equivalent
to v/302h1In(1/h), as h — 0. Using this information, an iterative method was proposed, in which, given an initial

estimate dg of o, it was set
1 n
&g 1= MS&%hlnE, Gher =Y _(MiX)’1ya,x|<ey, k>0 (36)

i=1
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In the light of the procedure used in [2], we adopt here also the following simpler one, other than the procedure
(31)-(34) described above. Since, as proved in Section 4, the optimal threshold &, has the asymptotic behavior
202h1n(1/h), as h — 0, it is natural to consider the following iterative method to estimate &:

1 n
g = “25’2/}111 7’ 5’,%+1 = Z(AiX)Ql{\AiX\gs‘z}a k>0, (37)

i=1

starting again from an initial guess o of o. It can be proved that if we take both &2 and 3 equal to the realized
quadratic variation 771 3" (A?X)? in both (36) and (37), then the sequences of estimates {5 }x>0, {F% }r>0 is
nonincreasing and, thus, eventually & = Gx41 and G, = Fr11, for some k. So, we can (and will) set the tolerance
tol to 0.

5.1 Simulation results

We now proceed to assess the methods introduced above. We take a Lévy Merton’s log-normal model of the form:

Nt
Xi=at+oW; —l—z%»,

Jj=1

where N is a Poisson process with intensity A and {7;};>1 is an independent sequence of independent normally
distributed variables with mean and standard deviation '™ and o7™P, respectively.

We consider the following estimators:
Y e DD o

2. The estimator 61 as defined in (33) with initial guesses 63 = T-* " | (A?X)? and mg = (0,...,0);

3. &y found with the new method described by the iterative formulas (34). We stop when |6y — 65—1] < tol =
1075;

4. The estimator 57 as in (36) with k = 0, using the threshold \/352hlog(1/h) with 60 = /T-1> 1 (AT X)?

5. The estimator &, defined by (36) with k such that & = 6x—1, k > 1;

6. The estimator &7 as in (37) with k = 1, using the threshold & = \/263hlog(1/h) with ao = /T~ > 1 (A7 X)Z;
7. The estimator 7y, defined by the iterative formulas (37) and with k& such that 6, = 51, k > 1;
8. Threshold Realized Variance using the threshold ¢ = h* with w = 0.495
9. Threshold Realized Variance using the threshold ¢ = 2h% with w = 0.495
10. Realized Bipower Variation (BPV)

11. Threshold Realized Variance using a threshold of the form 4h%\/BPV /T with w = 0.49 (this is used in the
recent work [4]);

12. The estimator 67 := Y. | (A;X)?*1{ja, x|<z,} 8iven in (33) where & is such that F(go;8¢,1m0) = 0, but
this time taking 65 = 7' Y7 (AP X)?*1gjanx|<z;y and tg = (AP X)1garx|szy - (AnX)1ganx|>z))

with &j as defined in the item 6 above.

13. The estimator 6,% defined in (34), where & is such that F(&y; 6%, my) = 0, where &j is given as in the item
12 above, and k is such that |64 — 64_1| < tol = 107°.
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The adopted unit of measure is 1 year (250 days) and we consider 5 minute observations over a 1 month time

horizon with a 6.5 hours per day open market. For our first simulation, we use the following parameters:

1

=04, o/™ =3Vh, p/™ =0, A=100, h=—— .
7 7 Vh, g 250(6.5)(12)

(38)
The dependence of o/ on ¢/™? on vh was done for easier comparison with standard deviation of the increments
of the continuous component, which is 0.4v/h. So, the standard deviation of the jumps is about 7.5 times the
standard deviation of the continuous component increment. The parameter values in (38) yield an expected
annualized volatility of 0.45, which is reasonable. Table 1 below shows the sample means and standard deviations
based on 10000 simulations (below Loss equals the number of jump misclassifications as defined by (35), while NV
is the number of iterations needed to find the estimator’s value). As shown therein, the new proposed estimator
(items 3, 13) performs the best, followed by the iterative method 7 based on (37). It takes on average 2 iterations
to finish if we take as an initial guess for the threshold the solution of Eq. (31). However, if we take advantage of

the asymptotic behavior of £ as in the method 12 above, one iteration suffices.

Method & std (o) Loss std(Loss) & std(e) N std(N)
1 0.45311689  0.03104886

2 0.40132 0.00732 3.66530  1.92646 0.01228  0.00084 1 0

3 0.40029 0.00727 3.48050  1.86772 0.01099  0.00048  2.39300  0.55909
4 0.4058 0.0085 4.9251 2.2672 0.0176 0.0012 1 0

5 0.40398 0.00789 4.49490  2.14551 0.01569  0.00031  2.31500  0.53796
6 0.40288 0.00765 4.16110  2.07624 0.01437  0.00098 1 0

7 0.40166 0.00741 3.75950  1.95909 0.01274  0.00024  2.31960  0.50723
8 0.3842 0.0062 16.2724  4.0291 0.0075 0 1 0

9 0.4033 0.0075 4.2897 2.0800 0.0150 0 1 0

10 0.413 0.011

11 0.40181 0.00743 3.81300  1.96485 0.01301  0.00034 1 0

12 0.400429 0.007206 3.468400 1.873967 0.011118 0.000517 1 0

13 0.400282 0.007218 3.464100 1.876983  0.010968 0.000466 1.711700 0.587041

Table 1: Estimation of the volatility ¢ = 0.4 for a log-normal Merton model based on 10000 simulations of 5-minute

observations over a 1 month time horizon. The jump parameters are A = 100, 0/™" = 3v/h and /™" = 0.

We now double the intensity of jumps and consider the following parameter setting:

1

=04, /™ =3Vh, p/"™ =0, A=200, h=-——"
o= e vh, g ’ : 250(6.5)(12)

which yields an expected annualized volatility of 0.5. The results are shown in Table 2. We again notice that
the methods 3 and 13 outperforms all the others, followed by method 7 based on the asymptotic behavior &, ~
Finally, we consider a jump intensity of 1000 jumps per year but we reduce o and ¢/™? in order to obtain an

expected annualized volatility of 0.39. Concretely, we set:

1

=0.2 Jmp —15Vh, p/™ =0, A=1000, h=— ",
gTus 0 vh, 250(6.5)(12)

The results are shown in Table 3. In spite of being a tough setting, the new method does a good job and outperforms
all others, except method 7, which is based on the asymptotics &, ~ 1/202h1In(1/h). Note that in this case it takes
on average 5 iterations for the iterative methods to converge.
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Est o std(a) Loss std(Loss) & std(e) N std(N)

1 0.5002 0.0385

2 0.40482  0.00792  7.80670  2.83657 0.01356  0.00104 1 0

3 0.402181 0.007588 6.917800 2.6565174  0.011623 0.000908 2.718900 0.723834
4 0.4159 0.0111 10.5434 3.3448 0.0194 0.0015 1 0

5 0.408570 0.008844 8.980800 3.038413  0.015871 0.000344 2.852900 0.613921
6 0.40858  0.00884  8.94540  3.05446 0.01586  0.00122 1 0

7 0.403786  0.007761 7.449100 2.754445  0.012807 0.000246 2.813000 0.557012
8 0.38401 0.00628 18.46560 4.25603 0.00749 0 1 0

9 0.40682  0.00792  8.48660  2.89431 0.01499 0 1 0

10 0.4265 0.0128

11 0.404555  0.007859 7.730600 2.794102 0.013432 0.000404 1 0

12 0.402950 0.007601 7.205800 2.721909  0.012204 0.000934 1 0

13 0.402160 0.007587 6.965600 2.661903  0.011617 0.000905 2.105500 0.709380

Table 2: Estimation of the volatility ¢ = 0.4 for a log-normal Merton model based on 10000 simulations of 5-minute
observations over a 1 month time horizon. The jump parameters are A = 200, o/ = 3v/h and p/"? = 0.

Est o std(6)  Loss std(Loss) € std(e) N std(N)
1 0.3921 0.0279

2 0.246 0.0127  56.3 8.29 0.0106  0.000756 1 0

3 0.21563 0.00860 41.72400 7.80543  0.00728 0.00083  5.60410 1.57455
4 0.29618 0.02148 70.17440 9.20290  0.01523 0.00108 1 0

) 0.23 0.0108  49.8 8.39 0.00892  0.00042 5.86 1.33

6 0.265 0.0163  62.6 8.74 0.0124  0.00088 1 0

7 0.211 0.00588 39.1 6.79 0.00671 0.00018  5.10 0.910
8 0.21663 0.00518 42.74350 6.58275  0.00749 0 1 0

9 0.293 0.014 69.497 8.293 0.015 0 1 0

10 0.2664  0.0129

11 0.224 0.00779 47 7.39 0.00839  0.000405 1 0

12 0.241 0.0121 54.7 8.16 0.0102  0.000801 1 0

13 0.216 0.00863 41.8 7.74 0.00728 0.000835 5.36 1.64

Table 3: Estimation of the volatility ¢ = 0.2 for a log-normal Merton model based on 10000 simulations of 5-minute

observations over a 1 month time horizon. The jump parameters are A = 1000, o/ = 1.5v/h and p’/™? = 0.

6 Conclusions

We consider the problem of estimating the integrated variance I'V of a semimartingale model X with jumps for the
log price of a financial asset. In view of adopting the truncated realized variance of X, we look for a theoretical and
practical way to select an optimal threshold in finite samples. We consider the following two optimality criteria:
minimization of MSE, the expected quadratic error in the estimation of IV; and minimization of cMSE, the expected
quadratic error conditional to the realized paths of the jump process J and of the volatility process (05)s>0. Under

given assumptions, we find that for each criterion an optimal TH exists, is unique and is a solution of an explicitly
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given equation, the equation being different under the two criteria. Also, under each criterion, an asymptotic
expansion with respect to the step h between the observations is possible for the optimal TH . The leading terms
of the two expansions turn out to be proportional to the modulus of continuity of the Brownian motion paths and
to the spot volatility of X, with proportionality constant v/2 — Y, Y being the jump activity index of X. It turns
out that the threshold estimator of IV constructed with the optimal TH is consistent, at least in the finite activity
jumps case. The results obtained for the cMSE criterion allow for a novel numerical way to tuneup the threshold
parameter in finite samples. We illustrate the superiority of the new method on simulated data. Minimization of
the conditional mean square estimation error in the presence of infinite activity jumps in X is object of further
research.

7 Appendix: additional proofs

Proof of Lemma 1. Throughout, p; denotes the density of J; and recall that the characteristic function of J;
is of the form E [ei“‘]‘] = e~ctlul” | Let us also recall that the Fourier transform and its inverse are defined by
Fg(z) = \/%7 Jp 9(z)e”*"dz and F~'G(z) = \/%7 Jg G(2)e**dz. In what follows, we set

o= (o)) s [ i)

Let us start by noting that

E [¢ (m - U‘]jﬁ)} = [0 (m - m) pe)ds = [0 @ple)dn = [ 1) (Fp) @i

where, since J is a symmetric stable process, (Fpp,)(u) = (277)_1/26_Ch"‘|y. Therefore, we obtain the representation

Jh (‘)’hl/2 _chlulY — g%hu?
E — chlu| yi—tieu g,
{QS (U\f U\f)] 27 /e a (39)

In order to prove (10), let us make the change of variables w = oh'/?u and, then, expand in a Taylor’s expansion
exp(—co Y R Y/2|w|Y) as follows:

1 7c¢7’yhl’y/2|w|Y7“’*2Jrii6 w 1 *wfzJﬂ'#w EOC
_ e 2 ohl/2 T dw = — e 2 onhl/2 7 dw + Ikmv
2 2m k=1

where

Lo = kl( e)fg kY pRA=Y/2) /|w‘kY T2 du

_ 1 k_—kY pk(1-Y/2) 4 kY — €
- k'( ) h \/ﬂ o w e 2 COS <W’U)) dw

The first term of (10) is then clear. For the subsequent terms, let us apply the formula for the cosine integral

. _ 2
transformation of w*Y e~ /2

function M(a,b, 2):

as well as the asymptotics for the generalized hypergeometric series or Kummer’s

Lo vk —wvpka-vyy 2 [lotamenp (L BY 1 kY 1 &
Tk = 35(=¢) f N AR T2 )M\ 2t 2959
:l( C)k —kY pk(1-Y/2) 2 12 (1+kY)p }+g
k! V2r \ 2 22
kY
I ( N
T
2
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In the asymptotic formula for the Kummer’s function above, the first term (respectively, second term) vanishes
if I'(—kY/2) (respectively, I'(1/2 + kY /2)) are infinity. This happens when —kY/2 or 1/2 +kY/2 are nonpositive
integers. It is now evident that there exists nonzero constants a; and by such that

ay —1—kY k4% bk — 55 kY pR(1-Y)
Ik,n = ¢ hita 4 ¢ 202n e h + h.o.t..
T (—&) L (z+%5)

1
2 2 2
Note that
5717kyhk+% > 5*1’(k+1)yhk+l+% s e VY — o> h1/2,

11— 1 11— 1 _ 2 —
e 1 Yh1+2 > e 1 thk+2 > e 202h€kyhk(1 Y).

Therefore, e 1=Y p1+3 > I, for all k > 1.
We now show (11). Note that

i 20l [+ i) i froremnon

where

A _chupr _ =

i
Vo du Vor

F(xpp(z))(u) = idi;(fph)(u) = e_Ch|“‘YYsign(u)ch|u|Y_1.

Therefore, we have the following representation:

Jh —iYe 3/2 . Y_1 —ch Y _ o2hu? | .
J ————p%/ sign(u)|u e—chlul 2 iUy,
B o (=2 - )| =T gn(u)u]

Furthermore,

Y 1 _—chuY — o2 hu?

[Jhas(fr \‘;’iﬂ \Yﬁ e 5 sin (eu) du

“(y—1) Y sy % Vol eo Y RISY/2Y _w? 1 3 -1/2
=20 \/711 2 w e 2 ¢sin(o” “eh w | dw.
U 0

Next, we expand in a Taylor’s expansion exp(—cafyhlfy/ 2wY) as follows:

2

[e%S)
=Y 1-Y/2 Y w? _ _ 2 :
\/27/ Y 1 co h w 2 sin (0’ 1gh 1/2w) dw = Ilc,na
™

where
1

~ =)k Y RpFO-Y/2) 1 > kDY —1,—% o ch=120) dw.
k! 21

Ik,n =

Then, we again apply the following formula for the sine integral transformation of wk+DY —1e—w?/2,

1 Yk k(1 1 (1.1 1 (k+1Y (&2 1 (k+1)Y 3 £
Lo = L Copgyepra-ya L [lotasemp (L (BEDYN (e, (1 (R DY 3 2\
kn = p(=c)o NACE 5T 3 h 5T 9 3o

Finally, we use the relationship

717(k+1)Y
S O AW 'O B EA S
2 2 2" 2h F(l_ (k+1)Y) 2h
2
L@ (2T
_—_— 204h —_
T (3 + &) ‘ 207h et
2 2
which, in turn shows that,
Ik,n < Il,n < h{fl_y
We then conclude the result of the Lemma. O
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Proof of Lemma 2. Let

= E F) (U\g/ﬁ - Uﬁﬁ) 1{i(w6h_ﬂ%)zo}]

For I;F, let us note that for a constant K, ®(z) < K¢(z) for all z > 0 and, thus,

I <KE Lﬁ (of/ﬁ - aﬁﬁ) Y220 ] —¢ (E [¢ <m€/E - ;;H)D '

For the other term, we decompose it as follows:

- g _ Jh g _ Jh

17 = [ ot {Ozax/ﬁ Y ax/ﬁ} du
- o 3 Jh 0 3 Jh
=), OwF [Ozm—m} dut | oW [“Zm—m} du

%P {Jl = hi%s} + /OOO P(u)P [Jl >h Ve— auh%*ﬂ du.

The first term above is well-known to be P [Jl > h_l/Ys} =Y-lC (h_l/ys) v + 0 (E_QYhQ). For the second

term, let us first recall that there exists a constant K such that for all x > 0,

|E(x)] := ‘]P’[Jl > ) — %x_y < Ko %, (40)

Therefore,

0 1 1 1 C 0 1 1 1 -Y
>h™ve— Einhd == “ve— Pk
/Oo o(u)P [Jl >h™Ye—ouh ] du v [m o(u) (h e —ouh ) du
0 1 1 1
+ / b(u)E (h*vg - ouhrv) du.
For the first term above, note that
1 0 1 11\ Y 0 171 -Y
T Y e — 27Y e — - /2
eV [m o(u) (h Ve —ouh Y) du [m o(u) (1 oue " h ) du,

which, by the dominated convergence theorem, converges to 1/2, because e~ 1hl/2 50, as n — co. Similarly, using
(40), we have

1

'/_O o(u)E (h—%s - auh%—%) du| < K/_O é(u) (h—%g - auh%_V)_QY du=0 (s h2).

Therefore, we finally conclude that I, =Y "1Che™Y + O (6’2yh2), which implies (12).
We now show (13). To this end, let us first consider

Bun(e) = E [J3 1 0<ow, + 1y <e.0n>0,W;, >0} ]
1
.

soflh_% h_%a—ah %x

= hQ/Y/ (b(x)/ u?py (v)dudz
0 0

1 h™Y e(1—w)

( 61 ) / 0] < 51 w> / u?py (v)dudz.
ohz /) Jo ohz 0
Let £(u) := p1(u) — Cu™Y ! and let us recall that, for a constant K, |€(u)| < K (u™Y "' Au™2Y 1) < Ku=2Y 71
for all v > 0. Next,
. /e 1 - h™ Y e(1-w)
Eyp(e) =ChY < n > / 10) ( T w) / u' 7Y dudx
ohz /) Jo ohz 0

) c 1 e h_%e(l—w)
+hY ( . ) / 1) ( . w) / u?E (u)dudw
och2 0 oh2 0

=

=h




For the first term above, note that

2-Y h_¥82_y 1 £ 2V
= Y/ (UhZ ) hVe(l— )) dw = =———— od)(ahé >(1— w)2™Y dw

We divide the second term in two cases. If Y < 1, then

o E e 2 (uyduda| < K — - [ (= Bt Ty
< = (1 —
/0 ¢<Jh%w>/o u?E(u)dudr| < o7 (b(ahéw)( e( w)) w

—-22Y 2.9y 1
Kih ° / 1) ( El w) (1- w)2_2y dw
0 2

<
2-2Y oh
- h Ve [ ohd
2-2Y e |

Note that the last limit is valid provided that [, (1 —w)* *" dw < oo, which holds true when ¥ < 1. For ¥ > 1,

let us first observe that
z 1 1— 220-Y) 1 1
2/ —y-1 2y -1
N du < —— +1 < . 41
/0“(“ “ Jdu < 55 1 Y —1) ~2-v Tav—1 (41)

Therefore, for a constant K,

1 A Y e(1-w) 1 1
/ 10) < 51 w) / u?E(u)dudz| < K/ 1) <€1w> dw~ K (Uh > .
0 0 0 ohz 5

oh?2

We conclude that
1
Eyn(e) = 2_Ch 22V 4 O (k2> 2Y)+o(h%)

Next, we consider

Ean(e) = B [J; 1 {0<ow, + 1 <e.0n >0,W, <0} ]

_ 1 1_1
h™Ye—ch2 Yz

= h¥Y / ' o(x) / w?py (u)dudz

1_1
—o0 —och2” Y

_ 1 1_1
h™Ye—oh2 Yu

0
:(JhQ/Y/ qS(x)/ .

u' =Y dudz

0 hf%efahéf%m
+ hQ/Y/ gb(x)/ L u?E (u)dudz.
—00 —och2 Yz
The first term on the right-hand side above can be written as
C 2y [0 o\ o\ c
Y 2y (=T 12 _ [ _one o1 Y g ey
Qth (h YE) /_Oo(b(x) ( < — dz 27Yh5 ,

where the last asymptotic relationship follows from dominated convergence theorem and the facts that h'/2/e — 0
)2~ Y ¢(x)dx < co. For the second term of Fa p(g), we have two cases. For Y < 1, we have

and fgoo(l
_1 11
h™Ye—och2 Yz

5 0 h_%g—ah%_%;v ) 0
wt [ o [ s < K1E [ o [ duda
—00 —och2 Yz

—00 —och2 Yu

" 2 - . 2(1-Y) . 2(1-Y)
- )hY (h YE / o(z <1 - U€x> - <—st> da ~ Kh2:272Y

2(1
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where again we used dominated convergence and use the fact that fi)oo d(x)(1 —2)20"Y)dg < co. For Y > 1, we
just use (41) to deduce that

R 0 hf%efo'héf%w R 0
hv/ ¢>(a;)/ . u2\5(u)|dudx§f(’hv/ o(z)dx,

—00 —och2 Yz
for a constant K’. Finally, we conclude that

By = 2*1%%2” +0 (R *)+0 (h%) :

Finally, let us consider

Es () := E [Ji1{0<ow, +,<e,0, <0,W, >0}]

U_1h7%6 0
:hQ/Y/O gb(z)/ . u?py (v)dudz

1_1
—och2 Yz
00 h_%e—ah%_%w
2/Y 2
+ h?/ / ) (b(:r)/ L u”py (u)dudx.
o~ 'h” 2e —ch2 Yz

Using the fact that p;(u) < Ku~Y~! for a constant K and all v > 0, the first term above is such that

071h7%6 o’h%
e [ et [
0 0

1
Y x

071h7%6 O’h%
u?p1 (u)dudz < KhQ/Y/ ¢(x)/ ur =Y dudz
0 0

1
Yz

Similarly, the second term can be written as

11
e8] och2 Yz o
K 2-Y
h2/Y/ ¢($)/ u?py (v)dudr < —— (gh%—%) / o(z)22Y do
071h7%6 gh%7%17h7%5 2 Y o 1
Y

Putting together the previous results, we obtain that

Eh(e) =2E [le{OSUWthJhSE}} = 2E17h(€) + 2E2,h(<€) + 2E37h(€)
_ 2 2-Y 2.2-2Y n 2z
= 7 he Y 0 (2 ) 10 (BF) 40 (nF).

Proof of (23). Let

x

and recall that, for x > 0,
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Then, for fixed m > 0 and h small enough such that ¢, < m, we have

o <o (55) (32 -) -8 (25) (55

ot ()5

o) () () () oo (252
= o (T ) e (T E )

g

*atm=a ™ ()& V™ (i)

o3 m—¢ o3 m—+¢€ mF ey
+ ——h3/? ( >— h3/? <>i 24 2hR( )
m—e v ) e v )R T

It is now clear that (23) holds true. We can similarly deal with the case m < 0. The asymptotic behavior for
a(e,m, h) is direct. O

Proof of Proposition 6. Let us fix h, and nh = 1, then d%F(s) =>" g + aigl]

—m, )2 2
n (et Imy )2 _(e=ImiD _ (etlmgD)

1 { _(e=ImiD? - 2 N7 2%h 4 e 20%h )
= — ——— e 22 (e —|my|) te 273 e+ |m; } i + [254—2 Ea»].
D e (e = Il N >

We now evaluate F’(¢) at ¢, such that e, — 0 with g5 > \/E, as h — 0. Since again when m; # 0 we have
(e=Im;D? _ (e+lmD?
e 202n > e 202n  and € < m;, then

(e)Vor= > \[ %[‘;QW%PFEZ%%LZ

ie{sy ¢ G i@{J}

e 202}1 [

9i
T 27 aj)} + h.o.t.

J#i

(Imj1—)?

Note that within g; in (25) we have that the finite sum \/% D jtiely foee 2 = Do jziel) TTEWsh

2
= ShE D jtijel} ‘n‘l’—lpjh is negligible wrt s;, < \/% Y jzigetny € 2% =[(n=Nr)lgepy+(n—Nr—1)Iig(p]sn,

Pjn @-$-
since €3 ;. 5e (7} my 0 Therefore

4o
gi = €2 — E\/ﬁssh[(n — NT)I{ie{J}} + (n— Np— 1)I{i¢{J}}] — QUzh[NTI{ie{J}} + (Np + 1)]{i€{]}}] + h.o.t..

Further, Ny < n and h < €2, then for all i

Moreover from (27) we reach that >0, a; =3 ., i ny 2:—\% + 2 e} % + h.o.t., and again the second
sum is negligible wrt the first one, thus, for all i,

ShE 2 s
EZCL]' = h [(n — NT)I{mi;éO} + (TL — Np — 1)I{m1:0}] + h.o.t. = *F + h.o

Now, using (28), from

Die(sy @idi = LVhsy, Zé\fl pen | v: — 202Ny + 2008, (5 Py ﬁpkh —2(n — NT)) +hot =

LVhsy, Z[ | Pen [vh dovpspn| + h.o.t.
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we reach that
Zze{J} a; 9:7|727”;LL| -1 \fsh Zﬁ 1 Pen [vh dovpspn

and from

ZiQ{J} a;g; = (’n — NT)%\/ES}L |"U%L — 20’2(NT —+ 1) + QUUhSh (E Zi\gl ﬁpkh — 2(71 — NT - 1)) ] =

[yl
Lh + h.o.t.

n — Np \/ﬁsh V2 —dovpspn| + h.o.t.
( i

we reach that

Zig{J} ai% =(n-— NT) Vhsp, vh dovpspn| =5 + h.ot..
Thus
2
FI\/ 2r = VUh [’Uh — 4ashn] [ \fz lh |’Yl| - NT)\/ES;L;:‘|
o o?h

+2e(1+gh\’?)(z Uik Z 2sh>+h0t

If now our sequence ej is such that v, = 4ons, + h.o.t., and noting that also Zjerjh|'yj| 232 0 and that

ne = nvVhuop, = % — 400 then

F'(en)V2m = vy, - o(nsh

2 2
Sl (1 She ) -2(n — Nr) + h.o.t.

[thlwl — 2ne

_ O’\/E ;h\/ﬁ
Sh 4dnesy, 2 spe
= -2 . —_— — h.o.t.
nevy, 0(nsh)g3\/ﬁ+ 0\/5( Uh\/ﬁ>+ 0

now vy, = 4onsy, + o(v,) means also s, = ,vV'h + o(e;,V/h), and thus :L’L—j% = E’* +o(F ) — 400, therefore

dnesy, 2 spe
F'(e \/27r:—25i'0ns il + =
(€n) v ) T T o hh

£ Spe 8 8 (sheh 2

Tz (o) +hot. = h\/ﬁ> + heod.
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