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Abstract

The time evolution of prices and savings in a stock market is modeled by a discrete time nonlinear
dynamical system. The model proposed has a unique and unstable steady-state, so that the time evolution
is determined by the nonlinear effects acting out of the equilibrium. The nonlinearities strongly influence the
kind of long-run dynamics of the system. In particular, the global geometric properties of the noninvertible
map of the plane, whose iteration gives the evolution of the system, are important to understand the global
bifurcations which change the qualitative properties of the asymptotic dynamics. Such global bifurcations
are studied by geometric and numerical methods based on the theory of critical curves, a powerful tool
for the characterization of the global dynamical properties of noninvertible mappings of the plane. The
model unfolds more complex chaotic and unpredictable trajectories as a consequence of increasing agents’
“speculative” or “capital gain realizing” attitudes. The global analysis indicates that, for some ranges of
the parameter values, the system has several coexisting attractors, and it may not be robust with respect to
exogenous shocks due to the complexity of the basin of attraction.

1 Introduction

One of the cornerstones of the modern theory of finance is the view that asset prices exhibit erratic
behavior. In this paper we consider a discrete time deterministic model, proposed in [10], for the
description of the interactions between the price index of a stock market and the net stock of
savings collected by the mutual funds, and we study the outcome of different kinds of complexity,
not only related to the creation of chaotic attractors, but also to the existence of several coexisting
attractors with a complex structure of the corresponding basins of attraction.

The model is based on the assumption that two different kinds of economic agents are interacting
in the market: the “dealers”, who are directly admitted to the securities negotiation, and the
“savers” who intend to invest in the stock market but, being scarcely informed, prefer to underwrite

shares of a mutual fund. We remark that, in this scheme, both the administrators of the mutual



funds and the agents that directly hold in their portfolio the securities are qualified as dealers. It
is worth to note that we do not use the term “dealer” in a proper sense. In a Dealers Market!
a special kind of agent (the dealer), holding his own portfolio, is always willing to buy or to sell
each security at the indicated price, whereas in the model the dealer chooses the securities on the
market and sells fractions of the whole portfolio (the shares of the mutual fund). Anyway, as far
as we are concerned, such differences are not so important.

These two different classes of agents act on two different markets and the dynamical process
that regulates the evolution of the system reflects such a segmentation. The dealers obtain their
profits by selling the securities at a price higher then buying, and the difference between the two
prices is said “bid-ask spread”.

If the competition among the dealers reduces the bid-ask spread toward zero (at the limit),
no transaction will be convenient outside the dealers market as, for any given price higher (resp.
lower) than the dealers’ one, the buyer (resp. the seller) will prefer to buy (resp. to sell) from
a dealer, while for a price equal to the dealers’ one no incentives are present to prefer the direct
search instead of the dealers market that is more easily accessible.

So, in a dealers market with low bid-ask spreads, the greater part of the transactions will be
settled through a dealer and the dealer’s choices will considerably affect the prices’ course (see [9]
for a wide and simple introduction to the theory of securities markets).

The essence of the stock market and of the mechanisms which regulate the prices suggest
a dynamic description in discrete time, where the time unit may be seen as the interval which
separates two different Stock Exchange Lists.

From the point of view of the dynamical properties of the model, the fact that, as we shall see,
no stable stationary states exist for economically feasible values of the parameters, indicates the
necessity of a global study, because the effects of the nonlinearities become particularly important
for trajectories which move far from the steady state. Moreover, the dynamic model considered
is obtained by the iteration of a noninvertible map, and this gives us the opportunity to use
some recent results on noninvertible maps of the plane and to put in evidence some interesting
consequences of these results. In particular, the method of critical curves can be usefully applied
to understand some kinds of routes towards complex behaviors which are peculiar of noninvertible
maps. The critical curves are also used to put some order in the situations of chaotic behavior, in
the sense that segments of critical curves are used to bound regions of the plane inside which all

the long-run dynamics of the model are trapped, even if such dynamics are quite irregular.

Tt is possible to distinguish among different classes of stock markets according to the fact that the agents should
search by themselves for a consistent counterpart (Direct Search Markets), or the agents could apply to specialized
mediators in order to carry out such a search (Brokers Markets), or the agents could strike at once their transactions
with operators who are always disposed to buy or to sell (Dealers Markets), or the agents could directly negotiate by
means of a sole, centralized, mediator (Auction Markets).



The plan of the paper is the following. In Section 2 we describe the economic motivations and the
general structure of the model, together with some general properties arising from the symmetry of
the related discrete dynamical system. In Section 3 the usual analysis of the linear approximation,
through the study of the eigenvalues of the Jacobian matrix, is carried out in order to characterize
the local stability property and the local bifurcations in the parameters space. In Section 4 the
global dynamical properties of the dynamical system are analyzed, and such properties are used to
understand the nonlinear effects that cause important qualitative changes in the structure of the
attracting sets and of their basins of attraction. In this section the definitions and some properties
of the critical curves are recalled, and then the critical curves are used to characterize some global
bifurcations which cause qualitative changes of the attractors and their basins. Some conlcluding

remarks are given in Section 5.

2 The model

We assume the day as the time’s unit of measure. This allows us to give the following simple
description of the rules which regulate the time evolution price index p and of the net stock of
savings collected by the funds, s. However, it is always possible, with little changes to our story,
to refer to different intervals of time.

If the price level p; and the savings collected by the funds s; at time ¢ are supposed to be
common knowledge, at time ¢ + 1 the stock market, at whose negotiations will participate only the

dealers, will open with a new value of the index p, determined by a law of the kind

Pty1 —Pt =4 (Stapt) (1)

Afterwards, being closed the stock market, the savers, who act underwriting shares of the mutual
fund or asking for the repayment of the already held ones, will buy or sell, and such choices give

rise to the new value of the variable s through a law of the kind

Sgi1— 8¢ = f (stapt+17pt+1 —pt) (2)

We remark that this two-period structure of the model can be connected with the different nature
of the financial operations carried out by each class of agents and also with the legislation which,
in many countries, regulate the stock market working.

The two functions g and f are supposed to be at least C'! and satisfying the following assump-
tions:

1- g—ft > (. This follows from the previous discussion about the role of the mutual funds in

supporting the demand.



2 - j—}i < 0. In presence of an high price level the supply will grow up giving rise to a price
reduction.

3 - C?—ft < 0. The savers prefer to diversify their investments.

4 - dp(?jr - < 0. The savers have a certain propensity to profit of good market performances
realizing their invested capitals.

o - m > 0. The savers have adaptive expectations. If they observe a positive trend they
suppose that it will be verified in the following period too. This could persuade the investors to
buy new shares of the mutual funds.

Observe that the assumptions 4 and 5 force the system into different directions. They will carry
out an important role in our analysis of the model.

It is easy to verify (see [2] and [10]) that the previous five hypotheses, together with the usual
regularity assumptions, are sufficient to ensure the uniqueness of the equilibrium, if it exists.

Such equilibrium values, say § and p, can be considered as “natural levels”, which may be
thought as solutions of a system of equations or deduced from some general macroeconomic consid-
erations, that the agents perceive as reference values to which they compare the present situation

in order to take the investment decision. Under these assumptions the model can be rewritten as

st+1— St = F (8t — 8, pt+1 — D, Pe1 — Pr)
(3)
pey1 —pe =G (st — 8, p — D)
whose dynamics depend on the differences from the values that the agents perceive as natural.

The functions F' and G satisfy the same first order conditions defined for f and g, but in this

context it is natural to claim that
G (0,0) = F(0,0,0) =0
After the following change of variables
Sy =5 —35 and Po=p —p

we obtain the model
St+1 — St = F (St, Piv1, Pr1 — P)

(4)
Po1— P =G(S,P)
whose only equilibrium is O = (0,0).
Following the approach of [2] and [10], as a consequence of some further assumptions about the
prevailing behavior of the agents, we specify the map in a polynomial form introducing near the

linear terms a stabilizing component of the third order as follows:



Siy1— St = —APip1 — BS} + E (P — P)

()
P41 — P =CS, — DP}

where all the coefficients, A, B,C, D, E, whose meaning can be easily deduced from the previous
discussion about the assumptions 1,...,5, are real and positive.

Near the equilibrium, the dynamics of each variable are mainly influenced by the value of the
other one, while the opposite occurs when the system is far from the equilibrium. In fact, we may
think that the decision of the savers in order to rebalance their portfolios become significant only
when the difference s, — § is big. At the same time, in the stock market the supply, involving also
the new securities issue, is thought to be poorly reactive with respect to the difference p; — p near
the equilibrium.

To sum up, the time evolution of the system is obtained by the iteration of the two-dimensional
map T : (S, P) — (5, P'), defined by
S'=(1+ec)S—aP —bS3 —edP?
T: (6)
P'=¢S+P—dpP?

where ’ denotes the unit-time advancement operator, that is, if the right hand side variables repre-
sent the dynamic variables at period t then the left hand side ones represent the state variables at
period (¢t + 1), and

a=A b=B, c=C,d=D, e=E—-A

According to the above discussion, the parameters a, b, ¢ and d are positive, whereas the coefficient

e can take negative values provided that
e+a>0 (7)
Starting from a given initial condition
(5(0), P(0)) = (S0, Fo) (8)
the iteration of (6) uniquely determines an infinite sequence of points, or trajectory
7 (S0, Po) = {(S(t), P(t)) = T"(So, ), t =0,1,2,...} . (9)

Our goal is to investigate, for any economically feasible set of parameters, the possible kinds of
asymptotic (or long-run) dynamics of the model proposed, i.e. the fate of the trajectories as

t — 400, and the influence of the initial conditions on it.



It is worth noting that the map 7' is symmetric with respect to the fixed point O. In fact, if
SIM : (S,P) — (—P,—S) denotes the central symmetry with respect to the point O = (0,0), then
we have that T' commutes with STM, i.e.

T (SIM (S, P)) = SIM (T (S, P)).

This implies that given an orbit G of T', either STM (G) = G, i.e. G it is symmetric with respect
to O, or SIM(G) # G is an orbit of T" as well, where STM(G) is the orbit symmetric of G with
respect to O. For example, if G is a cycle of period k, say G = Cy, = {(S1,P1), ..., (Sk, Pr) }»
then either Cj is symmetric with respect to O, i.e. for each periodic point (S;, P;) € Cj also
SIM (S;,P;) = (—Si,—P;) € Cy, or the symmetric k-cycle C), = {(—=Si,—P1),...,(—Sk,—Ps)}
exist, with the same stability property. This implies, in particular, that if Cy;14 is a cycle of odd
period, then a distinct cycle C’;j 41 = SIM (Coj41) exists with periodic points which are symmetric
of those of (541 with respect to O. Moreover, if Cs;1 is stable, C’éj 41 is stable as well.

Thus the symmetry property of the map T naturally leads to many situations of coexisting
stable symmetric cycles. However, we shall see that also coexistence of non symmetric stable cycles
of different periods can be obtained, as well as coexistence of stable cycles with quasi periodic or

chaotic attractors.

3 Local bifurcations in the enlarged parameters space

As usual, the first step to start the qualitative study of the asymptotic behavior of a dynamic model
is the localization of the steady states of the dynamical system and the determination of the sets
of parameters for which they are locally stable. In our case, the following result holds
Proposition 1. For each economically feasible set of parameters, the dynamical system obtained
by the iteration of (6) has the unique steady state O = (0,0) which is unstable.
Proof. The steady states are the fixed points of the map (6), defined by the equation T (S, P) =
(S, P), which reduces to

§=4p3
{ Pla+®ps) =0 (10)
Since a, b, ¢ and d are positive, the only solution of (10) is O = (0,0). The local stability of the

steady state O is determined through the study of the linear approximation of the map (6): a

sufficient condition for the local asymptotic stability of O is that the eigenvalues of the Jacobian

matrix g2 ap?
| 1+ec—3 —a — 3edP
DT (S, P) = [ . L 34p? } (11)
computed at O, i.e.
DT (0,0) = [ ltec _1‘1} : (12)
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has both the eigenvalues with modulus less than one, whereas O is unstable if at least one eigenvalue
with modulus greater than one exists. The eigenvalues of (12), say A; and Ag, are the solutions of
the characteristic equation

P(A) =X —Tr-\+ Det =0 (13)

where Tr and Det are the trace and the determinant of (12), given by
Tr=2+ec Det=1+c(a+e) (14)

respectively. The instability of O follows from the fact that Det = A; A2 > 1 for any feasible set of

the parameters.[]

From this proposition it follows that the time evolution of the variables S(t) and P(t) never
settle to stationary (or equilibrium) values.

In order to understand the kinds of non stationary asymptotic dynamics of the model we now
extend the analysis of the local stability of O to sets of parameters which are out of the economically
feasible region. We do this economic aberration because the local bifurcations of T" in economically
meaningless regions of the parameter space may provide useful information regarding its behavior
in the parameter region that we want to characterize. In the analysis which follows we shall consider
fixed positive values of the parameters b, ¢ and d and we investigate the effect of changes of the

parameters e € R and a € R, even if the set of their economically feasible values is given by
M ={(e,a)|a>0and e+a >0} (15)

The choice of the parameters a and e as bifurcation parameters is related to the fact that they give
a measure of the two opposite forces which determine the relative weight of the agent’s attitude to
realize the capital gains, measured by the parameter a, and their speculative attitude, measured
by the parameter e.

Necessary and sufficient conditions for the two solutions A\; and Ay of (13) have modulus less
than one, i.e. are inside the unit circle of the complex plane, are expressed by the following system

of inequalities (see, for example, [12] p. 159)
P(1)=1—Tr+ Det >0; P(-1)=1+4+Tr+ Det >0; Det <1 (16)

These conditions, which in our case become

P(1)=ac>0

P(-1)=c(a+2e)+4>0

Det—1=c(a+e)<0
define a stability region in the plane (e,a) represented by the triangle LJK of fig.1, bounded by
the lines K'L of equation ¢ (a + 2e) +4 =0, LJ of equation a = 0 and JK of equation a + e = 0.



INSERT FIG. 1

If the parameters (e, a) exit the stability region by crossing the side K'L then a real eigenvalue
exits the unit circle through the value —1, and O loses stability via a flip (or period doubling)
bifurcation, whereas if the parameters (e,a) exit the stability region by crossing the side LJ a
real eigenvalue exits the unit circle through the value +1, and O loses stability via a pitchfork
bifurcation, at which two stable fixed points are created, given by the two further real solutions of
(10) existing for a < 0. However, the most interesting bifurcation through which the fixed point O
loses stability is the one occurring when the parameters (e, a) exit the stability region by crossing
the side JK, because this crossing implies that the parameters enter the economically feasible
region M. In this case two complex conjugate eigenvalues exit the unit circle so that the fixed
point O is transformed from a stable focus into an unstable focus. The following result holds (see

[10])
Proposition 2. If ¢ > 0 and the parameters (e,a) exit the stability region LJK through the

segment KJ of the line of equation a + e = 0 then a supercritical Neimark-Hopf bifurcation occurs
provided that —4/c < e <0 and ec # {—2,—-3}.

Proof. The eigenvalues A\; and )y of (12) are complex conjugate if Tr? — 4Det < 0, i.e. in the
region of the parameters’ plane (e,a) inside the parabola 4a — ce? = 0 (see fig. 1). In this case,

they are given by

2 + ec + iv4ac — e2c?
2

and their modulus is |\;] = vV Det = \/1+c(a+e). If the parameters (e,a) exit the stability
region LJK through a point Hy = (e, —ep), with —4 < ey < 0, then the two eigenvalues exit

)\1:X2:

the unit circle, because at Hy we have |\;| = 1 and % = % = ¢/2 > 0. Moreover, under
the assumptions of the proposition, at Hy we have )\{ #1,7=1,23,4. In fact, at Hy we have
A = % (2 +egcti —eoc(4+eoc)), so A1 = 1 iff egc = 0, \; = —1 (s0 that \? = 1) iff egc = -2,
A1 =3 (—141iv/3) (so that A} = 1) iff egc = —3 and A\; =i (so that At = 1) iff epc = —4. Hence
all the assumptions for the occurrence of a Neimark-Hopf at Hy hold (see e.g. [11]). In order to
prove that such a bifurcation is supercritical it is necessary to reduce the map (6) to a normal
form of the type 2/ = Az 4+ 12’2+ O (‘25 ), where z = § +¢P and A = \;. The condition for a

supercritical bifurcation is @ = Re (¢;) < 0 (see [11]). After some routine (but rather long) algebraic

manipulations (we refer to [10] for details) we get

3 1 cd
= -2 - [(p=-=
@ = Re(c) 2 egc (4 + epe) ( eo>

sothata<0for%<eo<O.D



As it is well known, just after the supercritical Neimark-Hopf bifurcation, for ¢ + e > 0, an
attracting invariant closed curve I' exists around the unstable focus O. For parameters values close
to the bifurcation values such invariant closed curve is smooth and approximately of circular shape,
with radius proportional to the square root of the distance from the bifurcation curve (see e.g. [11]
p.305). An example is shown in fig. 2, which shows a quasi-periodic trajectory obtained for a = 1.2,
b=05¢c=04,d=0.1and e = —0.9 and starting from an initial condition close to the fixed
point O. In fig. 2a the numerically generated trajectory is represented in the phase plane (S, P)
of the dynamical system (the early iterations, representing the transient, have not been plotted)
and in fig. 2b the a portion of the same trajectory is represented versus time. The same quasi-
periodic attractor, included in the curve I' created at the Neimark-Hopf bifurcation, is approached
by the trajectories starting from a generic initial condition taken in the white region shown in fig.2,

whereas the initial conditions taken in the grey region generate diverging trajectories.

INSERT FIG. 2a,b

The Neimark-Hopf bifurcation theorem only gives local results in the parameter space, in the
sense that it says nothing about the changes in the shape, or even the existence, of the invariant
curve I', as the parameters move away from the bifurcation curve. In our model, numerical investi-
gations show that as the parameters a and e move far from the Neimark-Hopf bifurcation value, the
attracting invariant closed curve I first increase its amplitude and maintains a smooth shape, then
it starts to change its shape which becomes more and more convoluted until it is transformed into
a more complex invariant set, generally an annular chaotic attractor, as shown in fig. 3, obtained
with parameters a = 1.2, b = 0.5, ¢ = 0.4, d = 0.1 and e = 0.55. Of course, forecastings are more
difficult in such a situation, so it is important to understand when the shape of I" starts to change
its shape from smooth to a convoluted. In the next section we shall explain how this phenomenon
is related to the fact that the map (6) is noninvertible, and we describe it in terms of interactions
between I' and the critical curves, a powerful tool to study the global properties of noninvertible
maps of the plane.

Another important question is related to the delimitation of the boundary which separates the
basins of attraction of different coexisting attractors (including the basin of the attractor at infinity,
i.e. the set of initial conditions generating diverging trajectories). As the parameters of the model
are changed, the basins may undergo global bifurcations which change their topological structure.
For example, in the situation shown in fig.3a the set of points which generate diverging trajectories
(or basin of infinity) is a non connected set, since two disjoint portions of it exist, nested inside the
basin of bounded trajectories. These particular topological structures of the basins are specific to

noninvertible maps, and, as we shall see in the next section, their qualitative changes are caused by



global bifurcations involving contacts between basin boundaries and critical curves. Thus, as the
parameters of the model vary, we can follow two different routes to dynamic complexity: one related
to more and more complex attractors, the other one related to more and more complex structures
of the basins. The former route has been much more investigated in the literature, whereas the
latter one has been rather neglected, even if it is very important in applications.

Contrarily to what is suggested by a comparison of the figures 2 and 3, these two different
routes to dynamic complexity are generally independent, in the sense that complex attracting sets
may have very simple basins, and simple attractors (such as stable steady states) may have very
complex basin boundaries (see e.g. [4], [3], [6]).

In the next section we study both the routes to complexity after a description of the global

geometric properties of the map (6) and its inverses.

INSERT FIG. 3a,b

4 Global properties and routes to complexity
4.1 Preimages and critical curves

The map T defined in (6) is a noninvertible map. This means that given a point (', P') € R? its
rank-1 preimages (or antecedents) 7! (S’, P') may be more than one, i.e., T~! is a multivalued
relation. Such preimages can be computed by solving, with respect to the unknowns S and P, the

algebraic system (6), which can be written as

{ S=1(P' —P+dP?)

17
b(dP? — P+ P')’ —(dP? — P+ P') — e (P' — P) + * (aP — §') =0 (17)

This is a ninth degree algebraic system, so it may have 1, 3, 5, 7, or 9 solutions, according to the
values of S’ and P’. The plane can be subdivided into regions whose points have the same number
of rank-1 preimages. Following the terminology of [13], we denote by Z a region whose points have
k distinct preimages.

As the point (S’, P') varies in the plane R?, the number of solutions of the system (17), i.e., the
number of the rank-one preimages of (S’, P’), changes when the point (S’, P') crosses the boundary
separating two different regions Z, because pairs of real solutions of (17) appear or disappear. Ac-
cordingly, such boundaries are generally characterized by the presence of two coincident (merging)
preimages. This leads us to the definition of critical curves, one of the distinguishing features of
noninvertible maps. Following [12], [13], [1], the critical set LC' (from the French “Ligne Critique”)
is defined as the locus of points having two, or more, coincident rank-1 preimages, located on a set

(set of merging preimages) called LC_;. LC' is the two-dimensional generalization of the notion of
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local minimum or maximum value of a one-dimensional map?, LC_; is the generalization of the
notion of critical point (when it is a local extremum point). Arcs of LC separate the regions of the
plane characterized by a different number of real rank-1 preimages (see [12], [13], [1],).

As in the case of differentiable one-dimensional maps, where their first derivative necessarily
vanishes at the local extremum points, for a two-dimensional continuously differentiable map the

set LC' 1 belongs to the set of points in which the Jacobian determinant vanishes:
LC_1 C Jo={(S,P) € R?|det DT = 0} (18)

In fact, as LC_1 is defined as the locus of coincident rank-1 preimages of the points of L', in any
neighborhood of a point of LC' 1 there are at least two distinct points mapped by T in the same
point near LC. This means that the map T is not locally invertible in the points of LC_; and,
if the map T is continuously differentiable, it follows that the Jacobian necessarily vanishes along
LC_;. If the set LC_; is determined by (18) then LC' is simply obtained as the image of LC_1,
ie, LC=T(LC_).

For the polynomial map (6) LC' 1 coincides with the set of points at which det DT = 0, given

by the solutions of the equation
96dS*P? — 3dP? — 3bS* +c(a+e) +1=0 (19)

Thus LC'"_; is formed by four branches, denoted by LC(jl), j=1,...,4infig.4a, located symmetrically
with respect to the coordinate axes, of equations
1 cla+e 1 clat+e
P::I:m 1—# and S:iﬁ 1—%

It follows that also LC' = T'(LC_;) is the union of four branches, say LCU) = T(LC(jl)), ji=1,..4,
and each portion of the critical set LC separates two regions Z; and Zgyo (see fig.4b and fig.5).
The number of regions Zj, and the maximum value of k (i.e. the maximum number of preimages,
called map degree) depend on the values of the parameters. The simplest situation occurs when the
four branches of LC' do not intersect (like in fig. 4b): in this case, the map is of third degree, and
each branch of LC' encloses a Z3 region surrounded by Z; (a structure denoted by Z3 > Z; in [13],
where the notation is related to presence of a cusp point). The points belonging to the smooth arcs
of LC'Y have two coincident rank-1 preimages which are located at a point of the corresponding
LC(_jl), and a further rank-1 preimage, called extra preimage, located elsewhere. The cusp points
are characterized by three merging preimages, i.e. also the extra-preimage merges with the two

coincident rank-1 preimages (see e.g. [15]).

2This terminology, and notation, originates from the notion of critical points as it is used in the classical works of
Julia and Fatou.
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In order to give a geometrical interpretation of the action of the multivalued inverse relation
T~ it is useful to consider a region Z; as the superposition of k sheets, each associated with a
different inverse map. Such a representation is known as Riemann foliation of the plane (see e.g.
[15], [13]). Different sheets are connected by folds joining two sheets, and the projections of such
folds on the phase plane are arcs of LC. For example, the foliation associated with the situation
shown in fig. 4b is qualitatively represented in fig. 4c.

Each of the k superposed sheets used to represent a region 7 is associated with a different
inverse map, and each pair of superposed sheets which join along a fold (associated with a segment
LC(j)) are “unfolded” back by the action of the two corresponding inverses, say ijll and TJTQI, in
the sense that points of the two sheets have preimages located at opposite sides with respect to
LC(jl) . It can be noticed that each cusp point of LC' is characterized by the merging of three sheets

at the junction of two folds.
INSERT FIG. 4a,b

As the parameters of the map (6) are changed, regions Z; with k£ > 3 are created at the
intersections of the branches of LC', as shown in the figures 5 and 6.

The representation of the Riemann foliation, which gives a visualization of the property of
mapping distinct points into the same point as due to a folding of the phase plane along the critical
curves, may be useful in order to understand some of the properties and bifurcations observed in

the attractors and the basins of dynamical systems obtained by the iteration of noninvertible maps.
INSERT FIGURES 5,6

4.2 From attracting closed invariant curves to chaotic attractors.

We now describe the changes of the stable invariant closed curve I', as the parameters e and a are
moved away from the Neimark-Hopf bifurcation curve at which I' is created, due to interactions
between I' and LC_;. It is important to notice that just after its creation I' cannot be too close to
LC 1, because at the Neimark-Hopf bifurcation the eigenvalues are complex conjugate and belong
to the unit circle of the complex plane, whereas along LC_; one eigenvalues must necessarily be
zero being det (DT') = 0. Therefore, interactions between I' and LC_; are only possible when the
parameters are sufficiently far from the Neimark-Hopf bifurcation curve.

As far as the attracting invariant closed curve I'" does not intersect LC_; it can be thought of

as entirely contained in one sheet of the Riemann foliation. This means that a neighborhood U (I")
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of I' exists such that not only T(U) C U (since I is attracting) but a unique inverse exists, say
T ! such that T, 1_1 : T(U) — U. This implies that the curve I', as well as the area of the phase
plane enclosed by T, say a ('), is both forward invariant (under 7') and backward invariant (under
T, ). In fact, even if T' € Zj, with k > 1, so that other (extra) rank-1 preimages of T exist, they
do not intersect I'.

This is the situation shown in fig.7a, obtained for ¢ = 1.2, b = 0.5, ¢ = 04, d = 0.5 and
e = —0.6. In this case I" € Z5 (compare fig.7a with fig.5) and five disjoint preimages of I" exist, as
shown in fig. 7a. Notice that for this set of parameters the invariant curve I appears to be smooth
and of approximately circular shape, so that the quasi-periodic motion along it is very similar to
purely trigonometric oscillations.

The situation changes when I' grows up until it has a contact with the two branches LCSSI) and
LC(_41) of the set of merging preimages LC_1, and then intersect them, as shown in fig.7b. We now
describe the consequences of the contact between I'" and LC(}l) . Of course, due to the symmetry
property of the map (6), the same description applies to the symmetric contact between I' and
Lc®).

Let Ap and Bg be the two points of intersection between I' and LC(f) , and let Ry and R» the
two regions, separated by LC(_41) , where there are, respectively, the codomains of the two inverses
T, ' and T, !, Then the points Ay = T (Ag) and By = T (By), which must belong both to I' and
to LC®W =T <LC(_41) ), are points of tangential contact between I' and LC®. In fact, the arc
ApBy € T'N Ry must be mapped by T in the arc A;B; = T (AgBy), entirely included in the region
Zs on one side of LC™®. If we look at the preimages, we realize that now there is not a unique
inverse under which I' is backward invariant. In fact, now Tfl (T") also includes arcs inside T, like
the arc AoBél) € Ry, whereas AOB(()Q) € I'N Ry is given by T2_1 (A1 By).

We can say that the region h; between the arc A;B; of T' and LCW is “unfolded” by the
action of the two inverses T} Land T 5 Lin two distinct preimages, located in the regions R; and
Ry respectively, represented in fig.7b by the two portions h} = Ty 1(hy) and hE = T2_1 (h1) of a (T)
bounded by the two arcs AgBy inside and along T respectively. In other words, the two portions h{
and hg of a (") are folded by T along LC' to cover the area h;, which is outside I'. This implies that
I the area a (T') bounded by T is no longer forward invariant, since some points inside I" are mapped
outside it (like the points belonging to h} and h3). This phenomenon of forward invariance of a
closed curve together with noninvariance of the area inside it is specific to noninvertible maps, that
is, it cannot be observed in invertible ones. The property of noninvariance of a (I') and the creation
of convolutions of I" are two aspects of the same mechanism, related to the fact that curves crossing
LC 1 are folded along LC' and are confined into the region with an higher number of preimages.

This is only the beginning of the changes in the shape of T, since as e is further increased the

convolutions become more and more pronounced (fig.7c) until the invariant curve I' is broken to
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become a more complex attracting set (fig.7d). In fig. 7d the presence of loops can be observed,
another phenomenon which is only possible with noninvertible maps. The exact mechanism through
which such loops are created, and the related loss of invariance of I', is still an open problem, recently

studied by many authors (see e.g. [13], [7] or [8] and references therein).

INSERT FIG. 7a,b,c,d

Another consequence of the intersection between I' and LC_; is that for a periodic cycle not
belonging to I', it may happen that some of the periodic points are inside and the others are outside
the invariant curve I'. This may be observed for the map (6) for many sets of parameters. An
example is shown in fig.8, obtained for a = 7.45, b = 0.5, c = 0.4, d = 0.1 and e = —5.6, where
an attracting closed invariant curve, on which quasi-periodic motion is numerically observed, is

coexisting with an attracting cycle of period 6.

INSERT FIG. 8

To sum up, just after the supercritical Neimark-Hopf bifurcation the kinds of long run dynamics
which characterize the long-run behavior of the bounded trajectories are characterized by conver-
gence to quasi-periodic or periodic attractors, located along an attracting and smooth invariant
closed curve I'. Then, when it grows up, it may become rather convoluted and then disappear. It
is generally replaced by annular chaotic attractors. As usual, sets of parameters are met at which
stable cycles are created via a saddle-node bifurcation. The periodic points of these stable cycles
may belong to I', or may be inside a ('), or outside a (I") or, if " intersects LC_;, some of the
periodic points may be inside and other outside a (I'). Furthermore, several coexisting attractors
may be simultaneously present, such as coexisting attracting cycles or quasi-periodic or chaotic
attractors together with attracting cycles. In any case, segments of the critical curves LC| together
with a suitable number of their images LC; = T(LC), may be used to bound a trapping region
where all the attracting sets are included. Such trapping sets, also called absorbing areas in [13],
act like a bounded vessel inside which the asymptotic dynamics of the bounded trajectories are
ultimately confined.

In particular, this property of the critical curves allows one to obtain the boundaries of the
chaotic attractors. This is now a sufficiently known property (see [13] and references therein, see
also [16] for several application to economic modeling). We recall that a chaotic area A of the map
T is an invariant set of T, i.e. T(A) = A, which includes a chaotic set. Numerically computed

trajectories seem to cover the area A.
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Consider, for example, the trajectory shown in fig.9a, which appears to be chaotic. Following
[13] or [1] a practical procedure can be outlined in order to obtain the boundary of A (although it
is difficult to give a general method). Starting from the portion of LC_; belonging to the invariant
area A, its images T" () of increasing rank are computed until a closed region is obtained. When
such a region is mapped into itself, then it is an absorbing area. For the chaotic area shown in
fig.9a, four images of v = AN LC 1, given by the segments of LCSSI) and LC(fl) shown in fig. 10a,
are necessary and sufficient to obtain the whole outer boundary of A. The complete boundary of
A is obtained by .

DAC | JT*(v) (20)
k=1
as shown in fig.10b. We recall that the critical sets of rank £ are the images of rank k of LC_;
denoted by LCy_1 = T*(LC_1) = T*"1(LC), LCy being LC. Notice that in (20) the inclusion
holds because portions of the critical curves of increasing rank are also inside A, where they indicate
the regions of greater density of points, i.e. the regions that are more frequently visited by the
points of the generic trajectory in the invariant area A.

We remark that the definition of an absorbing area is also useful when non chaotic attracting
sets exist, like in the case of the two coexisting stable cycles shown in fig.9b, obtained after a small
variation of the parameter e with respect to that used in fig.9a. In fact, also in such cases the
delimitation of an absorbing area by segments of critical curves is useful to obtain a region of the
phase space of the dynamical system where the asymptotic dynamics will be confined, independently

of the kind (and the number) of attractors.

INSERT FIGURES 9a,b and 10a,b

4.3 Basins and their bifurcations

As we have seen in the previous sections, points sufficiently far from the equilibrium O = (0,0)
generate diverging trajectories, i.e. an attractor always exist at infinite distance. We denote by

B (c0) the basin of infinity, defined as the set of points which generate diverging trajectories,
B (o0) = {(S, P)|||T* (S, P)|| = +o0 as t — +oo}
We set of bounded trajectories, denoted by B, the complementary set of B (c0), i.e.
B=1R?\ B ()

A delimitation of the boundary 0B (co) = 0B which separates these two sets is important in order
to know the range of state variables (S, P) for which the model behaves well, since only bounded

trajectories can represent meaningful time evolutions of an economic system.
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The boundary 0B = 0B(co) behaves as a repelling set for the points near it, since it acts like

a watershed for the trajectories of the map T. Points belonging to 0B are mapped into 9B both

under forward and backward iteration of T', that is, the boundary is invariant with regard to T" and
T, ie.

T (0B) = 0B, T *(0B) = 9B. (21)

This implies that if an unstable fixed point or cycle belongs to 9B then 0B must also contain all of
its preimages of any rank. Moreover, if a saddle-point, or a saddle-cycle, belongs to 0B, then 0B
must also contain the whole stable set.

We first consider a set of parameters for which B is a simply connected set, as shown in fig.11a.
In this case, the boundary 9B is formed by the closure of the stable set of a saddle cycle S of period
2, located along 0B, whose numerically computed periodic points (—1.97,3.99) and (1.97,—3.99)
are symmetrically located with respect to the point O. One of the two invariant branches of the
unstable set W* (.S) issuing from the saddle periodic points of S goes to infinity, the other one goes
to the bounded attractor, which in this case is a quasi periodic attractor located on a smooth closed
invariant curve. Hence the local stable set W} (S) C 0B. In fact, if we consider a neighborhood
of S, W.(S) is a separatrix between the trajectories which converge to a bounded attractor and
those which diverge. Then 0B must include the whole stable set W#(S), obtained by taking the
preimages of any rank of W _(S)

W(S) = (J T7* (Wie(5))
E>0
It is worth to note that also a repelling node cycle of period two belongs to the boundary, with
periodic points located at the cusp points of 9B5.

We notice that in fig.11a the critical curve LC(), as well as its symmetric branch LC'®?), is close
to 0B, i.e. to the stable set W*(S). If the parameter e is slightly increased a contact between 0B
and the two branches LC'W and LC® of LC occurs. After these two contacts, two portions of
B (00) that before the contact bifurcation were in the region 77, denoted by Hy and Kj in fig. 11b,
enter the regions Z3 bounded by LCW and LC® respectively. Each of these two portions now have
new pairs of preimages, unfolded at opposite sides with respect to line LC(_ll) and LC(_QI) respectively.
Since Hy and Ky belong to B (co), also their preimages belong to B (c0), and constitute disjoint
portions of B (co) nested inside B. These are the largest holes (or lakes following [14]) of B (o0)
nested inside B, denoted by H 1 and K_; in fig.11b. Since they belong to the region Z;, they have
further preimages, which are other smaller holes (or lakes) of 3 (0c0). Such preimages are smaller
and smaller and accumulate on the outer boundary (we remind that the outer boundary, being a
repelling set for the forward iteration of T, is an attracting set for the backward iteration, obtained

by the repeated application of the inverses of 7). To sum up, the global bifurcation just described,
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due to a contact between W# (S) and LC, transforms the basin B from a simply connected set into
a multiply connected one (or equivalently, it transforms the basin B (co) from connected into non
connected). Now the boundary 0B is formed by the union of an external part and the boundaries
of the infinitely many holes.

As the parameter e is further increased, the critical curves LC() and LC'® continue to move
until a parameter value is reached at which a contact between LC'™) and LC'® and the two periodic
points of the node located at the two cusps of 9B occurs (see fig.11c). This contact causes another
global bifurcation at which a reunion of the holes with the immediate basin of infinity occurs, so
that B (co) becomes again a connected set (and consequently B becomes again simply connected).

Other similar contact bifurcations occur when portions of B (oco) enter Z3 after a contact with
the other two branches of LC', LC® and LC®, as shown in fig.11d. This leads to the creation of

other families of holes of B (co) nested inside B through the same mechanism described above.

INSERT FIG. 11

We remark that, even if the occurrence of the global bifurcations described above leads to
more complex basin boundaries, the attracting sets have practically maintained the same kind of
complexity, as it appears from a comparison of the figures 11a-d: in figures 1la-c the bounded
attractor is quasi-periodic belonging to a smooth closed invariant curve, whereas in fig. 11d the
attractor is an attracting cycle of period 10, with periodic points located symmetrically with respect
to O.

More complex situations can be observed when many coexisting bounded attractors are present,
whose basins share the set B of points generating bounded trajectories. An example is shown in
fig.12, obtained for a = 1.12, b = 0.5, ¢ = 0.4, d = 0.5 and e = 1.07. For this set of parameters there
are three coexisting bounded attractors: a cycle Cg of period 10, with points pairwise located in
symmetric positions with respect to O, i.e. SIM(Ch) = Cho, where SIM is the symmetry with
respect to O defined in section 2, and two cycles of period seven, say C7 and SIM(C7), one with
periodic points located symmetrically with respect to the periodic points of the other, as always
occurs for the cycles of odd period (as stated in section 2). The respective basins of attraction are
represented by different colors: white for the basin of Cig, red and green for the basins of the two
symmetric cycles of period 7. From the numerical representation of fig.12, all the basins appear
to be nonconnected sets, each formed by infinitely many (and extremely intermingled) disjoint
portions. Such a structure of the basins is a rather usual for noninvertible maps. This can be
intuitively understood on the basis of the following arguments. Let A be an attractor for the
iterated map 7. This means that a neighborhood U(A) exists whose points converge to A. Of
course U(A) C B(A), but also the points of the phase space which are mapped inside U after a
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finite number of iterations belong to B (A), so that the total basin of A (or more briefly the basin
of A) is given by

B(A)=JT "UA)
n=0

where T~! () represent the set of the rank-1 preimages of « (i.e. the points mapped to = by T'), and
T "(x) represent the set of the rank-n preimages of = (i.e. the points mapped to x after n repeated
applications of T'). If T~! is a noninvertible map, the total basin may be non connected because if
U(A), or its preimages, belong to regions Zj, with k& > 1, the action of the distinct inverses defined
in Zy, (i.e. defined in different sheets of the Riemann foliation) may give preimages of U(A) which
are disjoint from U(A) and far from it, due to the unfolding of the Riemann foliation under the

action of the several distinct inverses.

INSERT FIG. 12

5 Conclusions

In this paper we have studied a deterministic model for the description of the time evolution and
interactions between savings and price level in a stock market.

The model is not based on market’s microstructure and optimizing behavior of the agents, but
it gives a fairly general description of the main (nonlinear) interactions between two kinds of agents
that we assume are acting in two different sections of the market: the dealers (administrators of
mutual funds), directly admitted to the securities negotiation, and the savers who, after taking
their investment decision, buy or sell shares of the mutual funds.

The model, which had been proposed in [10], has no stable steady states for economically feasible
values of the parameters, so its dynamics are always characterized by oscillatory behavior, which
may be periodic, or quasi-periodic or chaotic. So, even if a deterministic framework is assumed,
the model considered captures the most known features of the stock markets, given by the lack of
a stable stationary situation and the existence of many kinds of oscillatory (sometimes apparently
erratic) behaviors.

Our study is mainly devoted to the global dynamic properties and the global bifurcations. This
study gave us the opportunity to investigate some dynamic properties and bifurcations peculiar
of discrete dynamical systems which are obtained by the iteration of noninvertible maps. In fact
in this model the iterated map is a ninth degree noninvertible map, and some interesting results
recently given in the mathematical literature on noninvertible maps of the plane, mainly based on
the method of critical curves, can be usefully applied to understand the properties of attracting

sets and their basins.
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The most evident attracting sets of the model considered, which are very easily revealed even
by a quick numerical exploration, are obtained from the evolution of attracting orbits generated by
a Neimark-Hopf bifurcation. Immediately after the bifurcation, the attracting invariant curve fully
characterizes the phase space and the market adopts a regular cyclic behavior.. Subsequently, as

a consequence of increasing agents’ “

speculative” or “capital gain realizing” attitudes, the model
unfolds more complex, chaotic and unpredictable trajectories.

However, a deeper analysis reveals that many coexisting attracting sets may be present, and
the structure of their basins may be rather complex, being characterized by nonconnected sets, a
phenomenon that only in noninvertible maps can occur. Such analysis has shown that ranges of
the parameters exist such that the system is not robust with respect to exogenous shocks. In fact
the set of initial conditions which generate bounded trajectories, reveals, also for small parameter
values, “holes” of B(c0), i.e. bounded regions of the phase space formed by points generating
diverging trajectories which are surrounded by points of the complementary set. This means that
exogenous shocks moving the system towards one of such ”holes” could cause the definitive drift
from the equilibrium, and the intervention of some kind of market authority will be needed.

Contact bifurcations involving the critical curves have been used to characterize two different
routes to complex dynamic behaviors, one related to the creation of increasingly complex attractors
as the parameters are varied, the other one related to the appearance of more complex topological
structures of the basins of attraction.

The critical curves have been used both to bound trapping regions (or absorbing areas) inside
which the asymptotic dynamics are ultimately bounded (thus giving an estimate of the maximum
amplitude of the oscillatory properties of the market whatever the kinds of long run dynamics are)
and to detect contact bifurcations which cause qualitative changes in the structure of the basins of

attraction.
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Figure Captions

Fig. 1. Extended plane of the parameters e and a. The region M represent the set of

economically feasible values of the parameters. The steady state O is stable inside the region LJK.

Fig. 2. Fora=12,b6=0.5,c¢c= 04, d = 0.1 and e = —0.9, just after the Neimark-Hopf
bifurcation, a trajectory is numerically generated starting from an initial condition close to the fixed
point O. (a) the trajectory is represented in the phase plane (S, P) (the early iterations, representing
the transient, have not been plotted). The white region represents the basin of attraction of ', the
grey region represents the basin of infinity, i.e. the set of points generating diverging trajectories.
(b) A portion of the same trajectory plotted in (a) is represented versus time.

Fig. 3. Fora=1.2,b=10.5, c=0.4, d = 0.1 and e = 0.55 the generic trajectory starting from
points of the white region converge to an annular chaotic attractor, as shown in (a), whereas the
points of the grey region generate diverging trajectories. In (b) a portion of the trajectory shown

in (a) is represented versus time.

Fig. 4. Fora=1,b=0.5, c =04, d =2 and e = 2 the maximum number of preimages is 3.
(a) Critical curves of rank-0. (b) Critical curves of rank-1, which separates regions Z; whose points
have k distinct rank-1 preimages (c¢) Riemann foliation corresponding to the critical curves shown
in (b). Different sheets are associated with different inverses, and the critical curves LC' represent

folds which join different sheets
Fig. 5. Fora=1,06=0.5, c =04, d = 0.1 and e = 0.1 the maximum number of preimages

is 5. (a) Critical curves of rank-1, which separates regions Z; whose points have k distinct rank-1
preimages (b) Riemann foliation corresponding to the critical curves shown in (a)

Fig. 6. Fora=1,b=0.5, c =04, d = 0.1 and e = —0.9 the maximum number of preimages
is 9. (a) Critical curves of rank-1, which separates regions Z; whose points have k distinct rank-1

preimages (b) Riemann foliation corresponding to the critical curves shown in (a)

Fig. 7. (a) Just after the Neimark-Hopf bifurcation, for a = 1.2, b = 0.5, ¢ = 0.4, d = 0.1 and
e=—-06,T € Zs and TN LC_ 1 = (). The five disjoint preimages of I" are denoted by T,;l (1),
k=1,..5 (b) Fora=12b=05 c=04,d=01ande=0,T intersects LC") and LC") and
convolutions appear along I'. (c) For e = 0.4 (the other parameters are the same as in (a) and (b))
the convolutions become more evident. (d) For e = 0.5 the invariant curve I" no longer exist and it
is substituted by a more complex attracting set, characterized by the presence of loops.

Fig. 8. For a =7.45, b= 0.5, c= 0.4, d = 0.1 and e = —5.6 an attracting cycle of period
6 exists together with an attracting closed invariant curve I', on which quasi-periodic motion is
numerically observed. Some of the periodic points, denoted by the numbers 1, 3 and 5, are inside

T" and the others are outside T'.
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Fig. 9.(a) Fora=1.2,0= 0.5, ¢ =04, d = 0.1 and e = 1.1 the generic bounded trajectory
is attracted towards a chaotic area. (b) For a = 1.2, b = 0.5, ¢ = 0.4, d = 0.1 and e = 1.2 the
bounded trajectories converge to one of the two symmetric stable cycles of period 7 whose periodic
points are respectively denoted by {1,...,7} and {1',...,7'}.

Fig. 10. For the same set of parameters used to obtain fig.9a, the two portions of LC'_1 included
inside the chaotic area, indicated by the arrows, are iterated in order to obtain the boundary of the
chaotic area. (a) After 4 iterations the images of the two segments of LC_1, denoted by LC, LCY,
LCy, LCs, give the outer boundary of the chaotic area. (b) After 7 iterations the whole boundary
of the chaotic area is get.

Fig. 11. Changes of the structure of the basin of infinity 55 (co) (grey region) due to changes in
the parameter e, the other parameters being a =1, b = 0.5, ¢ = 0.4 and d = 0.1. (a) For e = —0.6
the set B = R? \ B(0o), whose points generate bounded trajectories, is a simply connected set,
represented by the white region. The critical curves LC 1 and LC are also represented (compare
with fig.7a). (b) For e = —0.5, after the contacts between LC' and the boundary of B (co), non
connected portion (holes) of B(co) appear, nested inside the white region. (c¢) At e = —0.38 a
contact between LC'™ and LC® and the two cusps of 9B causes a reunion of the holes with the
immediate basin of infinity, so that B becomes again a simply connected set. (b) At e = 0.3 a

contact of the other two branches of LC' causes the creation of other families of holes of B (00).

Fig. 12. For a = 1.12, b = 0.5, ¢ = 0.4, d = 0.5 and e = 1.07 there are three coexisting
bounded attractors: a cycle Cg of period 10 and two cycles of period seven. The respective basins
of attraction are represented by different colors: white for the basin of Cig, red and green for the
basins of the two symmetric cycles of period 7. The periodic points are represented by black dots.

The grey region represents the basin of infinity.
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