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Consider the following question. Is it possible to generalize the com-
parison test to generic real series? More precisely, is it true that, given
an ≤ bn ≤ cn for all n, the convergence of

P
bn, follows from the convergence

of
P

an and
P

cn? At first glance, many of us (certainly the authors) could
argue something like “If it were true then it would be certainly written on
some of the books standing on the shelves in my room”. As a matter of fact,
all the books on the authors’ shelves state the test only for non-negative
series. Nonetheless it is true as we show in this note.

1 A generalization of the comparison test

The comparison test is usually stated only for non negative real series both in
calculus books (see [1, 4, 5, 8] for some examples) and in more specific-purpose
texts (see [2, 3, 6]). There could be many reasons for that, nonetheless its
most immediate generalization could have some application in the study of
convergence and its proof is so straightforward that, at least, it could be
taken into consideration as an exercise in first year calculus courses.
First observe that a series cannot be oscillatory1 if it is minorized (or,

alternatively, majorized) by a convergent series.

Lemma 1 Let
P

an and
P

bn be two real series such that an ≤ bn for all
n ∈ N and let

P
an be convergent. Then

P
bn is not oscillatory.

1We distinguish among convergent, divergent and oscillatory real series according to the
fact that the limit of partial sums exists and is finite, is infinite, does not exist, respectively.
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Proof. From 0 ≤ bn − an we have that
P
(bn − an) is positive and it must

converge or diverge. So, the convergence of
P

an, implies that
P

bn cannot
be oscillatory

We can now generalize the comparison test as follows.

Theorem 2 Let
P

an,
P

bn, and
P

cn be three real series such that an ≤
bn ≤ cn for all n ∈ N. We have that

(i)
P

an and
P

cn converge ⇒
P

bn converges
(ii)

P
an diverges to +∞ ⇒

P
bn diverges to +∞

(iii)
P

cn diverges to −∞ ⇒
P

bn diverges to −∞
.

Proof. Observe that from
KX
n=1

an ≤
KX
n=1

bn ≤
KX
n=1

cn (1)

(ii) and (iii) follow immediatly. In case (i) Lemma 1 applies and so
P

bn
cannot be oscillatory. Finally, (1) implies that

P
bn cannot diverge

Notice that in Theorem 2
P

an and
P

cn are required to be simply conver-
gent. Clearly, the case of interest is that of conditionally convergent series.2

Theorem 2 enables us to prove the following proposition.

Proposition 3 Let
P

an be convergent and f : R→ R such that in a neigh-
borhood of zero

f (x) = αx+ βx2k + o
¡
x2k
¢
, β 6= 0, k ∈ N.

Then
P

f (an) converges if and only if
P
(an)

2k converges.

Proof. By assumption there exists ε > 0 such that for |x| < ε we have

αx+

µ
β − |β|

2

¶
x2k ≤ f (x) ≤ αx+

µ
β +

|β|
2

¶
x2k

Hence, there exists nε such that, for each n > nε,

αan +

µ
β − |β|

2

¶
(an)

2k ≤ f (an) ≤ αan +

µ
β +

|β|
2

¶
(an)

2k

Now, an application of Theorem 2 yields the desired result.

2See [5] p.375.
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Remark 1 Proposition 3 cannot be extended to the case where the expansion
ends with an odd power.3 Nevertheless if

P
an converges and

f (x) = αx+ βx2k+1 + o
¡
x2k+1

¢
, β 6= 0, k ∈ N

then4 X
|an|2k+1 converges ⇒

X
f (an) converges. (2)

Finally, notice that a sufficient condition for the convergence of
P
|an|2k+1

is the convergence of
P
(an)

2i for some i ∈ {1, 2, .., k}.

Remark 2 Notice that Remark 1 gives only a sufficient condition for the
convergence of

P
f (an). For this reason, if it is possible, it could be use-

ful to refine the Taylor expansion of f to obtain more information about the
convergence. Consider the following example:

P
arctan (−1)

n

4√n . In this caseP³
(−1)n
4√n

´2k+1
converges for all k whereas it converges absolutely if k > 1;

so if we use arctanx = x− x3

3
+ o (x3) nothing can be said about the conver-

gence of the series since
P¯̄̄

(−1)n
4√n

¯̄̄3
does not converge; on the contrary if we

consider the expansion up to the 5th order we can conclude that the series is
convergent.5

We give now some examples.

Example 4 Consider the alternating real series
P

bn where the generic term

bn = ln

µ
1 +

(−1)n

nγ

¶
depends on the positive real parameter γ. First, from the Taylor expansion
we know that

ln (1 + x) = x− x2

2
+ o

¡
x2
¢
. (3)

3More details can be found in Section 2.2.
4In fact, we have

αx+ βx2k+1 − |x|2k+1 ≤ f (x) ≤ αx+ βx2k+1 + |x|2k+1 ,

hence the result.
5A less trivial example of such occurrence is provided by example 5.
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Second, the series
P (−1)n

nγ
converges for all γ > 0 (Leibniz’s test) whereasP³

(−1)n
nγ

´2
=
P

1
n2γ

converges if and only if γ > 1
2
. Hence, applying Propo-

sition 3 we conclude thatX
bn converges if γ >

1

2X
bn diverges negatively if 0 < γ ≤ 1

2

Notice that Leibniz’s test applies to
P

bn if and only if γ ≥ 1 and
P

bn
is absolutely convergent if and only if γ > 1.6

Example 5 Consider the real series
P

bn, whose generic term, depending
on the positive real parameter γ, is defined by

bn = tan

µ
n (−1)n + 1

nγ+1

¶
This series is absolutely convergent if and only if γ > 1. Furthermore, it is
an alternating series but the Leibniz’s test applies if and only if γ > 2.7

6Observe that, for |x| sufficiently small, |x|2 ≤ |ln (1 + x)| ≤ 2 |x|, hence, for sufficiently
large n, 0 < 1

2nγ <
¯̄̄
ln
³
1 + (−1)n

nγ

´¯̄̄
< 2

nγ and so the series is absolutely convergent if and

only if γ > 1. To see that the sequence of absolute values is not decreasing first notice

that
¯̄̄
ln
³
1 + (−1)n

nγ

´¯̄̄
= ln

³
1 + 2

2nγ−1+(−1)n
´
, then

|b2k| < |b2k+1|⇔ ln

µ
1 +

1

(2k)γ

¶
< ln

µ
1 +

1

(2k + 1)γ − 1

¶
⇔ (2k + 1)

γ − 1 < (2k)γ ,

finally the last inequality is verified if and only if 0 < γ < 1.
7Observe that |x| < |tanx| < 2 |x|, hence 0 < 1

nγ +
(−1)n
nγ+1 <

¯̄̄
tan

³
n(−1)n+1

nγ+1

´¯̄̄
<

2
nγ +

2(−1)n
nγ+1 and so the series is absolutely convergent if and only if γ > 1. Moreover, its

terms are not decreasing in absolute value. Indeed, the equivalence¯̄̄̄
¯ (2k − 1) (−1)2k−1 + 1(2k − 1)γ+1

¯̄̄̄
¯ <

¯̄̄̄
¯(2k) (−1)2k + 1(2k)

γ+1

¯̄̄̄
¯⇔ 2k − 2

2k + 1
<

µ
2k − 1
2k

¶γ+1
,

the monotonicity of tanx and the fact that |tanx| = tan |x| (if |x| ≤ π
2 ) imply that

|b2k−1| < |b2k|

if and only if γ ≤ 2.
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Now, from the Taylor expansion we have

tanx = x+
x3

3
+ o

¡
x3
¢

(4)

Moreover, the series
P n(−1)n+1

nγ+1
converges for all γ > 0 whereas

P¯̄̄
n(−1)n+1

nγ+1

¯̄̄3
=P³

1
nγ
+ (−1)n

nγ+1

´3
converges if and only if γ > 1

3
. Hence, by Remark 1 we

conclude that
P

bn converges if γ > 1
3
. It is worth noting that, on the basis

of Remark 1, nothing can be said about the behaviour of this series when
0 < γ ≤ 1

3
. Nevertheless this series converges for all γ > 0 as can be seen

along the lines of what suggested in Remark 2.8

The following example concerns a series with no regularity in sign.

Example 6 Consider the real series
P

bn, whose generic term, depending
on the parameters α, γ ∈ R, γ > 0, is defined by

bn = exp

µ
sinαn

nγ

¶
− 1.

If α is multiple of π then the series is null. For α 6= kπ consider the Taylor
expansion

ex − 1 = x+
x2

2
+ o

¡
x2
¢
. (5)

The series
P

sinαn
nγ

converges for all α, γ ∈ R, γ > 0 (Dirichlet’s test) whereasP
sin2 αn
n2γ

=
P

1−cos 2αn
2n2γ

converges if and only if γ > 1
2
. Hence, applying

Proposition 3 we have thatX
bn converges if γ >

1

2X
bn diverges positively if 0 < γ ≤ 1

2

Finally observe that
P

bn is absolutely convergent if and only if γ > 1.9

8The proof for the case 0 < γ ≤ 1
3 is left to the reader (See the Appendix for our

suggested solution).
9The proof is left to the reader (See the Appendix for our suggested solution).
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We conclude the section with an exercise to be solved along the lines of
the previous examples.

Exercise 1.1 Discuss the series
P

an where

an = tanh
³cosαn

nγ

´
and α, γ ∈ R, γ > 0.

2 Further discussion

In this Section we provide counterexamples to some desirable extension of
the previous results.

2.1 Limit comparison test

The following question arises naturally: Is it possible to generalize the limit
comparison test along the lines of the previous section; that is, to extend
the statement by relaxing the restriction on the sign of the series? In other
words, we wonder if limn→+∞

an
bn
= L 6= 0 implies that

P
an and

P
bn behave

the same no matter the sign of an and bn. Unfortunately this is not true as
the following simple example shows.10

Example 7 Let an =
(−1)n
n

and bn =
(−1)n
n
+ 1

n lnn
. In this case

P
an con-

verges and
P

bn diverges while limn→+∞
an
bn
= 1.

Working with the sequences an =
(−1)n
n
+ sgn(f(n))

n lnn
and bn =

(−1)n
n
+ sgn(g(n))

n lnn

where the functions f and g are properly defined it is easy to build examples
of every other possible combination.

We observe that Examples 4 and 6 provide other two cases in which
limn→+∞

an
bn
= 1 but

P
an and

P
bn have different behaviour. So a gen-

eralization of the limit comparison test in the sense of relaxing the sign
requirements is not possible.

10Notice that condition lim an
bn
= L is a strong requirement as it calls for the product anbn

to have the same sign from a certain stage on. Alternatively we could consider condition

lim
¯̄̄
an
bn

¯̄̄
= L 6= 0 or the combination of max lim an

bn
= L 6= 0 and min lim an

bn
= l 6= 0.

Obviously, also this conditions cannot work as they are weaker than that which we consider.
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Possibly, an estension could be proved under stronger conditions. Ex-
ample 5 could suggest the following version: if f is odd, an is alternating
and f (x) ∼ x then

P
f (an) and

P
an have the same behaviour. Also this

statement is not true as we now show.

Example 8 Let an be defined as follows

a4n−3 =
1
3
√
n
; a4n−2 = −

1

2 3
√
n
; a4n−1 =

1

4 3
√
n
; a4n = −

3

4 3
√
n

The series
P

an converges by the Dirichlet test (see [7], Theorem 3 p. 137).
Nevertheless the series

P
(an + a3n) does not converge. To see this observe

that the subsequence of the partial sums

S4k =
4kX
n=1

a3n =
15

32

kX
n=1

1

n

is such that lim
k→∞

S4k = +∞.

So a generalization of the limit comparison test is not straightforward.

2.2 Other counterexamples

We begin this section by showing that the result of Proposition 3 cannot be
extended to odd powers much more than it is done in Remark 1. That is, ifP

an is convergent but the function f : R→ R is such that

f (x) = αx+ βx2k+1 + o
¡
x2k+1

¢
, β 6= 0, k ∈ N,

then X
(an)

2k+1 converges
;
:

X
f (an) converges.

Example 9 (;) Consider the real series
P

an, where

an =
(−1)n

4
√
n

and the function f (x) = x+ x3 + x4.
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Example 10 (:) Consider the real series
P

an, where

a2k =
(−1)k
4√2k +

1
3
√
2k

and a2k+1 = − 1
3
√
2k

and the function f (x) = x+x3−x4. In this case
P

an and
P

f (an) converge,
but

P
a3n and

P
a4n do not.

11

The following example shows that also the converse of (2) is not true,
that is if

P
an converges and f (x) = αx+ βx2k+1 + o

¡
x2k+1

¢
thenX

|an|2k+1 converges :
X

f (an) converges.

Example 11 Consider the function f (x) = sinx = x+x3

6
+o (x3) and the se-

ries
P (−1)n

lnn
. Then

P
sin
³
(−1)n
lnn

´
converges (Leibniz’s test) but

P¯̄̄
(−1)n
lnn

¯̄̄3
=P

1
ln3 n

does not.

We conclude observing that the main restriction to the applicability of
the comparison test as suggested by Proposition 3 stems from the constraints
given in the case of a Taylor expansion which ends with odd powers. Ex-
ample 5 shows a case where the procedure suggested in Remarks 1 and 2
applies. Nonetheless refining the Taylor expansion when the function f is
odd leaves us with a number of series (

P
an,
P

a3n, . . . ,
P

a2k+1n ) to be stud-
ied separately. It would be useful to have the opportunity of deriving some
conclusion on

P
a2k+1n from the behaviour of

P
a2h+1n for some couple of

k, h ∈ N. Unfortunately this is not possible; in particular neither the con-
vergence nor the divergence of one can be deducted from the convergence or
the divergence of the other. IndeedX

a2h+1n

converges
diverges

;
X

a2k+1n

converges
diverges

11Indeed
P

an =
P (−1)k

4√
2k

converges, also
P

a3n =
Pµ

(−1)3k

(2k)
3
4
+ 1

2k +
(−1)k

3(2k)
5
4

¶
andP

a4n =
Pµ

1
2k + 4

(−1)3k

3(2k)
5
4
+ 2 1

3(2k)
3
2
+ 4 (−1)k

27(2k)
7
4

¶
so
P

a3n and
P

a4n do not converge; fi-

nally
P

f (an) =
P¡

an + a3n − a4n
¢
=
Pµ

(−1)k

(2k)
1
4
+ (−1)3k

(2k)
3
4
+ 5 (−1)

k

3(2k)
5
4
+ 2 1

3(2k)
3
2
+ 4 (−1)k

27(2k)
7
4

¶
which converges.
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Example 12 Given the series
P

an where

a3n−2 =
1

2k+1
√
n
; a3n−1 = −

1
2h+1
√
2 2k+1
√
n
; a3n = −

1
2h+1
√
2 2k+1
√
n

we have that
P

a2h+1n converges to zero but
P

a2k+1n diverges.

Also if
P

a2h+1n is oscillatory nothing can be said in general about
P

a2k+1n .

Example 13 Consider the series
P

a2h+1n with

an =
(−1)i

n
where i ∈ N is such that 2i−1 < n ≤ 2i.

As
¯̄̄
(−1)n
2n−1+1 +

(−1)n
2n−1+2 + . . .+ (−1)n

2n

¯̄̄
> 1

2
for all n ∈ N we have that

P
a2h+1n is

oscillatory, whereas
P

a2k+1n is convergent for k > h as
P −1

n
2k+1
2h+1

<
P

a2k+1n <P
1

n
2k+1
2h+1

and is oscillatory for k < h.

3 Appendix

Solution to footnote 8.
Let an =

(−1)n
nγ

+ 1
nγ+1

. We must show that
P

bn =
P
tan (an) converges

for 0 < γ ≤ 1
3
.

Observe that

akn =

µ
(−1)n

nγ
+

1

nγ+1

¶k

=
kX
i=0

µ
k

i

¶
(−1)n(k−i)

nγ(k−i)
1

ni(γ+1)
=

kX
i=0

µ
k

i

¶
(−1)n(k−i)

nγk+i
.

For all i > 0 the series
P

n
(−1)n(k−i)
nγk+i

converges absolutely. For i = 0 we have

two cases; if k is odd then
P

n
(−1)nk
nγk

converges by the Leibniz’s test whereas

if k is even then
P

n
(−1)nk
nγk

converges if and only if γ > 1
k
; in conclusion

1. if k is odd
P

n a
k
n converges for all γ > 0

2. if k is even
P

n a
k
n converges for all γ > 1

k

(6)

Given γ ∈
¡
0, 1

3

¤
there is h ∈ N such that γ > 1

2h
. Now consider the

Taylor expansion of tanx up to order 2h− 1

tanx =
hX

k=1

x2k−1

2k − 1 + o
¡
x2h
¢
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so
hX

k=1

x2k−1

2k − 1 − x2h < tanx <
hX

k=1

x2k−1

2k − 1 + x2h

and substituting

an +
a3n
3
+ . . .+

a2h−1n

2h− 1 − a2hn < tan an < an +
a3n
3
+ . . .+

a2h−1n

2h− 1 + a2hn .

The result follows from (6) and Theorem 2.

Solution to footnote 9.
Without loss of generality we consider α ∈

¡
0, π

2

¢
. We want to prove thatP |sinαn|

nγ
diverges for 0 < γ ≤ 1

2
. Observe that there is a monotone increasing

sequence {nk} ⊂ N such that

1

4
π ≤ αn0 ≤

3

4
πµ

1 +
1

4

¶
π ≤ αn1 ≤

µ
1 +

3

4

¶
π

...µ
k +

1

4

¶
π ≤ αnk ≤

µ
k +

3

4

¶
π

...

from which we obtainÃ
α

π
¡
k + 3

4

¢!γ

≤ 1

nγk
≤
Ã

α

π
¡
k + 1

4

¢!γ

hence
|sinαnk|αγ

πγ
¡
k + 3

4

¢γ ≤ |sinαnk|
nγk

≤ |sinαnk|α
γ

πγ
¡
k + 1

4

¢γ
and

αγ

√
2πγ

¡
k + 3

4

¢γ ≤ |sinαnk|nγk
≤ αγ

πγ
¡
k + 1

4

¢γ
Therefore

P
k
|sinαnk|

nγk
diverges and so does the series

P
n
|sinαn|
nγ

.
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