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Abstract

We develop a learning rule that generalises the well known fad-
ing memory learning in the sense that the weights attached to the
available time series data are not constant and are updated in light
of the forecast error(s). The underlying idea is that confidence in the
available data will be low when large errors have been realized (e.g.
in times of higher volatility) and vice versa. A class of functional
forms compatible with this idea is analysed in the context of a stan-
dard Cobweb model with boundedly rational agents. We study the
problem of convergence to the perfect foresight equilibrium and give
conditions that ensure the coexistence of different attractors. We re-
fer to experimental and numerical evidence to establish the possible
range of application of the generalised fading memory learning.
Journal of Economic Literature Classification Numbers: C91, D83,

E32.
Key Words: learning; convergence to rational expectations; cob-

web dynamics.

1 Introduction

The issues of expectation formation and learning have attracted a lot of sci-
entific work in the last few decades both in the economic-theoretic and in
the applied/experimental literature. It is widely recognized that such issues
touch crucial aspects of many dynamic economic models in which, beside
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the usual expectations feedback, the beavioural aspects underlying agents’
choices are explicitly considered. However there is no general agreement
on the mechanism of expectation formation. The wide use of strong forms
of individual rationality and optimising behaviour in mainstream economic
models is probably the result of the confidence in a process of convergence
towards rational expectations seen as steady states of some adaptive process
(see Lucas [19]). Nonetheless, the issue is quite complex and the growing evi-
dence coming from experiments has not entirely clarified the matter: quoting
Camerer [8]

An important source of disagreement between psychologists
and economists concerns learning. Psychologists often suspect
that the immediate, frequent, exogenous feedback subjects re-
ceive in economic experiments overstates how well people learn
in natural economic settings. Economists, in contrast, think that
experiments understate the rate of natural learning because con-
text, access to advice, higher incentives, and added time to reflect
or calculate are absent from experiments, and probably improve
performance in natural settings.

Several papers have been dedicated to the process of expectations for-
mation of real economic agents. Among these a good number indicate the
use of various forms of adaptive expectations, whereas rational expectations
are, in most cases, not supported by the data, basically on the grounds that
forecast errors exhibit autocorrelation and correlation with observables. For
example Schmalensee [22], Smith et al. [24] and Williams [25] conduct exper-
iments with human subjects, whereas Figlewski and Wachtel [11] and Lovell
[18] are econometric studies of survey data on expectations. In particular
both Schmalensee [22] and Figlewski and Wachtel [11] suggest that agents’
expectations are best described as adaptive, although with a parameter that
is nonconstant across agents and through time following the rate of "uncer-
tainty" perceived by the agents. Our working assumption in this paper is
that, in specific settings, economic agents are bound to behave according to
a mechanism of expectation formation in which uncertainty is measured in
terms of forecast errors and the reaction to higher uncertainty is to put more
weight on the last available observation (therefore approaching a form of my-
opic expectation). We model this by way of a rather general form of "fading
memory" process, which we study chiefly in the context of a standard Cob-
web setting. In the broader family of adaptive approaches to learning, fading
memory learning has been studied in Bischi-Gardini [4, 3], Bischi-Naimzada
[5], Barucci [1, 2], Pötzelberger and Sögner [21] and Chiarella et al. [9].
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In this paper we investigate a learning mechanism that generalises the
fading memory process. The rationale of the generalisation consists in the
fact that the weights used by the agents to extract information (and in fact,
expectations) from past data are not considered constant but instead, on the
basis of the error in their predictions (once it is known), they are updated
according to the idea mentioned above: the confidence in the reliability of
the available observations as instruments to form expectations lowers when
the forecast error is significantly high and vice versa. This fact couples with
the decrease in the weight attached to older data, which is a known feature of
fading memory, to build the learning device which is the object of this paper.
The spirit of the Generalised Fading Memory (GFM) is rather similar to the
learning mechanism studied in the paper by Marcet and Nicolini [20] in which
agents use either a simple average or a form of constant gain learning, at each
period endogenously selecting one rule: in fact the GFM can be thought of
as a sort of ‘smooth’ version of the Marcet and Nicolini learning mechanism.
The paper is organised as follows: in the next section we introduce fad-

ing memory (FM). Section 3 defines its generalisation and in Subsection 3.1
we derive analytic results concerning conditions to have convergence towards
perfect foresight equilibria, learnability of cycles and emergence of multiple
attractors. In Section 4 we work with a specific functional form to argue the
utility of GFM on experimental grounds and to show numerically the con-
sequences of having multiple attractors when exogenous shocks are allowed
for.

2 Fading memory learning

We briefly present the fading memory learning. Expectations for the future
are a weighted average of available data. The general form of a model with
fading memory can thus be written as½

xet+1 =
Pn

k=0 akxkPn
k=0 ak = 1, ak ≥ 0

(1)

where typically the evolution of the state variable, x, depends on traders
expectations about it, xe, through a map F describing the expectations feed-
back. Possibly there can be a time gap (when n 6= t) that can imply either
a forward-looking or a backward-looking feature. Here we shall stick to the
simple case xt = F (xet), allowing for standard regularity conditions on F .
The weights used are a normalized geometric progression:(

ak =
ρt−k

Wn
ρ ∈ (0, 1)

Wt =
Pt

i=0 ρ
i

(2)
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Therefore (1) can be transformed into:½
xet+1 =

1
Wt
xt + ρWt−1

Wt
xet

Wt+1 = 1 + ρWt ρ ∈ (0, 1) (3)

with the initial condition W0 = 1. Allowing t to tend to infinity Wt tends to
1
1−ρ so that, defining α = 1− ρ, (3) is approximated by the limiting map

xet+1 = xet + α(xt − xet) (4)

which is a standard model with adaptive expectations. There are two extreme
cases: when ρ = 1 all the past observations receive the same weight, so that
we are left with

xet =
1

t

t−1X
k=0

xk

that is, with a simple average (see Bray [7]). Conversely when ρ = 0 expec-
tations are myopic (static)

xet = xt−1 .

Now, going back to (3), with the substitution αt =
1
Wn
, we get½

xet+1 = xet + αt(F (x
e
t)− xet)

αt+1 =
αt

αt+ρ
0 < α0 < 1

(5)

One way to deal with the dynamic properties of (3) is by studying its
limiting map (4). This approach, taken for example in Barucci [1, 2], makes
sense thanks to fact that several facts of the (local) dynamics of (3) carry
through to its limiting map. More precisely, locally attracting fixed points
and periodic orbits of the limiting map (4) correspond to identical objects
for the original system (3) (see Bischi-Gardini [3] for details and proofs).
These results though, hold for the local analysis of steady states and cycles
only, whereas the limiting map is uninformative about the global dynamic
behaviour.
Fading memory learning, be it expressed as in (3) or as in (5), is clearly a

very basic form of expectations updating. In particular, in (5), the internal
variable αt that determines the correction on the previous expectation in the
direction of the last error, is itself only dependent on its own path and on a
parameter. The way α is updated is therefore completely independent from
external signals. Indeed, αt converges to 1− ρ regardless of the dynamics of
the state varaiable x. Our aim in the sequel is to generalise this mechanism
to include past prediction performances in the determinants of the dynamics
of αt by endogenising the parameter ρ.

4



3 A generalisation of fading memory

We shall assume that the individuals, on the basis of a law that uses the
most recent forecasting error as a benchmark, revise the weight attributed
to the past observations. At a generic time t agents weigh the most recent
observation against their relevant forecast: on the basis of the error (xt − xet)
they check the significance of the past data to trace the recent evolution of
the state variable and set their weight, ρt = H (xt − xet), on the calculation of
the new expectations. Clearly, the mechanism is not fully specified until we
impose some assumptions on the function H. Our basic idea regarding the
behavioural rationale behind H is the following. Expectations in this frame-
work can be interpreted as a weighted mean of the available data; therefore a
large forecast error is interpreted as the failure of the data to be informative
about the present tendency of the state variable, e.g. as in case of structural
breaks or important exogenous shocks. Hence the most recent observation
gets to play a dominant role in shaping the forecast after a significant error,
whereas a low weight is attributed to the bulk of older observations (by the
choice of a small ρt): we assume that the function H incorporates this fea-
ture. Remark that the variable ρt can be interpreted as a voluntary choice
of how much it is worth recalling, the choice being the result of a simple
form of assessment of the significance of the available information in terms
of predicting the future. The recursive form of the system writes⎧⎨⎩

xet+1 = xet + αt(F (x
e
t)− xet)

αt+1 =
αt

αt+ρt+1

ρt+1 = H(xt+1 − xet+1)

(6)

This can be seen as a natural generalisation of the mechanism of fading
memory (compare with (5)): therefore we shall label it Generalised Fading
Memory (GFM).
A functional form for H which fits this description is a bell-shaped, sym-

metric, H function: indeed in the last section we shall develop on a particular
gaussian functional form. Obviously the basic fading memory case corre-
sponds to the degenerate choice of a constant H between 0 and 1. Therefore,
the way GFM produces expectations lies, at each step, between the two ex-
treme cases of the FM (myopic expectations and simple average): in fact
when the forecast error is low (assuming H (0) = 1) the GFM is very close
to a simple average, whereas with large errors we can expect to have α close
to 1 (as with mypoic expectations). This feature is very much in the spirit
of the learning rule used in Marcet and Nicolini [20], in the sense that GFM
can be thought of as a smooth version of that rule.
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It is probably useful to describe in detail the sequence of "moves" at time
t which are recorded by the system (6):

xet → xt → ρt → αt → xet+1 → xt+1 · · ·

Therefore the system’s recursive structure is fully compatible with off-equilibrium
dynamics in the sense that it is not affected by any contemporaneity puz-
zles in the relevant variables which are sometimes encountered in equilibrium
models. Indeed this allows us to numerically simulate the dynamics and to
test the practical descriptive power of the system in lab experiments.
Notice that, despite its appearance, (6) is in fact a standard two-dimensional

dynamical system. In fact the ρ variable can be easily eliminated from the
system bringing us to the equivalent (though hardly more suggestive) form½

xet+1 = xet + αt (F (x
e
t)− xet) = E (xet , αt)

αt+1 = G (xet , αt)
(7)

with the definition G (xet , αt) =
αt

αt+H(F (xet+αt(F (x
e
t )−xet ))−xet−αt(F (xet )−xet ))

.

3.1 Some results

Some salient properties of GFM regard its steady states. Remark that a
steady state for system (6) necessarily is of the form (x∗, α∗) where x∗ is
a fixed point of the expectations feedback map F , and α∗ = 1 − H (0).1

The steady state can be analysed locally in the usual way by means of the
Hartmann-Grobmann theorem. We state the following proposition focusing
on the relation between F 0 (x∗) and H (0).

Proposition 1 A steady state (x∗, α∗) of (7) is locally stable and hyperbolic
if:

−1 +H (0)

1−H (0)
< F 0 (x∗) < 1

and
−1 < H (0) < 1

Proof. In the Appendix.
Unsurprisingly, none of the additional features of the GFM appear in

the conditions for local stability with respect to the baseline FM case (with

1In fact from a purely mathematical perspective (x, 0) are also steady states for any
x: but these points are meaningless unless x = x∗ because when α = 0 anything goes
for the first equation (i.e. expectations are constant regardless of the observable x). The
following analysis assumes that α = 0 can be ruled out.
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ρ = H (0)). Our generalisation indeed matters when the forecast error is not
zero: otherwise the two (GFM and FM) are in fact the same.
Another feature worth attention of this family of learning rules is the fact

that cycles of period p ≥ 2 cannot be detected.

Proposition 2 Let (x1, α1) , . . . , (xp, αp) be a cycle of period p ≥ 2 for the
map (7) with H (·) > 0, then xet − xi = 0 implies xet+1 − xi+1 6= 0.

Proof. In the Appendix.
In other words cycles of any period ≥ 2 are not learnable under the

GFM. This fact can help us locate the GFM in a sort of "sophistication"
ranking of learning rules in terms of how far they can go in detecting dynamic
patterns (in the spirit of Grandmont [13]): it is clearly less sophisticated
than SAC learning (see Hommes and Sorger [16]) or recursive least squares
(provided a constant term is included in the estimation). On the other hand
the possibilities of "learning" a steady state are enlarged with respect to
simple adaptive expectations. To show this precisely, let us now underline a
global dynamic property of system (7). It is well known that in the case of
a fixed α, i.e. with simple adaptive expectations, a steady state x∗ = F (x∗)
with F 0 (x∗) < −1 is locally stable2 whenever 0 < α < α̂ < 1 for a suitable
α̂. When α is updated using GFM instead, convergence to a steady state
can happen starting from whatever initial value for α. This is described in
the following Proposition.

Proposition 3 Let (x∗, α∗) be a locally stable steady state for (7) and assume
that 0 ≤ H (·) ≤ σ < 1. Then for all α > 0 there is a neighborhood Iα of x∗

such that for all x ∈ Iα the point (x, α) belongs to the basin of attraction of
(x∗, α∗).

The proof of this Proposition can be found in [10]. The consequence is
that the basin of attraction of (x∗, α∗) extends to any choice of positive α
provided x is suitably chosen. From a geometric point of view, the basin of
attraction of the steady state (x∗, α∗), contains a region that covers points
(x, α) which would not be compatible with stability (would not converge to
(x∗, α∗)) in the 1-dimensional model in which α is taken as a fixed parameter.
A rather natural question is to ask whether such region, as a subset of the
basin of attraction, is in some sense minimal (the basin is actually much
bigger) or whether it can be considered a good approximation. A partial
answer is given by the following Proposition.

2The case F 0 (x∗) ≥ −1 is not interesting because if |F 0 (x∗)| < 1 the steady state x∗ is
always locally stable for the map xet+1 = xet + α (F (xet )− xet ), whereas if F

0 (x∗) > 1 the
steady state x∗ is always locally unstable. The case F 0 (x∗) = 1 implies non-hyperbolicity.
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Proposition 4 Suppose F is decreasing and x∗ is a steady state with F 0 (x∗) <
−1. Then there is a class of bell-shaped H (·) functions for which the system
with GFM learning shows multiplicity of attractors.

Proof. In the Appendix.
An interesting consequence of this fact is that, in the presence of shocks,

the system can actually switch among various dynamical regimes. Indeed
this phenomenon appears quite clearly in our simulations in the last section.

4 The GFM in practice

We now consider a particular specification to the function H through which
agents adapt to their forecast error. In fact it is the following class of func-
tions:

H (xt − xet) = ke−[h(xt−x
e
t )]

2

+ d (8)

with d, k ≥ 0 and k + d ≤ 1. An example of this type of function (basically
a gaussian curve) is depicted in Figure 1.

Figure 1: Function H (·) with d = 0.1 and k = 0.8

It is a class of functions in which height, base value and dispersion de-
pend on the parameter values d + k, k and h; given the constraints on the
parameters the entire class satisfies our interpretation of a rule that should
wipe out most of the weight attributed to old data as a consequence of a
significant prediction error and vice versa. It is straightforward to check that
the (perfect foresight) steady state (p∗, α∗) for the equation(

xet+1 = xet + αt(F (x
e
t)− xet)

αt+1 =
αt

αt+ke
−[h(xt+1−xet+1)]

2

+d

(9)
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has α∗ = 1− k − d.
We now introduce the cobweb model studied by Hommes in several pa-

pers: this model underlies what we do in the sequel. Consider a single market
for a perishable good that requires a time period to be produced. Demand qdt
for the good depends on its current price pt. Due to the production lag, deci-
sions on the supply side depend on the price expected by producers. Assume
a linearly decreasing demand

D (pt) = a− bpt (10)

and an S-shaped supply curve, with a unique inflection point p̄ which we
specify as

S (pet) = tanh (λ (p
e
t − c)) + 1 (11)

as in Hommes et al. [17] and elsewhere. Finally, the price is determined by
market clearing:

pt =
a− tanhλ (pet − 6)− 1

b
(12)

As usual there is a unique fixed point.

4.1 Experimental data

We try to understand whether the GFM, beside our interpretation, incorpo-
rates any of the features of real agents’ behaviour. A simple but potentially
rich setting for running experiments is the well known cobweb model. Many
papers have dealt with the dynamic properties and the implications of this
model with bounded rationality under various specifications. Experiments
simulating human behaviour in cobweb-type situations though, are not very
frequent in the literature (the most recent experimental paper concerning
the cobweb that we are aware of is Sonnemans et al. [23]). One possible
reason is that the original hog-cycle idea motivating the model is not very
easily replicated in the laboratory3. Still the evidence coming from such ex-
periments is interesting because it can tell something about the way people
go about forecasting the future when they have very little or no prior infor-
mation about the object of their predictions and there is a strong feedback
from their predictions or actions on the observed state. Hommes et al. [17]
have conducted one person experiments in which agents’ predictions are used

3A rather brutal question to explain this difficulty is the following: can a lab experiment
in which subjects are required to produce a prediction in about a minute replicate the type
of reasoning and foresight individuals would put into action in a yearly decision problem?
It must be stressed though, that this potential problem arises for many other experimental
settings.
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to generate the price dynamics of a cobweb model. The model underlying
the experiment is basically described by equation (12) to which a random
shock is to be added: the shocks are either drawn from the uniform or from
the normal distribution. We have analysed the data of that experiment to
understand whether any inference can be drawn on the subjects’ behaviour.
In particular we try and answer the questions: does the GFM produce a real
advantage with respect to FM in terms of modelling the subjects’ behaviour?
How does it fare compared with other simple learning rules? To do so we as-
sume that agents form expectations using a predictor chosen among a given
set and, once chosen, they stick to it. Furthermore, we suppose that agents
misreport their expected price4. This error can be the result of a lack of full
attention to the data due to the short time agents have to form expectations
in an experimental environment.
In detail, we suppose that agents form expectations according to a law of

the form
xet+1 = Gi (xt, . . . , x0,x

e
t) + εt,i

where Gi is chosen by each agent, once and for all, in the set of predictors
P. For each agent and each available predictor, we generate artificial time
series of expectations xit where

xit+1 = Gi (xt, . . . , x0,x
e
t)

and x, xe are taken from the experimental data. Finally we choose the pre-
dictor which minimizes the mean square difference between artificial and
experimental forecasts5. More specifically, for each agent, we select in P the
predictor Gi solving the problem

min
i

TX
t=1

¡
xit − xet

¢2
We have considered a set of three simple expectation functions: adaptive
expectations with constant gain (AD), xet+1 = xet + α (xt − xet), fading mem-
ory learning (FM) and its generalisation previously discussed (GFM)6. Both

4The same assumption can be found in Branch [6] where a similar test on agents
behaviour is done using data from the Survey of Consumer Attitudes and Behavior of the
University of Michigan.

5For each predictor and each agent we have numerically selected the best parametrisa-
tion in terms of implied mean squared error.

6Indeed, in a first attempt to see whether and which among common (and simple)
learning rules could give good result in replicating agents behaviour we have, at first,
checked a wider class of predictors including ”Myopic”, ”Bray”, SAC learning à la Hommes
and Sorger and various formulation of OLS. As the optimal predictor was never found in
this set we have decided to focus on a smaller set of rules.
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Figure 2: Three attractors and their basins

FM and GFM are used in the recursive formulation of equations (5) and (6)
respectively.
The results are summarized in the following table

AD FM GFM
N. 29 7 41

On a total of 77 subjects of the experiment GFM works better then the other
predictors in more than half of cases. Notice that if we do not consider GFM
the situation would be

AD FM
N. 54 23

so the generalization improves the performance of fading memory which oth-
erwise would be outperformed by the simpler constant gain adaptive learning.

4.2 Simulations

We have run a number of simulations for the model in (12) under GFM learn-
ing, that is with expectations defined as in (9). Our aim is to illustrate the
phenomenon mentioned in Proposition 4, namely the emergence of multiple
attractors. Figure 2 shows the phase space for the couple (α, p): there is a
fixed point on the left, a 4-cycle in the middle and a 2-cycle on the right.
All these are locally attracting and their basins of attraction are in different
colours. It is interesting to see what happens when one perturbes the system
depicted in Figure 2 with a stochastic noise. In particular what we did was
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adding a random disturbance to the expectations feedback map

pt =
a− tanhλ (pet − 6)− 1

b
+ εt

and we chose εt ∼ N (0, σ2) for all t. The simulations are for various (in-
creasing) values of σ2. Figure 3 shows three typical cases: in all of them
the initial condition is the star on the top right of Figure 2. On top the
variance is low (σ2 = 0.05): after a transient, in which the dynamics visits
the neighbourhood of the two periodic orbits, the system converges to the
fixed point. In the middle, with a higher variance (σ2 = 0.3), the various
types of behaviour are recurrent, in the sense that eventually the dynamics
escapes from each of the basins. Finally on the bottom graph the variance
is even higher (σ2 = 0.5) and the various patterns mix up together. Indeed
σ2 = 0.5 is also the variance used in Hommes et al. [17].

Figure 3: Effects of random disturbance: three typical cases

To show in which sense the graphs in Figure 3 are typical, let us consider
Figure 4 that reports a summary of our simulations with noise. We see
that with variance up to a certain threshold the system will converge to the
fixed point after a sufficient number of iterations; past this threshold though
(which can be placed around 0.25-0.30) this phenomenon rapidly desappears
as variance is further increased.

12



Figure 4: Frequency of convergence at a given time period

5 Appendix

Proof. [of Proposition 1]
The Jacobian of (7) evaluated at (x∗, α∗) is

J(x∗, α∗) =

µ
1 + α∗ (F 0 (x∗)− 1) 0

∂G
∂xet
(x∗, α∗) ∂G

∂αt
(x∗, α∗)

¶
Now ∂G

∂αt
(x∗, α∗) = 1 − α∗ = H (0). The Jacobian is lower triangular so the

eigenvalues are 1 + α∗[F 0 (x∗)− 1] and H (0). Imposing the usual condition
that they be in (−1, 1) returns7 the claimed result.
Proof. [of Proposition 2] Trivially if xet−xi = 0 then xet+1 = xet = xi. Now, to
show that xi 6= xi+1 for all i, observe first that if xi = xi+1 then xi = xj for all
i, j. On the cycle, which must be of the form (x, α1) , . . . , (x, αp), the forecast
error vanishes and the second equation of (7) reduces to αt+1 =

αt
αt+H(0)

which implies monotone convergence to 1 − H (0). Therefore it must be
α1 = · · · = αp, so we are on a steady state.
Proof. [of Proposition 4]
It suffices to have H (0) large enough to have local stability for x∗. Fur-

ther, suppose that the sensibility of the function H to the error depends by
a multiplicative parameter h(

xet+1 = xet + αt (F (x
e
t)− xet) = E (xet , αt)

αt+1 =
αt

αt+H(h(xt+1−xet+1))
= Gh (x

e
t , αt)

(13)

7Notice that as H (0) approaches 1 the inequality − 1+H(0)1−H(0) < F 0 (x∗) tends to become
redundant: in the limit though, because H (0) = 1 implies α∗ = 0, hyperbolicity is
violated.
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Given the system (13), assume that lim|y|→∞H (y) = 0. Then we prove that
there are δ, ᾱ, h̄ such that, for any initial condition (x0, α0) satisfying:

|x0 − x∗| ≥ δ

α0 ≥ ᾱ

we have that
|xt − x∗| > δ and αt > ᾱ

for all t > 0. This implies there are other attractors beside x∗.
Let a, b be such that b−x∗ = x∗−a and x ∈ [a, b]⇒ F 0 (x) < −1. Clearly

F (a) > b and F (b) < a. Define δ = x∗ − a and F̂ 0 = supF 0 (x). Choose
ᾱ ≥ 1

1−F̂ 0 such that

α ≥ ᾱ⇒ E (b, α) < a, E (a, α) > b. (14)

Now it is straightforward to check that α ≥ ᾱ ensures that

Ex (x, α) ≤ 0. (15)

Therefore, using (14) and (15),½
αt ≥ ᾱ

|xt − x∗| ≥ δ
⇒ |xt+1 − x∗| ≥ δ.

Then, let h̄ be such that

h ≥ h̄⇒ H (hδ) ≤ 1− ᾱ

Finally, noting that |x∗ − xe| ≥ δ implies that |F (xe)− xe| ≥ |x∗ − xe| we
have½

αt ≥ ᾱ
|xt+1 − x∗| ≥ δ

⇒ αt+1 =
αt

αt +H
¡
h
¡
xt+1 − xet+1

¢¢
≥ αt

αt +H (hδ)
≥ ᾱ

ᾱ+H (hδ)
≥ ᾱ

Remark 1 The assumption that lim|y|→∞H (y) = 0 is in fact rather strong.
Indeed our interpretation of this learning mechanism requires that H is de-
creasing with the error but it is not necessary that it tends to zero to the
limit. More important, if supF 0 (x) = 0 we have ᾱ = 1 which is very re-
strictive. In any case, versions of Proposition 4 could be proved under milder
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assumptions. For example if supF 0 (x) = 0 but F (x) is bounded (which is
the case for the models of section 4) ᾱ can be chosen to be strictly smaller
than 1. It is also possible to relax the assumptions on H linking it to fur-
ther properties of the function F . For example assuming H (F (xet)− xet) ≤
min {−ᾱF 0 (xet) , 1− ᾱ} and ∂H

∂|F (xet )−xet |
≤ 0 (where the value of ᾱ is deter-

mined, and smaller than 1, once F is known) is sufficient to prove the Propo-
sition for any strictly decreasing F . A detailed proof of this is available from
the authors.
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