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Abstract

We analyse the capacity of a range of different learning rules to
describe actual human behaviour in the experiment on expectation
formation in a cobweb model conducted by Hommes et al. (2000). We
find indication of a relative superiority in terms of descriptive capacity
of forms of generalised adaptive expectations allowing for endogenous
gain parameters.

1 Introduction

The economic literature on bounded rationality and learning has developed
into a very rich field in the last decades and reference to behavioural and psy-
chological issues of underlying human subjects acting in economic models is
widespread nowadays as many aspects of the rational expectations/optimising
behaviour paradigm are questioned from many standpoints. Quoting Rabin
[21] (which contains a neat survey on psychological plausibility in economic
modelling):

While still controversial, behavioral economics is on the verge of
“going mainstream”, especially in top departments in the U.S.
The number of recent hirings, tenurings, conferences, etc., based
on behavioral-economic research reflects its growing acceptance.
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domenico.colucci@dmd.unifi.it, vincenzo.valori@dmd.unifi.it

1



Within the wide current debate the mechanism of expectations forma-
tion retains an important and delicate role: first, because it is often a crucial
choice in dynamic models and second, because there is no general agree-
ment as to which assumptions ought to be imposed on model agents. Vari-
ous papers have shown that, within specific contexts, rational expectations
can be rejected as a good description of real agents behaviour: for example
Schmalensee [22], Smith et al. [23] and Williams [28] conduct experiments
with human subjects, whereas Figlewski and Wachtel [12] and Lovell [17] are
econometric studies of survey data on expectations. On the other hand the
bounded rationality literature has mostly focused on asymptotic properties
of particular classes of learning rules, e.g. inquiring the learnability of various
equilibria under indeterminacy as in Honkapohja and Mitra [16], investigat-
ing the stability properties of various attractors and the possibility of having
roads to chaos as in Hommes [13] or checking certain long-run rationality
requirements as in Marcet and Nicolini [19]. The perspective we take in this
paper is partly different, in that we analyse the capacity of a range of dif-
ferent learning rules to describe actual human behaviour in the experiment
on expectation formation in a cobweb model conducted by Hommes et al.
[15]. This setting is especially interesting because it is a good test of how
people deal with forecasting the future in situations of scarce knowledge of
how the economic environment works but there is a strong feedback of their
predictions and decisions on the observed state. The spirit of what we do
in this paper is rather similar to the study carried out by J. D. Sterman
in the late 1980s whose results were published in a number of papers (see
Sterman [24, 25, 26, 27]): in particular, both in that study and in this paper
the capacity of agents of detecting the expectations feedback plays a cen-
tral role. We compare various learning algorithms, which are presented in
Section 2, both with recursive and non-recursive formulation, and we try to
understand which can best describe the subjects’ behaviour. Given that the
experiment by Hommes et al. [15] is a single person treatment repeated for 77
different subjects, we ranked various learning rules in terms of their capacity
of describing each agent’s actual behaviour. In particular we assigned each
agent a forecast rule which best (within a given set of alternatives) resembles
its behaviour in the experiment. This is described thoroughly in Section 3.
Then we ran simulations to project on a longer run the behaviour of these
rules and to evaluate the possibility of observing convergence to the unique
rational expectation equilibrium asymptotically: this is the object of Section
4. Section 5 contains some concluding remarks. Section 6 gathers figures and
tables.
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2 Expectation formation: some alternative

We now briefly present the various expectations mechanisms/learning rules
which will be used in the next Sections. We can distinguish them into four
groups: i) linear predictors with ordinary least squares (or similar) estimation
of parameters, ii) classic adaptive rules and iii) their generalisations, iv)
predictors with a random component.
Least squares learning in the context of a linear perceived law of mo-

tion yt = at + btxt is well known in the literature (see for instance Marcet
and Sargent [18]). Ordinary least squares estimation of parameters at and bt,

setting φt = (at bt)
0, Yt = (x1, . . . , xt)

0 and Zt =

µ
1 · · · 1
x1 · · · xt

¶0
, is given

by
φt = (Z

0
tZt)

−1
Z 0tYt (1)

Also, (setting zt = (1 xt)
0) the following recursive formulation can be given

(see Evans and Honkapohja [10]):½
φt = φt−1 + t−1R−1t zt−1(yt − φ0t−1zt−1)
Rt = Rt−1 + t−1

¡
zt−1z

0
t−1 −Rt−1

¢ (2)

A simpler alternative can be written by substituting the matrix t−1R−1 in the
above recursion with a deterministic gain sequence γt satisfying

P∞
t=1 γt =∞

and
P∞

t=1 γ
2
t < ∞. This is known as stochastic gradient learning (see

Evans and Honkapohja [9]) and assumes the recursive form:

φt = φt−1 + γtzt−1(yt − φ0t−1zt−1) (3)

Among the classic adaptive rules consider first the usual version of adap-
tive expectations

xet+1 = xet + α (xt − xet) (4)

where forecasts for the next period are recursively obtained through a convex
combination (with a constant gain parameter) of the last observation and
forecast. An extensive1 form of adaptive expectations can be written for
economies with infinite past (which is not our case), as a weighted mean of all
available data. The counterpart of adaptive expectations in economies with
finite past is called fading memory learning which has been studied for
instance in Bischi-Gardini [2], Bischi-Naimzada [3], Barucci [1] and Chiarella
et al. [7]. Expectations for the future are a weighted average of available

1In this paper with the term “extensive” we refer to the non-recursive form of a given
predictor.
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data, with geometrically decreasing weights. The general, extensive, form of
a model with fading memory can thus be written as½

xet+1 =
1
Wt

Pt
k=0 ρ

t−kxk
Wt =

Pt
k=0 ρ

k, 0 < ρ ≤ 1 . (5)

With the substitution αt =
1
Wt
, we get the recursive form½

xet+1 = xet + αt(xt − xet)
αt+1 =

αt
αt+ρ

. (6)

There are two extreme cases: when ρ = 1 all the past observations receive
the same weight, so we are left with

xet =
1

t

t−1X
k=0

xk (7)

that is, with a simple average2 (see Bray [5]). The equivalent recursive
formulation is ½

xet+1 = xet + αt(xt − xet)
αt+1 =

αt
αt+1

. (8)

Conversely when ρ→ 0 expectations reduce to the myopic case

xet = xt−1 . (9)

As suggested by several papers (e.g. the cited Schmalensee [22] and
Figlewski and Wachtel [12] ) adaptive rules often provide a good descrip-
tion of agents’ expectations, particularly so when allowing for a parameter
that is non-constant across agents and through time following the rate of
uncertainty perceived by the agents. Fading memory and simple average
can be considered first steps towards a general adaptive scheme of this type.
Both cases are clearly very basic forms of recursive expectations updating.
In particular, in (6), the internal variable αt that determines the correction
on the previous expectation in the direction of the last error, is itself only
dependent on its own path and on a parameter. The way α is updated is
therefore completely independent from external signals. Indeed, αt converges
to 1− ρ regardless of the dynamics of the state variable x.

2Sometimes this way of producing expectations is labelled “least squares” in the sense
that it is obviouly the OLS estimation of the mean of x. We shall stick to the name
“simple average” for this case and reserve the name of “least squares” for the genuine case
in which at least two parameters are estimated.
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There is a sort of natural way to generalise the fading memory rule to in-
clude past prediction performances in the determinants of the dynamics of αt

and that is by endogenising the parameter ρ: this can be called generalised
fading memory (GFM) (as in Colucci and Valori [8]) and its recursive form
is as follows ⎧⎨⎩

xet+1 = xet + αt(xt − xet)
αt =

αt−1
αt−1+ρt

ρt = H(xt, x
e
t)

(10)

where the function H defines how agents react to forecast errors. The GFM
also admits the following extensive form which highlights the fact that it can
be seen as a weighted average of available observations:½

xet+1 =
1
Wt

¡
xt + ρtxt−1 + ρtρt−1xt−2 + ...+ ρtρt−1...ρ1x0

¢
Wt = 1 + ρt + ρtρt−2 + ...+ ρtρt−1...ρ1, 0 < ρi ≤ 1

(11)

Obviously the basic fading memory case corresponds to the degenerate
choice of a constant H between 0 and 1. Therefore, for appropriate H
functions, the GFM expectations lie, at each step, between myopic expecta-
tions and simple average: in fact if we assume, for example, H (0) = 1 and
limy→∞H (y) = 0, the GFM is very close to a simple average when the
forecast error is low, whereas with large errors we have α close to 1 (as
with myopic expectations). This feature is rather similar to the spirit of the
learning rule used in Marcet and Nicolini [19], which is as follows:⎧⎪⎨⎪⎩

xet+1 = xet + αt(xt − xet)

αt+1 =

(
αt

αt+1
if
¯̄̄
xt−xet
xet

¯̄̄
< ν

ᾱ otherwise

(12)

This rule endogenously switches between simple average and adaptive expec-
tations on the basis of the last forecast error.
Along the lines of GFM we shall also consider the following generalised

adaptive expectations:½
xet+1 = xet + αt(xt − xet)
αt = H(xt, x

e
t)

(13)

in which at each time period the gain parameter is tuned on the basis of the
last forecast error.
Finally, we consider two predictors with a random component. The reason

to do that is to have a neutral, minimal benchmark for the comparison we
conduct in what follows.
In short, in the next section we will consider the following set of alterna-

tive predictors.
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OLS1: With a perceived law of motion equal to xt+1 = at + btxt we obtain
a linear predictor xet+1 = at + btxt where the parameters at and bt are
estimated with recursive ordinary least squares of equation (2).

OLSE1: OLS1 in the extensive form of equation (1).

OLS2: Now the perceived law of motion is xt = at + btx
e
t , so the predictor is

given by xet =
a
1−b where at and bt are estimated with recursive ordinary

least squares.3

SG: In this case the parameters of the linear perceived law of motion xt+1 =
at + btxt, are estimated with stochastic gradient, a simplified version
of recursive ordinary least squares, along the line of equation (3). The
sequence γt is taken to be equal to

α
β+t
.

AE: Adaptive expectations with constant gain, as in equation (4).

FM: Fading memory learning as in equation (6).

FME: Fading memory in extensive form as in equation (5).

SA: Simple average as in equation (8).

SAE: Simple average in extensive form as in equation (7).

M: Myopic expectations as in equation (9).

GFM: Generalised fading memory as in equation (10). The function H is
taken to be bell-shaped and symmetric: in particular we work with the
functional form

H (xt, x
e
t) = ke

−
h
h
³
xt−xet
xet

´i2
+ d (14)

with h, d, k ≥ 0 and k + d ≤ 1. A possible behavioural interpretation
for this specification is as follows. Expectations are a weighted mean
of the available data; as a consequence a large prediction error could
be interpreted as the failure of the data to capture the present trend
in the state variable, e.g. as in case of structural breaks or significant
exogenous shocks. Therefore the most recent observation assumes a
dominant role whereas a low weight is attributed to the bulk of older
observations (by the choice of a small ρt). The opposite happens in
the case of small prediction error. In this scheme, the variable ρt can
be interpreted as a voluntary choice of how much it is worth recalling,

3In this case there is no need to distinguish an extensive form because it would be
exactly the same as this.
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the choice being the result of a form of “rational” assessment about
the significance of the available information in terms of predicting the
future. For more details about this specification see Colucci and Valori
[8]. Experimental support for this kind of behaviour is provided by
Marimon and Sunder [20].

GFME: Generalised fading memory in extensive form as in equation (11).

GAE: Generalised adaptive expectations as in equation (13). Again, we con-
sider a bell-shaped and symmetric H function. We have chosen the
following functional form:

H (xt, x
e
t) = 1−

µ
ke
−
h
h
³
xt−xet
xet

´i2
+ d

¶
(15)

where the parameters satisfy the same restrictions of those in equation
(14). GAE is similar to GFM as, in both cases larger errors imply
larger values for α; it is simpler though in that forecast errors influence
the gain parameter directly.

MN: Expectations à la “Marcet-Nicolini” (see [19]) as in equation (12). As
for GFM and GAE the gain parameter is positively correlated with the
absolute error (in percentage).

RE: Random expectations: xet is drawn from the uniform distribution on a
given support.

RAE: Adaptive expectations with a random gain xet+1 = xet + αt (xt − xet)
where αt ∼ U (0, 1).

3 The experiment

Hommes et al. [15] have conducted one person experiments in which agents’
predictions are used to generate the price dynamics of a nonlinear cobweb
model. We now introduce the model that underlies the experiment. Con-
sider a single market for a perishable good that requires a time period to be
produced. Demand for the good depends on its current price pt. Due to the
production lag, decisions on the supply side depend on the price expected by
producers. Assuming a linearly decreasing demand

D (pt) = a− bpt with a, b > 0
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and an S-shaped supply curve, with a unique inflection point

S (pet) = tanh (λ (p
e
t − c)) + 1 with λ, c > 0

the price is determined by market clearing:

pt =
a− tanhλ (pet − c)− 1

b
(16)

There is a unique fixed point and the dynamic of prices depends on agents’
expectations. Under this specification of demand and supply and supposing
that prices are forecasted using a simple adaptive expectations rule with
constant gain the model displays very rich dynamics such as chaotic price
fluctuations (see [13, 14] for more details).
A total of 77 subjects took part in the experiment of Hommes et al. [15].4

Participants were asked to predict a number, pet , between 0 and 10 at each
time period. Then the actual price was generated as follows

pt =
a− tanhλ (pet − c)− 1

b
+ εt

that is by perturbing equation (16) with a random additive shock. Through-
out the experiment the participants could see on their screens their past
predictions pet , the true values pt for all rounds up to the last, as well as
last and total earnings. Each session lasted 50 time periods and rewards
were proportional to the forecasting accuracy.5 There were some little dif-
ferences in the experimental design across the agents. One group of agents
was asked to predict a sequence of values without any information about
how this sequence was generated; the other group of agents was asked to
predict a sequence of prices and was informed that a certain market struc-
ture was underlying the model but no information was given either about
the specific market or about the occurring shocks. The second difference
is in the choice of parameters and additive shocks. For a first group the
market equation was specified setting a = 2.3 and adding an i.i.d. shock
distributed as a normal with zero mean and variance σ2 = 0.5. For a second

4In each session computers were allocated an identification number: these go from 2
to 124 in the data set and obviously not all of them were used (due to the uncertainty
about how many participants would actually show up). In the present paper we have used
the identification numbers to distinguish the subjects in order to ensure the comparability
with the paper by Hommes et al. [15] who in turn used them.

5Points were awarded at each time period on the basis of the payoff function

max
n
1300− 260 (xt − xet )

2 , 0
o
. These points were then converted at a rate 1300 points

= 1 dutch guilder.
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group of agents the i.i.d. shock was uniformly distributed with zero mean
and variance σ2 = 0.013̄ while the parameter a was not constant, simulating
successive demand shocks; in particular a was set to

periods 1 - 15 16 - 28 29 - 40 41 - 50
a 2 3 1.25 2.5

The other parameters, b = 0.25, c = 6, λ = 2, were constant across periods
and agents.

3.1 Data analysis

In their paper Hommes et al. [15] have analysed the experimental data to
understand whether any inference can be drawn on the subjects’ behaviour.
They show evidence of heterogeneity in the way people form expectations
and find that there is a link between which rule agents used and how suc-
cessful they were (how much they earned). In particular they distinguish
three categories of agents on the basis of the particular learning rule they
seem to have used: 1) agents using a rule that they call markov expectations
(i.e. entailing a random switch between the last expected value and the
last observed value), 2) agents using some kind of adaptive expectations, 3)
agents who did not use any systematic rule. Agents belonging to the second
category are those who, on average, earned more.
In what follows we want to take this analysis one step forward. In partic-

ular we try and answer the questions: Can we be more precise about what
“types” seem to emerge? How do the rules discussed in Section 2 fare in de-
scribing the behaviour of each agent? Is there a difference between recursive
and extensive formulations?
Our analysis is twofold.
First, we have tried to group the participants in categories homogeneous

with respect to how (and if) they exploited the information conveyed by their
own forecast errors. Supposing that the agents used an adaptive rule like

pet+1 = pet + αt(pt − pet) (17)

for each agent and each period we have calculated the value of αt feeding
the data from the experiment into equation (17). Then we have plotted, for
each agent, the values of αt against the last forecast error. Figure 1 shows
the cumulative diagram, plotted for all the participants. At first glance no
particular pattern seems to emerge. In fact it can be seen as the result of the
superimposition of four typical cases. The participants to the experiment can
be classified on the basis of the particular shape of their diagram in one of the
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four types shown in Figure 2. To do so we have used the following heuristic
rule. First we have analytically defined the three regions in evidence in Figure
2 (relative to types 1, 2 and 3)6. For each agent and each time period, we
have checked if the couple (error, α) satisfies some of the inequalities. Finally
we have assigned to each agent the type whose region is visited the maximum
number of times subject to the fact that it has been visited at least 35 times.
If no region has been visited at least 35 times over 50 we assign the residual
type 4. So types are attributed when they characterise agents at least in 70%
of the time periods: this threshold, while largely heuristic, is broad enough
to permit actual classification of subjects in an experiment in which random
components, high nonlinearity and strong feedbacks would otherwise make
it impossible to detect any significant pattern in agents’ behaviour.
Figure 3 shows 3 out of 20 participants who are classified as type 1: these

agents typically react to their own forecast error pt − pet either by setting
pet+1 = pet or p

e
t+1 = pt (see Figure 2), actually doing one thing or the other

at random. This class of agents produces markov expectations in the termi-
nology of Hommes et al. [15]. Agents using adaptive schemes correspond to
type 2 (15 agents in total, see Figure 4 for three typical cases) and type 3
(5 agents, Figure 5): the latter are using simple adaptive expectations with
constant gain while the former are using a variable gain parameter which im-
plies that agents react to the forecast error (higher gain follows higher error)
in a way that is captured, for example, by the GFM and GAE mechanisms
described in Section 2. The residual class of type 4 is characterised by the
lack of any clear criterion in the use of the forecast error.
The second building block of our analysis tries to associate each subject

with one of the specific rules described in Section 2. To do so we assume
that agents form expectations using a predictor chosen within a given set
and, once chosen, they stick to it. We also suppose that agents are using the
predictor with a certain degree of approximation, which can be the result of
a lack of full attention to the data due to the short time or to their limited
computational capacity. The same assumption can be found in Branch [4].
In detail, we suppose that agents form expectations according to a law of

the form
pet+1 = G (pt, . . . , p0,p

e
t) + εt (18)

where G is chosen by each agent, once and for all, in the set of predictors
specified in Section 2 and εt represents a sort of “tremble”. For each agent
and each available predictor, we generate artificial time series of expectations

6The regions are defined as follows: (1) (x± 7.5)2 + [10 (y + 0.5± 0.45)]2 < 9; (2)
x2

100 − 0.2 < y < x2

40 − 0.5; (3) −0.1 < y < 0.4.
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pat where
pat+1 = G (pt, . . . , p0,p

e
t)

and p, pe are taken from the experimental data. Then we compute, for each
predictor G, the mean square difference between artificial and experimental
forecasts

δG =
1

50

50X
t=1

(pet − pat )
2 .

All the parameters in the prediction functions are calibrated for each agent.
For the predictors that entail a parametric choice we have numerically se-
lected the best parametrisation in terms of implied mean square difference;
for the random predictors7 we have considered the average of the mean square
difference on a 1000 times replication of the random choice. In the case of
least squares and stochastic gradient a projection facility is applied to ensure
that the predictions belong to the interval [0, 10].
For the predictors that admit an extensive formulation which is equivalent

to the recursive form, we have actually distinguished two cases in the gen-
eration of the artificial expectations. There is a rather subtle but important
point here: indeed, under our assumptions (18) regarding the tremble εt, the
two choices are not equivalent. If agents are genuinely using the extensive
form and therefore are averaging the observations of p, each prediction differs
from the value indicated by the predictor only because of εt. Conversely if
agents follow the recursion, they use pet (and therefore εt−1) to generate p

e
t+1

so that the prediction will be different from what it would be if there were no
trembles because of εt, εt−1 and recursively every εt−k with k = 0, . . . , t− 1.
Table 1 contains the results of the above exercise. The Subject column

identifies the person with a number running from 2 to 124 (see footnote
4). The second column, labelled $, shows the total earning for the subject
(subjects are in fact sorted according to earning starting with the one who
earned the most down to those that earned nothing). The third column
identifies the type according to our definitions above. The fourth column
shows the rule that does best in describing the subject’s actual behaviour in
the experiment.
The evidence of a connection between the total earning gained by each

subject and the rule that best describes the subject is certainly not over-
whelming, with the possible exception of the OLS2 rule which seems to have
been used by subjects in the upper earnings ranking. Nonetheless a link be-
tween earnings and type can be clearly inferred; higher earnings are clearly

7We have specified RE as xet ∼ U (0, 10).
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associated with types 2 and 3. Indeed, consider the following table:

Type δG Average earnings
1 15.16242958 2530.45
2 2.745266594 35806.3
3 0.977983936 46368.8
4 6.106350931 11814.7

Column 2 shows the average, on the total of agents belonging to each class,
of the mean square difference between expectations from the experiment and
those artificially generated. That is, δG is a measure of the goodness of fit
of our model (18) for the four types of agents. Column 3 has the average
earnings. Agents of type 2 and 3 not only are those who earn more: they are
also the ones whose behaviour can be well approximated using a predictor
chosen in the set described in Section 2. This is not the case for agents of
types 1 and 4. Furthermore, as expected, agents of type 2 and 3 are best
represented by one of the generalisations of adaptive expectations (GFM, GA,
MN) in 13 out of 20 cases; by fading memory in 2 cases (again an adaptive
law with non-constant gain) while in 5 cases the best fitting predictor is in the
OLS family. Three cases of type 2 participants are shown in Figure 4; their
best fitting predictor are, GA, GFM and MN, from left to right respectively.
As required by this family of predictors the scatter of points is, vaguely,
bell-shaped. Figure 5 shows type 3 participants; they are associated, from
left to right, to FM, MN and OLS2. Participant 110 is typical of those well
represented by a predictor of the OLS family. Most points are concentrated
around the origin showing that the dynamics rapidly converges to the steady
state. Observe that predictors of the generalized adaptive family do better
than the others also in representing behaviour of type 1 and 4 participants.
Obviously this does not mean that those agents are mostly adaptive. In fact,
none of the rules we considered does well in reproducing the behaviour of
such agents.
A few more facts seem to emerge. The first is that there is no single

rule that can effectively describe the behaviour of all agents: therefore a
significant amount of heterogeneity can clearly be detected. The behaviour
of most of the experimental subjects is best described by the rules that
generalise the adaptive baseline in the sense of paying more attention to the
most recent available observation after a relatively high forecast error and
vice-versa. Indeed, as shown in Table 2, almost 70% of the subjects can be
described as using one among “Marcet-Nicolini” (MN), Generalized adaptive
(GA) and Generalized fading memory (GFM).
To have a measure of how well each predictor works we calculate the av-

erage over all the participants of the mean square differences. The results are
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shown in Table 3. The four algorithms that are more successful in describing
the agents’ behaviour are in recursive form: this agrees with the idea that
when decisions have to be taken quickly people rely on “short memory” in-
formation and simple rule of thumbs. Remark that the rule labeled OLS2
fares a good deal better than its counterparts OLS1 and OLS1 extensive.
This probably reflects the fact that OLS1 is misspecified with respect to the
true data generating process, in the sense that it implies that agents using it
would have missed the feedback from their expectations to the data: which
most agents actually detected in some form or other. OLS2 instead correctly
posits an expectations feedback (even though in an underparametrised form).
Further note that a rule like the simple average (in both its possible forms),
which is simple and is known to be very efficient in a context of strong expec-
tations’ feedback, is definitely not a good description of the way the subjects
tackled the experiment. The same applies to stochastic gradient learning.
In fact these two rules perform similarly to the two rules with random com-
ponents in terms of descriptive capacity. Indeed the random adaptive rule
fares, on average, better than several other (non-adaptive) predictors: this
can be taken as an indirect signal of the good performance of the adaptive
family.
Data about the worst and best performance of each predictor over all the

participants, recorded in Tables 4 and 5, confirm the above observations.

4 Simulations

On the basis of our above analysis of the experimental data of Hommes et al.
[15], each agent has been assigned a forecast rule (and a set of parameters
where needed) which best describes its behaviour during the experiment. It
is a natural question to ask which kind of asymptotic behaviour these rules
would have implied were they used on a long time horizon. In particular,
due to the particular economic model underlying the experiment, which has a
single rational expectations equilibrium, it is interesting to see whether or not
there is evidence of convergence towards the RE equilibrium if we observe the
behaviour of the rules assigned to the agents in a 500 time periods simulated
exercise.
In detail: for each agent we have taken the forecast rule best describing its

behaviour and simulated the model used in the experiment (in fact we have
only used the scenario with a constant at = 2.3 and the normally distributed
shock N (0, 0.5) for simplicity) for 500 periods (with the same shocks used for
all agents). We have collected data on the variance for the simulated price
expectations in the following way. Let V ar(T ) be the variance calculated on
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peT , . . . , p
e
T−49 that is on a window of 50 time periods ending at time T . We

have recorded in particular V ar (50) , V ar (150) , V ar (450). This has been
repeated 1000 times for each agent and averages (over the replications) for the
variances at the various T have been computed. Remark that the distinction
between recursive and extensive form of a predictor ceases to be important
in this context because the two versions are identical.
A summary of the results is presented in Table 6. The first column con-

tains the specifications used for the rules that involve parameters.8 The last
row in each box displays averages over the different parametric specifica-
tions: it can be taken as a rough measure of how much each type of rule is
inclined to imply convergence toward the rational expectations equilibrium
(a lower value means convergence is more likely). Notice that MN and the
non-parametric rules (OLS1, OLS2 and Simple Average) have the lowest val-
ues: this does not mean that convergence is warranted in all cases. In fact,
a number of types can be detected in terms of qualitative behaviour which
we can described as follows.

1. Fast convergence to the RE equilibrium: this means that within the
initial 10 time periods expectations enter a very small neighbourhood
of the equilibrium and stay there

2. Eventual convergence to the RE equilibrium: expectations fluctuate
around the equilibrium in the initial time periods and then eventually
they converge

3. Erratic behaviour: expectations continue to bounce erratically around
the equilibrium

4. Persistent small fluctuations: expectations fluctuate but stay near the
equilibrium

We present various typical examples of the four types above for the dif-
ferent rules in Table 7. Notice that:

• With adaptive expectations (under the two parametrisations used here)
the outcome is always erratic behaviour

• Fading memory and Generalised adaptive expectations are the only
rules under which persistent small fluctuations show up

8The various sets of parameters have been (numerically) determined to best describe
the agents’ behaviour, as explained in Section 3.1.
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• The three non-parametric rules imply fast convergence (this feature is
well known from the theory)

• The simulated dynamics of MN agents show convergence in all but one
case. This is at odds with the fact that many agents in the bottom
of the earning ranking in the experiment are associated with an MN
rule: this contradiction stems from the already mentioned difficulty in
representing the behaviour of agents of types 1 and 4 within our set of
predictors.

5 Conclusions

As concluding remarks we can say that our analysis confirms previous specu-
lations (and evidence) that agents in experimental settings show a preference
for simple rules. In the experiment we have analysed, many subjects seem
to have tested several of these simple rules: some eventually settled on one
choice; others, particularly in the lower part of the earning ranking, went
on trying (mostly without success). An implication of this is that adaptive
schemes with variable gain parameter have a potential to describe rather
well what real agents actually do. It is well known that these rules do not
possess general properties of convergence to rational expectations: this is
reflected in the fact that a good number of the subjects earned very little or
no money at all in the experiment. The precise way to model this type of
adaptive behaviour in fruitful and analytically tractable ways is the subject
of an interesting and lively area of current research. For instance Evans and
Ramey [11] analyse this issue with an eye to the scope of applicability of the
Lucas Critique. On the empirical side, the particular model underlying the
experiment of Hommes et al. [15] features a strong expectations feedback
which could have had a good deal of influence on the outcome of the analy-
sis: in particular the behaviour of type 1 agents could have been the result
of the switch between two different rules. These aspects could be focused on,
analysing experiments on expectations formation without feedback and/or
assuming some kind of discrete choice dynamics in the line of Brock and
Hommes [6]: an example of this (with survey data) can be found in Branch
[4].

6 Figures and tables
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Figure 1: Gain parameter vs forecast errors: all agents.

Figure 2: Four scatter types
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Figure 3: Type 1: Markov expectations

Figure 4: Type 2: Adaptive expectations with non-constant gain

Figure 5: Type 3: Adaptive expectations with constant gain

Figure 6: Type 4: No pattern
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Subject $ Type Best fitting rule Subject $ Type Best fitting rule
103 55929 3 Marcet-Nicolini 47 12775 4 Marcet-Nicolini
110 52449 3 OLS2 35 12340 4 Generalised fading memory - ext.
31 52007 3 Fading memory 49 11633 4 Generalised adaptive
7 51625 2 Generalised adaptive 117 11304 4 Generalised adaptive
122 45372 2 OLS2 40 10888 4 Marcet-Nicolini
124 45360 2 Generalised adaptive 114 10771 4 OLS2
3 43216 2 Marcet-Nicolini 77 10635 1 Marcet-Nicolini
52 40790 2 OLS2 36 9582 4 Fading memory - ext.
106 40591 2 OLS1 - ext. 118 9035 4 Generalised adaptive
5 38972 2 Generalised adaptive 17 8889 4 Simple Average - ext.
39 36812 2 Marcet-Nicolini 101 8819 1 Generalised fading memory
8 36551 3 Generalised adaptive 9 7761 1 Fading memory - ext.
34 35720 2 Marcet-Nicolini 48 7009 4 Simple Average - ext.
79 34908 3 Marcet-Nicolini 4 6074 4 Marcet-Nicolini
15 31402 2 Generalised fading memory 13 5649 4 Generalised fading memory
18 29231 2 Generalised fading memory 105 5158 4 Marcet-Nicolini
46 28482 2 Marcet-Nicolini 42 4809 1 OLS2
19 26210 2 Fading memory - ext. 33 4248 4 Generalised fading memory
120 25294 4 Marcet-Nicolini 63 2814 4 Marcet-Nicolini
65 24743 2 Generalised fading memory - ext. 44 2639 4 Generalised fading memory
43 21216 4 Generalised fading memory 64 2109 1 Marcet-Nicolini
2 19978 4 Marcet-Nicolini 66 1469 4 Generalised adaptive
113 18835 4 Marcet-Nicolini 108 1336 4 Generalised adaptive
104 18569 2 OLS2 12 1184 1 Marcet-Nicolini
51 17797 4 Fading memory - ext. 37 1097 4 Generalised adaptive
119 16821 4 Generalised adaptive 6 0 1 Marcet-Nicolini
41 16700 4 Generalised adaptive 10 0 1 Marcet-Nicolini
75 16325 4 Adaptive 14 0 1 Fading memory
69 16307 4 Adaptive 16 0 1 OLS1 - ext.
73 15657 4 Generalised adaptive 20 0 1 Marcet-Nicolini
121 15619 4 Generalised fading memory 30 0 1 Marcet-Nicolini
109 15546 4 Generalised adaptive 32 0 1 Marcet-Nicolini
115 15314 4 Generalised fading memory - ext. 38 0 1 Marcet-Nicolini
81 15292 1 Generalised fading memory 50 0 1 Marcet-Nicolini
45 15083 4 OLS1 - ext. 62 0 1 Marcet-Nicolini
84 14528 4 Fading memory 68 0 1 Fading memory
107 14337 4 Generalised fading memory - ext. 78 0 1 Fading memory
53 13828 4 Generalised adaptive 102 0 1 Marcet-Nicolini
123 13249 4 OLS1

Table 1: Detailed result.



Learning rule Nr Learning rule Avr. δG

Marcet-Nicolini 26 Generalized adaptive 6.525994509

Generalized adaptive 15 Marcet-Nicolini 6.560275815

Generalized fading memory 9 Generalized fading memory 6.589226707

OLS2 6 Adaptive 6.797988622

Fading memory 5 Fading memory 6.857585565

Fading memory - ext. 4 OLS2 7.585184099

Generalized fading memory - ext. 4 Generalized fading memory - ext. 7.687932099

OLS1 - ext. 3 Fading memory - ext. 7.811571059

Adaptive 2 Simple average - ext. 8.100513318

Simple average - ext. 2 Random adaptive 10.04380802

OLS1 1 Simple average 11.39200503

Random adaptive 0 OLS1 - ext. 12.17410884

Simple average 0 Stochastic gradient 15.18161102

Stochastic gradient 0 Random 16.00872408

Myopic 0 Myopic 17.79218868

Random 0 OLS1 21.88277349

Learning rule Min. δG Learning rule Max. δG

OLS2 0.007211171 Marcet-Nicolini 16.31400247

Marcet-Nicolini 0.007842847 Adaptive 16.77935286

Generalized adaptive 0.015394033 Generalized adaptive 16.77935286

Generalized fading memory 0.035534587 Generalized fading memory 16.96644259

Adaptive 0.047396939 Fading memory 16.97041393

Fading memory 0.050138809 OLS2 17.78178814

Generalized fading memory - ext. 0.157404916 Generalized fading memory - ext. 18.97558235

Simple average 0.169711112 Fading memory - ext. 19.11940716

Fading memory - ext. 0.19646911 Simple average - ext. 19.11940716

Simple average - ext. 0.254927161 Random adaptive 22.37439778

OLS1 - ext. 0.360572596 Random 26.03696498

OLS1 0.396592126 Simple average 28.79897912

Random adaptive 0.410735704 OLS1 - ext. 33.052582

Myopic 1.361879592 Stochastic gradient 40.5530226

Stochastic gradient 1.376401445 OLS1 41.23737483

Random 9.169400848 Myopic 42.99791429

Table 2: Nr of agents best described by each rule Table 3: Average mean square difference

Table 4: Minimum mean square difference Table 5: Maximum mean square difference



Adaptive FM
parameters Var(50) Var(150) Var(450) parameters Var(50) Var(150) Var(450)
alpha=0.53 1.939206 1.947048 1.954276 rho=0.69 0.626739 0.282944 0.286039
alpha=0.63 3.378096 3.400377 3.407029 rho=0.8 0.363911 0.032439 0.031913
Average 2.658651 2.673712 2.680652 rho=0.75 0.436926 0.096076 0.095354

rho=0.66 0.746773 0.42246 0.421826
GFM rho=0.78 0.391682 0.049884 0.049199
parameters Var(50) Var(150) Var(450) rho=0.77 0.407651 0.062182 0.061421
k=0.65, h=1, d=0.34 0.465866 0.000623 0.000539 rho=0.96 0.314041 0.001306 0.001269
k=0.58, h=0.9, d=0.35 0.510573 0.003817 0.003874 rho=0.87 0.336399 0.008676 0.008502
k=0.82, h=0.4, d=0.17 1.047905 0.001336 0.000642 Average 0.453015 0.119496 0.11944
k=0.64, h=0.2, d=0.03 8.047219 7.956341 7.958007
k=0.41, h=1, d=0.49 0.401164 0.006447 0.006566 MN
k=0.22, h=1, d=0.5 0.920233 0.553788 0.553382 parameters Var(50) Var(150) Var(450)
k=0.16, h=1, d=0.42 2.053869 1.755098 1.740896 alpha=0.29, nu=0.76 0.337208 0.000151 2.08E-05
k=0.6, h=0.5, d=0.07 6.975363 6.806976 6.828818 alpha=0.49, nu=1 0.313904 0.000151 2.07E-05
k=0.46, h=1, d=0.44 0.444791 0.006679 0.006799 alpha=0.39, nu=0.78 0.323923 0.000154 2.08E-05
k=0.16, h=0.2, d=0.83 0.304392 0.000386 0.000274 alpha=0.31, nu=0.78 0.317174 0.000151 2.08E-05
k=0.31, h=0.6, d=0.65 0.329682 0.001553 0.001557 alpha=0.46, nu=0.96 0.314836 0.000151 2.07E-05
k=0.7, h=0.1, d=0.22 1.177673 0.013268 0.005255 alpha=0.35, nu=0.75 0.328854 0.000153 2.08E-05
k=0.74, h=0.1, d=0.01 7.858344 7.684601 7.701003 alpha=0.4, nu=0.9 0.314063 0.00015 2.07E-05
Average 2.349006 1.906993 1.908278 alpha=0.58, nu=0.85 0.464584 0.00016 2.11E-05

alpha=0.45, nu=0.84 0.339098 0.000154 2.09E-05
GADAP alpha=0.44, nu=0.88 0.320249 0.000152 2.08E-05
parameters Var(50) Var(150) Var(450) alpha=0.69, nu=0.97 0.478401 0.000156 2.1E-05
k=0.87, h=0.6, d=0.01 0.410712 0.017791 0.017459 alpha=0.32, nu=0.96 0.301261 0.000149 2.07E-05
k=0.75, h=0.2, d=0.05 0.573391 0.225698 0.226369 alpha=0.39, nu=0.7 0.337438 0.000156 2.09E-05
k=0.14, h=0.2, d=0.41 1.788105 1.566604 1.562495 alpha=0.41, nu=0.87 0.313554 0.000151 2.07E-05
k=0.25, h=1, d=0.43 0.846437 0.582759 0.586046 alpha=0.64, nu=0.99 0.404797 0.000156 2.09E-05
k=0.81, h=0.5, d=0.02 0.466721 0.098349 0.097376 alpha=0.54, nu=0.9 0.372316 0.000155 2.1E-05
k=0.21, h=0.1, d=0.23 3.956567 3.745693 3.749983 alpha=0.35, nu=0.95 0.307026 0.000149 2.07E-05
k=0.41, h=0.1, d=0.15 2.897057 2.698823 2.671274 alpha=0.71, nu=0.93 0.541562 0.00016 2.11E-05
k=0.02, h=0.1, d=0.3 4.757518 4.584501 4.58719 alpha=0.31, nu=0.8 0.337008 0.00015 2.07E-05
k=0.66, h=0.7, d=0.23 0.335844 0.009488 0.009398 alpha=0.57, nu=0.61 1.628573 0.248979 2.92E-05
k=0.41, h=0.1, d=0.29 0.929043 0.670795 0.674945 alpha=0.49, nu=1 0.312749 0.000151 2.08E-05
k=0.51, h=0.1, d=0.2 1.039608 0.768191 0.769532 alpha=0.55, nu=0.96 0.360369 0.000153 2.09E-05
k=0.79, h=0.1, d=0 0.717605 0.366272 0.36675 alpha=0.35, nu=0.73 0.330127 0.000153 2.09E-05
k=0.71, h=0.1, d=0 1.640462 1.370344 1.381399 alpha=0.48, nu=0.81 0.376919 0.000157 2.11E-05
k=0.69, h=0.3, d=0 1.925656 1.656495 1.676736 alpha=0.37, nu=0.15 0.82518 0.558192 0.557236
Average 1.591766 1.311557 1.312639 alpha=0.37, nu=0.57 0.384997 0.000166 2.14E-05

Average 0.422545 0.031187 0.021453
OLS1
Var(50) Var(150) Var(450)
1.475198 0.000251 6.78E-05

OLS2
Var(50) Var(150) Var(450)
1.164862 4.92E-05 5.4E-06

Simple Average
Var(50) Var(150) Var(450)
0.495319 0.000151 1.92E-05

Table 6: Mean variances over 1000 replications



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7a: Asymptotic behaviour of simulated dynamics: some typical cases. 

Gen. Fading Memory: erratic behaviour
k=0.16, h=1, d=0.42
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Gen. Fading Memory: fast convergence
k=0.31, h=0.6, d=0.65
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Gen. Fading Memory: eventual convergence
k=0.7, h=0.1, d=0.22
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Fading Memory: persistent small f luctuations
rho=0.78
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Adaptive expectations: erratic behaviour

alpha=0,63
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Fading Memory: erratic behaviour
rho=0.66
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Fading Memory: fast convergence
rho=0.96
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Gen. Adaptive: erratic behaviour

k=0.21, h=0.1, d=0.23
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Gen. Fading Memory: eventual convergence 
k=0.7, h=0.1, d=0.22 

Gen. Fading Memory: fast convergence 
k=0.31, h=0.6, d=0.65 

Gen. Fading Memory: erratic behaviour 
k=0.16, h=1, d=0.42 

Adaptive Expectations: erratic behaviour 
α=0.63 

Fading Memory: erratic behaviour 
ρ=0.66 

Fading Memory: persistent small fluctuations 
ρ=0.78 

Fading Memory: fast convergence 
ρ=0.96 

Gen. Adaptive: erratic behaviour 
k=0.21, h=0.1, d=0.23 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7b: Asymptotic behaviour of simulated dynamics: some typical cases. 

 
Gen. Adaptive: persistent small fluctuations
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Gen. Adaptive: fast convergence

k=0.66, h=0.7, d=0.23
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Marcet-Nicolini: erratic behaviour
alpha=0.37, nu=0.15
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Marcet-Nicolini: fast convergence
alpha=0.49, nu=1
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Marcet-Nicolini: eventual convergence
alpha=0.57, nu=0.61
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OLS1: fast convergence
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OLS2: fast convergence
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Simple average: fast convergence
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Gen. Adaptive: persistent small fluctuations 
k=0.75, h=0.2, d=0.05 

Gen. Adaptive: fast convergence 
k=0.66, h=0.7, d=0.23 

Marcet-Nicolini: erratic behaviour 
α=0.37, ν=0.61 

Marcet-Nicolini: fast convergence 
α=0.49, ν=1 

Marcet-Nicolini: eventual convergence 
α=0.57, ν=0.61 

OLS2: fast convergence 

OLS1: fast convergence Simple Average: fast convergence 
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