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Abstract

We study a cobweb-type commodity market characterised by a strictly monotone
demand and supply, in which n firms operate. The firms are assumed to differ in a
key parameter governing price expectations which we suppose to be adaptive. We
characterise the unique steady state of the resulting economic dynamics in terms of
stability and we study the impact of the number and diversity of firms: to this end
we introduce the notions of structural and behavioural degree of instability which
prove to be crucial in determining whether stability or instability prevail. We also
consider the case of market integration and establish conditions to have stability (or
instability) in the aggregated market in terms of the original (structural and behav-
ioural) degrees of instability. We take up the issue of transitional dynamics and speed
of convergence when the system is stable and characterise parametric configurations
that maximise the speed of convergence. Finally, we assume that the firms - via
the parameter which defines their expectations - are sampled independently from a
population described by a given probability distribution. In this case the structural
degree of instability determines how the number of potentially different firms affects
the probability of ending up with a stable outcome.
Journal of Economic Literature Classification Numbers: D83; D84; E17; E32
Key Words: heterogeneous agents, expectations, stability of steady states, market

integration, speed of convergence



1 Introduction and related literature

The existence of a certain amount of heterogeneity in economic expectations is uncon-
troversial. Evidence of heterogeneous expectations in inflation forecasts for example
(both by professionals and non-professional forecasters) has been found in Branch [1],
Carroll [6] and Mankiw et al. [18]. The extent, the variability and the consequences
of such expectations disagreement are an open and interesting research question.
The range of applications and models in which such question receives attention in-
cludes for example monetary policy theory and design (as in Honkapohja and Mitra
[15]), models of exchange rate dynamics (e.g. Manzan and Westerhoff [19]) and as-
set pricing (for recent examples see Buraschi and Jiltsov [4], Jouini and Napp [17]).
Heterogeneous expectations have also been invoked to explain stylized facts such as
the volume of trade exchange (see e.g. Frankel and Froot [12]). Further, for some
types of agricultural markets in which biological lags naturally suggest the use of
cobweb models, heterogeneous expectations have been detected and estimated, for
instance by Chavas [7]. A rather comprehensive survey on this thread of literature
can be found in Hommes [16].
In essence, in this paper we study conditions under which coordination or dis-

agreement of beliefs among individuals of limited rationality emerge and the eventual
impact of a moderate degree of expectations’ heterogeneity on dynamic stability. In
particular we consider the problem of characterizing dynamic stability of equilibria
in a cobweb model in which n firms use adaptive expectations with firm-specific gain
parameters. This issue can also be considered a generalization of the problems stud-
ied by Nerlove [21] and Carlson [5] a few decades ago. The heterogeneity we take
into account is indeed moderate because it is limited to a key parameter governing
expectations which are otherwise all drawn from the same expectations mechanism.
It turns out that in our model two sources of (potential) instability can be identi-
fied: a structural source, linked to the market’s fundamentals (such as the shape of
demand and supply curves) and a behavioural source, embedded in the average pro-
file of expectations. A necessary and sufficient condition for local stability involving
these factors is demonstrated. Such condition implies no particular restriction on
individual firms, but only on the entire set of firms as a whole. The structural and
behavioural sources of instability also show up as we study the effects of changing the
number of market’s participants and the various possible outcomes of market integra-
tion. For the asymptotically stable configurations, we study the speed of convergence
and we characterize the situations in which convergence occurs monotonically and
those in which the steady state is approached through oscillations giving rise to
the traditional cobweb phenomena. Besides, we explain the factors determining the
fastest approach towards the steady state.
Motivated by the difficulty to actually observe expectations, whereas it is easier

to measure some structural features of a given market, such as the relevant demand
and supply price elasticities, we take the perspective of an observer (e.g. a policy
maker) whose information set includes the structural but not the behavioural degree
of instability. We therefore consider a setup in which the firms involved in the market
are sampled independently from a continuous distribution of such firms. In practice,
because what defines each firm is their behavioural parameter, we devise a simple
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model of random selection of such parameters from a given distribution. We provide
probabilities of convergence when only the structural source of instability is known
exactly. A form of polarization of convergence probabilities induced by increasing
the number of market’s participants is documented. When the number of firms gets
large, stability is almost certain for levels of the structural degree of instability up to
a certain threshold, while the system is almost certainly unstable past the threshold.
The present work is related to a number of papers, some of which include a

similar underlying structure based on a cobweb economy with heterogeneous beliefs
of some kind, such as Brock and Hommes [3] (whose basic setup we largely borrow),
Chiarella et al. [8], Branch and Evans [2]: our paper is different because it does not
address endogenous heterogeneity as in the Brock and Hommes tradition nor do we
have proper learning as in the literature described in (and stimulated by) the well
known book by Evans and Honkapohja [9]. Our perspective is a slightly different,
as it prompts us to understand what is to be expected when changes in the number
of (different) firms acting on a market are produced, for instance as the result of
market integration or merging into a common, bigger marketplace, considering all
other details as given.
Negroni [20] investigates a two-agents problem with adaptive expectations which

is akin to ours but for the assumed asymmetry in the roles of the agents which we
do not have here. A closely related feature also shows up in the paper by Evans
and Guesnerie [10], who name it "structural heterogeneity" and show its potential
role of destabilising force when coupled with different beliefs. The kind of spirit
animating the present work, namely that of studying the outcomes due to changes in
the number of different agents in a dynamic model (or the overall agents’ diversity)
is shared by Herrendorf et al. [14] and, more recently, by Puu [22].
The paper is organised as follows: Section 2 introduces the model and states a

couple of results which are then used throughout the paper. The issue of understand-
ing the specific role of the number of firms in shaping stability is addressed in Section
3. Speed of convergence and the dynamics in the transition to the steady state are
analysed in Section 4. Section 5 deals with the probability of convergence when the
firms’ behavioural characteristics are sampled from a given probability distribution.
All the proofs are contained in the Appendix.

2 The Model

Consider a cobweb-type commodity market in which each of n firms needs to allow
for a production lag and so choose optimal supplied quantities conditioned on the
forecasted future price pei . The optimal supply is proportional to firm’s size, ψi > 0,
hence

Si (p
e
i ) = ψis (p

e
i )

where s (pei ) depends on the available technology. Demand is a function of the current
priceD (p). We assume a strictly increasing supply and a strictly decreasing demand,
which are smooth and intersecting at a point p∗. By defining Ψ =

P
i ψi as the

aggregate production scale factor, S (·) = Ψs (·) and φi =
ψi
Ψ
as the firm i market
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share (with
Pn

i=1 φi = 1) the aggregate supply becomes

Ŝ
¡
pet,1, . . . , p

e
t,n

¢
= Ψ

nX
i=1

φis
¡
pet,i
¢
=

nX
i=1

φiS
¡
pet,i
¢
.

Market clearing requires that D (pt) =
Pn

i=1 φiS
¡
pet,i
¢
which, because demand is

strictly increasing, can be written explicitly as

pt = D−1

Ã
nX
i=1

φiS
¡
pet,i
¢!
≡ F

¡
pet,1, . . . , p

e
t,n

¢
(1)

Up to this point, the model is rather standard: it differs for example from Brock
and Hommes [3] only in the fact that firms dimensions, ψi, are kept separated from
market shares, φi. While this is costless in terms of the required algebra - we only
need to add the constant Ψ to an otherwise standard model - it will help us in a
later discussion about the effects of market size variations on the stability properties
of equilibria.
In a different but equally common formulation of this model, aggregation uses a

weighted average of expectations as the argument of the actual law of motion (see
Branch and Evans [2]): we compare results obtained under such different modelling
strategy in Section 2.3.
We close the model assuming that expectations are adaptive with gains that

differ across different firms pet+1,i = pet,i + αi

¡
pt − pet,i

¢
, i = 1, . . . , n. Summing up,

the evolution of the system can be described by the following system of difference
equations ⎧⎨⎩ pet+1,1 = pet,1 + α1

¡
F
¡
pet,1, . . . , p

e
t,n

¢
− pet,1

¢
. . .

pet+1,n = pet,n + αn

¡
F
¡
pet,1, . . . , p

e
t,n

¢
− pet,n

¢ (2)

The above assumptions on the monotonicity of supply and demand guarantee that
there will be a unique steady state for the system (2), corresponding to the supply-
demand equilibrium price p∗. Notice that, in spite of the simplicity of adaptive
expectations, the number of different firms determines the dimension of the dynam-
ical system (2): this is a distinguishing feature of the model. Assuming for example
that the n firms use AR(p) forecasting models (with lags up to a given p) would make
the dimension of the system independent of n: so a large number of firms would not,
as it does here, complicate the tractability of the model.

2.1 Special case: one representative firm

It is useful to see what happens if there is only one firm. In this case the price
equation (1) reduces to pt = D−1 (Ψs (pet)) = D−1 (S (pet)) so the system evolves
according to

pet+1 = pet + α
¡
D−1 (S (pet))− pet

¢
and the stability condition is −1 < 1− α+ α S0(p∗)

D0(p∗) < 1 which, defining δ = −
S0(p∗)
D0(p∗) ,

we can write as −1 < 1 − α − αδ < 1. Using the definition β = α
2−α and the fact

δ > 0, stability requires that
δβ < 1 (3)
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As it turns out, the two parameters1 δ, β play a key role throughout the paper.
We label δ the structural degree of instability. Notice that as δ approaches 1 condition
(3) is automatically satisfied for any choice of α ∈ (0, 1), and if δ ≤ 1 stability is
always warranted under adaptive expectations. Therefore we assume δ > 1. The
parameter β will be called the behavioural degree of instability.

2.2 General case: n firms

We now turn to the issue of how stability for the model in its general form with
n firms relates to (behavioural) characteristics of the individual firms and to the
market’s exogenous structure (as given by the demand and supply functions). To
this end notice preliminarily that

∂F
¡
pet,1, . . . , p

e
t,n

¢
∂pet,i

¯̄̄̄
¯
pet,1=···=pet,n=p∗

= φi
S0 (p∗)

D0 (p∗)
= −φiδ

so the Jacobian matrix of the system (2) evaluated at p∗ is:

Jn =

⎛⎜⎜⎜⎝
1− α1 (φ1δ + 1) −α1φ2δ · · · −α1φnδ
−α2φ1δ 1− α2 (φ2δ + 1) · · · −α2φnδ
· · · · · · . . . · · ·
−αnφ1δ −αnφ2δ · · · 1− αn (φnδ + 1)

⎞⎟⎟⎟⎠ (4)

It seems fairly intuitive that aggregation should preserve stability if the conditions
for individual stability derived above in (3) are met for each firm. Indeed this needs
not be the case in general, as Franke and Nesemann [11] have shown in a specific
case in which two "unstable" learning rules offset each other bringing about a stable
outcome. In our context, given the limited degree of freedom in firms behaviour,
such phenomenon is not possible and stability (or instability) at the individual level
suffice for stability (instability) with many firms. An intuition of this can be given
as follows: suppose n firms for which individual stability conditions (3) are met,
are aggregated. Let λ be a real eigenvalue2 of Jn, with an associated eigenvector
v = (v1, . . . , vn)

T . Then, either
Pn

j=1 φjvj = 0 or we can assume, without loss of
generality,

Pn
j=1 φjvj = 1. In the first case, letting vi 6= 0, we have λvi = (1− αi) vi,

so λ = 1− αi ∈ (0, 1). Otherwise, there is i such that vi ≥
Pn

j=1 φjvj = 1 so

λvi = (1− αi) vi − αiδ
nX

j=1

φjvj =⇒ λ = 1− αi − αiδ
1

vi

and therefore, using vi ≥ 1 and the assumption that conditions for individual stabil-
ity, −1 < 1−αi−αiδ < 1, are met for every i, we can conclude that the n-dimensional
system is stable.

1Notice that in turn δ depends on a third parameter, namely Ψ, the overall dimension of the
economy. This is relevant only when market integration is discussed.

2The Jacobian matrix Jn has real eigenvalues only, as we show in Lemma 1.

4



It can also be shown, with a little more effort, that if individual instability holds
for each firm then instability follows. Notice further that the market can be stable
even though stability is not the case for all individual firms: consider, for example,
the case of a market with two firms of equal size having δ = 2, β1 =

1
4
and β2 =

2
3
. As

δβ1 < 1 < δβ2, condition (3) entails that, in isolation, the first firm implies stability
whereas the second implies instability, but the aggregated market is stable3. So it
is interesting to establish conditions by which stability is produced when two (not
both necessarily stable) markets are merged. A more general result encompassing
these cases is the focus of this Section.
We shall require the following preliminary result.

Lemma 1 Consider a matrix

M =

⎛⎜⎜⎜⎝
a1c1 + b1 a1c2 · · · a1cn
a2c1 a2c2 + b2 · · · a2cn
...

...
. . .

...
anc1 anc2 · · · ancn + bn

⎞⎟⎟⎟⎠ (5)

with ai < 0, bi, ci > 0 for all i. Then

i) detM =
nQ
i=1

bi +
Pn

i=1 ciai
Q
j 6=i

bj

ii) M has real eigenvalues
iii) (n− 1) eigenvalues of M belong to the interval [mini {bi} ,maxi {bi}] and for the
smallest eigenvalue of M , λmin, it is λmin < mini {bi}
iv) λmin is greater than −1 if and only if the characteristic polynomial, P (λ), is
positive at λ = −1.
Notice that the Jacobian (4) is a particular specification of matrix (5) with ai =

−αi, bi = 1−αi, ci = φiδ. Therefore, as a consequence of part ii) and iii) of the above
Lemma applied to (4), the steady state of system (2) can loose (acquire) stability
only through a Period-doubling bifurcation. When the eigenvalues of (4) are all non-
negative the local convergence of expectations, quantities and price to their steady
state value is monotone: in that case, a perturbation of the model’s parameters does
not result in a qualitative change of the dynamics around the steady state. Section
4 returns to this topic at some length.
Let us now turn to the stability properties of the steady state of the market

dynamics.
We define the market degree of behavioural instability for the n heterogeneous

firms case as β̄n =
Pn

i=1 φiβi =
Pn

i=1 φi
αi
2−αi . Perhaps surprisingly, stability can be

characterised in terms of β̄n and δ in the same way as in the homogeneous case.

Proposition 2 The steady state of the system (2) is locally stable and hyperbolic
(i.e. with eigenvalues strictly inside the unit circle) if and only if δβ̄n < 1.

The result says that, in order to have stability, the multiplicative combination
of structural and behavioural instability must not exceed one. So this establishes a
threshold for the aggregate sources of instability in the market, marking the frontier
between the stable and the unstable regimes.

3Direct calculation or Proposition 2 below show that such is the case.
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2.3 Heterogenous versus Average Representative Agent’s mar-
kets

At this point the reader might raise the following doubt: if the heterogeneity in the
market were incorporated within a single representative firm, would there be any real
loss with respect to our more complex model? It turns out that the answer is "yes".
We indeed compare the conditions for stability in the homogeneous market with a
single firm (that we call average representative firm) which is representative in the
sense that its adaptive gain parameter is equal to the weighted average of parameters
of n given firms, to those for the heterogeneous market with those n firms actually
playing directly.

Proposition 3 Consider a market with n firms defined by gains α1, . . . , αn and
weights φ1, . . . , φn and a market with an average single firm with gain α =

Pn
i=1 φiαi.

Conditions for stability in the heterogeneous market are sufficient but not necessary
for the average homogeneous market.

The following numerical example shows that indeed one can have a stable average
representative firm such that if each firm reproduced by the average were to act
directly the outcome would be unstable. Consider n = 2, φ1,2 = 1/2 and δ = 2. If
α1 = 1/3 and α2 = 9/10 we have

β̄av =
1
2

¡
1
3
+ 9

10

¢
2− 1

2

¡
1
3
+ 9

10

¢ = 37

83
<
1

2
⇒ β̄avδ < 1

β̄het =
1

2

µ 1
3

2− 1
3

¶
+
1

2

µ 9
10

2− 9
10

¶
=
28

55
>
1

2
⇒ β̄hetδ > 1

Proposition 3 argues in favour of the idea that heterogeneity matters, from the
dynamic stability/instability viewpoint, in that it cannot be safely sterilized by using
an average representation instead of the whole heterogeneous picture. In a sense this
result also appears to indicate that, as opposed to the average representative firm,
heterogeneity implies (or has a potential for) destabilization. More in general, while
it is crucial to fix ideas precisely as to what (de)stabilizing heterogeneity means, much
depends on the level of structural degree of instability, δ: Section 5 is specifically
devoted to this issue.

3 Some comparative statics and market integra-
tion

This section deals with the general issue of assessing the effect of changes in the
number of firms (and hence of the amount of behavioural heterogeneity) on stability,
first in the context of a comparative statics exercise then as a by-product of a process
of market integration (whereby two separate markets are merged).
To begin with, suppose there is a change in the number of firms, n, while the

aggregate supply and the equilibrium price are unchanged. This is a kind of thought
experiment in which two economies, A and B, have the same aggregate demand
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and supply schedules, the only difference being in the number of firms behind the
aggregation on the supply side. The purpose is to isolate the effect of changing the
assortment of different beliefs held by the firms. It is indeed a thought experiment
in the sense that it is difficult to imagine real situations in which a change in n
leaves the aggregate supply and therefore the equilibrium price unchanged. A more
realistic situation arises for example with market integration and we shall move to
this problem later in the section.
We assume that economy A is populated by a given set of firms whereas in

economy B an extra group of firms, J, join in the supply side. Because the aggregate
supply has to remain the same we shall make the following assumptions: i) the
overall weight of the entering firms is 1 − ρ compared to that of the original firms
which is ρ; ii) the relative dimension of each firm in economy B, φ̄i, is obtained by
rescaling its original dimension, φi, with the appropriate overall weight (ρ or 1− ρ).
Letting β̄A, β̄J and β̄B the aggregate degree of behavioural instability in economy

A, of the joining firms, and in economy B, we have

β̄B =
X
i∈B

φ̄i
αi

2− αi
=
X
i∈A

ρφi
αi

2− αi
+
X
i∈J
(1− ρ)φi

αi

2− αi

= ρβ̄A + (1− ρ) β̄J

In light of the above assumptions, the degree of structural instability, δ, is the same
in both economies.
The following result is now easy to prove. Due to Proposition 2 stability (or

instability) in economy B depends on whether δβ̄B is smaller (or larger) than 1.
Trivially δβ̄B = δ

¡
ρβ̄A + (1− ρ) β̄J

¢
≶ 1 when δβ̄A, δβ̄J ≶ 1; therefore if economy A

is stable so is economy B if δβ̄J < 1. If instead δβ̄J > 1 then economy B is stable if
and only if ρ > δβ̄J−1

δβ̄J−δβ̄A
. The same goes for instability. So, in this exercise, stability

(or instability) persists when a larger span of jointly stable (or unstable) firms is
allowed for.
Also, when the firms in group J would by themselves imply instability, the out-

come depends crucially on their relative weight 1−ρ: such weight needs to be under
(above) a threshold which is a function of the structural and behavioural instability,
δ,β̄A and β̄J , in order for the outcome to be stable (unstable). Again this is a rather
intuitive result. We can also derive a measure of (in)stability robustness to entry for
a given market. In other words we can answer the following question: what is the
minimum relative weight of joining firms that can destabilise the market? Intuitively,
the worst that can happen is the entry of a group of firms of weight 1 − ρ having
a behavioural degree of instability of 1 (i.e. with αi = 1 for all i). In that case
ρ < 1−δβ̄A

δ−δβ̄A
would make the system unstable. Remark that this argument relies on

the idea that choosing αi = 1 for all entrant firms is the "worst that can happen".
This is indeed the case because the largest eigenvalue is always smaller than 1 while
the smallest one is strictly decreasing in αi as we show in the following Lemma.

Lemma 4 If λmax and λmin are the largest and smallest eigenvalues of the Jacobian
(4), then λmin strictly decreases with αi, for all i, while λmax weakly decreases with
αi, for all i and λmax ≤ 1− αmin.

7



Finally we can also determine a kind of "central value" for the degree of structural
instability, δ. To do so, we compute the stability threshold ratio of firms in the polar
case of β̄A = 0 and β̄J = 1: it is easy to see that in this case it equals 1/δ, therefore
when δ = 2 there is a threshold of 50% separating the stable and the unstable regimes
when firms are only either static or myopic (i.e. when the gain αi is either 0 or 1).
Remarkably, the value of δ = 2 can be described as a central value also for other
reasons, as we show in Section 5.
To make these points more persuasive, though, it is worth developing more care-

fully on the issue of market integration.

3.1 Market integration

Suppose two markets that were previously independent are aggregated. Assume
that demand and supply are both strictly monotone in both markets so that the
equilibrium price in the integrated market will be intermediate between the two
original equilibria. The two markets are characterised by the vectors of parameters¡
β̄A, δA,ΨA

¢
,
¡
β̄B, δB,ΨB

¢
. Let p∗A < p∗B be the market equilibria defined by supply

and demand. The aggregated market will have
¡
β̄, δ, p∗,Ψ

¢
where Ψ = ΨA + ΨB,

β̄ = ΨA

Ψ
β̄A +

ΨB

Ψ
β̄B, and p∗A < p∗ < p∗B. In general allowing for different demand

and supply functions in the two original markets implies δ = −ΨAs
0
A(p

∗)+ΨBs
0
B(p

∗)
D0
A(p

∗)+D0
B(p

∗)

which does not trivially compare with δA and δB. However, assuming linear demand
functions DA (·) and DB (·) with slopes D

0
A and D0

B and a common linear s (·) with
slope s0 we have δA = −ΨAs

0

D0
A
, δB = −ΨBs

0

D0
B
and

δ = −ΨAs
0 +ΨBs

0

D0
A +D0

B

=
1

ΨA

Ψ
1
δA
+ ΨB

Ψ
1
δB

.

Hence

β̄δ =

µ
ΨA

Ψ
β̄A +

ΨB

Ψ
β̄B

¶
1

ΨA

Ψ
1
δA
+ ΨB

Ψ
1
δB

T
ΨA

Ψ
1
δA
+ ΨB

Ψ
1
δB

ΨA

Ψ
1
δA
+ ΨB

Ψ
1
δB

= 1

if β̄AδA T 1, β̄BδB T 14. Therefore, under such strong assumptions things remain
very similar to our comparative statics scenario above: stability (resp. instability)
of the integrated market immediately follows from stability (resp. instability) of the
original ones. It is nevertheless worth remarking that this needs not be the case if
less is assumed about the demand and the supply functions. Here is an example in
which stability in the original markets is not robust to market integration (see Figure
1):

S (p) = tanh (p− 1) + 1 DA (p) =
9−5 ln 2
10
− 1

2
p DB (p) =

21+5 ln 2
10

− 1
2
p

p∗A = 1− ln 2 p∗B = 1 + ln 2 p∗ = 1

δA = δB = 2S
0 (1− ln 2) = 32

25
δ = 2S0(1)

1
2
+ 1
2

= 2 β̄A = β̄B =
5
8

4Observe that this reflects a well known equality involving arithmetic and harmonic means.
Namely, that the harmonic mean of given non-zero numbers a1, . . . , an times the arithmetic mean
of a−11 , . . . , a−1n equals 1. See e.g. Hardy et al. [13], p. 14.
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⇒ δAβ̄A = δBβ̄B =
4

5
< 1 < δβ̄ =

5

4
.

Figure 1: Stability for markets considered separately is lost under aggregation.

Analogous examples where unstable markets integrate into a stable larger market
can also be given. One may wonder whether the result in our example is driven by
the change of concavity in the supply. To clarify this point we focus on the case
where demand and supply in the two original markets, A and B, differ only by a
scale factor. So we have

SA (·) = ΨAs (·) , DA (·) = ΘAd (·)
SB (·) = ΨBs (·) , DB (·) = ΘBd (·)

with s0 (·) > 0 and d0 (·) < 0. As before

δA = −
ΨA

ΘA

s0 (p∗A)

d0 (p∗A)
, δB = −

ΨB

ΘB

s0 (p∗B)

d0 (p∗B)

Proposition 5 Assume that δAβ̄A < 1, δBβ̄B < 1 and ΨA

ΘA
> ΨB

ΘB
. If either

s0 (p) d00 (p)− s00 (p) d0 (p) ≥ 0 ∀p ∈ [p∗A, p∗B] ∧ ΨA/ΘA

ΨB/ΘB
δBβ̄A < 1 (6)

or, alternatively

s0 (p) d00 (p)− s00 (p) d0 (p) ≤ 0 ∀p ∈ [p∗A, p∗B] ∧ ΨB/ΘB

ΨA/ΘA
δAβ̄B < 1 (7)

then δβ̄ < 1 and hence stability carries through to the integrated market.

The above proposition shows some of the possible extra requirements that guar-
antee that stability be robust to market integration. A case in which things are easy
is when d (p) = p−k, s (p) = ph, k, h > 0 because δ is a constant equal to h

k
.
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Observe that the assumption s0 (p) d00 (p) − s00 (p) d0 (p)
(≤)
≥ 0, which ensures that

the price equilibrium map is monotone, is the same as d00 (p) /d0 (p)
(≥)
≤ s00 (p) /s0 (p)

which in turn means that the elasticity of d0 (p) has to be smaller (larger) than
the elasticity of s0 (p). Further, notice the role played by each market’s specific

parameters in the technical condition ΨA/ΘA

ΨB/ΘB
δBβ̄A < 1

³
ΨB/ΘB

ΨA/ΘA
δAβ̄B < 1

´
, which

imposes a cross-market constraint on the parameters compatible with persistence of
stability under aggregation.

4 Speed of convergence and cobweb phenomena

When the steady state is locally stable it is interesting to look for more insights
about the path of convergence to the equilibrium. The persistent fluctuating pat-
tern of prices in specific agricultural markets, originally attracted the attention of
the economics profession in the 1930s and propelled the development of the cobweb
literature. Such ongoing phenomena of recurring price oscillations, which fully re-
tain their interest, prompt us to identify conditions under which our model implies
oscillatory dynamics, in particular along converging paths.
First observe that the model allows both for monotone and for non-monotone

convergence, depending on the parameters values.

Proposition 6 The system (2) shows monotonic local convergence to the steady
state if and only if

Pn
i=1 φi

αi
(1−αi) <

1
δ

Notice that the left hand side of the above inequality tends to 0 with the αi, so
monotone convergence is always possible independently of the market’s structural
degree of instability level. Furthermore, as the greatest eigenvalue cannot exceed 1,
the robustness of the market stability to parameters perturbations is stronger when
convergence is monotone and also, due to Proposition (4), it increases when the αi

decrease. On the contrary, the speed of convergence5 to the steady state is higher
when convergence is non-monotone as stated in the following Proposition:

Proposition 7 For the system (2), with largest and smallest eigenvalues λmax and
λmin of the Jacobian (4), the speed of convergence to the steady state is maximised
only if λmax = −λmin.
Notice that the above symmetry condition on the largest and smallest eigenvalues

is necessary but it is not sufficient.
In order to fully characterise parametric configurations that maximise the speed

of convergence a few more steps are required. First remark that, if both gain para-
meters and firms’ weights are variable, then the problem of maximising the speed of
convergence is unbounded. Indeed, to see this consider the following case

φ1 = 1− ε, α1 =
1

1 + δ

φ2 = · · · = φn =
ε

n− 1 , α2 = · · · = αn = 1− ε

5We define Speed of Convergence to the steady state the quantity σ = − ln (ρ (Jn)), where ρ (Jn)
is the spectral radius of the Jacobian matrix (4).
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implying that, as ε→ 0 the Jacobian matrix approaches the following⎛⎜⎜⎜⎝
0 0 · · · 0
−δ 0 · · · 0

· · · · · · . . . · · ·
−δ 0 · · · 0

⎞⎟⎟⎟⎠
for which the speed of convergence is unbounded.
Suppose instead that market shares are equal to 1/n. In this case we prove that

the configuration of gain parameters that maximises the speed of convergence is
homogeneous.

Proposition 8 If φ1 = · · · = φn = 1/n then the maximum speed of convergence to
the steady state is ln

¡
δ+2
δ

¢
and it is attained if and only if α1 = · · · = αn =

2
δ+2
.

5 Implications of firms’ number and composition
on the probability of stability

In the kind of markets we have in mind, heterogeneity has to do with the number of
different types of firms operating in the market; in turn different firms are charac-
terised by a different behavioural degree of instability, βi. Therefore the number of
firms in the market is a rough measure of heterogeneity. If the level of heterogeneity
and/or the firms’ composition in the market changes as a result of policies or exoge-
nous structural breaks, what kind of consequences are to be expected on the system’s
stability? Knowing little (or nothing) about the nature of the process, we can make
inferences on the behavioural characteristic of the firms entering the market under
reasonable assumptions on the distribution of characters in the whole population.
Consider, for example, a market with a representative firm. Suppose that its

behavioural parameter β is unknown and that it can be considered as the realization
of a random variable uniformly distributed on the unit interval, U (0, 1). Stability is
warranted in this case if δβ < 1 (see (3)), so the probability of such event, for a given
structural degree of instability δ > 1, will be

R 1/δ
0

dx = 1
δ
. One may wonder how this

probability will be affected if n > 1 or more in general if n varies. We shall define a
stable sample of behavioural parameters as one entailing the corresponding system
(2) has a locally stable steady state (p∗), which means, thanks to the characterisation
provided by Proposition 2, that δβ̄n < 1. We look for the probability of drawing
a stable sample as a function of δ, for a given n. Assuming that the βi are drawn
independently from U (0, 1) the expected value of β̄n is 1/2. This means the value
δ = 2 makes the expected value of δβ̄n equal 1. But because the distribution of β̄n is
symmetric the probability of a stable sample when δ = 2 is exactly 1/2. Notice that
in this case using the known form of the density for β̄n, fn (x), we can write down
the explicit probability functions for any n, mapping values of δ with the probability
of a stable sample:

Pn (δ) =

Z 1/δ

0

fn (x) dx (8)
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so we can write the probability functions explicitly6. These functions are obviously
decreasing in δ. Figure 2 depicts such functions for various n. Notice that hetero-
geneity appears to have a stabilising/destabilising impact depending on whether δ is
less/more than a critical value (2 in this case). Some sort of polarization effect seems
to be at work. Indeed we show that both these observations generalise easily be-
yond this example based on the uniform distribution. First, because of the stability
condition δβ̄n < 1, the probability of a stable n-sample is the probability of having
β̄n < 1/δ, which decreases with δ irrespective of the population distribution. Sec-
ond, we show that polarization is robust, using an argument based on what happens
taking the limit for n→∞ in a fairly general setting.

Proposition 9 Let fn (x) the density for β̄n as the result of sampling the βi from
some distribution over the unit interval with E

¡
β̄n
¢
= β̄, and Pn (δ) the probability

of a stable sample. As n→∞, Pn (δ) converges pointwise to

P∞ (δ) =

½
1 if 1 < δ < 1/β̄
0 if δ ≥ 1/β̄

The above proposition entails that increasing n has the effect of making stability
or instability (depending on δ) more and more likely. Figure 2 witnesses this fact
quite clearly.

Figure 2: Probability of a stable sample of betas.

6The density takes the form
n
k=0(−1)

k(nk)(x−k)
n−1sign(x−k)

2(n−1)! . So, for example, for n = 2, 3, 4

we have P2 (δ) =
½ −2+4δ−δ2

δ2
if 1 < δ ≤ 2

2
δ2

if δ > 2
, P3 (δ) =

⎧⎨⎩
9−27δ+27δ2−7δ3

2δ3
if 1 < δ ≤ 3/2

−18+27δ−9δ2+δ3
2δ3

if 3/2 < δ ≤ 3
9
2δ3

if δ > 3

,

P4 (δ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−32+128δ−192δ2+128δ3−29δ4

3δ4
if 1 < δ ≤ 4/3

192−512δ+480δ2−176δ3+23δ4
6δ4

if 4/3 < δ ≤ 2
−192+256δ−96δ2+16δ3−δ4

6δ4
if 2 < δ ≤ 4

32
3δ4

if δ > 4

12



Another example, useful to illustrate the polarization effect, is as follows: imagine
to draw a sample of n values for the αi. The expected value of β̄n in this case is

E
³Pn

i=1 φi
αi
2−αi

´
=
Pn

i=1 φiE
³

αi
2−αi

´
=
R 1
0

αi
2−αidαi = ln 4 − 1 ' 0.39 which shows

that sampling these behavioural parameters instead of the instability degrees returns
a distribution for β̄n more geared towards low values. In principle it would be possible
to work out the distribution for β̄n, just as above: since it does not add much insight
(while the algebra is more tedious), we just provide a (numerically obtained) picture
similar to the first example, in Figure 3.

Figure 3: Probability of a stable sample of alphas.

6 Conclusions

We have analysed the dynamic consequences of expectations heterogeneity in a fairly
general cobweb model with n firms, each resorting to adaptive expectations with
a specific gain parameter. The concepts of structural and behavioural degree of
instability were introduced to distinguish the different possible sources of failures to
converge to the unique steady state in the model. In particular the behavioural degree
of instability depends exclusively on the sensitivity of firms’ expectations. Stability is
shown to obtain if and only if the product of the two sources of instability is less than
one. Within the model, we have clarified how marketwise outcomes are grounded
in individual firms’ characteristics and how a representative agent assumption can
inaccurately predict a stable outcome when the whole heterogeneous picture implies
otherwise. Conditions that make stability robust to market aggregation are provided
and the speed of convergence to the steady state for stable configurations has been
investigated. Finally we have studied a simple model of random selection of firms
that takes into account the difficulty of observing individual expectations reliably and
directly; our setup allows us to calculate the probability of a stable outcome, given
the number of firms and the structural degree of instability. A form of polarization
is documented, by which when the number of firms is large, stability most likely

13



obtains for levels of the structural degree of instability up to a certain threshold,
while instability is almost certain past the threshold.

7 Appendix

Proof of Lemma 1.
i) Consider first the simpler case in which c1 = · · · = cn = 1. Observe that

detM = detN

N =

⎛⎜⎜⎜⎝
a1 + b1 −b1 · · · −b1
a2 b2 · · · 0
...

...
. . .

...
an 0 · · · bn

⎞⎟⎟⎟⎠
whereN is obtained fromM subtracting its first column from the remaining columns.
The equality of the two determinants stems from multilinearity in columns. Devel-
oping the determinant of N along the first column clearly shows that it is linear in
each ai. As a consequence, expressing detM as sum of products along permutations
of the column indices, the only terms that do not cancel out are contained in the
product of terms along the diagonal (any other permutation contains products of the
type aiaj, i 6= j. Eliminating terms that involve such products between different ai’s
from the product along the diagonal gives the required result. Now let

A =

⎛⎜⎜⎜⎝
a1 a1 · · · a1
a2 a2 · · · a2
...

...
. . .

...
an an · · · an

⎞⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎝
b1 0 · · · 0
0 b2 · · · 0
...

...
. . .

...
0 0 · · · bn

⎞⎟⎟⎟⎠ , C =

⎛⎜⎜⎜⎝
c1 0 · · · 0
0 c2 · · · 0
...

...
. . .

...
0 0 · · · cn

⎞⎟⎟⎟⎠
For values of the ci 6= 1 the same results applies remarking that

M = AC +B =
¡
A+BC−1

¢
C

therefore detM =

Ã
nQ
i=1

bi
ci
+
Pn

i=1 ai
Q
j 6=i

bj
cj

!
nQ
i=1

ci =
nQ
i=1

bi +
Pn

i=1 ciai
Q
j 6=i

bj as stated.

ii) Using i) the characteristic polynomial of M writes as

P (λ) =
nY
i=1

(bi − λ) +
nX
i=1

ciai
Y
j 6=i
(bj − λ)

Suppose that b1 > b2 > · · · > bn. Then

n even ⇒ P (b1) > 0, P (b2) < 0, . . . , P (bn) < 0 (9)

n odd ⇒ P (b1) < 0, P (b2) > 0, . . . , P (bn) < 0

Therefore P (λ) has n−1 real roots and hence n real roots. Suppose more in general
that the set of bis is as follows:⎧⎨⎩b1, . . . , b1| {z }

n1 times

, b2, . . . , b2| {z }
n2 times

, . . . , bm, . . . , bm| {z }
nm times

⎫⎬⎭
14



with
Pm

j=1 nj = n. Let also k1 = {1, . . . , n1} , k2 = {n1 + 1, . . . , n1 + n2} , . . . , km =nPm−1
j=1 nj + 1, . . . , n

o
and āi =

P
j∈ki cjaj. Then

P (λ) =
mY
i=1

(bi − λ)ni +
nX
i=1

āi (bi − λ)ni−1
Y
j 6=i
(bj − λ)nj (10)

=
mY
i=1

(bi − λ)ni−1
Ã

mY
i=1

bi +
nX
i=1

āi
Y
j 6=i
(bj − λ)

!
≡ P1 (λ)P2 (λ)

where, counting multiplicity, P1 (λ) has n−m real roots and P2 (λ) has m real roots
(this stems from what we showed for the case of distinct bis).
iii) and iv) From (10) we have that n−m eigenvalues take values in {bi}i=1,...,n. Also,
from (9), it follows that m− 1 eigenvalues belong to (bn, b1). Finally, as P (bn) < 0
and limλ→−∞ P (λ) = +∞, the remaining root of P (λ) must be smaller than bn and
therefore it is greater than −1 if and only if P (−1) > 0.
Proof of Proposition 2. Recalling that Jacobian (4) is a particular specification
of matrix (5) with ai = −αi, bi = 1 − αi, ci = φiδ, Lemma 1 part iv) states that
local stability is equivalent to having the characteristic polynomial positive when
evaluated at −1, P (−1) > 0. In the case of matrix Jn we have

Pn (−1) =
nY

j=1

(2− αj)− δ
nX
i=1

αiφi
Y
j 6=i
(2− αj)

=
nY

j=1

(2− αj)

Ã
1− δ

nX
i=1

φi
αi

2− αi

!

=
nY

j=1

(2− αj)
¡
1− δβ̄n

¢
which is positive if and only if δβ̄n < 1.
Proof of Proposition 3. Stability conditions for the two cases (see Proposition
2) imply:

nX
i=1

φi
αi

2− αi
<
1

δ
for the heterogeneous marketPn

i=1 φiαi

2−
Pn

i=1 φiαi
<
1

δ
for the homogeneous market

Observe that the function f (x) = x
2−x is strictly convex in [0, 1] so necessarilyPn

i=1 φiαi

2−
Pn

i=1 φiαi
<

nX
i=1

φi
αi

2− αi

which gives the desired result.
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Proof of Lemma 4. Consider the derivative with respect to αi of the characteristic
polynomial,

∂P (λ)

∂αi
=

∂

∂αi

Ã
nY

j=1

(1− αj − λ)−
nX

k=1

αkφkδ
Y
j 6=k
(1− αj − λ)

!
= −

Y
j 6=i
(1− αj − λ)− φiδ

Y
j 6=i
(1− αj − λ) +

X
k 6=i

αkφkδ
Y
j 6=k,i

(1− αj − λ)

Recall that, given Lemma 1 iii), for all i, λmin < 1 − αi while λmax ≤ 1 − αmin.
Whenever λ 6= 1− αi

∂P (λ)

∂αi
= −

nQ
j=1

(1− αj − λ)

(1− αi − λ)
− φiδ

Y
j 6=i
(1− αj − λ) +

P
k 6=i

αkφkδ
Q
j 6=k
(1− αj − λ)

(1− αi − λ)

= −

nQ
j=1

(1− αj − λ)−
nP

k=1

αkφkδ
Q
j 6=k
(1− αj − λ)

(1− αi − λ)
−
µ
1 +

αi

1− αi − λ

¶
φiδ
Y
j 6=i
(1− αj − λ

= − P (λ)

(1− αi − λ)
−
µ
1 +

αi

1− αi − λ

¶
φiδ
Y
j 6=i
(1− αj − λ)

So evaluating the derivative at λmin, we have

∂P (λ)

∂αi

¯̄̄̄
λ=λmin

= −
µ
1 +

αi

1− αi − λmin

¶
φiδ
Y
j 6=i
(1− αj − λmin) < 0

as P (λmin) = 0 and, due to part iii) of Lemma 1, (1− αj − λmin) > 0 for all j.
Finally, because limλ→−∞ P (λ) = +∞ the result follows from the intermediate value
theorem. Besides, at λmax, we have

∂P (λ)

∂αi

¯̄̄̄
λ=λmax

= −
µ
1 +

αi

1− αi − λmax

¶
φiδ
Y
j 6=i
(1− αj − λmax)

> 0 if n is even
< 0 if n is odd

due to Lemma 1 iii) and λmax 6= 1 − αi. Again, because limλ→+∞ P (λ) = (−1)n∞
the result follows from the intermediate value theorem. It remains to consider the
case λmax = 1− αmin. If αi 6= αmin then trivially

∂P (λ)

∂αi

¯̄̄̄
λ=λmax

= 0

Otherwise if αi = αmin the result directly follows from part iii) of Lemma 1.
Proof of Proposition 5. Notice: ΨA

ΘA
> ΨB

ΘB
⇒ ΨB

ΘB
< ΨA+ΨB

ΘA+ΘB
< ΨA

ΘA
; also

p∗A < p∗ < p∗B. Assumptions in (6) imply thatµ
−s

0 (p)

d0 (p)

¶0
=
−s00 (p) d0 (p) + s0 (p) d00 (p)

(d0 (p))2
≥ 0
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As a result

δβ̄ = −

³
ΨA+ΨB

ΘA+ΘB

´
s0 (p∗)

d0 (p∗)

µ
ΨA

Ψ
β̄A +

ΨB

Ψ
β̄B

¶
≤

µ
ΨA +ΨB

ΘA +ΘB

¶µ
−s

0 (p∗B)

d0 (p∗B)

¶µ
ΨA

Ψ
β̄A +

ΨB

Ψ
β̄B

¶
=

µ
ΨA

ΘA +ΘB
β̄A

¶µ
−s

0 (p∗B)

d0 (p∗B)

¶
+

µ
ΨB

ΘA +ΘB
β̄B

¶µ
−s

0 (p∗B)

d0 (p∗B)

¶
=

ΘA

ΘA +ΘB

µ
ΨA

ΘA
β̄A

¶µ
−s

0 (p∗B)

d0 (p∗B)

¶
+ δBβ̄B

ΘB

ΘA +ΘB

<
ΘA

ΘA +ΘB
+

ΘB

ΘA +ΘB
= 1

The proof under the alternative assumptions in (7) is identical.
Proof of Proposition 6. Following the same argument in the proof of part iv) of
Lemma 1, λmin is greater than 0 if and only if the characteristic polynomial, P (λ),
is positive at λ = 0. As

P (0) =
nY
i=1

(1− αi)−
nX
i=1

αiφiδ
Y
j 6=i
(1− αj) =

nY
i=1

(1− αi)

Ã
1−

nX
i=1

αiφiδ

(1− αi)

!

we have P (0) > 0 if and only if

nX
i=1

φi
αi

(1− αi)
<
1

δ

Proof of Proposition 7. Suppose for example that λmax > −λmin. Then, using
Lemma 4, for a small enough increase of a suitably chosen αi both λmax and λmin
decrease so that the speed of convergence actually rises. The case λmax < −λmin is
analogous.
Proof of Proposition 8. Consider first a homogeneous configuration α1 = · · · = αn = α:
in such case

P (λ) = (1− α− λ)n − αδ (1− α− λ)n−1

= (1− α− λ)n−1 (1− α− λ− αδ) = 0

⇒ λmax = 1− α, λmin = 1− α− αδ

Due to Proposition 7, optimality requires λmax = −λmin which implies 1 − α =
−1+α+αδ, that is α = 2

δ+2
and λmax = −λmin = δ

δ+2
. Consider now a non-constant

configuration for the αi: surely it cannot be the speed of convergence maximizer
if αi ≤ 2

δ+2
(αi ≥ 2

δ+2
) for all i, since in that case, due to Lemma 4, it would be

λmax >
δ

δ+2
(λmin < − δ

δ+2
). Also, there cannot be αi ≤ αj <

2
δ+2

or αi < αj ≤ 2
δ+2

for otherwise λmax > δ
δ+2
, as a consequence of Lemma 1. So the only admissible

configuration of non-constant αi has the form α1 < 2
δ+2

< α2 ≤ · · · ≤ αn. First
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consider the case of only two different values of α, α1 < 2
δ+2

< α2 = · · · = αn. In
this case the characteristic polynomial is

Pn (λ) = (1− α2 − λ)n−2 P2 (λ)

where

P2 (λ) =

µ
(1− α1 − λ) (1− α2 − λ)− δ

n
α1 (1− α2 − λ)− n− 1

n
δα2 (1− α1 − λ)

¶
coincides with the characteristic polynomial of the matrixµ

1− α1
¡
1 + δ

n

¢
−α1 δn

−α2 n−1n δ 1− α2
¡
1 + n−1

n
δ
¢ ¶ (11)

corresponding to a two-firms market with shares equal to 1
n
and n−1

n
. Due to the

particular ordering of the αi, the two roots of P2 (λ) are λmin and λmax for Pn (λ).
To minimize the spectral radius, it is necessary that λmax = −λmin (see Proposition
7) and hence the trace of the matrix in (11) must be equal to 0. So the problem (in
the closure of the admissible region) reduces to⎧⎪⎪⎨⎪⎪⎩

minα1,α2 −
¡
1− α1

¡
1 + δ

n

¢¢ ¡
1− α2

¡
1 + n−1

n
δ
¢¢
+
¡
α1

δ
n

¢ ¡
α2

n−1
n
δ
¢

s.t.
1− α1

¡
1 + δ

n

¢
+ 1− α2

¡
1 + n−1

n
δ
¢
= 0

0 ≤ α1 ≤ 2
δ+2
≤ α2 ≤ 1

whose solution is α1 = α2 =
2

δ+2
. We finally show that a configuration with three

or more different values for the αi cannot be optimal. Indeed let α1 < α2 < α3 and
λmax = −λmin. Using the Implicit Function Theorem we have

∂λ

∂αi
= −

∂P (λ)
∂αi

∂P (λ)
∂λ

in which the denominator is the same for all i. Further, because

∂P (λ)

∂αi
= − 1− λ

(1− αi − λ)2
δ

n

Y
j

(1− αj − λ)

it is ¯̄̄̄
∂λmin
∂α1

¯̄̄̄
<

¯̄̄̄
∂λmin
∂α2

¯̄̄̄
<

¯̄̄̄
∂λmin
∂α3

¯̄̄̄
(12)¯̄̄̄

∂λmax
∂α2

¯̄̄̄
>

¯̄̄̄
∂λmax
∂α3

¯̄̄̄
(13)

From Proposition 4 we know that increasing (decreasing) an αi reduces (increases)
both λmin and λmax: therefore a sufficiently small increase in α2 and an equal decrease
in α3 will increase the speed of convergence.
Proof of Proposition 9. The strong law of large numbers shows that Pr

¡
limn→∞ β̄n = β̄

¢
=

1 so Pr
¡
limn→∞ δβ̄n = δβ̄

¢
= 1 and therefore, for any δ > 1, Pr

¡
limn→∞ δβ̄n < 1

¢
=½

1 if 1 < δ < 1/β̄
0 if δ ≥ 1/β̄ .
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