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Abstract

In this paper we characterize metric spaces used in Beardon’s generalization of Arrow-
Hahn utility representation method as generalized Peano continua. For continuous prefer-
ence relations defined on such metric spaces, we further construct an upper semi-continuous
utility function which explicitly depends on the distance.
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1 Introduction

A binary relation � defined on a set X is called a preference relation on X if it is transitive and
complete. Given a preference relation � on X and x1, x2 ∈ X, we write x2 � x1, if x2 � x1

and x1 6� x2, while we write x2 ∼ x1, if x2 � x1 and x1 � x2. A function u : X → R is called
utility function representing � if, for every x1, x2 ∈ X, x2 � x1 if and only if u(x2) ≥ u(x1).

When X is endowed with a topology τ , an interesting and widely studied problem is to find
conditions on τ and � which imply the existence of continuous utility functions. Of course a
necessary condition is that � is continuous, that is, for every x ∈ X,

C+(x) = {y ∈ X : y � x} is closed,

and
O+(x) = {y ∈ X : y � x} is open.

Given a continuous preference relation � on a topological space (X, τ), a continuous represen-
tation of it can be found if either (X, τ) is second countable (see [7], Proposition 3) or (X, τ)
is separable and connected (see [8], Statement 6, p. 43) or (X, τ) is separable and locally
connected (see [6], Theorem 1) or (X, τ) is path-connected and � is countably bounded (see
[13], Theorem 3). We point out that all the above quoted results concern the existence of
continuous utility functions but do not provide any effective way of constructing them.
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On the contrary, the so-called Euclidean distance approach allows the construction of a
utility function from the preference relation in a simpler and more explicit way (see [1] for
detailed information and further references on the topic). This method was first introduced
by Arrow and Hahn (see [2], pp. 82-87) to find a lower semi-continuous (but not necessarily
continuous) utility function for continuous preference relations defined on convex and closed
subsets of a Euclidean space. The upper semi-continuity can be obtained by assuming that
the preference relation is locally non-satiated.

Beardon in [3] shows that such a method continues to work in a more general setting in
which, as the author emphasizes, “no assumption about convexity, linear spaces, connectedness
is made” (see [3], p. 370). In fact, he proves that Arrow and Hahn’s approach provides a
lower semi-continuous (but not necessarily continuous) utility function whenever the preference
relation is continuous and defined on a metric space whose metric satisfies the following two
properties

every closed ball is compact,1 (1)

if x1, x2 ∈ X with x1 6= x2, then each neighbourhood of x2

contains a point closer to x1 than x2.
(2)

Moreover, in this setting too, local non-satiation implies upper semi-continuity of the utility
function.

The proof of this result follows the main steps of Arrow and Hahn’s proof. First it is
proved that the restriction of the preference relation to any closed upper contour set C+(x)
can be represented by a utility function defined via a simple formula involving the distance
(see [3], Lemma 3). Then, by a suitable extension procedure, a utility function on the whole
space is obtained by the utility functions previously constructed (see [3], Theorem 1).

The description of the Euclidean distance approach mentioned above surely suggests some
issues. First of all, as pointed out by Bridges and Mehta, “bearing in mind that we expect a
consumer to seek consumption bundles that maximize the value of his utility function (subject
to budgetary constraints), we would prefer to construct a utility function that is upper, rather
than lower, semi-continuous” (see [5], pp. 28-29). Moreover, as underlined by Alcantud and
Mehta in [1], the extension procedure used in [2] and [3] vitiates the distance approach because
it does not allow to have a utility function directly defined in terms of distance. Finally the
properties of metric spaces whose distance satisfies (1) and (2) should be carefully analyzed.

Moving from the above considerations, in the first part of the paper we provide a char-
acterization of the metric spaces considered by Beardon and we show that (1) and (2) imply
several topological properties. In fact in Theorem 1 we prove that a topological space (X, τ)
admits a distance which induces τ and satisfies (1) and (2) if and only if it is a generalized
Peano continuum, that is, a locally compact, locally connected, connected and metrizable
topological space. Furthermore we show that such topological spaces always admit a convex
metric which satisfies (1) and (2) and preserves the original topology. These facts stress, in
particular, that connectedness of the space is implicitly used in Beardon’s representation the-
orem and suggest that such a topological property has an important role in the construction
of the utility function through the distance.

In the second part of the paper, we consider continuous preference relations defined on a
metric space satisfying (1) and (2) and we propose a simple formula in terms of distance that

1Sometimes metric spaces whose closed balls are compact are called proper metric spaces.
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defines an upper semi-continuous (but not necessarily continuous) utility function. Further-
more we find conditions on the preference relations in order to obtain continuity, as well.

We note that, within the Euclidean distance approach, Bridges and Mehta propose a way to
construct an upper semi-continuous representation of a continuous preference relation defined
on a closed and convex subset of a Euclidean space (see [5], Theorem 2.1.6). However the
utility function they construct is obtained by an extension procedure that makes that function
not directly depend on the distance. Finally Alcantud and Mehta in [1] consider continuous
preferences on a proper open convex subset X of a Banach space. In that framework they
prove that, under technical assumptions, the function that assigns to each element x of X the
distance of C+(x) from a fixed element in the complement ofX is continuous and represents the
given preference (see [1], Theorems 1, 2, 3). It is an open problem to understand the relation
between the methods developed by Alcantud and Mehta and the results of the present paper.

2 Topological results

Let (X, d) be a metric space. In what follows by B(x, r) and B[x, r] we mean the open ball
and the closed ball of center x ∈ X and radius r > 0, that is,

B(x, r) = {y ∈ X : d(x, y) < r}, B[x, r] = {y ∈ X : d(x, y) ≤ r}.

For A ⊆ X, we denote by A the closure of A. For every nonempty set A ⊆ X and x ∈ X by
d(x,A) we denote the distance between x and the set A, that is

d(x,A) = inf{d(x, y) : y ∈ A}.

Note that d(x,A) = d(x,A) and that A ⊆ B implies d(x,A) ≥ d(x,B). Moreover if A is
compact then the distance is really obtained, that is, there exists a ∈ A such that d(x,A) =
d(x, a).

A Peano continuum is a compact, locally connected, connected and metrizable topological
space. A generalized Peano continuum is a locally compact, locally connected, connected and
metrizable topological space. A metric d on X is called convex if, for every x, y ∈ X, x 6= y,
there exists z ∈ X such that

d(x, z) + d(y, z) = d(x, y) and x 6= z 6= y,

while is called segmented convex if, for every x, y ∈ X, x 6= y, there exists [t1, t2] ⊆ R and an
isometry γ : [t1, t2] → X such that γ(t1) = x and γ(t2) = y. A metric d is complete if the
metric space (X, d) is complete. Any segmented convex metric is convex and any complete
convex metric is segmented convex (see [11]).

Menger [11] has raised the question whether for every Peano continuum it is possible to
define a convex metric preserving the original topology. The affirmative answer to this question
was given by Bing [4] and Moise [12]. Later on, Tominaga and Tanaka [15] gave an affirmative
answer to Menger’s question for generalized Peano continua as well.

The following theorem shows that assumptions (1) and (2) on d are equivalent to assume
that the metric space (X, d) is a generalized Peano continuum.

Theorem 1. Let (X, τ) be a topological space. Then the three following conditions are equiv-
alent:
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a. (X, τ) is a generalized Peano continuum,

b. there exists a complete convex metric d on X satisfying (1) and (2) which induces τ ,

c. there exists a metric d on X satisfying (1) and (2) which induces τ .

Proof. a⇒ b. The existence of a complete convex metric d on X that preserves its topology
is given in [15]. The validity of (1) is given in [9]. The validity of (2) follows from the fact
that a complete convex metric is segmented convex.
b⇒ c. Straightforward.
c⇒ a. Let d be a metric which induces the topology τ and satisfies (1) and (2). Condition (1)
implies that (X, d) is locally compact. We claim that any closed ball in (X, d) is connected.
Suppose, by contradiction, that there exist x ∈ X and r > 0 such that B[x, r] is not connected.
Then there exist Y,Z open subsets of B[x, r] such that Y,Z 6= ∅, Y ∩ Z = ∅ and Y ∪ Z =
B[x, r]. Of course Y,Z are closed subsets of B[x, r] too. Then we can find Y op, Zop open
subsets of X and Y cl, Zcl closed subsets of X such that

Y = Y op ∩B[x, r] = Y cl ∩B[x, r], Z = Zop ∩B[x, r] = Zcl ∩B[x, r].

Without loss of generality, we can assume x ∈ Y and then, since Y ∩Z = ∅, if z ∈ Z then z 6= x.
Note that, for every z ∈ Z, there exists z̃ ∈ Z such that d(x, z̃) < d(x, z). In fact if z ∈ Z,
then d(x, z) ≤ r and z ∈ Zop. By (2) there exists z̃ ∈ Zop such that d(x, z̃) < d(x, z) ≤ r. In
particular z̃ ∈ Z.

From (1) we have that Z = Zcl ∩ B[x, r] is compact and hence there exists z∗ ∈ Z such
that d(x, Z) = d(x, z∗). Since x 6∈ Z, d(x, z∗) > 0. However, there exists z̃ ∈ Z such that
d(x, z̃) < d(x, z∗), a contradiction which proves the claim.

The connectedness of closed balls immediately implies the connectedness of open balls and
of the whole space. Then (X, d) is connected, locally connected and locally compact and then
(X, τ) is a generalized Peano continuum.

Metric spaces whose metric is complete convex and satisfies (1), as in condition b of
Theorem 1, have many further properties. In particular, as it can be immediately proved,
these spaces are separable, second countable, σ-compact and arc-wise connected and, as
Mazurkiewicz proved in [10], they are continuous image of the half-line [0,∞). Moreover,
they are geodesic spaces, that is, there exists a geodesic path between any pair of distinct
points (see [14], Section 2.6).

3 On utility functions

Let � be a continuous preference relation on a metric space (X, d) and set, for every x ∈ X,

C−(x) = {y ∈ X : x � y}, O−(x) = {y ∈ X : x � y}.

Clearly C−(x) is closed and O−(x) is open. For every x ∈ X, we have

O+(x) ⊆ C+(x) and O−(x) ⊆ C−(x)

but, in general, equalities do not hold.
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We say that � is non-satiated on X if, for every x ∈ X, there exists x∗ ∈ X such that
x∗ � x, otherwise we say � is satiated on X. Moreover we say that � is locally non-satiated
(resp. locally non-hungry) at x ∈ X if, for every ε > 0, there exists x∗ ∈ B(x, ε) such that
x∗ � x (resp. x � x∗).

Theorems 2 and 3 below describe how to build an upper semi-continuous utility function
when the continuous preference relation is non-satiated and satiated respectively. The proof
of Theorem 3 is omitted as it is a simple modification of the original proof by Arrow and Hahn
(see [2], pp. 83-84).

Theorem 2. Let (X, d) be a metric space satisfying (1) and (2) and let � be a non satiated
continuous preference relation on X. Then, for every ξ ∈ X, the function uξ : X → R defined
as

uξ(x) =
{

d(ξ,O+(x)) if x ∈ C+(ξ),
−d(ξ, C−(x)) if x ∈ O−(ξ),

represents � and is upper semi-continuous. Moreover, if

for every x ∈ C+(ξ), � is locally non-satiated at x, (3)

for every x ∈ O−(ξ) ∪ {ξ}, � is locally non-hungry at x, (4)

then uξ is continuous.

Proof. First of all, note that the function uξ is well defined. In fact, for every x ∈ X, the set
O+(x) is nonempty as � is non-satiated and C−(x) is nonempty as it contains x. Moreover
(1) implies that, for every x ∈ X and for every nonempty closed set C ⊆ X, there exists
yC ∈ C such that d(x, yC) = d(x,C) and hence, for every x ∈ O−(ξ), uξ(x) < 0. Of course,
for every x ∈ C+(ξ), uξ(x) ≥ 0.

In order to prove that uξ represents �, let x1, x2 ∈ X. Assume first that x1 ∼ x2. If
x1, x2 ∈ C+(ξ) then, as O+(x1) = O+(x2), it follows uξ(x1) = uξ(x2). If instead x1, x2 ∈
O−(ξ) then, as C−(x1) = C−(x2), it follows uξ(x1) = uξ(x2).

Assume now that x1 � x2. If x1, x2 ∈ O−(ξ), then there exists y2 ∈ C−(x2) such that
uξ(x2) = −d(ξ, C−(x2)) = −d(ξ, y2). Hence x1 � x2 � y2 so that y2 ∈ O−(x1). By (2) there
exists y1 ∈ O−(x1) such that d(y1, ξ) < d(y2, ξ). As O−(x1) ⊆ C−(x1) we have d(ξ,O−(x1)) ≥
d(ξ, C−(x1)), hence

uξ(x2) = −d(ξ, y2) < −d(ξ, y1) ≤ −d(ξ,O−(x1)) ≤ −d(ξ, C−(x1)) = uξ(x1).

If x1, x2 ∈ C+(ξ), then there exists y1 ∈ O+(x1) ⊆ C+(x1) such that uξ(x1) = d(ξ,O+(x1)) =
d(ξ, y1). Then y1 � x1 � x2 and hence y1 ∈ O+(x2). By (2) there exists y2 ∈ O+(x2) such
that d(y2, ξ) < d(y1, ξ). Hence

uξ(x1) = d(ξ, y1) > d(ξ, y2) ≥ d(ξ,O+(x2)) = uξ(x2).

Finally if x1 ∈ C+(ξ) and x2 ∈ O−(ξ), we have uξ(x1) ≥ 0 and uξ(x2) < 0, thus uξ(x1) >
uξ(x2) and the proof that uξ represents � is complete.

In order to prove uξ is upper semi-continuous, let x ∈ X and let {xn}∞n=1 ⊆ X be a
sequence which converges to x and such that the limit of uξ(xn) as n goes to infinity exists
(finite or infinite). We have to prove that

uξ(x) ≥ lim
n→∞

uξ(xn). (5)
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Suppose first x ∈ O−(ξ). Without loss of generality we can assume that, for every n ∈ N,
xn ∈ O−(ξ). For every n ∈ N, there exists yn ∈ C−(xn) such that uξ(xn) = −d(ξ, C−(xn)) =
−d(ξ, yn). Since xn ∈ C−(xn) implies d(ξ, yn) ≤ d(ξ, xn) and since {xn}∞n=1 converges, we
have that the sequence {d(ξ, yn)}∞n=1 is bounded. By (1), the sequence {yn}∞n=1 admits a
subsequence {ynk

}∞k=1 which converges to, say, y. We know that, for every k ∈ N, ynk
∈

C−(xnk
), ynk

→ y and xnk
→ x. Then, the continuity of � implies y ∈ C−(x) and (5) follows

since

uξ(x) = −d(ξ, C−(x)) ≥ −d(ξ, y) = lim
k→∞

−d(ξ, ynk
) = lim

k→∞
uξ(xnk

) = lim
n→∞

uξ(xn).

Suppose now x ∈ C+(ξ). If for infinitely many n ∈ N, xn ∈ O−(ξ) then (5) follows immediately.
Without loss of generality, we can assume that xn ∈ C+(ξ) for every n ∈ N. We have
uξ(x) = d(ξ, y) for some y ∈ O+(x) and, for every ε > 0, there exists y∗ ∈ O+(x) such that
d(y, y∗) < ε. Clearly y∗ � x implies that, for every n large enough, y∗ � xn and

uξ(x) = d(ξ, y) ≥ d(ξ, y∗)− ε ≥ d(ξ,O+(xn))− ε = uξ(xn)− ε.

The above relation implies (5).
Assume now that (3) and (4) hold. In order to prove that uξ is lower semi-continuous, let

x ∈ X and let {xn}∞n=1 ⊆ X be a sequence which converges to x and such that the limit of
uξ(xn) as n goes to infinity exists (finite or infinite). We have to prove that

uξ(x) ≤ lim
n→∞

uξ(xn). (6)

Suppose first that x ∈ O−(ξ). Without loss of generality we can assume xn ∈ O−(ξ) for every
n ∈ N. We have uξ(x) = −d(ξ, y) for some y ∈ C−(x), and, from (4), for every ε > 0, there
exists y∗ ∈ X such that y � y∗ and d(y, y∗) < ε. Clearly x � y∗ and then xn � y∗ for every n
large enough. It follows

lim
n→∞

uξ(xn) ≥ uξ(y∗) = −d(ξ, C−(y∗)) ≥ −d(ξ, y∗) ≥ −d(ξ, y)− ε = uξ(x)− ε.

As ε is arbitrary (6) holds.
Suppose now x ∈ O+(ξ). Without loss of generality we can assume, for every n ∈ N, xn ∈

O+(ξ). Note that (3) implies that, for every y ∈ C+(ξ), O+(y) = C+(y) and hence uξ(x) =
d(ξ, C+(x)). For every n ∈ N, there exists yn ∈ C+(xn) such that uξ(xn) = d(ξ, C+(xn)) =
d(ξ, yn). Since xn ∈ C+(xn) implies d(ξ, yn) ≤ d(ξ, xn) and since {xn}∞n=1 converges, we have
that the sequence {d(ξ, yn)}∞n=1 is bounded. By (1) the sequence {yn}∞n=1 admits a subsequence
{ynk
}∞k=1 which converges to, say y. We know that, for every k ∈ N, ynk

∈ C+(xnk
), ynk

→ y
and xnk

→ x. Then the continuity of � implies y ∈ C+(x) and then (6) follows since

uξ(x) = d(ξ, C+(x)) ≤ d(ξ, y) = lim
k→∞

d(ξ, ynk
) = lim

k→∞
uξ(xnk

) = lim
n→∞

uξ(xn).

Suppose finally x ∈ C+(ξ) ∩ C−(ξ), that is, x ∼ ξ. Note that (3) implies uξ(x) = 0. If
for infinitely many n ∈ N, xn � x then (6) immediately follows. Consequently, without loss
of generality, we can assume that, for every n ∈ N, x � xn, that is, xn ∈ O−(ξ). Then, for
every n ∈ N, there exists yn ∈ C−(xn) such that uξ(xn) = −d(ξ, C−(xn)) = d(ξ, yn). From
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(4), for every ε > 0, there exists y ∈ X such that ξ � y and d(ξ, y) < ε. Since O+(y) is a
neighborhood of x, if n is large enough, then xn � y and

lim
n→∞

uξ(xn) ≥ uξ(y) = −d(ξ, C−(y)) ≥ −d(ξ, y) ≥ −ε.

Since uξ(x) = 0 and ε is arbitrary, (6) holds.

Theorem 3. Let (X, d) be a metric space satisfying (1) and (2) and � be a satiated continuous
preference relation on X. Then, for every ξ ∈ X such that, for every y ∈ X, ξ � y, the
function uξ : X → R defined, for every x ∈ X, as uξ(x) = −d(ξ, C−(x)) represents � and is
upper semi-continuous. Moreover if � is locally non-hungry at every point of X then uξ is
continuous.
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[6] J.C. Candeal - E. Induráin - G.B. Mehta, Utility functions on locally connected
spaces, J. Math. Econom., 40 (2004), 701-711.

[7] G. Debreu, Continuity properties of paretian utility, Internat. Econom. Rev., 5 (1964),
285-293.

[8] S. Eilenberg, Ordered topological spaces, Amer. J. Math., LXIII (1941), 39-45.

[9] A. Lelek - J. Mycielski, On convex metric spaces IV, Fund. Math., 61, (1967), 171-
176.

[10] S. Mazurkiewicz, Sur les lignes de Jordan, Fund. Math., 1 (1920), 166-209.

[11] K. Menger, Untersuchungen über allgemeine metrik, Math. Ann., 100 (1928), 75-163.

[12] E.E. Moise, Grille decomposition and convexification theorems for compact metric locally
connected continua, Bull. Amer. Math Soc., 55 (1949), 1111-1121.

[13] P.K. Monteiro, Some results on the existence of utility functions on path connected
spaces, J. Math. Econom., 16 (1987), 147-156.

7



[14] A. Papadopoulos, Metric spaces, convexity and nonpositive curvature, IRMA Lec-
tures in Mathematics and Theoretical Physics, 6. European Mathematical Society (EMS),
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