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Abstract

In this paper we use global analysis techniques to analyze an economic
growth model with environmental negative externalities, giving rise to a
three-dimensional dynamic system (the framework is the one introduced
by Wirl (1997)). The dynamics of our model admits a locally attracting
steady state P ∗1 , which is, in fact, a poverty trap, coexisting with another
steady state P ∗2 possessing saddle-point stability. Global dynamical anal-
ysis shows that, under some conditions on the parameters, if the economy
state variables are close enough to those of P ∗1 , then there exists a contin-
uum of equilibrium orbits approaching P ∗1 and one orbit approaching P ∗2 .
Therefore, our model exhibits global indeterminacy, since either P ∗1 or P ∗2
can be selected according to agent expectations. Furthermore, by numeri-
cal simulations, we show that some orbits approaching P ∗1 pass very close
to the locally determinate stationary state P ∗2 . So, our results suggest
that, in perfect foresight dynamical models, local stability analysis can be
misleading if it is not accompanied by global analysis.

Keywords: environmental externalities; indeterminacy; history ver-
sus expectations; global analysis of dynamic systems

JEL classification: C61, C62, E13, E32, O13

1 Introduction

As Krugman (1991) and Matsuyama (1991) pointed out in their seminal papers,
equilibrium selection in dynamic optimization models with externalities depends
on expectations; that is, given the initial values of the state variables (history),
the path followed by the economy is determined by the choice of the initial
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values of the jumping variables. This implies that expectations play a key role
in equilibrium selection and in fact global indeterminacy may occur: that is,
starting from the same initial values of the state variables, different equilibrium
paths can approach different ω-limit sets (for example, different steady states).
In this context, local stability analysis may be misleading, in that it refers
to a small neighbourhood of a stationary state, whereas the initial values of
jumping variables do not have to belong to such a neighbourhood. For example
(see Coury and Wen (2009)), it may happen that a locally determinate (i.e.
saddle-point stable) stationary state is surrounded by stable periodic orbits, so
that the economy can approach either the stationary state or the periodic orbits,
starting from the same initial values of the state variables.

Although some works on indeterminacy focus on global dynamics and stress
the relevance of global analysis (see, among the others, Christiano and Harrison
(1999), Pintus et al. (2000), Benhabib and Eusepi (2005), Wirl and Feichtinger
(2006), Benhabib et al. (2008), Mattana et al. (2008), Coury and Wen (2009)),
the literature on indeterminacy is almost exclusively based on local analysis,
due to the fact that dynamic models exhibiting indeterminacy are often highly
nonlinear and difficult to be analyzed globally.

The objective of our paper is to highlight the relevance of global indetermi-
nacy in a context in which economic activity depends on the exploitation of a
free access environmental resource.

We analyze a growth model with environmental externalities, giving rise to
a three-dimensional nonlinear dynamic system (the framework was introduced
by Wirl (1997)). In particular, we study the equilibrium growth dynamics of
an economy constituted by a continuum of identical agents. At each instant of
time t, the representative agent produces the output Y (t) by labour L(t), by
the accumulated physical capital K(t) and by the stock E(t) of a free-access re-
newable environmental resource. The economy-wide aggregate production Y (t)
negatively affects the stock of the environmental resource; however, the value
of Y (t) is considered as exogenously determined by the representative agent, so
that economic dynamics is affected by negative environmental externalities.1

We assume that the representative agent’s instantaneous utility, depending
on leisure 1 − L(t) and consumption C(t) of the output Y (t), is represented
by the function [C(1−L)ε]1−η−1

1−η , similar to those used, for example, by Ben-
nett and Farmer (2000), Mino (2001) and Itaya (2008). Moreover, we assume
that the production technology is represented by the Cobb-Douglas function
[K(t)]α [L(t)]β [E(t)]γ , with α + β < 1 and γ > 0.

In this context, we show that, if α+γ < 1, the dynamics can admit a locally
attracting stationary state P ∗1 = (K∗

1 , E∗
1 , L∗), in fact a poverty trap, coexisting

with another stationary state P ∗2 = (K∗
2 , E∗

2 , L∗), where K∗
1 < K∗

2 and E∗
1 < E∗

2 ,
possessing saddle-point stability.

1Environmental externalities can affect economic activities especially in developing coun-
tries, where property rights tend to be ill-defined and ill-protected, environmental institutions
and regulations are weak and natural resources are more fragile than in developed countries,
which are located in temperate areas instead than in tropical and sub-tropical regions (see
e.g. López (2003, 2007)).
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Global dynamical analysis shows that, under some conditions on the param-
eters, if the economy starts from initial values K0 and E0 sufficiently close to
K∗

1 and E∗
1 , then there exists a continuum of initial values L1

0 such that the
trajectory from (K0, E0, L

1
0) approaches P ∗1 and a locally unique initial value

L2
0 such that the trajectory from (K0, E0, L

2
0) approaches P ∗2 . Therefore our

model exhibits local indeterminacy (i.e. there exists a continuum of trajectories
leading to P ∗1 ), but also global indeterminacy, since either P ∗1 or P ∗2 may be
selected according to agent expectations. Along the trajectories belonging to
the basin of attraction of P ∗1 , over-exploitation of the natural resource drives
the economy towards a tragedy of commons scenario.

Furthermore, by means of numerical simulations, we show that the stable
manifold of the locally determinate point P ∗2 bounds the basin of attraction of
the locally indeterminate point P ∗1 , so that some orbits approaching P ∗1 pass
very close to P ∗2 . This implies that even if the economy starts near the locally
determinate point P ∗2 , it may approach the poverty trap P ∗1 ; this result is analo-
gous to the one obtained in Coury and Wen (2009), where global indeterminacy
is observed in a dynamic system with a unique locally determinate stationary
state.

Although our analysis focuses on global indeterminacy of dynamics, it also
gives sufficient conditions for local indeterminacy. There exists an enormous
literature on local indeterminacy in economic growth models. We don’t have
room in this article for a review, however we point out the place that our results
occupy in the current research.

Even if the main body of the literature on local indeterminacy concerns
economies with increasing social returns2, a growing proportion of articles deals
with models where indeterminacy is obtained under the assumption of social
constant return technologies. For example, Benhabib and Nishimura (1998 and
1999) find that indeterminacy may occur in multi-sector growth models with
social constant returns. They require relative factor intensities of the social
technologies involving externalities to be opposite to those of the private tech-
nologies. Mino (2001) emphasizes the role of preference structure rather than
the one of production technologies and shows that local indeterminacy of a sta-
tionary state may emerge even in the absence of increasing returns to scale in
two-sector endogenous growth models with physical and human capital3. Inde-

2See, for example, early studies of Benhabib and Farmer (1994) and Boldrin and Rusti-
chini (1994) where the degree of increasing returns are assumed sufficiently large to produce
indeterminacy. Subsequent works have shown that indeterminacy may also emerge without
assuming strong degree of increasing returns (see, among the others, Benhabib and Farmer
(1996), Perli (1998), Bennett and Farmer (2000), Itaya (2008)). Nishimura et al. (2008)
provide a unified analysis of local indeterminacy within an aggregate model with small exter-
nalities and illustrate the main sufficient conditions for local indeterminacy, stressing the role
of the complex interplay between preferences and technology (for a review of the literature on
local indeterminacy in models with externalities see Benhabib and Farmer (1999) and Mino
et al. (2008)).

3In such a paper sector-specific externalities are considered in a framework of social con-
stant returns. It is worth observing that Mino finds, as in our work, that two stationary states
may coexist, one determinate and the other indeterminate (Corollary 1, p.11). However the
analysis is bounded to local stability properties of stationary states.

3



terminacy results with social constant returns are also obtained by Nishimura
and Shimomura (2002) in a small open economy context with production exter-
nalities and endogenous time preferences, by Zhang (2008) in a two-sector small
open economy model and by Mino et al. (2008) in a discrete-time framework.

In our paper, local indeterminacy can occur with social constant or decreas-
ing returns and is generated by the interplay between environmental externali-
ties of production activity negatively affecting natural capital and the positive
externalities of natural capital on the production activity.

Other works focus on the role played by negative externalities in produc-
ing local indeterminacy. For example, Chen and Lee (2007) consider a social
constant returns economy where a congestible public good exerts positive sector-
specific externalities, while a congestion effect generates negative aggregate ex-
ternalities. Itaya (2008) shows how pollution may affect indeterminacy results
in a one-sector growth model with social increasing returns. In Meng and Yip
(2008) indeterminacy is produced by negative capital externalities. In Antoci
et al. (2005) and in Antoci and Sodini (2009) negative externalities may gen-
erate indeterminacy in an economy where private goods can be consumed as
substitutes for free access environmental goods.

The present paper has the following structure. Sections 2 and 3 define the
set-up of the model and the associated dynamic system. Section 4 deals with the
existence and local stability of stationary states and with Hopf bifurcations aris-
ing from stability changes. Section 5 is devoted to global analysis of dynamics
and provides the main results of the paper. Section 6 contains the conclusions.

2 Set-up of the model

The economy we analyze is constituted by a continuum of identical economic
agents; the size of the population of agents is normalized to unity. At each
instant of time t ∈ [0,∞), the representative agent produces an output Y (t) by
the following Cobb-Douglas technology:

Y (t) = [K(t)]α [L(t)]β [E(t)]γ , with α + β < 1 and γ > 0 (1)

where K(t) is the stock of physical capital accumulated by the representative
agent, L(t) is the agent’s labour input and E(t) is the stock of a free access
renewable environmental resource.

We assume that the representative agent’s instantaneous utility function
depends on leisure 1−L(t) and consumption C(t) of the output Y (t); precisely,
we consider the following non-separable function (a function of this type is used,
among others, by Bennet and Farmer (2000), Mino (2001) and Itaya (2008)):

U(C(t), L(t)) =
[C(t)(1− L(t))ε]1−η − 1

1− η

where ε, η > 0 and η 6= 1. Moreover, we assume that the utility function is
concave in C and in 1 − L, i.e. η > ε

1+ε . The parameter η denotes the inverse
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of the intertemporal elasticity of substitution in consumption. Our function
displays a constant intertemporal elasticity of substitution and possesses the
property that income and substitution effects exactly balance each other in the
labour supply equation.

The evolution of K(t) (assuming, for simplicity, the depreciation of K to be
zero) is represented by the differential equation

·
K = KαLβEγ − C (2)

where
·

K is the time derivative of K. In order to model the dynamics of E
we start from the well-known logistic equation

·
E = E(E − E)

where the parameter E > 0 represents the carrying capacity of the natural
resource (i.e. the value that E reaches as t → +∞), and we augment it by
considering the negative impact due to the production process

·
E = E(E − E)− δY (3)

where Y = K
α
L

β
Eγ is the economy-wide average output and the parameter

δ > 0 measures the negative impact of Y on E.
The logistic function is a standard specification, extensively used as a growth

function of renewable resources (see e.g. Brown (2000), Koskela et al. (2002),
Eĺıasson and Turnovsky (2004)).

Under the specification (3) of the environmental dynamics, the production
process in our economy can be interpreted as extractive activity. Its impact
on the natural resource is given by the rate of harvest which depends on the
economy-wide average labour input L and physical capital K and on the stock
of natural capital E. For example, we can identify production activity with
forestry or fishery. As in all simplifications of reality, some scenarios are not
captured by our model. In particular, the model cannot describe contexts where
the production of output is linked to E, but its environmental impact is not
positively correlated to E, for instance the tourism industry.

We assume that the representative agent chooses the functions C(t) and L(t)
in order to solve the following problem

MAX
C, L

∫ ∞

0

[C(1− L)ε]1−η − 1
1− η

e−θtdt (4)

with the constraints (2) and (3), where θ > 0 is the subjective rate of time
preference. Furthermore, we assume that in solving problem (4), the repre-
sentative agent considers Y as exogenously determined, since, being economic
agents a continuum, the impact on Y of each one is null. However, since agents
are identical, ex post Y = Y holds. This implies that the trajectories resulting
from our model are not optimal (i.e. they do not describe the social optimum).
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However they represent Nash equilibria in the sense that, along them, no agent
has an incentive to modify his choices if the others don’t modify theirs.

3 Dynamics

The current value Hamiltonian function associated to problem (4) is

H(•) =
[C(1− L)ε]1−η − 1

1− η
+ Ω

[
KαLβEγ − C

]
+ Γ

[
E(E − E)− δY

]

where Ω and Γ are the co-state variables associated to K and E, respectively.
Since Y is considered as exogenously determined, the evolution of Γ doesn’t
affect the representative agent’s choices and, consequently, economic dynamics.
This implies (following Wirl, 1997) that, by applying the Maximum Principle,
the dynamics of the economy is described by the system

·
K =

∂H

∂Ω
= KαLβEγ − C

·
E =

∂H

∂Γ
= E(E − E)− δY (5)

·
Ω = θΩ− ∂H

∂K
= Ω

[
θ − αKα−1LβEγ

]

where C and L satisfy the following conditions4

∂H

∂C
= C−η (1− L)ε(1−η) − Ω = 0

∂H

∂L
= 0 i.e. β(1− L)ΩKαLβ−1Eγ − εC1−η (1− L)ε(1−η) = 0

Since our system meets Mangasarian sufficient conditions, the above condi-
tions are necessary and sufficient for solving problem (4)5. This is the case also
if α + β + γ > 1 (remember we assumed α + β < 1), because the stock E is
considered as a positive externality in the decision problem of the representative
agent.

By replacing Y with KαLβEγ , the Maximum Principle conditions yield a
dynamic system with two state variables, K and E, and one jumping variable,
Ω. Notice that, from εC ∂H

∂C + ∂H
∂L = 0, one obtains

C = β
ε (1− L)Lβ−1KαEγ

f(L) = ε
β (1− L)

ε−η(1+ε)
η L1−β = KαEγΩ

1
η

4Notice that the utility function we adopted implies C > 0 and 0 < L < 1.
5Furthermore, since our model does not exhibit unbounded growth of the state variables,

the usual transversality conditions are always met along the orbits approaching a stationary
state or a limit cycle, whose state variables lie in the positive quadrant of the plane (K, E).
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Hence one can write the following system, equivalent to (5)

·
K =

1
ε
KαEγLβ−1 (L (β + ε)− β)

·
E = E(E − E)− δKαLβEγ (6)
·
L =

f(L)
f ′(L)

[
α

ε
Kα−1EγLβ−1(L(β + ε)− β)+

γ(E − E − δKαLβEγ−1) +
1
η
(θ − αKα−1LβEγ)

]

In such a context, the jumping variable becomes L. Given the initial values
of the state variables, K0 and E0, the representative agent has to choose the
initial value L0 of L.

4 Fixed points, stability and Hopf bifurcations

We recall the conditions on the parameters: they are all positive, with α+β < 1
and 1 6= η > ε

1+ε . The following proposition deals with the problem of the
existence and numerosity of fixed points (stationary states) of the dynamic
system (6).

Proposition 1 System (6) has one fixed point if α + γ > 1; one or zero fixed
points if α + γ = 1; zero, one or two fixed points if α + γ < 1.

Proof. A fixed point P ∗ = (K∗, E∗, L∗) of (6) must satisfy

L∗ = β
β+ε

K∗ = α
θδ E∗(E − E∗)

g (E∗) = E∗ + δ
(

β
β+ε

) β
1−α (

α
θ

) α
1−α (E∗)

α+γ−1
1−α = E

(7)

Hence the graph of g (E) intersects the line E = E exactly at one point if
α + γ > 1, at most at one point if α + γ = 1, at zero, one or two points if
α + γ < 1.

Observe that, if α + γ < 1, then there exists one fixed point only if the
minimum of the function g (E∗) coincides with the value E; so, generically, the
fixed points are zero or two.

By (7), when two fixed points exist, P ∗1 = (K∗
1 , E∗

1 , L∗) and P ∗2 = (K∗
2 , E∗

2 , L∗),
then K∗

1 < K∗
2 and E∗

1 < E∗
2 ; so P ∗2 Pareto-dominates P ∗1 . If the economy ap-

proaches the latter, then a tragedy of commons scenario emerges, characterized
by over-exploitation of the natural resource and by low physical capital accu-
mulation (labour input is equal to L∗ = β

β+ε at both fixed points). Notice that,
in our model, multiplicity of fixed points may occur also in a context of social
constant returns to scale, α + β + γ = 1, whereas it is ruled out if the elasticity
γ of the production function with respect to natural capital E is relatively high,
that is if α + γ ≥ 1.
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Now, let P ∗ = (K∗, E∗, L∗) be a fixed point of (6) and consider the Jacobian
matrix of system (6) evaluated at P ∗

J∗ =




0 0 ∂
·

K
∂L

∂
·
E

∂K
∂
·
E

∂E
∂
·
E

∂L

∂
·
L

∂K
∂
·
L

∂E
∂
·
L

∂L




where, by straightforward computations

∂
·

K
∂L = β+ε

δε E∗(E − E∗)
∂
·
E

∂K = −δθ

∂
·
E

∂E = E(1− γ)− E∗(2− γ)
∂
·
E

∂L = − (β + ε)E∗(E − E∗)
∂
·
L

∂K = f(L∗)
f ′(L∗)

δθ
E∗

[
−γ + θ(1−α)

αη(E−E∗)

]

∂
·
L

∂E = f(L∗)
f ′(L∗)

γ
E∗

[
(1− γ) (E − E∗)− E∗ − θ

η

]

∂
·
L

∂L = f(L∗)
f ′(L∗) (β + ε)

[
θ(β+ε)

ε − θ
η − γ(E − E∗)

]

(8)

The following proposition holds:

Proposition 2 If the fixed point is unique (α + γ ≥ 1) or, in case of two fixed
points, is the one with the larger E∗, then J∗ has an odd number of positive
eigenvalues; instead, if, in case of two fixed points, P ∗ corresponds to the one
with the smaller E∗, then J∗ has an odd number of negative eigenvalues.

Proof. By computing det (J∗), one can check that

det (J∗) < 0 iff E∗ <
1− α− γ

2− 2α− γ
E (9)

Clearly (9) implies that two fixed points exist (α+γ < 1) and, moreover, as one
can calculate, that g′ (E∗) < 0 (see (7)). In fact it is easily seen that det (J∗)
has the same sign of g′ (E∗), which proves the Proposition.

It is easy to check that in the non generic case when a unique fixed point
exists under the condition α+γ < 1, then det (J∗) = 0 holds and the fixed point
is not hyperbolic (in fact, a saddle-node bifurcation occurs). Consequently, if
we look for an attracting fixed point, we have to restrict our analysis to the
case when, under the assumption α + γ < 1, two fixed points exist, P ∗1 and P ∗2 ,
with E∗

1 < E∗
2 and K∗

1 < K∗
2 . We aim to show that, in such a context, P ∗1

can be attractive for suitable values of the parameters. Along the trajectories
belonging to the basin of attraction of P ∗1 the over-exploitation of the natural
resource drives the economy towards a tragedy of commons scenario.

First of all, if α+γ < 1, a necessary and sufficient condition for the existence
of two fixed points is
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E > g
(
Ẽ

)
:= EA, where Ẽ is the only positive value satisfying g′

(
Ẽ

)
= 0.

Straightforward computations yield

EA =
2− 2α− γ

1− α− γ
Ẽ =

= (2− 2α− γ)

[
δ1−α

(1− α)1−α (1− α− γ)1−α−γ

(
β

β + ε

)β (α

θ

)α
] 1

2−2α−γ

(10)

Hence E∗
1 < Ẽ < 1−α−γ

2−2α−γ E. From now on let us omit index 1.
The well-known Routh-Hurwitz Criterion (see Hurwitz (1964)) yields that

J∗, the Jacobian matrix at P ∗, has three eigenvalues with negative real part if
and only if

det (J∗) < 0 (11)

σ (J∗) =
∂
·
E

∂E

∂
·
L

∂L
− ∂

·
E

∂L

∂
·
L

∂E
− ∂

·
K

∂L

∂
·
L

∂K
> 0 (12)

ρ (J∗) = −σ (J∗) · trace (J∗) + det (J∗) > 0

The last inequality, in particular, guarantees the non-existence of complex
eigenvalues with non-negative real part. In fact, when ρ (J∗) crosses the value
0, the real part of two complex conjugate eigenvalues changes sign, causing,
generically, a Hopf bifurcation.

Remember that the condition (11) is always verified at P ∗ (see (9)). As for
the condition (12), we state the following Lemma.

Lemma 3 If

η ≥ ε

ε + αβ
and E > EB =

θ (β + ε) (2− 2α− γ)
αβγη

(13)

then the condition σ (J∗) > 0 is verified.

Proof. By recalling (8), straightforward computations lead to

sign [σ (J∗)] = sign

[(
β + ε

ε
− 1

η

) (
E − 2E∗)− θ (1− α) (β + ε)

αεη

]

So, since E∗ < 1−α−γ
2−2α−γ E, the assumptions of the Lemma imply σ (J∗) > 0.
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Let us now compute trace (J∗), observing that f(L∗)
f ′(L∗) = βεη

(β+ε)[η(β+ε)−βε] .
We obtain

trace (J∗) = a
(
E − E∗)− E∗ + b;

a = η[(1−γ)(β+ε)−βγε]−βε(1−γ)
η(β+ε)−βε , b = βθ[η(β+ε)−ε]

η(β+ε)−βε

(14)

Then the results of our analysis, aimed at detecting an attractive fixed point,
are summarized by the following Theorem.

Theorem 4 Let α + γ < 1 and E > EA, so that system (6) has two fixed
points, P ∗1 and P ∗2 , with E∗

1 < E∗
2 and K∗

1 < K∗
2 . Then, for suitable values of

the parameters, P ∗1 is a sink, while P ∗2 is a saddle with a bi-dimensional stable
manifold. Moreover, in such a case, take E as a bifurcation parameter. As
E is increased, P ∗2 does not change its nature (i.e. it remains a saddle with a
bi-dimensional stable manifold), whereas P ∗1 can undergo one, two or no Hopf
bifurcations.

Proof. First of all, let EC := (2−2α−γ)b
1−α−γ , where b is defined in (14). As-

suming η ≥ ε
ε+αβ , recall the expressions of EA (10) and EB (13). It is easily

checked that, for θ sufficiently small or/and δ sufficiently large,

EA > max(EB , EC).

Let E be sufficiently close to EA, 0 < E − EA << 1. Then, if

a ≤ 0 or 0 < a <
1− α− γ

1− α
and EA >

1− α− γ

1− α− γ − a (1− α)
EC ,

trace (J∗) < 0

both at P ∗1 and P ∗2 .
Furthermore, since det (J∗) = 0 for E∗ = EA, also ρ (J∗), in addition to

σ (J∗), is positive. It follows that J∗ has three eigenvalues with negative real
part at P ∗1 and two with negative real part and one positive eigenvalues at P ∗2 ,
which proves the first statement of the theorem.

Now, let E increase, coeteris paribus. Since E∗
2 increases and E − E∗

2 =

δ
(

β
β+ε

) β
1−α (

α
θ

) α
1−α (E∗

2 )
α+γ−1
1−α decreases, it follows that, no matter what the

sign of a is, P ∗2 remains a saddle with a bi-dimensional stable manifold.
Instead, since E∗

1 decreases as E increases, P ∗1 undergoes (generically) one
Hopf bifurcation if a ≥ 0 (see Figure 1): the real part of two complex eigenvalues
turns from negative into positive and eventually trace (J∗) becomes positive.

On the contrary, if a < 0, it happens that, when E is large enough, trace (J∗) <
0, while σ (J∗) and ρ (J∗) are both positive: in fact it is easily checked that
ρ (J∗) is a second degree polynomial in E with a positive coefficient of E 2. So
P ∗1 is a sink for large values of E.
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In this case, we can detect possible Hopf bifurcations as follows. Remember
that Hopf bifurcations correspond, generically, to equilibria for which ρ (J∗) = 0.
Observe that, by our assumptions and notations

E − 2E∗
1 −

θ (1− α) (β + ε)
α [η (β + ε)− βε]

>
γ

2− 2α− γ
(EA − EB) > 0

Pose

x := E∗
1 and y := E − 2E∗

1 −
θ (1− α) (β + ε)
α [η (β + ε)− ε]

So x and y are both positive.
By straightforward computations it is seen that ρ (J∗) = 0 corresponds to

the following curve in the positive quadrant of the (x, y) plane (see Figure 1)

C1) x =
−my2 + ny + l

my + q
, with l,m, q > 0,

while the equilibrium condition g (E∗
1 ) = E gives place to the curve, in the

positive quadrant of the (x, y) plane

C2) y = rx
α+γ−1
1−α − x− s, with r, s > 0 and α + γ − 1 < 0

Hence Hopf bifurcations correspond generically to the intersections of the two
curves C1 and C2. Now it is easily checked that the curve C1 intersects the pos-
itive vertical semi-axis (x = 0) at an ordinate y1 > 0 and the positive horizontal
semi-axis (y = 0) at an abscissa x1, 0 < x1 < 1−α−γ

2−2α−γ EA. Consider, instead, C2:
then y → +∞ when x → 0+ and the intersection with the positive horizontal
semi-axis takes place at (x2, 0), with x2 > 1−α−γ

2−2α−γ EA. As a consequence, it can
be proved that the intersections of C1 and C2 are generically zero or two (see
Figure 1).

Notice that the sufficient conditions for local indeterminacy given above
depend on the intertemporal elasticity of substitution and can be satisfied in
both cases η < 1 (i.e. elasticity of substitution greater than 1) and η > 1
(i.e. elasticity of substitution lower than 1): in fact, we assumed η ≥ ε

ε+αβ .
Furthermore, those conditions require that the impact of the production process
of output (measured by δ) be high enough and/or the subjective discount rate θ
be low enough. Finally, the elasticity γ of the production function with respect
to the natural capital E must be not too high, that is α + γ < 1, while social
returns to scale can be constant or decreasing, that is, α + β + γ ≤ 1.

Figure 2 shows how the fixed point values of K and E change, by varying
the value of E (the carrying capacity of the environmental resource). The
coordinates of P ∗1 are indicated by a bold line if P ∗1 is a sink and by a dash-dot
line if it is a saddle with a one-dimensional stable manifold; the coordinates of
P ∗2 (which, in the numerical example, is a saddle with a two-dimensional stable
manifold) are indicated by a dotted line. Notice that a Hopf bifurcation occurs
when the parameter E crosses the value 0.2 (the bifurcation point is indicated
by H).

11
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Figure 1: Dynamics and Stability. (a)-(b) a < 0, no bifurcation: P ∗1 is a sink;
(c)-(d) a < 0, two bifurcations: P ∗1 is a sink when C2 lies to the right of C1, a
saddle when C2 lies to the left of C2; (e)-(f) a ≥ 0, one bifurcation: P ∗1 is a sink
when C2 lies to the left of C1, a saddle when C2 lies to the right of C2
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Adopting the same symbology, Figure 3 draws the fixed points coordinates
when varying the parameter δ, which measures the environmental impact of the
production process. Notice that a Hopf bifurcation occurs also in this example
and that indeterminacy is observed when δ is high enough.

Figure 4 shows a locally attracting limit cycle around P ∗1 (which has a one-
dimensional stable manifold) arisen via the Hopf bifurcation shown in Figure 2.
In such a case, local indeterminacy occurs, since for every initial point (K0, E0)
close to the projection of the cycle in the plane (K, E), there exists a continuum
of initial values L0 of L such that the orbit starting from (K0, E0, L0) approaches
the cycle.
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Figure 2: The fixed point values of K and E, varying E; values of parameters:
α = 0.1, β = 0.8, γ = 0.8, δ = 0.05, ε = 1, η = 1.5, θ = 0.001

0 0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

0.15

0.2

0.25

E

δ

•   H

•  LP

(a)

0 0.02 0.04 0.06 0.08 0.1
0

5

10

15

20

25

30

35

K

δ

•  LP

•  H

(b)

Figure 3: The fixed point values of K and E, varying δ; values of parameters:
α = 0.1, β = 0.8, γ = 0.8, ε = 1, η = 1.5, θ = 0.001, E = 0.25

Let us now complete the local analysis by discussing the case α + γ > 1,
when the fixed point P ∗ is unique. Since det(J∗) > 0 (see Proposition 2), P ∗ is
not attractive. If, for some value of E, trace (J∗) = a

(
E − E∗)− E∗ + b < 0,

with a and b defined in (14), then P ∗ is a saddle with a bi-dimensional stable

13



0
10

20
30

40

0

0.05

0.1
0.2

0.3

0.4

0.5

0.6

0.7

KE

L

Figure 4: Locally attracting limit cycle around P ∗1 ; values of parameters: α =
0.1, β = 0.8, γ = 0.8, δ = 0.05, ε = 1, η = 1.5, θ = 0.001, E = 0.21

manifold. Let us increase E. Correspondingly E∗ increases as well. By the
equilibrium condition g (E∗) = E, we can write trace (J∗) as

trace (J∗) = r (E∗)
α+γ−1
1−α −E∗+b, with b > 0, α+γ−1 > 0 and sign(r) = sign(a)

By the same arguments developed in Theorem 4, the following Proposition
is easily proved.

Proposition 5 Let α + γ > 1 and P ∗ denote the only fixed point of system
(6). Write trace (J∗) = a

(
E − E∗) − E∗ + b, with a and b defined in (14).

Assume trace (J∗) < 0 for some value of E and let E increase. Then: if a ≤ 0,
no bifurcation occurs and P ∗ remains a saddle with a bi-dimensional stable
manifold; if a > 0 and 2α + γ > 2, eventually P ∗ becomes a source and one
Hopf bifurcation generically takes place; if a > 0 and 2α+γ < 2, P ∗ is a saddle
with a bi-dimensional stable manifold for sufficiently large values of E and Hopf
bifurcations are, generically, zero or two.

According to the above proposition, indeterminacy cannot be observed in
the context of a unique fixed point: i.e., the fixed point can possess saddle-type
stability (two eigenvalues with negative real part) but cannot be a sink.
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5 Global analysis

In this Section, for the sake of convenience in representing the Figures, we will
change the order of the variables from (K, E,L) into (E, K,L).

In the following we take into consideration the case where, for α+γ < 1, two
fixed points exist, P ∗1 = (E∗

1 ,K∗
1 , L∗) and P ∗2 = (E∗

2 ,K∗
2 , L∗), with E∗

1 < E∗
2 ,

K∗
1 < K∗

2 , L∗ = β
β+ε , and P ∗1 is a sink.

Hence the basin of attraction of P ∗1 can be considered a poverty trap and
we wonder if, given a point P0 = (E0,K0, L0) belonging to such a basin, it is
possible to modify the initial choice of labour in such a way that the positive
semi-trajectory starting from the new point P̃0 =

(
E0,K0, L̃0

)
can tend to the

saddle P ∗2 (having a bi-dimensional stable manifold).
In fact we will give a (partially) affirmative answer to the above question

(Theorem 9) and, moreover, we will suggest how to conduct numerical experi-
ments aimed at detecting trajectories leading to the desirable equilibrium, i.e.
to the saddle P ∗2 (Lemma 7).

Let us start from the following Proposition.

Proposition 6 Consider a point P0 = (E0,K0, L0), 0 < E0 < E, 0 < K0,
0 < L0 < 1. Then, if L0 is small enough, the positive semi-trajectory from P0

tends to
(
E, 0, 0

)
.

Proof. Assume L0 < min

(
β

2(β+ε) ,

(
αβ
2ε Kα−1

0 Eγ
0

γ(E−E0)+ θ
η

) 1
1−β

,
(

E−E0

δKα
0 Eγ−1

0

) 1
β

)
. Then

it is easily checked that, along the trajectory from P0,
·

K,
·
L < 0 as t > 0. It

follows that E keeps increasing for t > 0, remaining, though, smaller than E.

In fact, suppose
·
E = 0 at some t > 0. Then

··
E(t) =

∂
·
E

∂K

·
K +

∂
·
E

∂L

·
L > 0,

so that , for t > t,
·
E > 0 again.

Hence the statement of the Proposition follows.
Let us start, now, from an initial point P0 belonging to the basin of attraction

of P ∗1 . For example, let us consider P ∗1 itself. Moving downward along the half-
line E = E∗

1 , K = K∗
1 , L < L∗, we cross, as shown in the above Proposition,

the basin of attraction of P ∗1 at a certain point, say P̃ =
(
E∗

1 ,K∗
1 , L̃

)
, L̃ < L∗.

We wonder if the positive semi-trajectory starting from P̃ tends to the saddle
P ∗2 .

For that to happen, since E∗
1 < E∗

2 , K∗
1 < K∗

2 and, along the positive semi-
trajectory from P̃ , K decreases until the trajectory crosses the plane L = L∗,
it is necessary that the trajectory crosses the plane L = L∗ at a point where

K < K∗
1 and

·
L > 0. Furthermore, observe that

·
E > 0 at P̃ . Should the
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trajectory go back, before crossing L = L∗, to a point where E = E∗
1 , at such a

point it would be again
·
E > 0, since K < K∗

1 and L < L∗. So our hypothetical
trajectory must cross L = L∗ at a point where E > E∗

1 and K < K∗
1 .

The following Lemma allows, precisely, to detect the points with the features
described above belonging to the stable manifold of P ∗2 .

Lemma 7 Let α+γ < 1 and assume that two equilibria exist, P ∗1 = (E∗
1 ,K∗

1 , L∗)
and P ∗2 = (E∗

2 ,K∗
2 , L∗), E∗

1 < E∗
2 , K∗

1 < K∗
2 , L∗ = β

β+ε . Moreover, as-
sume that the conditions of Lemma 3 of the previous Section (i.e. η ≥ ε

ε+αβ ,

E > EB = θ(β+ε)(2−2α−γ)
αβγη ) are satisfied and that P ∗1 is a sink. Consider, in the

plane L = L∗, the open set

A =
{

P = (E, K,L∗) : E > E∗
1 , K < K∗

1 ,
·
L(P ) > 0

}

Then A can be partitioned into three non-empty pair-wise disjoint subsets,
A = A1 ∪ A2 ∪ A3, where A1 and A2 are open, while A3 is an unidimensional
set belonging to the stable manifold of P ∗2 (see Figure 5). More precisely

A1 =
{

P ∈ A : the positive semi-trajectory starting from P crosses
·
E = 0

before crossing again L = L∗} ,

A2 = {Q ∈ A : the positive semi-trajectory starting from Q crosses again

L = L∗ before crossing
·
E = 0

}
.

Proof. First of all we want to describe the region of L = L∗ where
·
L > 0.

By straightforward computations we can check that the curve
·
L = 0, lying in

the plane L = L∗, is crossed at most twice by each line E = E0 or K = K0. In
fact such a curve, say Γ, is an oval contained in a rectangle

[
E
′
, E

′′
]
×

[
K
′
,K

′′
]
,

where 0 < E
′

< E∗
1 < E∗

2 < E
′′
, 0 < K

′
< K∗

1 < K∗
2 < K

′′
(in fact it can

be proved that E
′′

< E). Thus the region of L = L∗ where
·
L > 0 is the open

region, say C, bounded by Γ.
More specifically let us consider the sub-region B of C, lying below the

line joining P ∗1 and P ∗2 , where K is taken as the vertical coordinate. Again

we can check that, at a point P = (E, K, L∗) ∈ B,
·
E > 0 and

·
Ω < 0 (i.e.

αKα−1 (L∗)β
Eγ > θ), as shown in Figure 5.

Moreover, we claim that the conditions of Lemma 3 of the previous Section
(in particular E > EB), which are supposed to hold, imply that the tangent
line to Γ at P ∗1 has a positive slope. In fact, write the equation of Γ on L = L∗

Γ) F (E, K) = γ
(
E − E − δKα (L∗)β

Eγ−1
)

+
1
η
(θ − αKα−1 (L∗)β

Eγ) = 0
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and compute ∂F
∂E and ∂F

∂K at (E∗
1 , K∗

1 ). After easy steps, we obtain

∂F

∂E
=

γ

E∗
1

[
−E∗

1 + (1− γ)
(
E − E∗

1

)− θ

η

]

By recalling E∗
1 < 1−α−γ

2−2α−γ E and the expression of EB , it can be checked
that our assumptions imply ∂F

∂E > 0. Analogously it is proved that ∂F
∂K < 0 at

(E∗
1 ,K∗

1 ). So the claim follows.
Finally, let us consider A ⊂ B and A1, A2 ⊂ A, as defined in the statement

of the Lemma. First of all, let us see that A1 and A2 are non-empty.
In fact, if P = (E, K, L∗) ∈ A belongs to the basin of attraction of P ∗1 and is

sufficiently close to P ∗1 , then the positive semi-trajectory starting from P must
remain close to P ∗1 , because P ∗1 , being a sink, is in particular Lyapunov stable.
However, since E > E∗

1 , this implies (see again Figure 5) that the positive

semi-trajectory from P crosses
·
E = 0 before possibly crossing again L = L∗.

As to A2, consider the intersections of Γ with the line K = K∗
1 (on L = L∗).

One intersection is, of course, P ∗1 , while the other is a point R =
(
Ẽ, K∗

1 , L∗
)

with Ẽ > E∗
1 . Then

·
L(R) = 0 and we want to show that

··
L(R) < 0. In fact, E∗

1

and Ẽ are the solutions of the equation

G (E) = F (E, K∗
1 ) = 0

Since we have seen that G
′
(E∗

1 ) = ∂F
∂E (E∗

1 ,K∗
1 ) > 0 and is easily checked

that G
′
(E) has only one zero in the interval

[
E∗

1 , Ẽ
]

(corresponding to the inter-

section of one increasing and one decreasing graph), it follows that G
′
(
Ẽ

)
< 0.

Hence ··
L(R) = G

′ (
Ẽ

) ·
E(R) < 0

This means that, along the trajectory through R, L(t) has a relative max-
imum at R. Therefore, by the continuous dependence of trajectories on initial
conditions (see V.I. Arnold (1978)), it follows that positive semi-trajectories
from points of A sufficiently close to R cross again L = L∗ near R, and thus

before reaching
·
E = 0 (see Figure 5).

Once we have proved that A1 and A2 are non-empty, their openness is just a
consequence of the continuous dependence of trajectories on initial conditions,
as in the definitions of A1 and A2 we have required trajectories to cross, and

not merely touch, respectively,
·
E = 0 and L = L∗.

So A1 and A2 are two non-empty disjoint open subsets of A (in the plane
L = L∗). But, since A is connected, there exist points of A which don’t lie
either in A1 or A2. Let A3 = A−A1 ∪A2. Clearly A3 has no isolated point.

Consider, now, the positive semi-trajectory starting from some Q0 ∈ A3.
Along it E initially increases. May the trajectory cross at the same instant of
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time, say t0 > 0, both
·
E = 0 and L = L∗? In such a case, as t0 is finite,

·
E(t0) =

·
K(t0) = 0, while

·
L(t0) < 0. Hence

··
E(t0) =

∂
·
E

∂L

·
L(t0) > 0 (15)

Therefore E(t) has a (relative) minimum at t0 and thus cannot increase for
t < t0.

So, along the positive semi-trajectory from Q0, E keeps increasing and so
does K, as L > L∗. However L cannot tend to 1 as t → +∞, since, along any
positive semi-trajectory on the invariant plane L = 1, E → 0, as it is easily
checked. This implies that, if along a trajectory L and E both increase and L

approaches 1, at a certain point the trajectory must cross the surface
·
E = 0.

As a conclusion the positive semi-trajectory starting from Q0 ∈ A3 must
tend to the saddle P ∗2 .

It follows that P ∗2 has a bi-dimensional stable manifold, that A3 is unidi-
mensional and finally that trajectories tending to P ∗2 do not spiral.

An immediate consequence of the previous Lemma is the following:

Corollary 8 Let α + γ < 1 and two equilibria, P ∗1 and P ∗2 , exist, P ∗1 being
a sink. Moreover, assume η ≥ ε

ε+αβ and E > EB = θ(β+ε)(2−2α−γ)
αβγη . Then

P ∗2 is a saddle with a bi-dimensional stable manifold and the eigenvalues of its
Jacobian matrix are all real (one positive and two negative).

We are now able to prove our main Theorem

Theorem 9 Given the assumptions of Lemma 7, there exists a neighborhood N
of the sink P ∗1 , such that, for any (E0,K0, L0) ∈ N, the half line

{
E = E0,K =

K0, L < L0

}
intersects the stable manifold of P ∗2 .

Proof. Recalling the notations of Lemma 7, we see that the set A, in the
plane L = L∗, looks like (the interior of) a triangoloid with one curvilinear and
two straight sides. So, let P ∗1 , Q and R be the vertices of A, where P ∗1 is the
sink and Q and R are, respectively, the further intersections of E = E∗

1 and

K = K∗
1 with the oval Γ =

{ ·
L = 0

}
= {F (E, K) = 0, L = L∗}. We also recall

that, at P ∗1 , ∂F
∂E > 0 and ∂F

∂K < 0. In particular this implies that, at Q, ∂F
∂K > 0

(see Figure 5).
Our first step is to prove the following:
Claim The set A3 (the closure of A3), contained in the stable manifold of

P ∗2 , meets the open segment (Q, P ∗1 ), i.e. the vertical side of A (beyond the
horizontal side, as shown in the Lemma).

As we have seen in the proof of Lemma 7, the Claim follows if we show that,
along the trajectory through Q, L(t) reaches a relative maximum in Q.

Because
·

K(Q) =
·
L(Q) = 0, it is enough to prove that
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··
L(Q) =

∂F

∂E
(Q)

·
E(Q) < 0,

which is equivalent, being
·
E(Q) > 0, to

∂F

∂E
(Q) < 0

Since it is easily checked that ∂F
∂E (like ∂F

∂K ) changes sign and has exactly
one zero in the interval (0,K∗

1 ) of the line{E = E∗
1 , L = L∗}, it suffices to show

that at the point S =
(
E∗

1 , K̃, L∗
)
, where ∂F

∂E = 0,

·
L(S) = F (E∗

1 , K̃) > 0

Now it is easily computed that ∂F
∂E (S) = 0 is equivalent to

E∗
1 +

α

η
K̃α−1 (L∗)β (E∗

1 )γ − (1− γ)δK̃α (L∗)β (E∗
1 )γ−1 = 0,

whereas E∗
1 + α

η K̃α−1 (L∗)β (E∗
1 )γ − (1− γ)δK̃α (L∗)β (E∗

1 )γ−1
> 0 implies

∂F
∂E (E∗

1 ,K) < 0.
If we suppose, by contradiction, that K̃ ≤ KQ (the K-coordinate of Q) and

therefore F (E∗
1 , K̃) ≤ 0 , this implies, in particular, ∂F

∂K (E∗
1 , K̃) > 0 , i.e.

1− α

η
K̃α−1 (L∗)β (E∗

1 )γ
> γδK̃α (L∗)β (E∗

1 )γ−1 ,

that is

K̃ < K̂ := λ̂E∗
1 :=

1− α

γδη
E∗

1

Vice-versa, in the following we will construct an increasing sequence {Kn}
approximating K̃ from below.

First of all, define K0 by

0 = (1− γ)δKα
0 (L∗)β (E∗

1 )γ−1 − α

η
Kα−1

0 (L∗)β (E∗
1 )γ

< E∗
1 (16)

Hence

K0 = λ0E
∗
1 :=

α

(1− γ)δη
E∗

1 < K̃,

since the first member of the inequality (16) is clearly increasing in K.
On the other hand, ∂F

∂K (E∗
1 ,K) > 0 for K < K̂ implies

F (E∗
1 , K̃) > F (E∗

1 ,K0)

Thus, if F (E∗
1 ,K0) ≥ 0, the Claim is proven.
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Suppose, instead, F (E∗
1 ,K0) < 0. Recalling the equilibrium conditions (7),

this is easily seen to be equivalent to

ϕ
(
E − E∗

1

)
< ψ (λ0) ,

where

ϕ(x) =
(α

θ

)α

δ1−α

(
γxα +

θ

η
xα−1

)

and

ψ (λ) = γδλα +
α

η
λα−1

Therefore, if K = λE∗
1 with λ < λ̂, ∂F

∂K (E∗
1 ,K) > 0 implies ψ′ (λ) < 0;

whereas ϕ(x) has exactly one minimum at x = θ(1−α)
αγη , as is easily checked.

However, the conditions we posed (see (10) and (13)), i.e.

E∗
1 <

1− α− γ

2− 2α− γ
EA and EA < EB ,

imply, through easy computations,

E − E∗
1 > x

that is

ϕ′
(
E − E∗

1

)
> 0

Hence, considering ϕ(x) as defined in (x, +∞), we can write

E − E∗
1 < M1 := ϕ−1 (ψ (λ0))

Therefore, by applying the equilibrium condition

g (E∗
1 ) = E∗

1 + ρ (E∗
1 )

α+γ−1
1−α = E (17)

(ρ > 0 being defined in (7)), it follows, through easy computations,

(E∗
1 )2−α−γ

> N1 = h (λ1) :=
(

(1− γ)δλα
1 −

α

η
λα−1

1

)
(L∗)β ,

where N1 is calculated from (17), h (λ) is clearly increasing and K1 := λ1E
∗
1

satisfies

K0 < K1 < K̃

This way we can construct an increasing sequence Kn = λnE∗
1 < K̃. So, if

it happens, for some Kn, that F (E∗
1 ,Kn) ≥ 0, the Claim is proven.

Otherwise Kn → K = λE∗
1 ≤ K̃. However, if F (E∗

1 , K) < 0, i.e. ϕ
(
E − E∗

1

)
<

ψ
(
λ
)
, the algorithm can start again. In fact we obtain
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(E∗
1 )2−α−γ

> N = h
(
λ
)
,

so that we can replace, for example, in the above construction (E∗
1 )2−α−γ

by (E∗
1 )2−α−γ −N = σ (E∗

1 )2−α−γ , 0 < σ < 1, and h (λ) by h (λ) := h (λ)−N.
Hence, in the worst case, we can construct an increasing sequence Kn → K

= λE∗
1 ≤ K̃ such that

F (E∗
1 ,K) = 0

and
∂F

∂E
(E∗

1 , K) ≤ 0

If ∂F
∂E (E∗

1 , K) < 0, the Claim is proven. Otherwise, being Q = (E∗
1 , K, L∗) ,

it holds

·
K(Q) =

·
L(Q) =

∂F

∂E
(Q) =

··
L(Q) = 0, (18)

Hence Q is, anyway, in the boundary of A2 and A3 could reach the vertical
side of A precisely at Q. However (18) implies, as is easily checked,

···
L(Q) =

∂2F

∂E2
(Q)

( ·
E(Q)

)2

< 0

Therefore, along the trajectory starting at t = 0 from Q,

L (t0) < L∗ (19)

for some t0 > 0. Should Q be a terminal point of A3, (19) would hold also
for points of A3 near Q. But this contradicts what we have proved in Lemma
7, namely that, along trajectories meeting A3 at t = 0, L(t) > L∗ for all t > 0.

This concludes the proof of the Claim.
The above argument, in fact, implies that ∂F

∂E < 0 along the whole curvilinear
side of A, i.e. the arc [Q,R] (see Figure 5). As a consequence this arc has no
intersection with A1 and thus with A3 (see the proof of Lemma 7).

Hence, let us indicate by [T, V ] a (possibly unique, as in Figure 5) con-
nected component of A3, such that T and V belong, respectively, to the open
segments (Q,P ∗1 ) and (P ∗1 , R). It follows that there exist points of (T, V )
whose negative (i.e. backward) semi-trajectories intersect the half-plane H =
{E = E∗

1 , L < L∗}. Furthermore, it is easily observed that, if such a a semi-
trajectory intersects H at a point

(
E∗

1 ,K, L
)
, with L < L∗ and K ≤ K∗

1 , then
along it (having exchanged t with −t) E continues to decrease, while K con-
tinues to increase. On the other hand, consider the negative semi-trajectory
starting from V . Obviously it reaches some half-plane {K = K∗

1 + σ, L < L∗}
with σ > 0. It follows, by the continuous dependence of trajectories on initial
conditions, that there exists Z ∈ (T, V ) such that its negative semi-trajectory
intersects H at some point U =

(
E∗

1 ,K∗
1 + ζ, L

)
, with L < L∗ and ζ > 0.

Therefore, projecting on the plane L = L∗ the intersections with H of the
negative semi-trajectories from the arc [T, Z] ⊂ [T, V ], we get a continuous map
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π from [T,Z] onto a closed segment [T, U ′] of the line {E = E∗
1 , L = L∗}, con-

taining P ∗1 . Moreover, a continuity argument, again, implies that the negative
semi-trajectories from [T,Z] also cross any half-plane {E = E∗

1 − ν, L < L∗}, if
ν > 0 is sufficiently small.

In fact this concludes the proof of the Theorem.
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Figure 5: Configuration in the plane L∗ =
β

ε + β
; values of parameters: α = 0.1,

β = 0.8, γ = 0.58, δ = 0.05, ε = 1, η = 1.5, θ = 0.001, E = 0.17

Hence, under the assumptions of the Theorem, for any initial point (E0,K0)
sufficiently close to (E∗

1 ,K∗
1 ), there exists a continuum of initial values L1

0 such
that the trajectory starting from

(
E0,K0, L

1
0

)
approaches P ∗1 , and a locally

unique value L2
0 such that the trajectory starting from

(
E0,K0, L

2
0

)
converges to

P ∗2 . So global indeterminacy occurs, since, from the initial position (E0,K0), the
economy may follow one of the trajectories belonging to the basin of attraction
of the poverty trap P ∗1 but it may also follow a trajectory lying on the stable
manifold of the the stationary state P ∗2 .

In Figure 6 a numerical simulation is shown. The starting points of the
trajectories are chosen along the half line {E = E∗

1 ,K = K∗
1 , L < L∗}. The

trajectory starting from the lowest initial value of L (in bold) lies on the stable
manifold of P ∗2 and consequently converges to P ∗2 , while all the others approach
P ∗1 . In Figure 7 the projections on the plane (K,L) of the trajectories in Figure
6 are drawn. Notice that some trajectories approaching P ∗1 are characterized
by an initial phase where the values of K and L are higher than along the
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trajectory converging to P ∗2 ; however, the higher values of K and L give rise
to over-exploitation of the natural resource and the consequent reduction of the
stock E drives the economy towards the undesirable equilibrium P ∗1 , where the
values of K and E are lower than in P ∗2 .
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Figure 6: Global indeterminacy in the space (E,K, L); values of parameters:
α = 0.1, β = 0.8, γ = 0.58, δ = 0.05, ε = 1, η = 1.5, θ = 0.001, E = 0.17

6 Conclusions

We have analyzed an economic growth model where local indeterminacy -i.e.
the existence of a continuum of equilibrium trajectories approaching the same
stationary state- can occur also in a context of social constant returns to scale.

Such indeterminacy is due to the interplay between negative externalities
(negatively affecting the stock E of the natural resource) and positive exter-
nalities (generated by E and augmenting the productivity of K and L in the
production process of output). Our analysis has shown that local indetermi-
nacy can be observed only when two fixed points exist: P ∗1 = (E∗

1 ,K∗
1 , L∗) and

P ∗2 = (E∗
2 ,K∗

2 , L∗), with E∗
1 < E∗

2 , K∗
1 < K∗

2 and L∗ = β
β+ε . In such a case, we

have shown that only the Pareto-dominated equilibrium P ∗1 can be attractive.
Furthermore, we have seen that the conditions assuring the attractivity of
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Figure 7: Global indeterminacy in the plane (K, L); values of parameters: α =
0.1, β = 0.8, γ = 0.58, δ = 0.05, ε = 1, η = 1.5, θ = 0.001, E = 0.17
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P ∗1 also guarantee that the stable manifold of the desirable equilibrium P ∗2 can
be reached from initial state variables close to those of P ∗1 . That is, for any
initial pair (E0,K0) sufficiently close to (E∗

1 ,K∗
1 ), there exists some initial value

L2
0 of L such that the trajectory starting from

(
E0, K0, L

2
0

)
converges to P ∗2 .

This represents a global indeterminacy result, since, from the initial position
(E0,K0), the economy may follow a continuum of trajectories belonging to the
basin of attraction of the poverty trap P ∗1 , but it may also follow one trajectory
reaching the desirable point P ∗2 . Consequently, in this context expectations
matter in equilibrium selection.

More generally, one may wonder if under our conditions P ∗2 could be a global
saddle. Precisely, having assumed the conditions of Lemma 7, we may wonder
if, given any initial (E0,K0) ∈

(
0, E

) × (0,∞), there exists a unique L0 =
L (E0,K0) ∈ (0, 1) such that the positive semi-trajectory from (E0,K0, L0)
converges to P ∗2 . Clearly it is quite a difficult question, although numerical
experiments seem to suggest some sort of positive answer.
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