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Abstract

We deal with the problem of determining a time varying inclusion
within a thermal conductor. In particular we study the continuous de-
pendance of the inclusion from the Dirichlet-to-Neumann map. Under a
priori regularity assumptions on the unknown defect we establish loga-
rithmic stability estimates.
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1 Introduction

In this paper we study the stability issue for the inverse problem of recovery
the discontinuous conductivity coefficient of a parabolic equation from infinitely
many boundary mesurements.

First let us give a coarse formulation of the problem which we are going to
study. Let T be a given positive number. Let 2 be a bounded domain of R™,
n > 2, with a sufficiently smooth boundary and let Q) be a domain contained in
Q% (0,T). Assume that for every 7 € (0,T) the intersection D(7) of @ with the
hyperplane ¢ = 7 is a nonempty set and Q\ D(7) is connected and denote by k,
k # 1 a positive constant. Let u be the weak solution to the following parabolic
initial-boundary value problem

Ou —div((1+ (k= 1)xg)Vu) =0 in Q x (0,7),
u(-,0) =0 in Q,
u=g on 09 x (0,7,

where ¢ is a prescribed function on 9 x (0,T). The inverse problem we are
addressing to is to determine the region () when infinitely many boundary mea-

ou
surements { } are available. The problem formulated above arises

9 A |02x(0,T)
in nondestructive testing evaluation ([Ca-Mo], [Pa-La-Al]).
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A uniqueness result for the problem introduced above has been proven in
1997 by Elayyan and Isakov [El-Is]. The main tools on which the approach of
[El-Is] is based are the Runge approximation property and the use of solutions
with Green’s function type singularity. For the nonconstructive character of
the Runge property, such an argument does not seem suitable for our purpose
of proving an accurate stability estimate of Q under some a priori informa-
tion. Thus, along the line of previous elliptic and parabolic inverse problems
[AL-DC], [Al-Ve], [Ve], we abandon such an approach and we choose to use ar-
guments based on quantitative estimates of unique continuation [Al-Be-Ro-Ve],
[DC-Ro-Ve], [Mo-Ro03, Mo-Ro04]. We also make use of singular solutions of
Green’s type, but more quantitative information are necessary in order to obtain
stability estimates. In particular we need an accurate study of the asymptotic
behaviour when the singularity gets close to the interface 0Q.

In the present paper we prove that, under mild a priori assumption on the
topology and the regularity of @), such an inclusion depends continuously on the
boundary data with a rate of continuity of logarithmic type (see Theorem 2.7 for
a the precise statement of the result). In the context of elliptic inverse problems,
it has been shown that logarithmic stability estimates are optimal ([DC-Ro]). For
parabolic inverse problems with unknown boundaries (and the whole Dirichlet—
to—Neumann map) examples showing that the continuous dependance can be
at most of logarithmic type, have been obtained in [DC-Ro-Ve| and [Ve]. Their
proofs work in our situation as well. Namely in such papers the limit cases
k = +o00 and k = 0 are considered. Everything remains basically the same in
the intermediate situation with 0 < k < oo, k # 1.

A crucial tool to obtain the logarithmic stability estimate is connected with a
precise evaluation of smallness propagation based on the two-sphere one-cylinder
inequality for solution to parabolic equations [Es-Fe-Ve], [Ve] (Theorem 3.10, in
the present paper). Indeed, roughly speaking, such an inequality allows us to
approach the boundary of the inclusion in any slice of time.

Finally we wish to mention here papers of Daido, Kang and Nakamura
[Da-Ka-Na] and, more recently, Isakov, Kim and Nakamura [Is-Ki-Na] which
are strictly related to the present one. In [Is-Ki-Na], the authors consider a
similar inverse parabolic problem of detecting an inclusion, that does not de-
pend on the time, by mean of infinitely boundary measurements and provide a
reconstruction procedure to identify it.

In this paper we have decided not to deal with the case n = 1. Let us just
observe that such a case is easier and it can be treated essentially with similar
assumptions regarding the topology of the set Q\ D(¢) (see Remark 2.6 below).

The plan of the paper is the following. In Section 2 we state our main result.
We first give the notations and definitions we need throughout the paper (Sub-
section 2.1) and then in Subsection 2.2 we state the hypothesis and the stability
theorem (Theorem 2.7). In Section 3 we provide a proof of Theorem 2.7. We
derive first some identity which will be the starting point of our proof. Then we
give some auxiliary result concerning the Hausdorff distance (Proposition 3.2),
3.3 and 3.5), fundamental solutions (Proposition 3.6) and unique continuation
properties (Theorem 3.10). Afterward, using the assumptions on the regularity
of the inclusion, we derive some further property related to the distance of two
inclusions and state Proposition 3.9 which provides lower bounds for the solution
of the problem. Finally we prove Theorem 2.7. Proof of auxiliary propositions
are given in Section 4. Proposition 3.3 is proven in Subsection 4.1. In Subsection




4.2 we prove Proposition 3.6 and we also give an asymptotic estimate for the
fundamental solution (Theorem 4.3) which will be used in the next Subsection
4.3 for the proof of Proposition 3.9.

2 The Main Result

2.1 Notations and Definitions

For every x € R™, with n > 2, z = (x1,...,x,), we shall set x = (2/, z,,), where
¥ = (x1,...,7,_1) € R""1. We shall use X = (z,t) to denote a point in R**!
where x € R" and ¢ € R. For every x € R" and X = (x,t) € R""!, we shall set

n 1/2
2| = (Zﬁ) X = (e )
=1

Let r be a positive number. For 2y € R"™ we shall denote B,(x¢) = {z € R" :
|z — x| < r} and BlL(x}) = {2/ € R*7! : |2/ — x}| < r}. We generally set
B, = B,(0) and B, = B.(0). We denote by B,f(0) = {z € B, : x, > 0} and
B, (0) = {z € B, : x, < 0}. For a point Xg = (z9,t9) € R"*! we shall set
QT(X()) = BT(.TQ) X (to — 7‘27t0).

Given a subset A of R™, we shall denote by

[Ale = {z € R" : dist(z,A) < e},
(A)e ={z € A : dist(z,04) > e},
[04]c = {z e R™ : dist(z,0A) < e}.

Let I be an interval of R and let {D(t)}:e; be a family of subsets D(t) of

R"™, we shall denote
D(I) = | D(t) x {t},
tel

and @ = D(R).

Given a sufficiently smooth function u of variable (z,t) € R™"*! we shall
denote by d;u = g—;, Ou = afﬁ, i,j=1,...,n and dyu = %. For a multi-
index 8 = (61,.--,0n), Bi € N,i=1,...,n and k € N, we shall denote, as

181+k .
usual, 920Fu = m, where |3] = >, B;. Also we shall write V =V,
o1 afn ol

div = div,. For a matrix A we shall denote by A* the transposed matrix of A.
We denote by R} = {z ¢ R" : z,, > 0}.

We shall use letters C,Cy,Cq,... to denote constants. The value of the
constant can change from line to line, but we shall specify the dependance
everywhere they appear. Sometimes we have dropped the dependance on n
which is fixed (n > 2).

Functional Spaces
Let D be a subset of R™"t!, f a function defined on D with values in R or R"
and « € (0,1]. We shall set

[f (1) = fly s)]
(lz = yl> + [t = s)>/?

Flaip = sup{  (@.1).(y.5) € D, (1) # (y,s>} |



If « € (0,2] we shall set

[f(2,t) — f(y,s)|
[t — s[e/?

< f>ap= Sup{ : (x,t),(y,s)GD,tyés)}.

Let k£ be a positive integer number, f a sufficiently smooth function and o €
(0,1]. We shall denote

[flk+a:D = Z 020] fla:p < f >kta;p= Z 020] f11+a:D-

|B]+2j=Fk |Bl+2j=k—1

The following Sobolev spaces will be used (we refer to [Li-Ma] for further
details). We denote by €2 a bounded domain in R™. The space H = H%/2’3/4(8Q><
(0,T)), its dual H' = Hy = H=3/273/4(9Q x (0,T)), and Hy = HY/>/4(99 x
(0,T)). We consider now the interpolation spaces between Hy and H;. For any 6,
0 <0 <1, we define Hy as [Hy, H1]g, where the latter denotes the interpolation
at level 6 between the two spaces Hy and H;. The norm in Hy will be denoted
by || - |lo. First, we notice that for any 6, 0 < 6 < 1, there exists a constant Cp,
which depends on 6 only, such that the following interpolation inequality holds
for any ¢ € Hy

(2.1) [lle < Collwllg™° l11I1-
We also make use of the following notation

W(Qx (0,T)) ={v:veL*(0,T),H (Q)), v e L*((0,T),H ' (Q))}.

Boundary Regularity
Let us give the following definitions

Definition 2.1 Let Q2 be a domain in R™. Given o, « € (0, 1], we shall say that
9Q is of class C1® with constants po, E > 0 if for any P € 99, there exists a
rigid transformation of R™ under which we have P =0 and

QN B, (0) ={x € By, (0) : &, > p(z')},

where ¢ is a CY function on By, (0) which satisfies the following conditions

©(0) = [Varp(0)] = 0 and |lollcr.o (B (0)) < Epo-
Remark 2.2 We have chosen to normalize all norms in such a way that their

terms are dimensional homogeneous and coincide with the standard definition
when pg = 1. For instance, for any ¢ € CY*(By, (0)) we set

lelcracs, ) = pollelle(ss, @) + PollVarpllLe (s, o) + Po Ve Plass,, 0

Similarly we shall set

1/2
lull ey = o3 ™02 ( / u%zx) ,
)]

where dX = dxdt.



Definition 2.3 Let Q be a domain in R"*1. We shall say that Q (or equiva-
lently 0Q) is of class K with constants po, E if for all Py € Q) there exists a
rigid transformation of space coordinates under which we have Py = (0,0) such
that

Q N (BPO(O) x (_p(2)7p8)) = {X € BPO(O) X (_,0(2)7P8) P Tp > w(x/,t)},

where ¢ is endowed with second derivatives with respect to x;, 1 = 1,--- | n,
with the t-derivative and with second derivatives with respect to x; and t and it
satisfies the following conditions ¢(0,0) = |V, (0,0)] =0 and

PollVar@ll LBy x(—p3.08)) + Pg||Dg2c/<P||Loo(B;ox(—pg,pg))

+ P%Hat@HLoo(B;Ox(—pg,pg)) + PgHVx/at@HLoo(B;Ox(—pg,pg)) < Epo.

Definition 2.4 (relative graphs) Let (8 € (0,1]. We shall say that two bound-
ed domains Qp and Qy in R™ of class C1P with constants Ry, E are relative
graphs if for any P € 0¥y there exists a rigid transformation of coordinates
under which we have P = 0 and there exist vp1,9p2 € c1p (B’m (O)), where

;—0 <1 depends on E and 3 only, satisfying the following conditions
0

. r

i) op1(0) =0, [pp2(0)] < 50,

”) ||§0P,i Cl,ﬁ(B/TO(O)) S ERO, 7, = 1,2,

i) Q; N By, (0) ={z € By, (0) : zp, > pp; (2')}, i =1,2.
We shall denote

2.2 Q1,0) = su 1 =(B; '
(2.2) 7(,02) = sup flops = eralie (s, 0)

The Dirichlet—to—Neumann map
For any g € H, let u € W(2 x (0,T)) be the weak solution to the initial-
boundary value problem

(2.3a) Opu — div((1 + (k—1)xg)Vu) =0 in Q% (0,7),
(2.3b) u(z,0) =0 for x € Q,
(2.3c) u(z,t) = g(z,t) for (z,t) € 02 x (0,T),

where xq is the characteristic function of the set Q.
Then, for any g € H, we set

ou .
(2.4) Agg = 87|89X(0’T)’ u solution to (2.3).

v

We have that there exists a unique solution v € W(Q x (0,T)) to problem (2.3)
[Ev]. In addition, by standard regularity theorems [Li], [La-So-Ur] and by trace
theorem [Li-Ma, Chapter 4, Theorem 2.1], we conclude that Agg belongs to the
space Hy and that the operator Ag : H — Hj is bounded. We can also consider
A as a linear and bounded operator between H and H' = Hy, by setting
(2.5)

ou

ou
(AQg, D) u'm = <87|BQ><(O,T)a¢>H’,H = /
v 20 (

—¢, for any g,¢ € H,
O,T) aV



where u solves (2.3) and (-, ) g g is the duality pairing between H' and H.
Let us remark that the operator Ag is usually referred to as the Dirichlet—
to—Neumann map associated to the equation (2.3a).

2.2 Assumptions and Statement of the Main Result

Assumptions on the domain
Let pg, M, E be given positive numbers. We assume that € is a bounded domain
in R™ satisfying

(2.62) 1 < My,
where (2] denotes the Lebesgue measure of Q. We also assume that
(2.6b) 09 is of class C™! with constants pg, E.

A priori information on the inclusion
Denoting by @ = U,cg D(t) x{t} (Q = D((—00, +00))), we assume the following
conditions

(2.7a) 0Q is of class K with constans pg, F,
(2.7b) dist(D(t), 09) > po, D) cQ, Vtelo,T],
(2.7¢) Q\ D(t) is connected V¢t € [0,T].

Remark 2.5 Let ¢t be any number in [0, 7]. Observe that (2.7a) automatically
implies a lower bound on the diameter of every connected component of D(t)
and Q\ D(t). In addition, combining (2.6a) with (2.6b), we have an upper bound
of the diameter of © and thus of D(t). Note also that (2.7a) and (2.7b) implicitly
comprise an a priori upper bound on the number of connected components of
D(t).

Remark 2.6 For n = 1, it is possible to obtain Theorem 2.7 replacing assump-
tion (2.7) by considering Q = (0,L) and D(t) = {x € R : s1(t) < x < s2(t)},
where s;, i = 1,2, are C! functions such that for all t € (0,7
L —s3(t) > po,  s1(t) > po, s2(t) —s1(t) > po

and

Isill o= (0,1)) + P3lIsil| L (0,7)) < Epo, =12,
here 3pg < L.
Theorem 2.7 Let QO C R™ satisfying (2.6). Let k > 0, k # 1 be given. Let
{D1(t) }rer, {D2(t)}1er be two families of domains satisfying (2.7). Assume
that for e > 0,
(2.8) IAQ, — Aqullccamany <&

where Q; = D;((—o00,+00)), ¢ = 1,2. Then

(2.9) dr(D1(t), Da(t)) < wi(e), t € (0,71,



where wy(s) is such that
(2.10) wi(s) < Cpollogs|™, 0<s <1,

with C = C(t), depending on t,M,E k only, and 0 < n < 1 depending on
M, E,k only. In addition we have that C(t) tends to +00 as t tends to 0.

Here d3; denotes the Hausdorff distance.

3 Proof of Theorem 2.7
For the sake of brevity we name a; = 1+ (k —1)xq,, j = 1,2. We fix g € H.

We shall denote by u;, 7 = 1,2 the solution of (2.3) when Q = Q;. For ¢ €
HY1(Q x (0,T)) such that

(3.1) (-, T) =0 in©Q,

using the weak formulation of (2.3) we have
8’1,6]'
a;—=>pdS + | u;(z,0)(x,0)d
sax01) = OV 0

— / (a;Vuj - Vi) —u;0np) dedt =0 for j =1,2.
Qx(0,T)

Subtracting the two equations we obtain
(3.2) / (a1V(u1 — ug) - Vb — (ug — uz)0p)) dadt
Qx(0,T)

+/ (a1 —a2)Vuz - Vi =< (Ag, — A@,)9,% >m 1,
Qx(0,T)

(we notice here that in these identities it is possible to have u;(-,0) # 0 for
i =1,2). Taking 1 such that it satisfies (3.1) and

(3.3) Oy + div(a Vi) =0 in  x(0,7),
by (3.2) we have (recalling that on 9Q x (0,7T) u; = us = g)

/ (a1 —a2)Vuy - Vi =< (A, — A@,)9,%¥ >w m,  VgeH
Qx(0,T)

or, equivalently,

T
1
(34) / /(XQ1 — XQ2)VU2 . V’(ﬂdl‘dt = ﬁ < (AQ1 — AQz)’U,Q,w >H'.H -
0 Q -

Let us denote by I's(z,t;y, s) and I'j(x,t; y, s) the fundamental solutions of
the operator 9; — div(a2V) and 8y + div(a1V) respectively (I'i(z,t;y,s) = 0 if
t > s and Ta(x,t;y,8) = 0 if t < s), that is

/ [_F2 (xv t; Y, S)at¢($7 t) + a2vxr2 (iE, t; Y, S) . vz¢($7 t)} dl’dt = ¢(y7 S)a
R

n41

R

n+1



for every ¢ € CE(R™T1), that is using the § Dirac symbol, we have respectively
O Ta(x,t;y,5) — div(aaVaTa(z, t;y,5)) = d(z —y,t — 5)
and
=5 (z, 85y, 8) — div(a1 VI (2,859, 8)) = 0(z — y,t — s).

Choosing in (3.4) ua(x,t) = Ta(x, t;y, s) and ¢(z,t) = T5(z, €, 7), with (y, s)
and (&,7) ¢ Q x (0,T),0< s <7 <T, we obtain

T
35) [ [ (v0 —x0)VaTalo: tiy.) - VuT o, €.t
o Jo
1 *
= m < (AQl - AQQ)FQ('7 Y, 8),F1('7 ';577-) >H’,H .

For t € [0,T] we shall define G(t) as the connected component of Q\ (Dy(t) U
Ds(t)) that contains 9€2, G(t) = (R"\Q)UG(t) and G((0,T)) := Uye(o,7) 9(t) X
{t}. For (y,5), (£,7) € G((0,T)) with 0 < s < 7 < T, we set

S1(y,8:6,7) = | VDo, t;y,s) - VoI5 (x, €, 7)dzdt,
Q

Sa(y,s;6,7) = | Vila(z, t;y,s) VoI5 (, ;€ 7)dadt
Q>

U(y,s;f,T) = Sl(ya 85577-) - 52<ya5;657)'

Remark 3.1 Let us observe here that for T < s, S1 and S can be defined
identically zero since for (y,s) and (§,7) € G((0,T)) we have Si(y,s;&,s) =
SQ(y7 53 57 S) =0.
By (3.5) we have

1 *
(36) u(i% S 57 T) = m < (AQl - AQz)FQ('7 Sy, 8)7 Fl('? B §7 T) >H’,H7
for all y,£ ¢ Q,0 < s < 7 < T. Denoting by Qp(¥) := Q\ G, t € [0,T],
we introduce a variation of the Hausdorff distance that, even though it is not a
metric, we call it modified distance

(3.7)  dyu(t) = du(D1(t), D2(t))

= max sup dist(z, Dy(t)), sup dist(z, D1(t)) ¢ ,
€D (H)NON D (t) 2€0D ()N (£)

t € [0,T]. We point out here that trivially d,,(D1(t), D2(t)) < dy(D1(t), Da(t)).
The following proposition shows the relation between the Hausdorff distance and
d,,, provided the priori assumptions (2.7) hold. We refer to [Al-DC, Proposition
3.3] for the proof.

Proposition 3.2 Let Di(t) and Dy(t) be two sets satisfying (2.7) then for any
te[0,7T)

(3.8) (D1 (1), ODs (1)) < Cd (1),
where C depends on E and M only.



We now give a proposition which connects the Hausdorff distance between the
boundary of the inclusions and between the inclusions.

Proposition 3.3 Let Dy and Dy be two domains of class C? with constants
E, po such that R™ \ D;, j = 1,2, is connected. There exists a positive constant
C depending on E only such that

(3.9) dy (D1, D) < Cdy(0D1,0Ds3).
Proof. See Section 4.1

Remark 3.4 By Propositions 3.2 and 3.3 we have

dn(D1(t), Da(t)) < Cdy(9D1(t),0Ds(t)) <
C'dy(D1(t), Da(t)) < C'dp(D1(t), Da(t)).
Thus it turns out that the distances dy(D1(t), D2(t)), d3¢(0D1(t),0D5(t)) and
d,(D1(t), D2(t)) are equivalent.

Proposition 3.5 Let 1 and Qg be bounded domains in R™ of class CYP with
constants Ry, E and satisfying |2 < M Ry. There exist numbers d, p € (0, Ro]

such that Ri and Ri depend on B and E only, such that if we have
0 0

(3.10) o (0, ) < 4,

then the following facts hold true
i) Q1 and Qg are relative graphs and

(3.11) 7 (Q1,Q2) < Cdyy (1,2)

where C' depends on 3 and E only,
11) any connected component of Q1 N Qo has boundary of Lipschitz class with
constants pg, L, where py is as above and L > 0 depends on E only.

Proof. See [Ve, Proposition 4.1.8]. O
A key ingredient for the proof of our stability theorem are fundamental
solutions. We collect here some results we need.
We shall denote by I'g(z — y,t — s) the standard fundamental solution of
0¢ — A which is
1 _lz—y|?

= e -0, l>s
) [dm(t — s)]"/2° y

We shall denote by I'(x,t;y,s) the fundamental solution of the operator 9; —
div((1+ (k—1)xQ)Va) (see [Ar]). We recall that I" satisfies the following prop-
erties

(312)  T(z,ty,s) =T"(y,s2,t)  V(z,1),(y,5) € Q, (x,1) # (y, ),

where I'* is the fundamental solution to —9; — div((1 + (k — 1)xq)Vs), and

F0<.'I}— yvt_

|z—y|?

C =y
(3.13) 0<T(z,t;y,s) < We CE= X s, 400) (1),

where C' > 1 depends on k only. Furthermore we have also the following estimate
for the gradient of T'.



Proposition 3.6 Let T'(z,t;y,s) be the fundamental solution of the operator
Oy — div ((1+ (k — 1)xQ)Va). There exists C > 1, depending on k and E only
such that

C [ —y|?

<—— e -9
(t—s)" ’

(3.14) \VaT(7,ty,5)] <

for almost every x,y € R™ and t,s € R, t > s.

Proof. See Section 4.2. |

In the sequel we need the fundamental solution of the operator £, = 0, —
div((1 + (k — 1)x+)V) where X4+ = X{(z,t)eRr+1:2,>0}- We shall denote by
I'} such a fundamental solution. Also, we shall denote by ' the fundamental
solution of the adjoint operator of £, . Observe that T'y(x,t;y,s) = 'y (z,t —
5;y,0) and T (@, t;y,s) = [y (x,s — t;9,0). Here and in the sequel, for a given
function f(z’,x,), we shall denote by F¢/(f (-, z,)) the Fourier transform of f
with respect to the variable x’. Thus

Pt = [ g e <,
Rn—l
for every ¢’ € R"~1,

In [Is-Ki-Na] it has been proved some formulae for F¢ (T4 (., 2y, t;y)). The
technique to prove such formulae is rather classical and lengthy. For this reason
we display only the formulae that we need corresponding to the case in which
Ty, >0, y, <O0.

Case k > 1.

Denote by

(315)  B(\oatip) = exp [t(k (k=P - 1xn|C’\//3] ,

(3.16)  F(C',yn:p) =Im (Al(p)eiynmmm’|> 7

where, for complex number z = a + ib, Im(z) denotes the imaginary part b of z,
and

k1 1
™ k- 1/T—p+Vk/p

(3.17) Aip) =
Then
1
(3.18) fc(ﬂ(mn,t;yvO)):/ I le™ C E((, 2, t; p)F((, yns p)dp,
0

for every z,, > 0, y, < 0.
Case 0 < k < 1.
Denote by

G(C s tip) = exp [—t(1 = (1= K)P)IC'[2 + VI =kl -

H(C i p) = T ((Ag(p)e™ o VT VTP

10



where

v1—k 1
T Vkp—iVI—k/T—p

As(p) =
Then
1 A 7
For(Ty (- n, t;9,0)) = / I'le™ Y G(C  yn, ts p)H(C 203 p)dp,
0
for every z,, > 0, y, < 0.

Proposition 3.7 For every Ay € (0, 1] there exist A1, A2, A3 € (0, \g] such that
for every h > 0 the following inequality holds true

Aoh?
(3.19) 1M .= / dt [ VI (.t —Aihen, Aah?)
0 R
1
- Vilo(z, t; —Ashe,, 0)dx| > o
where C, C > 1, depends on A1, A2, A3 and k only.
Proof. See Section 4.3. O

Through the paper we shall fix the value of A1, A2, A3 in such a way that (3.19)
is satisfied and we shall omit the dependence of various constants by A1, Ag, As3.
In the following we shall often make use of this technical lemma whose proof
can be found in [Fr, Lemma 3 pg. 15].

Lemma 3.8 Let o, 8 < 5 +1 and a > 0. Then

2

¢ alz—¢|2 ale-yl
/ / (t—7) %" A= (1 —s) Pe” A= dédr
C

alz—¢|2

— s)%“’o"ﬁef aE=s) Va,y e R s <t,

an/2 (t
where C' depends on «, 5 and n only.

For t € (0,7 fixed, we can assume, without loosing generality, that there
exists O € 9D1(t) N INp(¢) (for the sake of brevity we assume that O is the
origin of R™) such that

(3.20) d,.(F) = dist(0, Do (T)).

Denote by
p = min{d, (D), po}.

Furthermore, denote by v(O, t) the exterior unit normal to 9D (t) in O pointing
towards G(¢). Now we introduce parameter ¢ € (0,1] that we shall choose later
on. We set

(3.21) th=1t— )\2h2, Y= )\1hl/(0,¥), Y1 = Aghu(O,f),
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where
(3.22) 0 < h < §min{p, V7).

Notice that (3.22) implies that ¢; € (0,%). By using (2.7a) it is simple to check
that there exists Cq, C7 > 1, depending on E only such that if

A3
3.23 0<o< =
(3.23) <0G
then, for every ¢ € [t1, ], we have
(324) dlSt(g, D1 (t)) 2 % min {)\1, )\2, )\3} h,
1
(3.25) diSt(yl,Dl (t)) Z §min {)\1,)\2,)\3} h.

On the other side, using the inequality [Ve, Proposition 4.1.6]
_ C _
(3.26) |dist(O, Da(t)) — dist(0, Do ()] < —2|t — 1,
Po

where Cy depends on E and M only, for ¢ € [t1,%] and by using the triangle
inequality we have that there exists Cy, Cy > 1, depending on F and M only
such that if

1
2 < —
(3.27) 0<d<

then for t € [t1,1]
1
(3.28) dist(z, Da(t)) > 5P with z =7, y1.

Proposition 3.9 Let {D1(t)}ier, {D2(t)}ier be two families of domains sat-
isfying (2.7) and let A1, A2, A3 € (0,1) be such that the inequality (3.19) is
satisfied. Then there exist C, C > 1, and C, C > 1, C depending on k only and
C depending on k, E, M, A1, Ao and A3 only such that

_ 1
2 ‘. > —
(3 9) |u<y17 t1; Y, t)‘ = Ohn’

forO<h < % min{p, ﬁ}, where y1,t1,7,t, and p are defined in (3.21).
Proof. See Section 4.3 O

Theorem 3.10 (Two-spheres and one-cylinder inequality) Let A\, A and
R positive numbers with A € (0,1]. Let P be the parabolic operator

(3.30) P =09, —0;(a0;),

where {a" (x, 1)}, is a symmetric nxn matriz. For £ € R™ and (x,t), (y, s) €

R gssume that

(3.31a) AP < Y al(x,1)&8 < AP

4,5=1

12



and

1/2
n

(3.31b) Z (aij(ac,t) —a'(y, s))2 <

i,j=1

(Jo = > + [t — ).

o) =

Let u be a function in H>' (BR x (0, RQ)) satisfying the inequality

\%
(3.32) |Pu| < A (|R“| + L;) in B, x (0, R?].
Then there exist constants m € (0,1) and C € [1,+00), depending on X\, A and
n only such that for every r1,72, 0 <ry < re < m R we have

CR _
B3 IR S Moo I ) s,
_ 1
where 91 = @.
Proof. See [Ve] U

We can now start to prove our stability theorem. Before entering into details,
we wish to warn the reader that, sometimes we use the previous auxiliary results
(such as Lemma 3.8 or Proposition 3.6) omitting some computations that are
similar to the one contained in the proofs of Section 4.

Proof of Theorem 2.7. We divide the proof of the theorem in two steps. In
the first step we provide a rough stability estimate (see (3.49) below). In the
second step we prove the logarithmic stability estimate (2.10).

Step 1.

We shall denote by

(3.34) Ep ={z €R" : pg/2 < dist(x, ) < po}
and

(3.35) Qpy ={z € R" : dist(z,Q) < po}.

Since U(y, s;€,7) is equal to 0 when s > 7 (see Remark 3.1), for (y,s) € Z,, x
(0, T) we define

(3.36)  w(&,7)=Uly,5:67),  (£,7) €G((0,T)) == Upe(o.r)G(t) x {t}.

Let h be the one defined in (3.22), with § < % and let A1, A2, A3 € (0,1) be such
that inequality (3.19) is satisfied. Let T € Z,, be such that dist(z,R™ \ E,,) >
po/8. Let us denote by + a simple connected arc in (2, \ Qp(f))r,n/2 = {z €
Qp, \ Qp(F) : dist(z,0(Qp, \ Qp(F))) > 2}, connecting T to 7, where 7 is
defined in (3.21). By (2.8) we have

(3.37) [oC Bl (B, 2 @) <

s}
os‘mQ
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and by Lemma 3.8 and Proposition 3.6 we have

c
(3.38) [0l (g (0.1 < =
Po

where C' depends on & only. It is easy to check that by (2.6) and (2.7) there
exists C', C' > C, depending on k, E, M such that for all z € (Q,, \ Qp(?))x,n/2
and 0 < h < % min{p, Vi,

(339) Q/\lh/4 = B)\lh/4($) X (t— <Yl> ,t] C QN((_OO,ﬂ)

Since v solves the heat equation, we can apply Theorem 3.10 along a chain of
balls centered in points of . More precisely, let us define p = n1A\1h/12, where
m € (0,1) is defined in Theorem 3.10, and x;, i = 1,...,my;, as follows: 1 =T,
xip1 = Y(t;), where t; = max{t : |y(t) — z;| = 2p}, if |x; — Y| > 2p, otherwise
let i = my and stop the process. We have m;, < CM (p—,f)n, where C' > 0
is an absolute constant. By construction the balls Bs(z;) are pairwise disjoint
and |x;41 — ;] =2pfori =1,...,m — 1 and |z, — ZT| < 2p. By an iterated
application of the two—sphere and one—cylinder inequality (Theorem 3.10) to v
with R = A\1h/4, ro = 3p, r1 = p over the chain of balls B;(x;), since we have
By, (zi41) C Bry(x;), i =1,...,my, by (3.37) and (3.38) we have

1/2

1 _ C mp, mp,

(3.40) — / v2(€,7)de < —e% " (C )t
T2 JB., (@) Po

where so € (0,1) is an absolute constant and C' depends on a priori data only.
From now on, in order to simplify the writing and since the case ¢ > 1 is trivial,
we shall assume that € € (0,1). By standard regularity estimates [Li] and taking
into account (3.37) and (3.38) we have

, c
(3.41) IVo(, )= (B,, @) < 77>
hpg

where C' depends on k only. Recalling now the interpolation inequality (see
[Al-Be-Ro-Ve, (5.29)])

L' _n n+2
(3.42) MmmﬁﬂMmm+W@mmW%réf>a

for every r > 0, where C is an absolute constant, by (3.41) and (3.40) we have
(3.43) (Dl (5.

where C' depends on the a priori data only. Now defining w(y, s) = U(y, s;7,t)
and taking into account (3.43) we have

asw(ya S) + Ayw(ya S) = O» iIl G((Ov T))v
w(ya 8)|{525} = 07
lw(y, )] < i (e), (y,5) € Zpy x (0,7)
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Now we want to estimate from above |w(yi,t1)|. In order to obtain such an
estimate we argue as before, but here, instead of (3.38), we use the inequality

C
(3.44) 1wl poe (o (t1.27)) < o

where G ([t1,1]) = {(z,t) € G((0,T)) : t; <t <%, dist(z,Qp(t)) > drh}, 6o =
émin{/\l, A2, A3} and C depends on k only. Inequality (3.44) is a consequence
of Proposition 3.6 and Lemma 3.8. Notice that by virtue of (3.24) and (3.25)
we have (y1,t1), (7,1) € G ([t1,1]). Therefore we obtain

_ C o
(3.45) Uy, 17,1 = [wlyy, t)] < 5 7™ "

where §5 € (0,1) is an absolute constant and C' depends on the a priori data

only. Now we introduce some notation. We set §(¢) = min { ﬁ, 1} and h/py = q.

n
By Proposition 3.9 and (3.45) we have that there exists C5, C5 > 1, depending
on k, E and M only such that

(3.46) 1< C553g_n, for every ¢ < L min {d”(t), S(t)} ,
Cs Po

where s3, s3 € (0,1), depends on M only. We distinguish two cases
) du(?) > min{VZ,po} i) du(?) < min{V/, po}.

If case 1) occurs we choose ¢ such that ngn = |loge|~'/2, that is

1
o | log s3] n
4797 \Nog [loge[172] )
Denote by e,(t) the least upper bound of the set {e € (0,1) : ¢. < §(¢)}. By
(3.46) we have

1 < Csexp {— \log5|1/2} )

which, for 0 < & < £,4(t) := min {s* (f) , e (log Cs)* }, yields to a contradiction.
Thus, if 0 < € < £,.(¢), case i) cannot occur.
Let us consider now case ii), that is d,(f) < min {\/E, po}. By (3.46) we have

1 < Csexp {78341 |log5|} )

Csld, (%
for every g < 57”() Now, if
Po
3 llog s3|~* —
(3.47) d,, (t) < 2C5pg |log (|log el * )’

then we are done. On the other side, if

logsg|~*\ |~
log | [loge| ™ 2

15
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(3.48) d, (1) > 2Cspo




let us denote by

552

1
1ogsa|—1)‘ n

log <|log6| 2

and by & (7) the least upper bound of the set {& € (0,e, (£)) : g- <6 () }. Now,
for 0 < e <egg (f), we choose ¢ = g- and by (3.46) we have

1 < Csexp {f \log€|1/2} .

Since the last inequality yields to a contradiction whenever 0 < ¢ < gg (f), we
have that if 0 < e < &g (f) then (3.48) cannot occur, so inequality (3.47) holds
true . Finally, by using Proposition 3.2 and 3.3 and Remark 3.4, we have

og s -1
log ( log €] Hesg )

—1/n
= o(e),

(3.49) dy(D1(t), D2(t)) < 2C5po

for 0 < e < eg(t).

Step 2.

In order to prove estimate (2.9) we apply Proposition 3.5 to Q; := Q\ D;(¥),
1 =1,2, and Ry = po. Indeed by (3.49) we have that, for £ small enough, Q;
and )y are relative graphs. More precisely if 0 < & < min{eg(%),d} (where d is
defined in Proposition 3.5) then there exists 1o > 0 (ro/po < 1 depending on E
only) such that

(3.50) B,,(0) N D;(t) = {z € By, (0) : T, > ¢;(z")}, i=1,2,

and |1 7902”[/00(3;‘0) < Cpgo(e), where C depends on E only. By (2.7a) and an
interpolation inequality [Al-Be-Ro-Ve, (5.30)] we have that ||¢; — 902H01(B’ro) <
Cpo(o(s))ﬁ, B € (0,1). Thus, with eventually a rigid transform of coordinates,
provided we pick a smaller rq, there exists ¢y > 0, depending on E only, such
that for € < gy we can assume that |V1(0)] = 0. In the sequel we continue to

denote by £¢(t) the number min{ey(t),e¢}. Let us define, for a unit vector ¢ and
O<a<m/2

C(z,( a,m9) = {x € B, (2) : z=2)¢ > cosa}.

|z — 2|

By (3.50) we have that C(0,v,a,r9) C G(t), where o, o € (0,7/2), depends

on F only. Let us denote 1 = H‘S’fna, 0 = \/S% and p, = gcos 5. We have

that S((0,%),v, §,0%,p) C G((—00,1]), where we set v = v(0,7), for the sake of
brevity, and

_ o,
5((0.9.1.5.6".7)
= {(Zﬂf) eR" 1 2 € (0, V,%,ﬁ), T—0*(x-v)? <t Sf}

and v = v(0,t). We want to estimate v(y,t) = U(y, s;7,t) when (y,s) € E,, X
(0,T), s < t, where v solves

00 — Agv =0, for (¢,7) € G((0,7)),
(351) v(g;T)h—Ss =0,

vl (z,, x(0,1)) < &,
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where &€ = Ce/pj, where C depends on k only. Let us fix (y, s) such that

[1]:

(3.52) (y,8) € Epy x (0,T) ={z € R" : gpo <d(z,Q) < %po} x (0,7).

By Proposition (3.6) and Lemma (3.8), taking into account the last relation of
(3.51) and by (3.52) we have

c o
(3.53) ol g0y < o +& = 1.
0

In the sequel we continue to denote by v the trivial extension of v. Notice that,
by (3.53), we have

V] oo (s((0.7) w,0/2,6% ) < H-

. (L L«
a1 = arcsin (mm {sm 5,5 (1 — sin 5) }) ,

Denote by

1 .
M1 yW1 = 2+ v, p1 = qHam sin g,

- 1+ sinog

where 77 € (0,1) is defined in Theorem 3.10. We have

(3.54) dist (w1, 0G (£)) = min{py — |wy — 2|, |w1 — z|sina} = po7],
where
_ . cos § 1 sin a cos §
n=min<¢ 1 — - - , - - .
l1+sinal+sina;’ 1+sina; 1+ sina

Now (G (£)) pon is connected and, by (3.54), w1 € (G (£)) pgn. Therefore by an
2 2

iterated application of the two-sphere and one-cylinder inequality (see also [Ve,
Proposition 4.1.1]) we get

(3.55) <p;” /|

where s4, s4 € (0,1), is an absolute constant and C' depends on the a priori data
only. Denote

1/2
v? (&,1) df) < CEH'™,

p1(wy)

k—1 k—1
P =a"T Ty, Wi =Ry pp=at o pr

k—1

1.
di = —pr =0a" pr(1— i sin oy ),

1—%7]1 sin aip

where a = 7 i P For every k > 1, the following inclusions hold true
4

(356) BPk+1 (wk+1) - B3Pk (wk) C B4771_1Pk (wk) C C(O, v,on, ’l”())

(3.57) By=1,, (wy) x (T — (4ny ' pr)?, 1) € S((0,7), v, @, 6%, 7).

Let us consider h defined in (3.22). We further assume A\;h € (0,d;]. Let k be
the smallest positive integer such that di < A1h. We have

llog (\ih/d1)| _ — |log (A1h/d1)|

. <k-1<
(3:58) logal =" logal

+ 1.
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Denote

=

1/2
05 = <p(;n/ v? (Eaf) df) , J=1.
B/Jj(wj)

By the Theorem 3.10, (3.56), (3.57) and since

1/2
Oj+1 < <Po_n/B ( )UQ <£7¥) dg) ) j:]-a"wE*]-a
3p; wj

we obtain
(3.59) 0% S CLHP g0 =1 k-1,
where 0, = m. By iterating (3.59) we get
. = %
(3.60) O—% < CWHQU*&’I:)U%@*.

By Lemma 3.8 and Proposition 3.6 we have

C

(3.61) [l (@, < o

where Q,_ = B,_(wg) x (f — p%,ﬂ. By standard regularity estimate and (3.61)
we get

(3.62) IVo(s )l (B, s (we)) <

PEPG
Now by using interpolation inequality (3.42), (3.55) (3.60) and (3.62), taking
into account that § € B,_/a(wy), we have

(3.63) w@¢nsc(2)W%H((§>%f{

where 0, € (0,1) and s5 € (0,1) (absolute constant) and C' depends on the a

priori data only. Now evaluating k in terms of h and recalling that w(y,s) =
U(y, s;7,t) = v(7,t) we have, for every (y,s) € Z,, x (0,T)

[log 6|

C /e %<L) sl
(3.64) 1wl e 2, < 0.19) < 072 (6) B

)

where C' depends on the a priori data only. Arguing as above to estimate
|w(y1,t1)| and recalling that w(y1,t1) = U(y1,t1; 7Y, t) we have

_ C 1(n)®
(3.65) 17,9 < et 6)

where C' and B depend on the a priori data only. Finally, using Proposition 3.9
and proceeding as in Step 1 we obtain (2.10). O
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4 Proof of the Auxiliary Results

4.1 Proof of Proposition 3.3

Proof of Proposition 3.3. We recall that, for a given a subset A of R", we
denote by [4]. = {x € R™ : dist(z, 4) < e}, (A). = {zr € A : dist(z,04) > ¢}
and [0A]. = {z € R" : dist(z,0A4) < e}. We remark that [A]. \ (A). = [0A].
and (A): C A C [4]..

Let d := dy (D1, Do) and r := dy(0D1,0D3). If d = 0 then (3.9) holds trivially.
Assume d > 0. Without loss of generality, we can assume that there exists
Z € D; such that d = dist(%, D3). Since d > 0 we have that T ¢ D, and
therefore d = dist(Z,0D3). If T € 0Dy, then (3.9) is trivially true. Assume
Z € Dy \ Dy. We have for every x € Dy \ Dy

dist(z,0D2) = dist(z, Ds) < dist(Z, Da) = dist(z, dD>).
Thus for every x € D; \ Dy we have
dist(x, 0D3) < dist(z, 0D3),

that is T is a maximum point in the set D1\ D for the function dist(-,0Ds).
In the set A = Int ([0D2],,/£) \ 0D2, the function dist(-,0Ds) is C* and

(4.1) |V dist(z,0Dg)| >0  Vaze€ A

Since 7 is a maximum point and T ¢ dDs, by (4.1) we have

(4.2) dist(z, 9Ds) > %0.

Otherwise, recalling that z is a maximum point of dist(x, 0D5) interior to Dy \
Do, if dist(T,0D2) < po/E we should have V,dist(z,0Ds) = 0 contradicting
(4.1). First let us assume r be such that

. JPo PO
43 {77 7} .
(4.3) r<ming
We can write R" = (Dz), U[0Ds], U (R™\ [Dy],). By (4.2) and (4.3) we have
T ¢ [0Ds],. Since (D2), C Dy and T ¢ D4 we have that T € R™\ [Ds],.. Recalling
that r < pp/2 and R™ \ Dy is connected, we have that R™ \ [Ds], is connected.
Thus there exists a continuous path

~v:[0,1) = R"”
such that
(4.4a) 7([0,1)) C R™ \ [Da]s,
(4.4b) ~0)== tl_iga_ ~(t) = 0.

Since dy(0D1,0D2) = r and 0Dy C [0Ds), C [D2]y, by (4.4a) we have

’Y([O’ 1)) NoD; = 0
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which is a contradiction since T € D; and D; is bounded. Thus we cannot
connect T and oo with a path that does not intersect dD;. Hence T € 0D;.
Thus if dy(0D1,0D3) < dpy, with § = min{+,1}, (4.3) is satisfied and we
have

dﬁ(ﬁl,bg) = diSt(iL', 8D2) S r.

On the other side, if dy(0D1,9D3) > dpy we have trivially

2diam(Q?)

dpo

dy (0D, 0D5)
and the proposition is proven. (I

4.2 Proof of Proposition 3.6 and Asymptotic Estimates
for the Fundamental Solution

We shall make use of the following regularity theorem, whose proof can be found
in [La-Ri-Ur], [La-So-Ur, Ch. III, Sec. 13].

Theorem 4.1 Let \, M and r be positive numbers with A € (0,1]. Let u €
HY2 (B! x (—r,7) x (—=r2,72)) be solution to

(4.6) div (A(z,t)Vgu) + b(z,t) - Vyu — du =0,

where A(xz,t) and b(z,t) are respectively a symmetric n x n matriz and a vector
valued function satisfying the following conditions

(4.7a) NEP? < Az, )€ - € < ATHEP,
for all (z,t) € B! x (—r,7) x (=r%,7r%) and for all £ € R,

(4.7b) 7 Z 10i All Lo (B2 x (—r,0)x (—r2,r2)) + T Z 10i All Lo (B2 x (0,r) x (=72 r2))

i=1 i=1

2 10eAll L (B x (=) x (—r2,02)) < M,
(470) r”bHL”(B;X(f’r‘,T)X(7T2,T2)) S M.
Then there exist positive constants 3 € (0,1) and C such that for every p < §

and all (z,t) € B]_y, x (—=(r = 2p), (r — 2p)) x (=r* + 4p*,r?) the following
inequality holds

(4.8) PIV el Lo (By (1) x (= pt-wn ptn) x (—p2+1,8)
+07 Vol gy (B (01 < (= prtm pton) X (= p2H)N(BY x (—1,0)x (~12,52))
0 Vot gi(By (01 ¢ (—pamprbaon) < (02 +O)N(BY X (00X (~r2,72)

C

i

1/2
/ u(E,T)dedr p
By, (2") X (=2p+xn,2p+1n) X (—4p2+t,t)

Here 3 depends on n only and C depends on X\, M and n only.
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Before proving Proposition 3.6 we give the following estimate which is needed
in the proof. We recall that Q,(zo,t0) = B,(xo) X (to — p?, to).

Proposition 4.2 For every 61, 0 < 61 < 1, there exist constant C > 1 depend-
ing on k, 61 and n only such that the following inequality holds.

o _ lzg—¢l?
(4.9) / D(z,t;&,7)|?dedt < C—F——e o7,
Qp(w0.to) (to —7)" !
where p = 61[|zo — &% +to — 7]/
Proof. From the inequality (3.13) we have
(4.10)
1 lo—¢?

/ IT(z,t;&,7)*dedt < C e 1T x(r yooydz di,
Qp(m(}’tO)

Qp($07t0) (t - 7‘)”

where C7 depends on k and n only. In what follows we denote by I the integral
at the right-hand side of (4.10). We distinguish two cases

i) to — p* < 7 < to,

11) T <ty — p2.
Let us consider case i). It is easy to see that there exists an absolute constant
C > 1 such that

(4.11) Clp<|lz—¢<Cp Va € B,(xo).

By (4.11) we have
to—T 2
(4.12) I< cnp"/ s e Casds,
0

where ¢, is an absolute constant depending on n only and Cy depends on k and
nonly. Now if 0 < tp — 7 < nLcZ’ being s — s‘”e_c% an increasing function in
(0, %), by (4.12) we get

P 2

e CGo-m),

(4.13) Ig@;;Fj

2
Otherwise, if f <tg—7 < p? then since

max {sfne*f’z/(czs)} - 7(7102)”6,1/”
(0,+0) P>

and now t — 7 is of the same order of p? we have

2
2

P 2
p "I <Cy s~"e  Cands < Le_ Saliom
0 (to — 7)1

By the last inequality and (4.13) we get the Proposition in case i).
Let us consider now case ii). It is easy to see that

(4.14) 6p% < |z — €2 +t — 7 < 60p%,
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for every (z,t) € Q,(xo,t0). Moreover, denoting

o—£]2
67%
M, = max (75_77_)" : (Ivt) € Qp(xovto)

and taking into account (4.14) we get

2

(4.15) M,<C <Cl> ,
0

where C' depends on n only. Now, since 7 < tg — p? we have

|=TO*§|2

(4.16)
to — T

<A4.

Therefore by (4.15) and (4.16) we get the Proposition in case ii) as well. O
Proof of Proposition 3.6. Let U be a solution of the equation LU = 0,

where £ = 9; —div(1+ (k—1)xoV). We recall the following regularity estimate
(see [La-So-Ur])

1/2
C
ro2 Q2 (T0t)

where Qj (T, f) = Q-(7, E) NQ (we recall @ = D(R)) and Q; (7, f) = Q. (7, f) \
Q7 (z,%). Applying (4.17) to the function T'(-,;&,7) we get

1/2
C
(418) HVF(.’.;g’T)HLW(Qf(xo,to)) < il / |F(.’L’,t,€,T)|2dJ}dt s
p 2 Q25(z0,t0)
where
1 1/2
(4.19) p= 7 [lro— €2 +to—7)""%.
4

Applying Proposition 4.2 to the right hand side of (4.18) we have

C pr _Jag-g2 /2
IVEC, 38 D) @ ovto) S ) |G-t o=l
Since
1 1
[
16p2 - to — T
we obtain (3.14). 0

In order to state the next theorem we introduce some notations. Let ¢ :
B, x (—p2,p2) — R such that it is differentiable with respect to t and w;,

i =1,...,n—1, it is twice differentiable with respect to x;, ¢ = 1,...,n — 1,
and Oy is differentiable with respect to x;, i = 1,...,n — 1. We assume that
(4.20) ¢(0,0) = [V4¢(0,0)] =0
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and
(4.21) P3||D925/<PHL<>O(B;0x(—p2,p2)) + P3||at<P||Loc(B;0x(—p2,p2))
+ Pg||3tvx'80||L°°(B;Ox(—p2,p2) < Epo.
We shall denote by
25 0 =12 € By x (=p8, p3) + an > p(al 1)},
and by FQ%O (z,t;y,s) the fundamental solution of the operator 9, — div((1 +
(k— 1>X@$,po V), that is
('9,5I‘Q$7p0 (z,t;y,s)
—div ((1 + (k — 1)XQ$,po)VFQ$,po (z,t;y, s)) =—0(z—y,t—s),
where (y,s) € R"TL

Theorem 4.3 (Asymptotic Estimate) Let ¢ and Lot (z,t;y,8) as above.
»PO
Then there exists a constant C > 1 depending on n and E only such that

lz—y|?
: : [lz —yl* +1"/% e "o
(422) ’FQ;M) ($, ta Y, O) - F+($, t7 Y, O)’ < c 0 tn/2 )

(423)  |VaTgs, (2.8,0) = VaT'(2,t:3,0)|

<ol =yl + 31458 o~ R
- P /2
0

where 3 is the one defined in Theorem 4.1, depending on n only, for all
~ 1
(1) € Qp 2o N {(x,t) eR"™ 1 t>0, 2, > C—po(\x'P —l—t)}

and Yy = Yneén, Yn € (—po/C,0).

Remark 4.4 Theorem 4.3 provides an asymptotic estimate for the fundamental
solution I'(z, t;y, s) when (x,t) and (y, s) stay on opposite sides of the interface
(given by the graphic z,, = ¢(a’,t)). Our crucial requirement is that (y, s)
approaches the interface in a nontangential way.

Proof. of Theorem 4.3. Let 6 be a C function on R such that 0 <6 <1,
0(s) =0, for every s € R\ (=2,2), 8(s) = 1 for every s € (—=1,1) and |6'(s)| < 2
for every s € R.

We define new variables by (§,7) = ¥(x,t), where U(x,t) = (®(x,t),t) and

¢=a
6= ot 00 (20) ()0 (4).
T=1,
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where 71 = po min{%, 535 }-

Sometimes, for the sake of brevity for a fixed t € (—p3, p3) we denote by
®(.) the map ®(-,t) and by G® the graph of ¢(-,t). It is not difficult to
check that ¥ and ® have the same regularity properties of ¢ and they are
diffeomorphisms (that preserve orientation) of R"*! and R™ respectively. We
denote by ®1(-,t) the inverse of ®(*)(-). The following properties hold:

(4.24a) ®® (G(t) N (By, x (—rl,rl))) ={z € B, x (—r1,71) : T, =0},

(4.24b) V(z,t) = (=, 1),
Y (z,t) € R™TH\ ((Bér1 X (—27"1,27’1)) X (—27"%,21"%)) ,

(4.24¢) C_1|x1 — x| < |<I>(t)(ac1) — <I>(t)(:1c2)| < Clzy — x|, V1,20 € R",

C
(4.24d) |#Y(z) — x| < = |z}, Yz eR",
Po
® ¢ n
(4.24e) |D, ) (z) —I| < —|z|, VzeR",
Po

where C', C > 1, depends on E only, I denotes the identity matrix and D, ®()

is the jacobian matrix with respect to variable x. For y, € (—=%,0) and o €
2

(=r%,77) we denote y = ynen, and n = ®(y,o). Furthermore we shall use
the following notation I'(§,73n,0) = L(¥~1(&,7); ¥~ (n,0)), and (¢, 7) =
det J(&,7), where J(&,7) = (D, ®)(¥~1(&,7)). We have that ['(¢,7;m,0) is a

solution to

(4.25)  div (B(&7)Vel) + C(&,1)Vel = 0,1 = —9(,0)3(¢ = 1,7 — 0),

where B(&,7) = (1 + (k — 1)x*)B(&,7), B, 1) = (J(& 1) (J(E )" and

C(& 1) = J(&7)225ED — ZED Ty (¢, 7).

Since we want to study the asymptotic behaviour of f(§ ,7;1,0), we shall
denote I'(§, 751, 0) by I'(§, 75 7).
By (4.24), we have that

(4.26) B(0,0) =1 and  [Bl|[z~@x(,1)) *+ rolBliaxor < C,
where C' depends on E only. Denote by

(4.27) R(&,7im) =T(& mm) — v(n,0)T (&, 75m),

where I' (§,7;m) = ['1(&,7;7,0) is the fundamental solution to the operator
div ((1+ (k — 1)x*)Ve) — 0;. We have

div ((1 + (k- 1)X+)V5R) -0, R=F(& 1),
where
F(&mn) = —C(&T)Vl(€,75m)

tdiv (14 (k= )X = B ) Vel (€ mim))
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notice that F(¢,7;m) =0if 7 <0,
(4.28) R(&,m;m) =0, forT <O.
Therefore, [Ar]

R(&,mim) = /O [ FGsTEniCadcds,  ifT>0

We have

(4.29) IR(&,mm)| < J1+ o,

where

(4.30a) Iy = 6 $)VD(C 5Ty (6,73 ¢, 5)d(ds
and "

(4.30b) ; (1+(k—=1)x") (I - B((,9))

X VL (Csi) - Vel (6, 75€, 5)dCds| -
By Proposition 3.6 and Lemma 3.8 we have

C _le—n|?

(4.31) Ji <

where C, Cq, C > 1, C7 > 1, depend on E only. By Proposition 3.6 and (4.26)
we get

(4.32) Jo < Jaq+ Ja 2,
with

n _lcoml? n+1 _ _16=¢®
(4.33) Ja1 = —/ / sHem O (1 — 5) " e TG dCds,
and

nt1 __le—¢|?

2 e C1m-9) d(ds,

(4.34) Joo = —/ . [C|s™ mt -l (1—s)"

where C,Cy, C' > 1, C7 > 1, depend on F only.
By Lemma 3.8 we obtain

7-_%""% _le—m)2
(435) J2)1 < C e @it |
Po
Let us consider now Js ». Performing a change of variables we get
n 7\E—nl2
. = vy e T
2,2 % 5 s
01 el
/ / —MONY2z 4 M€= —|—€‘ \/—)\dzd)\
C 7\557\
e 17
= o [(1€P + 72+ Jg =]
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where C' depends on E only. Now, denoting by C; = max 81/26_ﬁ7 we

h s€(0,4+00)
ave
_le=m? 1/2
CqiT _ 2 2 2 2
€ T e = (B2 T st < &
/2 T2 T 5
Thus
c 7|§5n\2
e 2 1/2
. <z )
(4.36) o2 < (€ +7)

Now since 7 = €., 7, < 0 and &, > 0, we have |€ —n[? = |¢|> — 2n,.&, +[n]? >
|€|%. Such an inequality and (4.28), (4.31), (4.35), (4.36) give

_le=n?
€

C Cr
@) IRET] € Xy e (€= 4 )

for every & € B2+r1 and 7 € (0,47%), where C, C' > 1, depends on E only. Let d;
be the constant defined in Proposition 4.2 (6; € (0,1)) and, for fixed £ € B:l/g,
N € (—71/8,0), 1 = €ennn, T € (0, (1/8)?) denote by
5 —
h= €= n* +7)'/2

We have } 3 ~ }

div (B(g, T)vgr) +C(€,7)VeD — 0,T =0,
in B;L/Q(EI) x (€, —h/2,E, +h/2) x (T — (h/2)?,7], where B and C are defined
above. Therefore by Theorem 4.1 and Proposition 4.2 we get

S cC 1 g2

(4.38) [V, 7,m)]s.0 < e

where where Q = B}, 4(5/) x (€,,,&, +h/4). Since a similar inequality holds true
for VeI'y (+,751m), by (4.27) we obtain

_ ¢ 1 _E?
(4.39) [VeR(T3m)go < W?n?e cr .

In (4.38) and (4.39), C, C > 1, depends on FE only. Now we recall the following
interpolation inequality

8 T |
410 19l <€ (W72 975G + {1l~ca) ).
Since (4.37) easily yields
[€=nl?
. Ce ~oF
(4.41) IR(Tsm)llL=(@) < %Wh’

where C, C' > 1, depends on E only, we obtain by (4.39) and (4.40)

C /R o 4
4.42 VeR(ETin)| < — (— 3
(1.42) verEmal< < (1) T
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for every E € B;/87 N = €nMn, n € (—7"1/8,0), TE (O? (7"1/8)2], where C; > 1,
depends on E only.

Let us go back to the original coordinates (z,t). First of all let us estimate
the function g defined by

(4.43) g(z,t;y) == R (2),; 0 (y)) = R(®V (), 8 enyn).

To carry out the estimates, up to the end of the proof, we always consider x
and y, such that z € Bjp,(0poen), yn € (—0po,0), where ¢, 6 € (0,1), may
change from line to line, but it shall depend on E only. Notice that for every
x € Bsp,(0poer) we have x, > 0. Also notice that

(4'44) |$| < ‘1‘ - enyn|7 S B&po (5p0€n)> Yn € (_5p0a0)'
By such an inequality and (4.24d) we have

C
(4.45) ‘(I)(t)(x) -z < p*0|33 - enyn|2

for © € Bspy(dpoen), Yyn € (—0po,0) where C' depends on E only. By (4.45),
(4.44) and the triangle inequality we have
(4.46) C Yz — enyn] < 12W(2) — enyn| < Clz — enynl,

for € Bjsp,(0poen), yn € (—0po,0) where C, C > 1, depends on E only. By
(4.41), (4.42), (4.24¢), (4.43), (4.44), (4.46) we obtain

w 1/2
|z — enynl2 +i
(4.47) lg(z,,y)] < C2 — { 4 |
and
(4.48)
T—enYn 2 _ 5
|v (l‘ t; )| < — e_% H.’E — enyn|2 +t]1/2 1+1+B
29\, 1Y) | > £0 tn/2[|$_enyn|2+t]1/2 20 ,

for every x € Bsp, (0poen), Yn € (—po,0) where C, C' > 1, depends on E only.
Recalling the definition of g we have that

(449) 7 (20()) (C(a.t:9,0) ~ T4 (2, t:,0)) =
g(z, t;y) (1 (@O (y )F+(x,t;y,0)
=7 (20@) (T4 (e, 9.0 - T (20(@), £:4,0))
Now for x € Bs,,(dpoen), Yn € (—6po,0) we have
(4.50) lyl < |z — enynl,

so such an inequality, (4.26), (4.24c) and (3.13) give

z—enyn|?
& — enynl? +1 1/2 o le=eqyn]
p(2) tn/2 ’

@5@\0—7@@@»ﬁum¢wﬂﬂsc(
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for every x € Bsp, (0poen), Yn € (—Ipo,0) where C, C' > 1, depends on E only.
In order to estimate from above the third term at the right hand side of (4.49)
we use the mean value theorem. By such a theorem, (4.26) and Proposition 3.6
we get

(452) 1@ () (T4(0V(@), 1:9,0)) ~ T2, t55,0)
_ [T—enynl?

< Clw — o0 (2)| —p—,
t =2

where T = x + M@ (z) — 2) for a suitable A € (0,1) and C, C > 1, depends
on E only. Now, by triangle inequality, (4.24d), (4.44) we have

(4.53) |Z — enyn| > |z — enynl — [z — 7|
c 1
> |z —enynl (1= —|z| | > 2|7 — enynl,
Po 2

for every x € Bs,,(dpoen), d small enough and depending on E only. By in-
equality (4.53), (4.45), (4.47), (4.51) and (4.52) we obtain

(4.54) |Dy(2,t;9,0) — Ty (@ (), 5 y,0)]

T—enlyYn 2
<o (U= eyl )\ VP e

for every @ € Bs,, (8poen), yn € (—0po,0), t € (0, (r1/8)%), where C, C > 1, 6,
0 < é§ <1, depend on E only.

We finally estimate |V,I'(z,t;y,0) — VI (z,t;9,0)| for @ € Bsp, (0poen),
Yn € (—0po,0). By (4.26), (4.50), (4.49), (4.48) and Proposition 3.6 we have

(4.55) |V.I(z,t;9,0) = VoI y (2, t;9,0)]

T—enyn _ _B_
< gei [2=gnunl “x — enyn|2 + t]1/2 e
T po /2 Po

bl

+ |Vl (@,t59,0) = Vo (T4 (89 (@), £5,0))

for every @ € By, (6poen), Yn € (—0po,0), t € (0,(r1/8)?%), where C, C > 1,
depends on E only. Let us consider now the last term at the right hand side of
(4.55). We have

(4.56) Vo4 (2,:9,0) = Vo (D4 (@0(2), 6,0)) | < Hla,tiy) + Ha(z, t5),

where
Hi(z,t;y) = C|VoTy(2,t9,0)| [T — D, ()|

and

Hy(z,t;y) = C|D, @D (2)] | (V.T4) (29 (2),t:9,0) — VT4 (2, t;9,0)],
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where C' depends on E only. By Proposition 3.6, (4.24e) and (4.44) we have

_lz—enynl? _lz—enyn|?
e Ct e 2Ct
!
<C

(4.57) Hy(z,t,y) < Clo — epyn| ——m— < BTy R
te t

for every @ € Bs,, (poen), yn € (—p0,0), t € (0, (r1/8)?), where C, C’, depend

on F only. To estimate from above the function Hy we apply Theorem 4.1. Let

01 be defined as in Proposition 4.2 and let us denote

01
p=lla— eayal? + 472
By (4.24d) and (4.44) we have that there exists 6 € (0, 1), depending on E only
such that

1
(4.58) 20 (2) — ] < 2P

for every x € Bsp, (0poern). Now Theorem 4.1 and Proposition 4.2 yield

_ \'T—Cnyn\2
Ct

_ e
(4.59) Vol (9, 0)] g3 (o) x (08 0 +) < Cp~ CF i,

n? tT

where 20 = max{0,z% — p} and C depends on E only, x € By,,(5poen), yn €

(—=3p0,0), t € (0,(5p0)?). By (4.24d), (4.59) and (4.58) we obtain

0 _
n

_lz—enynl?
Ct

C _ e
(4.60) Hy(w,tiy) < o™ —m—,
2

for every © € By, (dpoen), yn € (—po,0), t € (0,(6py)?), where C, C > 1,
depends on F only. Finally, (4.44) and (4.60) yield

_lz—enynl® —143
Hy(z,t;y) < ge & [z — enyn|2 + t]l/z .
Y T pe /2 Po

The last inequality, (4.57), (4.55), (4.56) give
|VmF(1'> 12572 0) - Vz]-—‘+(xa Ly, 0)|

T—enyn S
. 267I cny | Hl’*enynF +t]1/2 I+577
~po /2 Po '

for every @ € B,y (6poen), yn € (—=0p0,0), t € (0, (5po)?), where C' depends on
E only. O

4.3 Proof of Proposition 3.9

Proof of Proposition 3.7 First of all, let us observe that

(461) 110 (fa T; _)\Sena 0) = hnFO(h€7 h2T; _)‘3hena 0)
and
(4.62) (&7 =Aen, A2) = "I (RE, R2T; —Aihen, Aah?).
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Indeed (4.61) is a trivial consequence of the definition of T'y. Concerning (4.62),
it can be proved as follows. Denote by y") = —\ he,, s = A3h? we have

(4.63) / (T80 + (1 + (k — Lxs (@) Val™, - Vo) dadt = o(y™®, sM),
Rt

for every ¢ € C§°(R™*1). In (4.63) I'%. denotes the function I'% (z,¢;y™), s(M).
Now for an arbitrary function v € C§°(R"*!) put p(x,t) := 1 (%, %) in (4.63).
In the obtained integral we perform the change of variables x = h&, t = h%7.
Thus, taking into account that x4 (k&) = x+(£), h > 0, and denoting by Wy (&, 7)
the right-hand side of (4.62) we have

/]Rn+1 (Wrorp + (1 + (k= 1)x4(§))VeWh - Veb) dédt = (= A1en, A2),

for every 1 € C§°(R"*1). Therefore

(4.64) O-Whi +div((1 4 (E — 1)x+(£))VeWh) = —=8(E + Men, T — A2)
and, by the definition of W,

(4.65) Wip(,7)=0 for every 7 > Ag.

Finally, by the uniqueness for Cauchy problem [Ar], by (4.64) and (4.65) we
obtain (4.62).

Now, performing the change of variable x = h&, t = h?7 in the integral at
the left-hand side of (3.19), we get, by (4.61) and (4.62),

(4.66) I = p=n M),
Now, recall that

112
e~ I¢I7t _Gentrg)?
e .

VArt

In the case k > 1, by Parseval formula, (3.18) and (4.67) we have

(467) Fg/ (Fo(',xn,t; _>‘36n70)) =

7 —

)

/ Mag s (C's 2 £ p)F (¢ —Av: p)AC dirndidp
Y

where Y = R"~! x (0, +00) x (0, \2) x (0,1) and

712
|<—/|2 et  (@ntrg)?
MAQ,A?, (C’?x’ﬂ?t;p) = € 4t

(2m)n—1 /arxt
x <<'|+ k;“;f%) E(C 0 ha — t0).
For fixed Ay > 0, A3 > 0, taking into account (3.16) and (3.17) we have
Jim 10 = /Y My, 5, (c’,xn,t;p)Im(Al(p»dc’da:ndtdp‘ :
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Thus
lim I™ >0

)\1—>0+

and by (4.66) the thesis follows.

Concerning the case 0 < k < 1, we only give a sketch of the proof, indeed
such a case can be treated similarly to the case k > 1. In the case 0 < k < 1, in
order to have a suitable formula for I, first we evaluate the integrals

+oo
Im </ e M K (2, 4 A3, t)da:n) ,
0

o0 ) o
Im </ efwxniK(l‘n + Az, t)dl‘n> s
0 0

Tn

where

REN

x

u:\/%\/l—p\ﬂ and  K(x,,t) = 74 .
7r

In order to carry out such an evaluation we may use formula 3.322 of [Gr]. Then
we choose Ay = A\?, we perform the change of variable ¢’ = §—17 t = A27 in the
integral I and we get

¢
N
=

~+

lim <x; lim I<1>) >0

A1 —0+ A3—0T

and the thesis follows. O
Proof of Proposition 3.9. By the triangle inequality we get

(4.68) Uyt 7,80 = 1Sy, 17, 1) — Sa(yr, t137, 1)
2 |Sl(y17tl;yaf)|_|S2(y1>tl;ya¥)|'
Let us first estimate from below |S;(y1,t1;7,1)|. Recall that I'} (x,;7,%) is the

fundamental solution of the adjoint operator of £, = 9; —div((14+(k—1)x4+)V).
Denote by

Qpj2 = B,po(0) x (t1,1), Q) =B ,(0) x (t1,7),  Q,y = B,,(0) x (t1,1).

By the triangle inequality we have

(4.69) |S1(y1,t1;7,t)| > I — R1 — Ry,

where

(470) I = / foi(x, t; vy, g) : vwl—‘o(l', t;y1, t1)d$dt s
Q)2

@7) Ry — / VT2, 91, )| [Vl (2, £: 7, F) | dadt
Dy (t1,0)\Q, /2

+ (V.15 (2,55, )] [VaTo (@, 1, 1) | dodt,
Q}\(D1(t1,H)NQ )
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(4.72) R :/ VoI (2, 6:9,7) — VT (2, £:7, )|
Dy (t1,5)NQ, /2
x|VTo(z, t;y1,t1)|dxdt
+/ . IVaTo(z,t91,t1) — Vala(2, 891, t1)]
D1(t1,6)NQp /2

X[V, (2, 47, )|dadt,

where D (t1,t) = Uyeq, 1y D1(t) x {t}.
Now we estimate from below the term I;. First we notice that if 0 < § <
then

a\

_ 1 1
(@73 fe=TP 2 PR el 2 (e 4 ),

for every x € R} \ B 5+ Also, we have trivially

(4.74) I >

/ Vo I% (2, t57,t) - Volo(x, ty1, t1)dadt
R"X(tl f)
- Va2, 3, [VaTo(, 6 1, ) ot
RY X (6, D\QY

We now use Proposition 3.6 and (4.73) to estimate from above the second inte-
gral of the right-hand side of (4.74). We have

(4.75) / _ VT3 (2,67, 0)] [VaTo(2, £ y1, )| dadt
(R % (01, D\Q] g

2 2
|z] ||

0?2 p? e CO(’“‘l)_Co(?*t) -

< CO/ B e Coli—t1)  Co(t—b) n+1 = R,
R X (t1,7) E—t)" (t—t)"

where Cy, Cy > 1, depends on k only. Now performing the change of variables

we have
252 122
~ Co(t—tq1) C,
R<Co / et
nx(ty,p) (E=1)" 2\ /(E—t)(t —t1)

<SR (L) (] o)

where C3 = I(nax {s"/2e=2C0s1. By the inequality obtained above, by (4.74)
s€(0,400)

and by Proposition 3.7 we have

1 C
Chr pn ’

(4.76) L >
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where C', C' > 1, depends on k only.

In order to complete the proof we have to estimate from above the terms Ry
and Ry defined in (4.71), (4.72). Denote by R;1 and Rjs the first and the second
integral at the right-hand side of (4.71) respectively. Ry can be estimate in the
same way of the integral at the left-hand side of (4.75) and we have

(4.77) Ri < p%’

where C' depends on k only. Concerning Rja, by (2.7a) and Proposition 3.6 we
have

12 7|2

(' t) e C‘74(t 1t1) e Cii-0)
(478) R12 < C4/ dt/ d.’t / n+1 dl’n,
tq Rn—1 (z' t) t — tl (t — t)

where

3 FE _
Y’ t) = 2750 (I'[> + [t — 7])

and Cy, C4y > 1, depends on k only. Now we perform, in the integral at the
right-hand side of (4.78) the following change of variables

t=ti+7E—t1), o' =(T01-7)"%, x,=((1-7)"%€—=\h.

Thus, denoting by

011 = 32 (PR + T,

’ — 12 4 7£2 . ()\S_Al)h i

"D 4 (7)o AGLen)
/ / / e gedddr,
0 Jrr=1 2 hgy () V/T(L=T)

we get

(4.79) Rip < h%@(h)

where C' depends on k only. Now observing that

Az — A1) ?
A7 €,1) > z’2+<§+( \/ﬁ)
( ) =[] o
and applying the Holder inequality, we obtain
-/ R\!"F
(4.80) o(h) < c( ) °
Po
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for every p € (1,+00), where C, depends on p and E only. By (4.77), (4.80)
and recalling that Ry = R1; + R12 we obtain

1—1
~ r ]
(4.81) Ry < % +C,p (h) —
P Po

for every h, 0 < h < dmin{p, \ﬁ} and every d, 0 < § < min{é—?,c%,r\l@},
where C} and Cy are defined in (3.23) and (3.27) respectively and C' depends
on k only.

In order to estimate Rs, denote by Ro; and Rgs the first and the second
integral at the right-hand side of (4.72) respectively. By Theorem 4.3 we have
that there exists a constant C5, C5 > 1, depending on E only such that if
Oh< 0 < C% and (z,t) € K, := {(2,t) € B,/c, X(t1,t) : xp > C5lpo (|J2'2+]t—1])}
then

(4.82) VoIl (2, 6:9,) — VoI (2, 67, 0)] < —

where C', C' > 1, depends on E and k only and o = %, 0 being defined in
Theorem 4.1. We have

(483) Ry = J + J”,
where
J'= / (VoI (2,6;7,1) — VoI (2,67, 1) [ Vo Lo, t;y1, t1) [dzdt,

Dy (tl,f)me/Qpr

D4 (tl,f)ﬂQp/z\]K,,
By (4.82) and Lemma 3.8 we have

ha—n
Po

(4.84) J'<C

)

where C depends on E and k only. To estimate from above J” we can arrange the
method used to estimate Ri; and R12 and we obtain that there exists Cg > Cf,
Cg depending on E and k only such that if 0 < § < Cie then, for p € (1, +00),

c - /h\'F 1
4.85 J'<—+C () -,
( ) pn p P hn

where C depends on E and k only and C’p depends on p and E only. By choosing
p =, (4.83), (4.84) and (4.85) yield

O - hafn
4.86 Ry < —=+4+0C
(4.86) 2= g

3

where C depends on F and k only and C depends on p and E only.
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Now we estimate Ros. Denote by
w(z,t) == To(x,t;y1,t1) — Loz, 491, 1)

and recall (3.28). We have that w solves the heat equation in B,9(y1) x (t1,t)
and, since w(z,t) = 0 for (z,t) € R™ x (—o0,t1] we can say that w solves the
heat equation in B,/2(y1) % (f — p?,1). On 0B, 5(y1) x (t — p*,t) we have

2 C/

P -
)n/2e CETD X[ty 4 00) S p*nX[tl,+oo)7

lw(z,t)] < =)

where C, C’ depend on k only. Therefore by maximum principle and by standard
regularity estimates we get

C _ o p?
(4.87) |Vow(z, t)| < s in B,/4(y1) x (t - 4,t> .

It is possible to have a similar estimate for w in (R™ \ B,4(y1)) x (t — p,1),
namely by Proposition 3.6 we have
(4.88)

02
Ce @@=t c’ i 7
= ) z,t) € (R"\ B (= o2 D).
(t—ty)" s — pntt (z,t) € (R"\ Bya(y1)) x (t = p*,%)

|Vow(z, t)| <

By (4.87) and (4.88) we have

_lz—7)?

C t e Tt Cl
489 R S / / — n dxdt g )
(489 22 Jen - F p"

where C,C’ depend on k only.

The estimate from above of |S2(y1,t1;7,¢)| can be carried out in a similar
way of that used to estimate the integral in formula (4.75). Thus taking into
account (3.28), we get there exists C7 > Cg such that if 0 < § < C% then

o C
|S2(y1,t1;7,1)| < ra

where C depends on k only. This inequality and (4.89), (4.86), (4.81), (4.76),
(4.69), (4.68) give (3.29). 0
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