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Abstract

Let (S,B,Γ) and (T, C, Q) be probability spaces, with Q nonatomic, and H =
{H ∈ C : Q(H) > 0}. In some economic models, the following conditional law of
large numbers (LLN) is requested. There are a probability space (Ω,A, P ) and
a process X = {Xt : t ∈ T}, with state space (S,B), satisfying

for each H ∈ H, there is AH ∈ A with P (AH) = 1 such that

t 7→ X(t, ω) is measurable and Q
(
{t : X(t, ω) ∈ ·} | H

)
= Γ(·) for ω ∈ AH .

If Γ is not trivial and the σ-field C countably generated, the conditional LLN
fails in the usual (countably additive) setting. Instead, as shown in this note,
it holds in a finitely additive setting. Also, X can be taken to have any given
distribution. In fact, for any consistent set P of finite dimensional distributions,
there are a finitely additive probability space (Ω,A, P ) and a process X such
that X ∼ P and the conditional LLN is satisfied.
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1 The problem

In various economic frameworks, there are three probability spaces

(T, C, Q), (Ω,A, P ), (S,B,Γ)

and a stochastic process
X : T × Ω→ S.

Since X is a process, Xt : (Ω,A)→ (S,B) is measurable for each t ∈ T , where

Xt(·) = X(t, ·) and Xω(·) = X(·, ω), (t, ω) ∈ T × Ω,

denote the X-sections with respect to t and ω.
For some reasons, to be recalled in Section 2, it is often asked that

Xω is measurable and Q(Xω ∈ ·) = Γ(·) for P -almost all ω ∈ Ω. (1)

Typically, the process X is identically distributed, in the sense that Xa ∼ Xb for all
a, b ∈ T , and Γ is the distribution common to the Xt. Then, fixing t0 ∈ T (and
neglecting measurability issues) condition (1) takes the more familiar form

Q(Xω ∈ ·) = P (Xt0 ∈ ·) for P -almost all ω ∈ Ω.

This particular case of (1) is usually called law of large numbers (LLN) in economics.
(We note that, incidentally, the term LLN is used with a different meaning in proba-
bility theory).

However, condition (1) is sometimes not enough and a conditional form of the LLN
is asked. Let H = {H ∈ C : Q(H) > 0}. Then, X is requested to meet

for each H ∈ H, there is AH ∈ A with P (AH) = 1 such that

Xω is measurable and Q
(
Xω ∈ · | H

)
= Γ(·) for ω ∈ AH .

(2)

It is not hard to prove that, when the σ-field C is countably generated, condition (2)
implies Γ(B) ∈ {0, 1} for all B ∈ B. See [13] and Remark 2. Thus, to get (2) with non
trivial Γ and countably generated C, an extension of (T, C, Q) is to be involved.

One (interesting) approach is to look for reasonable extensions, that is, extensions
which grant (2) and some other properties, such as a form of Fubini’s theorem. This
route is followed by [9], [11] and [12]. In [11], assuming Q non atomic, condition (2) is
shown to be true if X is essentially pairwise independent and measurable with respect
to a Fubini extension. Conditions for such an X to exist are given in [9] and [12].

A different route, closer to the ideas of [8], is taken in this note. On one hand, we
aim to avoid extensions of (T, C, Q) and to have

X ∼ P

where P is any given consistent set of finite dimensional distributions. We remark that
both these goals are generally precluded in the approach of [11]. On the other hand,
we content ourselves with proving consistency of (2) with X ∼ P.

Our main result (Theorem 1, part (b)) is the following. As in most economic
models, suppose (S,B,Γ) and (T, C, Q) are given with Γ tight, Q nonatomic and C
including the singletons. Also, fix a consistent set P of finite dimensional distributions.
Then, there are a finitely additive probability space (Ω,A, P ) and a process X such
that X ∼ P and condition (2) holds.
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Two other results, both obtained for a countably additive P , should be mentioned.
First, the conditional LLN is shown to be true provided it is only asked for each H in
a finite subclass H0 ⊂ H (and not for each H ∈ H). Second, an alternative version of
(2), with possible economic meaning, is proved in Section 5.

Dating from de Finetti, the finitely additive theory of probability is well founded
and developed, even if not prevailing. It finds applications in various fields, ranging
from statistics and number theory to economics. A brief discussion is in Section 3.

The spirit of Theorem 1 is that one can always assume condition (2) and X ∼ P,
for any consistent P, but at the price of allowing for finitely additive probabilities.
Whether or not this price is expensive is basically an axiomatic point.

2 Motivations

Several economic models deal with agents bearing a certain risk. In this framework,
T denotes the set of agents and the random variable Xt the individual risk of agent
t ∈ T . So, typically, S = R and B is the Borel σ-field. In addition, T is viewed
as a “very large” set, and this is formalized by equipping T with a σ-field C and a
nonatomic probability Q on C. Suppose, for instance, that T is a Polish space (i.e.,
it is metric separable and complete). Then, card (T ) = card (R) whenever T supports
a nonatomic Borel probability Q, that is, a probability Q on the Borel σ-field of T
satisfying Q{t} = 0 for all t ∈ T .

The informal idea underlying most economic models is that, for a large set of agents,
individual risks disappear in the aggregate. This looks more convincing if the individ-
ual risks Xt are independent and identically distributed (i.i.d.). The LLN (1), with
Γ the distribution common to the Xt, makes this intuition precise. The conditional
LLN (2) is a strengthening of (1), with the same interpretation, but conditionally
on every non negligible subset H of agents. Roughly speaking, individual risks should
cancel not only when the aggregate is T , but also when it is an arbitrary non negligible
H ⊂ T .

It is usual to assume the process X i.i.d., in the sense that Xt1 , . . . , Xtn
are i.i.d.

for all n ≥ 1 and all distinct t1, . . . , tn ∈ T . Even if strong, this assumption makes
sense in the setting sketched above. However, some other assumptions on X are both
more general and economically sound. Just to fix ideas, instead of i.i.d., it could be
reasonable having X exchangeable, or Markov, or stationary, and so on. In this note,
as remarked in Section 1, we aim to be distribution-free as regards X. Accordingly,
we assume X ∼ P where P is any consistent set of finite dimensional distributions.

We refer to [1], [2], [8], [9], [11], [12], [13] and references therein for more on the
economic motivations of the LLN.

3 Finitely additive probabilities

In de Finetti’s view, a probability assessment is a coherent function P on an (arbitrary)
class E of events. Letting IA denote the indicator function of the event A, coherence
of P : E → R means that

max
n∑

i=1

ci
{
IAi
− P (Ai)

}
≥ 0

for all n ≥ 1, c1, . . . , cn ∈ R and A1, . . . , An ∈ E . Heuristically, suppose P describes
your previsions on the members of E . If you are coherent, it is impossible to make you
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a sure looser, whatever outcome turns out to be true, by some finite combination of
bets (on A1, . . . , An with stakes c1, . . . , cn).

Suppose events are viewed as subsets of a set Ω and let l∞(Ω) denote the set of
real bounded functions on Ω. By Hahn-Banach theorem, P is coherent if and only
if P can be extended to a linear functional E on l∞(Ω) satisfying E(f) ≤ sup f
for all f ∈ l∞(Ω). When E is a field, it follows that P is coherent if and only if
it is a finitely additive probability (f.a.p.), in the sense that P ≥ 0, P (Ω) = 1 and
P (A ∪B) = P (A) + P (B) whenever A, B ∈ E and A ∩B = ∅.

Loosely speaking, there are two kinds of reasons for adopting de Finetti’s view.
One is of foundational type. F.a.p.’s have a solid motivation in terms of coherence
and can be always extended to the power set. (Both things are not true for countably
additive probabilities). The other reason is of applicative type. There are problems
which can not be solved in the usual setting, while admit a finitely additive solution.
Examples are in conditional probability, convergence in distribution of non measurable
random elements, Bayesian statistics, game theory, stochastic integration and the first
digit problem. See e.g. [3] and references therein.

Plainly, working with f.a.p.’s has a lot of technical disadvantages as well. Without
countable additivity, various classical theorems fail and uniqueness results are quite
unusual. A typical situation is that some f.a.p.’s allow to get a certain goal, but other
f.a.p.’s are in contrast with such a goal and possibly lead to unreasonable conclusions.

This is certainly true, but two (non independent) remarks are in order. First, in the
subjective approach to probability, existence of different f.a.p.’s (modelling different
situations) should be viewed as a merit. Second, in the finitely additive theory, one
can clearly use σ-additive laws. Merely, one is not obliged to do so.

We refer to [5], [7] and [10] for more on f.a.p.’s and coherence.

4 A finitely additive conditional law of large num-
bers

We first recall some definitions. Let T be a set and (S,B) a measurable space. A set
P of finite dimensional distributions is meant as

P = {µ(t1, . . . , tn) : n ≥ 1, t1, . . . , tn ∈ T}

where each µ(t1, . . . , tn) is a probability measure on Bn = B⊗ . . .⊗B. We write X ∼ P
in case X = {Xt : t ∈ T} is a process indexed by T , with state space (S,B), satisfying

(Xt1 , . . . , Xtn) has probability distribution µ(t1, . . . , tn)

for all n ≥ 1 and t1, . . . , tn ∈ T . We say that P is consistent in case X ∼ P for some
process X. Under mild assumptions on (S,B), necessary and sufficient conditions for
P to be consistent are given by Kolmogorov extension theorem; see e.g. Corollary 52,
page 111, of [6].

Let S be a metric space and B the Borel σ-field. A probability measure Γ on B is
tight in case, for each ε > 0, there is a compact K ⊂ S such that Γ(Kc) < ε. If S is a
Polish space, each probability measure on B is tight.

Let (T, C, Q) be a probability space. An atom of Q is a set C ∈ C such that
Q(C) > 0 and Q(· | C) is 0-1 valued. If Q has no atoms, it is called nonatomic. When
T is a separable metric space and C the Borel σ-field, Q is nonatomic if and only if
Q{t} = 0 for all t ∈ T . Next, the outer and inner measures are

Q∗(H) = inf {Q(C) : H ⊂ C ∈ C}, Q∗(H) = 1−Q∗(Hc), H ⊂ T.
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Fix H ⊂ T and a number α ∈ [Q∗(H), Q∗(H)]. Then, Q can be extended to a
probability measure Q0 on σ(C ∪ {H}) such that Q0(H) = α.

We are now in a position to state our main result. Suppose

(i) S is a metric space, B the Borel σ-field and Γ a tight probability on B;

(ii) (T, C, Q) is a nonatomic probability space such that {t} ∈ C for all t ∈ T ;

(iii) P is a consistent set of finite dimensional distributions.

In addition, as in Section 1, let H = {H ∈ C : Q(H) > 0}.

Theorem 1. Let (S,B,Γ), (T, C, Q) and P be given according to (i)-(iii). Then:

(a) If H0 ⊂ H is finite, there are a probability space (Ω,A, P ) and a process X =
{Xt : t ∈ T} with state space (S,B) such that X ∼ P and

for each H ∈ H0, there is AH ∈ A, P (AH) = 1, such that

Xω is measurable and Q
(
Xω ∈ · | H

)
= Γ(·) for ω ∈ AH ;

(b) There are a set Ω, a f.a.p. P on the power set of Ω, and a process
X = {Xt : t ∈ T} with state space (S,B) such that X ∼ P and condition
(2) holds.

Proof. Part (a). Since H0 is finite, H0 ⊂ σ(Π) ∩ H where Π is the finite partition
of T formed by the constituents of the members of H0. Thus, it can be assumed
H0 ⊂ σ(Π) ∩H where Π ⊂ C is any countable partition of T .

Let Ω be the set of functions ω : T → S and X the canonical process

X(t, ω) = ω(t), t ∈ T, ω ∈ Ω.

Also, let G be the σ-field on Ω generated by the maps ω 7→ ω(t) for all t ∈ T . Since P
is consistent, there is a probability measure P on G such that X ∼ P under P. Define

L = {ω ∈ Ω : ω is measurable and Q
(
{t : ω(t) ∈ ·} | H

)
= Γ(·) for all H ∈ H0}.

It is enough to prove that P∗(L) = 1. In this case, in fact, it suffices to let
A = σ(G ∪ {L}) and to take P as the extension of P such that P (L) = 1.

To show that P∗(L) = 1, we base on the following fact.

Claim. Let A ⊂ Ω. Then, P∗(A) = 1 whenever A 6= ∅ and

ω ∈ A, ω∗ ∈ Ω, {t : ω∗(t) 6= ω(t)} countable =⇒ ω∗ ∈ A. (3)

To prove the Claim, let S∞ denote the set of sequences (x1, x2, . . .), with xn ∈ S
for all n, and B∞ the σ-field on S∞ generated by the canonical projections. Every
G ∈ G can be written as

G = {ω ∈ Ω : (ω(t1), ω(t2), . . .) ∈ B} (4)

for some B ∈ B∞ and some sequence (t1, t2, . . .) ⊂ T . Fix G ∈ G with G 6= Ω and
take B and (t1, t2, . . .) satisfying (4). Since G 6= Ω, then B 6= S∞. Fix ω ∈ A,
(x1, x2, . . .) ∈ Bc, and define

ω∗(tn) = xn for all n ≥ 1 and ω∗ = ω on T \ {t1, t2, . . .}.
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Then, ω∗ ∈ A (by (3)) but ω∗ /∈ G, so that A is not included in G. Thus, Ω is the
only member of G including A, and this implies P∗(A) = P(Ω) = 1.

Next, fix ω ∈ L and ω∗ ∈ Ω such that {t : ω∗(t) 6= ω(t)} is countable. Since
C includes the singletons and ω is measurable, ω∗ is measurable as well. Since Q is
nonatomic, Q{t : ω∗(t) 6= ω(t)} = 0 so that

Q
(
{t : ω∗(t) ∈ ·} | H) = Q

(
{t : ω(t) ∈ ·} | H) = Γ(·) for all H ∈ H0.

Thus, condition (3) holds with A = L.
By the Claim, it remains only to check L 6= ∅. Let U ∈ Π ∩ H. Since Q is

nonatomic, Q(· | U) is nonatomic as well. By Theorem 3.1 of [4], since Γ is tight
and

(
T, C, Q(· | U)

)
nonatomic, there is a measurable function fU : T → S satisfying

Q
(
fU ∈ · | U

)
= Γ(·). Define ω = fU on U , for all U ∈ Π ∩ H, and ω constant

otherwise. Then, ω : T → S is measurable. Fix H ∈ H0. Since H is a countable union
of elements of Π and Q

(
fU ∈ · | U

)
= Γ(·), one obtains

Q
(
{t : ω(t) ∈ ·} | H

)
=

∑
U∈Π∩H

Q
(
U ∩ {t : ω(t) ∈ ·} | H

)
=

∑
U∈Π∩H

Q
(
{t : ω(t) ∈ ·} | U

)
Q(U | H)

=
∑

U∈Π∩H
Q
(
fU ∈ · | U

)
Q(U | H) = Γ(·).

Therefore, ω ∈ L.
Part (b). Take (Ω,G,P) and X as in Part (a). Also, let Z denote the set of

[0, 1]-valued functions defined on the power set of Ω. For H ∈ H, define

AH = {ω ∈ Ω : ω is measurable and Q
(
{t : ω(t) ∈ ·} | H

)
= Γ(·)},

FH = {Z ∈ Z : Z is a f.a.p., Z = P on G, Z(AH) = 1}.

Let Z be equipped with the product topology. Then, Z is compact. Since convergence
of a net of elements of Z is setwise convergence, then FH is closed. Let H0 ⊂ H be
finite. By Part (a), there is a (countably additive) probability measure P0 such that
P0 = P on G and P0

(⋂
H∈H0

AH

)
= 1. Then Z ∈

⋂
H∈H0

FH , where Z is any finitely
additive extension of P0 to the power set of Ω. Hence, {FH : H ∈ H} has the finite
intersection property, so that ⋂

H∈H
FH 6= ∅.

To conclude the proof, it suffices to take any P ∈
⋂

H∈H FH .

The conditional LLN (2) fails, in the usual (countably additive) setting, whenever Γ
is not trivial and the σ-field C countably generated; see forthcoming Remark 2. Thus,
Theorem 1 provides one more example of a problem admitting a finitely additive
solution but not a countably additive one. A different opinion is in Subsection 6.2 of
[11]. See also [1] and [2].

As apparent from the proof, Part (a) of Theorem 1 holds, even if H0 is not finite,
provided H0 ⊂ σ(Π) ∩H where Π ⊂ C is a countable partition of T .

We finally give the remark announced some lines above.

Remark 2. Let (S,B,Γ) and (T, C, Q) be probability spaces and X = {Xt : t ∈ T} a
process, with state space (S,B), defined on the probability space (Ω,A, P ). If condition
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(2) holds and C is countably generated, then Γ(B) ∈ {0, 1} for all B ∈ B. In fact, since
C is countably generated, C = σ(F) for some countable field F . By (2) and since F is
countable, there is A ∈ A such that P (A) = 1 and

Xω is measurable and Q
(
Xω ∈ · | H

)
= Γ(·) for all H ∈ F ∩H and ω ∈ A.

Fix ω ∈ A and B ∈ B. Since F is a field and C = σ(F), it follows that

Q
(
H ∩ {Xω ∈ B}

)
= Γ(B)Q(H) for all H ∈ C.

For H = T , one obtains Q(Xω ∈ B) = Γ(B). Hence, letting H = {Xω ∈ B} yields

Γ(B) = Q(Xω ∈ B) = Γ(B)Q(Xω ∈ B) = Γ(B)2.

5 An alternative solution

Suppose that, rather than a single probability Γ, we are given a collection

{ΓH : H ∈ H}

of probability measures on B. Replacing Γ with {ΓH : H ∈ H}, condition (2) turns
into

for each H ∈ H, there is AH ∈ A with P (AH) = 1 such that

Xω is measurable and Q
(
Xω ∈ · | H

)
= ΓH(·) for ω ∈ AH .

(2*)

Condition (2*) looks (to us) a reasonable extension of (2). Loosely speaking, given
a non negligible subset H of agents, the individual risks cancel on the aggregate H but
in a way possibly depending on H; see Section 2. However, apart from the economic
interpretation, condition (2*) has a merit with respect to (2). It can be realized in the
usual (countably additive) setting.

Theorem 3. Suppose (S,B) is a measurable space, (T, C, Q) and P satisfy conditions
(ii)-(iii), and {ΓH : H ∈ H} is of the form

ΓH(·) = Q
(
f ∈ · | H

)
, H ∈ H,

for some measurable function f : T → S.
(5)

Then, there are a probability space (Ω,A, P ) and a process X = {Xt : t ∈ T} with
state space (S,B) such that X ∼ P and condition (2*) holds.

Proof. We just apply the same argument used in the proof of Part (a) of Theorem 1.
Let (Ω,G,P) and X be as in such a proof and

L = {ω ∈ Ω : ω is measurable and Q
(
{t : ω(t) ∈ ·} | H

)
= ΓH(·) for all H ∈ H}.

It suffices to prove P∗(L) = 1. Since Q is nonatomic and C includes the singletons,
condition (3) holds with A = L. Since L 6= ∅ (in fact, f ∈ L) an application of the
Claim concludes the proof.

As an example, if (S,B) = (T, C), one can take ΓH(·) = Q(· | H) for all H ∈ H.
This could be tempting in a few situations, for instance when S = T = [0, 1] and Q is
Lebesgue measure.
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A last point is to characterize those families {ΓH : H ∈ H} satisfying (5). A
necessary condition is

Γ∪nHn(·) =
∑

j

Q
(
Hj | ∪nHn

)
ΓHj (·) (6)

whenever H1, H2, . . . ∈ H are pairwise disjoint. A conjecture is that {ΓH : H ∈
H} admits representation (5) provided (T, C, Q) is nonatomic, each ΓH is tight and
condition (6) holds. But we have not a proof.
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