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Abstract

We propose two nonparametric tests for investigating the pathwise properties of a signal modeled as

the sum of a Lévy process and a Brownian semimartingale. Using a nonparametric threshold estimator

for the continuous component of the quadratic variation, we design a test for the presence of a continuous

martingale component in the process and a test for establishing whether the jumps have finite or infinite

variation, based on observations on a discrete time grid. We evaluate the performance of our tests using

simulations of various stochastic models and use the tests to investigate the fine structure of the DM/USD

exchange rate fluctuations and SPX futures prices. In both cases, our tests reveal the presence of a non-zero

Brownian component and a finite variation jump component.

Continuous-time stochastic models based on discontinuous semimartingales have been increasingly used in many

applications, such as financial econometrics, option pricing and stochastic control. Some of these models are

constructed by adding IID jumps to a continuous process driven by Brownian motion [22, 16], while others are

based on purely discontinuous processes which move only through jumps [18, 8]. Even within the class of purely

discontinuous models, one finds a variety of models with different path properties– finite/infinite jump intensity,

finite/infinite variation– which turn to have an importance in applications such as optimal stopping [5] and the

asymptotic behavior of option prices [9, 10]. It is therefore of interest to investigate which class of models –

diffusion, jump-diffusion or pure jump– is the most appropriate for a given data set. Nonparametric procedures

have been recently proposed for investigating the presence of jumps [6, 2, 17] and studying some fine properties

of the jumps [3, 4, 25, 26] in a signal. We address here related, but different, issues: for a semimartingale

whose jump component is a Lévy process, we propose a test for the presence of a continuous martingale

component in the price process, which allows to discriminate between pure-jump and jump-diffusion models,

and a test for determining whether the jump component has finite or infinite variation. Our tests are based on a

nonparametric threshold estimator [20] for the integrated variance -defined as the continuous component of the

quadratic variation- based on observations on a discrete time grid. Without imposing restrictive assumptions on

the continuous martingale component, we obtain a central limit theorem for this threshold estimator (Section

2) and use it to design our tests (Section 3).

Using simulations of stochastic models commonly used in finance, we check the performance of our tests for

realistic sample sizes (section 4). Applied to time series of the DM/USD exchange rate and SPX futures prices

(section 5), our tests reveal in both cases the presence of a non-zero Brownian component, combined with a

finite variation jump component. These results suggest that these asset prices may be modeled as the sum of a

Brownian martingale and a jump component of finite variation.
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1 Definitions and notations

We consider a semimartingale (𝑋𝑡)𝑡∈[0,𝑇 ], defined on a (filtered) probability space (Ω, (ℱ𝑡)𝑡∈[0,𝑇 ],ℱ , 𝑃 ) with

paths in 𝐷([0, 𝑇 ],ℝ), driven by a (standard) Brownian motion 𝑊 and a pure jump Lévy process 𝐿:

𝑋𝑡 = 𝑥0 +

∫ 𝑡

0

𝑎𝑠𝑑𝑠+

∫ 𝑡

0

𝜎𝑠 𝑑𝑊𝑠 + 𝐿𝑡, 𝑡 ∈]0, 𝑇 ], (1)

where 𝑎, 𝜎 are adapted processes with right continuous paths with left limits (càdlàg processes) such that (1)

admits a unique strong solution 𝑋 on [0, 𝑇 ] which is adapted and càdlàg [11]. 𝐿 has Lévy measure 𝜈 and may

be decomposed as 𝐿𝑡 = 𝐽𝑡 +𝑀𝑡, where

𝐽𝑡 :=

∫ 𝑡

0

∫
∣𝑥∣>1

𝑥𝜇(𝑑𝑥 𝑑𝑠) =

𝑁𝑡∑
ℓ=1

𝛾ℓ, 𝑀𝑡 :=

∫ 𝑡

0

∫
∣𝑥∣≤1

𝑥[𝜇(𝑑𝑥 𝑑𝑠)− 𝜈(𝑑𝑥)𝑑𝑡]. (2)

𝐽 is a compound Poisson process representing the “large” jumps of 𝑋 , 𝜇 is a Poisson random measure on

[0, 𝑇 ] × ℝ with intensity measure 𝜈(𝑑𝑥)𝑑𝑡, 𝑁 is a Poisson process with intensity 𝜈({𝑥, ∣𝑥∣ > 1}) < ∞, 𝛾ℓ are
IID and independent of 𝑁 and the martingale 𝑀 is the compensated sum of small jumps of 𝐿. We will denote

𝜇(𝑑𝑥, 𝑑𝑡) − 𝜈(𝑑𝑥)𝑑𝑡 =: 𝜇̃(𝑑𝑥, 𝑑𝑡) the compensated Poisson random measure associated to 𝜇. We allow for the

infinite activity (IA) case 𝜈(ℝ) =∞, where small jumps of 𝐿 occur infinitely often. For a semimartingale 𝑍 we

denote Δ𝑖𝑍 = 𝑍𝑡𝑖 −𝑍𝑡𝑖−1 its increments and Δ𝑍𝑡 = 𝑍𝑡−𝑍𝑡− its jump at time 𝑡. The Blumenthal-Getoor (BG)

index of 𝐿, defined as

𝛼 := inf{𝛿 ≥ 0,

∫
∣𝑥∣≤1

∣𝑥∣𝛿𝜈(𝑑𝑥) < +∞} ≤ 2,

measures the degree of activity of small jumps. A compound Poisson process has 𝛼 = 0, while an 𝛼-stable

process has BG index equal to 𝛼 ∈]0, 2[. The Gamma process and the Variance Gamma (VG) process are
examples of infinite activity Lévy processes with 𝛼 = 0. A pure jump Lévy process with BG index 𝛼 < 1 has

paths with finite variation, while for 𝛼 > 1 then the sample paths have infinite variation almost-surely. When

𝛼 = 1 the paths may have either finite or infinite variation [7]. The Normal Inverse Gaussian process (NIG) and

the Generalized Hyperbolic Lévy motion (GHL) have infinite variation and 𝛼 = 1. Tempered stable processes

[8, 10] allow for 𝛼 ∈ [0, 2[. We call 𝐼𝑉 =
∫ 𝑇

0
𝜎2
𝑢𝑑𝑢 the integrated variance of 𝑋 and 𝐼𝑄 =

∫ 𝑇

0
𝜎4
𝑢𝑑𝑢 the integrated

quarticity of 𝑋 and denote

𝑋0𝑡 =

∫ 𝑡

0

𝑎𝑠𝑑𝑠+

∫ 𝑡

0

𝜎𝑠𝑑𝑊𝑠, 𝑋1𝑡 = 𝑋0𝑡 + 𝐽𝑡

We will use the following assumption:

Assumption A1 ∃𝛼 ∈ [0, 2] :
∫
∣𝑥∣≤𝜀

𝑥2𝜈(𝑑𝑥) ∼ 𝜀2−𝛼, as 𝜀 → 0, (3)

where 𝑓(ℎ) ∼ 𝑔(ℎ) means that 𝑓(ℎ) = 𝑂(𝑔(ℎ)) and 𝑔(ℎ) = 𝑂(𝑓(ℎ)) as ℎ → 0. This assumption implies that

𝛼 is the BG index of 𝐿. A1 is satisfied if for instance 𝜈 has a density which behaves as 𝐾±
∣𝑥∣1+𝛼 when 𝑥 → 0±,

where 𝐾± > 0. In particular A1 holds for all Lévy processes commonly used in finance [10]: NIG, Variance

Gamma, tempered stable processes or Generalized Hyperbolic processes.

Typically, we observe 𝑋𝑡 in form of a discrete record {𝑥0, 𝑋𝑡1 .. 𝑋𝑡𝑛−1 , 𝑋𝑡𝑛} on a time grid 𝑡𝑖 = 𝑖ℎ with

ℎ = 𝑇/𝑛. Our goal is to provide, given such a discrete observations, nonparametric tests for

∙ detecting the presence of a continuous martingale component in the price process

∙ analyzing the qualitative nature of the jump component i.e. whether it has finite or infinite variation.
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2 CLT for a threshold estimator of integrated variance

The “realized variance”
∑𝑛

𝑖=1(Δ𝑖𝑋)
2 of the semimartingale 𝑋 converges in probability [24] to

[𝑋 ]𝑇 :=

∫ 𝑇

0

𝜎2
𝑡 𝑑𝑡+

∫ 𝑇

0

∫
IR−{0}

𝑥2𝜇(𝑑𝑥, 𝑑𝑠).

A threshold estimator [19, 20] of the integrated variance 𝐼𝑉 =
∫ 𝑇

0 𝜎2
𝑡 𝑑𝑡 is based on the idea of summing only

some of the squared increments of 𝑋 , those whose absolute value is smaller than some threshold 𝑟ℎ:

ˆ𝐼𝑉 ℎ :=

𝑛∑
𝑖=1

(Δ𝑖𝑋)
2𝐼{(Δ𝑖𝑋)2≤𝑟ℎ}. (4)

The term
∫ 𝑇

0

∫
IR−{0} 𝑥

2𝜇(𝑑𝑥, 𝑑𝑠) due to jumps vanishes as ℎ → 0 for an appropriate choice of the threshold.

Paul Lévy’s law for the modulus of continuity of the Brownian paths implies

𝑃

⎛
⎝ lim

ℎ→0
sup

𝑖∈{1..𝑛}

∣Δ𝑖𝑊 ∣√
2ℎ ln 1

ℎ

≤ 1

⎞
⎠ = 1

and allows to choose such a threshold. It is shown in [20, Cor 2, Thm 4] that, under the above assumptions, if

we choose a deterministic threshold 𝑟ℎ such that

lim
ℎ→0

𝑟ℎ = 0 and lim
ℎ→0

ℎ lnℎ

𝑟ℎ
= 0 (5)

then ˆ𝐼𝑉 ℎ
𝑃→ 𝐼𝑉, as ℎ → 0. If the jumps have finite intensity the thresholding procedure allows, as ℎ → 0, to

detect a jump in ]𝑡𝑖−1, 𝑡𝑖]. In fact since 𝑎 and 𝜎 are càdlàg (or càglàd), their paths are a.s. bounded on [0, 𝑇 ] so

lim sup
ℎ→0

sup𝑖 ∣
∫ 𝑡𝑖
𝑡𝑖−1

𝑎𝑠(𝜔)𝑑𝑠∣
ℎ

≤ 𝐴(𝜔) < ∞ and lim sup
ℎ→0

sup𝑖 ∣
∫ 𝑡𝑖
𝑡𝑖−1

𝜎2
𝑠 (𝜔)𝑑𝑠∣

ℎ
≤ Σ(𝜔) < ∞ 𝑎.𝑠. (6)

It follows from [20] that

𝑎.𝑠. sup
𝑖

∣ ∫ 𝑡𝑖
𝑡𝑖−1

𝑎𝑠𝑑𝑠+
∫ 𝑡𝑖
𝑡𝑖−1

𝜎𝑠𝑑𝑊𝑠∣√
2ℎ log 1

ℎ

≤ 𝐴
√
ℎ+

√
Σ + 1 := Λ. (7)

Since realistic values of 𝜎 for asset prices belong to [0.1, 0.8] (in annual units), we have that for small ℎ

the r.v. Λ has order of magnitude of 1, thus in the finite jump intensity case, a.s. for sufficiently small ℎ,

(Δ𝑖𝑋)
2 > 𝑟ℎ > 2ℎ log 1

ℎ indicates the presence of jumps in ]𝑡𝑖−1, 𝑡𝑖].

When 𝐿 has infinite activity,
∑𝑛

𝑖=1(Δ𝑖𝑋)
2𝐼{(Δ𝑖𝑋)2≤𝑟ℎ} behaves like

∑𝑛
𝑖=1(Δ𝑖𝑋)

2 𝐼{Δ𝑖𝑁=0,∣Δ𝑖𝑀∣≤2
√
𝑟ℎ} for small

ℎ (lemma 6.2). Moreover for any 𝛿 > 0 the jumps contributing to the increments Δ𝑖𝑋 such that (Δ𝑖𝑋)
2 ≤ 𝑟ℎ

for small ℎ have size smaller than 𝑐
√
𝑟ℎ + 𝛿 [20, Lemma 1] so their contribution vanishes when ℎ → 0. Note

that 𝑟ℎ = 𝑐ℎ𝛽 satisfy condition (5) for any 𝛽 ∈]0, 1[ and any constant 𝑐. Since √
2𝜎 ≃ 1 in most applications,

we use 𝑐 = 1. Denote

𝜂2(𝜀) :=

∫
∣𝑥∣≤𝜀

𝑥2𝜈(𝑑𝑥), 𝑑(𝜀) :=

∫
𝜀<∣𝑥∣≤1

𝑥𝜈(𝑑𝑥) (8)

Let us remark that if lim
ℎ→0

𝑟ℎ = 0 then by A1 we have, as ℎ → 0,

𝜂2
(
2
√
𝑟ℎ
)
=

∫
∣𝑥∣≤2

√
𝑟ℎ

𝑥2𝜈(𝑑𝑥) ∼ 𝑟
1−𝛼

2

ℎ ,
∫
∣𝑥∣≤2

√
𝑟ℎ

𝑥𝑘𝜈(𝑑𝑥) ∼ 𝑟
𝑘−𝛼

2

ℎ , 𝑘 = 3, 4

∫
2
√
𝑟ℎ<∣𝑥∣≤1 𝑥𝜈(𝑑𝑥) ∼

[
𝑐+ 𝑟

1−𝛼
2

ℎ

]
𝐼{𝛼∕=1} +

[
ln 1

2
√
𝑟ℎ

]
𝐼{𝛼=1},

∫
2
√
𝑟ℎ<∣𝑥∣≤1 𝜈(𝑑𝑥) ∼ 𝑟

−𝛼/2
ℎ ,

(9)

where 𝛼 is the BG index of 𝐿. The following lemma, proved in the appendix, states that under (5), each

increment Δ𝑖𝑀 such that ∣Δ𝑖𝑀 ∣ ≤ 2
√
𝑟ℎ only contains jumps of magnitude less than 2

√
𝑟ℎ if 𝛼 ≤ 1, or smaller

than 2ℎ
1
2𝛼 log

1
2𝛼 1

ℎ if 𝛼 > 1.
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Lemma 2.1. Define, for ℎ > 0, 𝑣ℎ := ℎ
1
2𝛼 log

1
2𝛼 1

ℎ . Under (5) there exists a sequence ℎ𝑘 = 𝑇/𝑛𝑘 tending to

zero as 𝑘 → ∞ such that, for 𝑘0 sufficiently large and ℎ ∈ {ℎ𝑘, 𝑘 ≥ 𝑘0},
i) if 𝛼 ≤ 1, then for all 𝑖 = 1..𝑛

Δ𝑖𝑀 𝐼{(Δ𝑖𝑀)2≤4𝑟ℎ} =
(∫ 𝑡𝑖

𝑡𝑖−1

∫
∣𝑥∣≤2

√
𝑟ℎ

𝑥𝜇̃(𝑑𝑥, 𝑑𝑡) −
∫ 𝑡𝑖

𝑡𝑖−1

∫
2
√
𝑟ℎ<∣𝑥∣≤1

𝑥𝜈(𝑑𝑥)𝑑𝑡
)
𝐼{(Δ𝑖𝑀)2≤4𝑟ℎ} 𝑎.𝑠.

ii) if 𝛼 > 1, then for all 𝑖 = 1..𝑛 we have

Δ𝑖𝑀 𝐼{(Δ𝑖𝑀)2≤4𝑟ℎ} =
(∫ 𝑡𝑖

𝑡𝑖−1

∫
∣𝑥∣≤2𝑣ℎ

𝑥𝜇̃(𝑑𝑥, 𝑑𝑡) −
∫ 𝑡𝑖

𝑡𝑖−1

∫
2𝑣ℎ<∣𝑥∣≤1

𝑥𝜈(𝑑𝑥)𝑑𝑡
)
𝐼{(Δ𝑖𝑀)2≤4𝑟ℎ} 𝑎.𝑠.

Remark 2.2. Note that 𝑣ℎ ≤ 𝑟
1/4
ℎ so that in the case ii) above (𝛼 > 1), for all 𝑖 = 1..𝑛 the jumps of 𝑀 on

{(Δ𝑖𝑀)2 ≤ 4𝑟ℎ} are bounded by 𝑟
1/4
ℎ .

Definition. Denote

𝐿
(ℎ)
𝑡 :=

∫ 𝑡

0

∫
∣𝑥∣≤ 2 4

√
𝑟ℎ

𝑥 𝜇̃(𝑑𝑥, 𝑑𝑡) −
∫ 𝑡

0

∫
2 4
√
𝑟ℎ<∣𝑥∣≤1

𝑥𝜈(𝑑𝑥)𝑑𝑡, Δ𝑖𝑀
(ℎ) :=

∫ 𝑡𝑖

𝑡𝑖−1

∫
∣𝑥∣≤2 4

√
𝑟ℎ

𝑥𝜇̃(𝑑𝑥, 𝑑𝑡), (10)

By lemma 2.1, on a subsequence a.s. for sufficiently small ℎ, ∀𝑖 = 1..𝑛, on {(Δ𝑖𝑀)2 ≤ 4𝑟ℎ} we have

Δ𝑖𝑀 = Δ𝑖𝐿
(ℎ) = Δ𝑖𝑀

(ℎ) − ℎ𝑑(2 4
√
𝑟ℎ) : (11)

Δ𝑖𝑀
(ℎ) is the compensated sum of jumps smaller in absolute value than 2 4

√
𝑟ℎ, while ℎ𝑑(2 4

√
𝑟ℎ) is the compen-

sator of the (missing) jumps larger than 2 4
√
𝑟ℎ.

In [20] a CLT for ˆ𝐼𝑉 ℎ was shown in the case of finite intensity jumps and càdlàg adapted 𝜎. Theorem 2.5

extends this to the case of infinite activity without extra assumptions on 𝜎. In particular when 𝛼 < 1 the error
ˆ𝐼𝑉 ℎ − 𝐼𝑉 has the same rate of convergence and asymptotic variance as in the case of finite intensity jumps.

The following proposition gives the asymptotic variance of ( ˆ𝐼𝑉 ℎ − 𝐼𝑉 )/
√
2ℎ when 𝛼 < 1.

Proposition 2.3. If 𝑟ℎ = ℎ𝛽 with 1 > 𝛽 > 1
2−𝛼/2 ∈ [1/2, 1[ then as ℎ → 0

ˆ𝐼𝑄ℎ :=

∑
𝑖(Δ𝑖𝑋)

4𝐼{(Δ𝑖𝑋)2≤𝑟ℎ}
3ℎ

𝑃→ 𝐼𝑄 =

∫ 𝑇

0

𝜎4
𝑡 𝑑𝑡.

The following result will be used to prove Theorem 2.5:

Theorem 2.4. Under assumption A1, as ℎ → 0

𝑛∑
𝑖=1

( ∫ 𝑡𝑖
𝑡𝑖−1

∫
∣𝑥∣≤𝜀

𝑥𝜇̃(𝑑𝑥, 𝑑𝑡) − ∫ 𝑡𝑖
𝑡𝑖−1

∫
∣𝑥∣∈]𝜀,1]

𝑥𝜈(𝑑𝑥)𝑑𝑡
)2

− 𝑇 ℓ2,ℎ𝜀
2−𝛼 − 𝑇 ℓ21,ℎℎ𝜀

2−2𝛼𝐼{𝛼∕=1}
√
𝑇
√

ℓ4,ℎ 𝜀2−
𝛼
2

𝑑→ 𝑁(0, 1) (12)

where 𝜀 = ℎ𝑢, 0 < 𝑢 ≤ 1/2, ℓ𝑗,ℎ =
∫
∣𝑥∣≤𝜀

𝑥𝑗𝜈(𝑑𝑥)/𝜀𝑗−𝛼 for 𝑗 = 2, 4, and ℓ1,ℎ =
∫
𝜀<∣𝑥∣≤1

𝑥𝜈(𝑑𝑥)/
[
(𝑐 +

𝜀1−𝛼)𝐼{𝛼∕=1} + ln 1
2𝜀𝐼{𝛼=1}

]
tend to non-zero constants depending on 𝜈.

We are now ready to state our central limit theorem for the estimator ˆ𝐼𝑉 ℎ. A sequence (𝑋𝑛) is said to

converge stably in law to a random variable 𝑋 (defined on an extension (Ω′,ℱ ′, 𝑃 ′) of the original probability
space) if lim𝐸[𝑈𝑓(𝑋𝑛)] = 𝐸′[𝑈𝑓(𝑋)] for every bounded continuous function 𝑓 : ℝ → ℝ and all bounded

random variables 𝑈 . This is obviously stronger than convergence in law [15].

Theorem 2.5. Assume A1 and 𝜎 ∕≡ 0; choose 𝑟ℎ = ℎ𝛽 with 𝛽 > 1
2−𝛼/2 ∈ [1/2, 1[. Then

a) if 𝛼 < 1 we have, with
𝑠𝑡→ denoting stable convergence in law,

ˆ𝐼𝑉ℎ − 𝐼𝑉√
2ℎ ˆ𝐼𝑄ℎ

𝑠𝑡→ 𝑁 (0, 1) ; (13)

4
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nota: beta>1/(2-\alpha/2) serve per la cv di hat{IQ}, mentre nella dimo del teo 2.5, nel punto i) alpha<1 affinché r^{1-\alpha/2}/\sqrt h \ri 0 serve 
beta>1/(2-\alpha) il che cmq implica 
beta>1/(2-\alpha/2) perché
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𝑏) if 𝛼 ≥ 1,
ˆ𝐼𝑉ℎ − 𝐼𝑉√
2ℎ ˆ𝐼𝑄ℎ

𝑎.𝑠.→ +∞.

Remark For 𝛼 < 1 Jacod [13, Thm 2.10, i)], has shown a related central limit result for the threshold

estimator of 𝐼𝑉 where 𝐿 is a semimartingale but under the additional assumption that 𝜎 is an Ito semimartingale.

The proof of Theorem 2.5 in the case 𝛼 < 1 does not rely on Theorem 2.10 i) of [13]. An alternative proof

under the Ito semimartingale assumption for 𝜎 could combine the results [20] with [13, Thm 2.10, i)], in that

ˆ𝐼𝑉 − 𝐼𝑉√
ℎ

=
ˆ𝐼𝑉 (𝑋1)− 𝐼𝑉√

ℎ
+

ˆ𝐼𝑉 (𝑀)√
ℎ

+

∑𝑛
𝑖=1(Δ𝑖𝑋1)

2
(
𝐼{(Δ𝑖𝑋)2≤𝑟ℎ} − 𝐼{(Δ𝑖𝑋1)2≤𝑟ℎ}

)
√
ℎ

+

∑𝑛
𝑖=1(Δ𝑖𝑀)2

(
𝐼{(Δ𝑖𝑋)2≤𝑟ℎ} − 𝐼{(Δ𝑖𝑀)2≤𝑟ℎ}

)
√
ℎ

+ 2

∑𝑛
𝑖=1Δ𝑖𝑋1Δ𝑖𝑀𝐼{(Δ𝑖𝑋)2≤𝑟ℎ}√

ℎ
,

where ˆ𝐼𝑉 (𝑋1)
.
=

𝑛∑
𝑖=1

(Δ𝑖𝑋1)
2𝐼{(Δ𝑖𝑋1)2≤𝑟ℎ}, ˆ𝐼𝑉 (𝑀)

.
=

𝑛∑
𝑖=1

(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2≤𝑟ℎ}.

The first term converges stably in law by [20], the second one converges stably to zero by theorem 2.10 i) of

[13]. That the remaining terms are negligible needs some work (see proof of Theorem 2.5).

3 Statistical tests

3.1 Test for the presence of a continuous martingale component

We now use the above results to design a test to detect the presence of a continuous martingale component∫ 𝑡

0
𝜎𝑡𝑑𝑊𝑡 given discretely recorded observations. Our test is feasible in the case when 𝐿 has BG index 𝛼 < 1 i.e.

the jumps are of finite variation (see Section 3.2). The test proceeds as follows. First, we choose a coefficient

𝛽 ∈ [1/2, 1[ close to 1. If we have an estimate 𝛼̂ of the BG index [26, 3, 25] we may choose 𝛽 > 1
2−𝛼̂ (recall that

1
2−𝛼 ∈ [1/2, 1[). We choose a threshold 𝑟ℎ = ℎ𝛽 and use the estimator ˆ𝐼𝑄ℎ of the integrated quarticity defined

in Proposition 2.3. We have shown in theorem 2.5 that, when 𝜎 ∕≡ 0 in the case 𝛼 < 1, the estimator ˆ𝐼𝑉 ℎ is

asymptotically Gaussian as ℎ → 0. However if 𝜎 ≡ 0 then both the numerator and the denominator of (13)

tend to zero. To handle this case we add an IID noise term:

Δ𝑖𝑋
𝑣 := Δ𝑖𝑋 + 𝑣

√
ℎ𝑍𝑖 𝑍𝑖

IID∼ 𝑁(0, 1).

As ℎ → 0,
𝑛∑

𝑖=1

(Δ𝑖𝑋
𝑣)2

𝑃→ [𝑋𝑣]𝑇 =

∫ 𝑇

0

𝜎2
𝑠𝑑𝑠+ 𝑣2𝑇 + 𝑇

∫
IR−{0}

𝑥2𝜇(𝑑𝑥, 𝑑𝑠),

and 𝐼{(Δ𝑖𝑋𝑣)2≤𝑟ℎ} removes the jumps of 𝑋
𝑣, so that under the assumptions of theorem 2.5, as ℎ → 0

ˆ𝐼𝑉
𝑣

ℎ :=
𝑛∑

𝑖=1

(Δ𝑖𝑋
𝑣)2𝐼{(Δ𝑖𝑋𝑣)2≤𝑟ℎ}

𝑃→
∫ 𝑇

0

𝜎2
𝑠𝑑𝑠+ 𝑣2𝑇.

Under the null hypothesis 𝜎 ≡ 0 we have ˆ𝐼𝑉
𝑣

ℎ
𝑃→ 𝑣2𝑇 , ˆ𝐼𝑄

𝑣

ℎ :=
∑

𝑖(Δ𝑖𝑋
𝑣)4𝐼{(Δ𝑖𝑋𝑣)2≤𝑟ℎ}/(3ℎ)

𝑃→ 𝑣4𝑇 and

𝑈ℎ :=
ˆ𝐼𝑉

𝑣

ℎ − 𝑣2𝑇√
2ℎ ˆ𝐼𝑄

𝑣

ℎ

𝑠𝑡→ 𝒩 . (14)

Note that if on the contrary 𝜎 ∕≡ 0 we have that the limit in probability of ˆ𝐼𝑉
𝑣

ℎ is strictly larger than 𝑣2𝑇 and,

by lemma 6.2, passing to a subsequence, a.s.

lim
ℎ→0

ℎ ˆ𝐼𝑄
𝑣

ℎ =
1

3
lim
ℎ→0

∑
𝑖

(Δ𝑖𝑋
𝑣)4𝐼{(Δ𝑖𝑋𝑣)2≤𝑟ℎ} =

1

3
lim
ℎ→0

∑
𝑖

(Δ𝑖𝑋
𝑣)4𝐼{Δ𝑖𝑁=0,(Δ𝑖𝑀)2≤2𝑟ℎ}
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≤ 1

3
lim
ℎ→0

∑
𝑖

(
Δ𝑖𝑋0 +Δ𝑖𝑀 + 𝑣

√
ℎ𝑍𝑖

)4
𝐼{(Δ𝑖𝑀)2≤2𝑟ℎ}

≤ 𝑐

3
lim
ℎ→0

∑
𝑖

(Δ𝑖𝑋0)
4 +

𝑐

3
lim
ℎ→0

∑
𝑖

(Δ𝑖𝑀)4𝐼{(Δ𝑖𝑀)2≤2𝑟ℎ} +
𝑐

3
lim
ℎ→0

∑
𝑖

(𝑣
√
ℎ𝑍𝑖)

4.

Using that lim
ℎ→0

∑
𝑖(Δ𝑖𝑀)4𝐼{(Δ𝑖𝑀)2≤2𝑟ℎ} ≤ lim

ℎ→0
2𝑟ℎ

∑
𝑖(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2≤2𝑟ℎ} = 0 by (44),

∑
𝑖(Δ𝑖𝑋0)

4/ℎ
𝑃→

𝑐
∫ 𝑇

0 𝜎4
𝑠𝑑𝑠 and

∑
𝑖(𝑣

√
ℎ𝑍𝑖)

4/ℎ
𝑎.𝑠.→ 𝑐𝑣4, we have, as ℎ → 0, ℎ ˆ𝐼𝑄

𝑣

ℎ
𝑃→ 0. Therefore under the alternative

(𝐻1) 𝜎 ∕≡ 0, 𝑈ℎ → +∞ and 𝑃{∣𝑈ℎ∣ > 1.96} → 1 so the test is consistent.

Local power of the test. To investigate the local power of test 𝑈ℎ, we consider a sequence of alternatives

𝐻ℎ
1 ) 𝜎 = 𝜎ℎ where 𝜎ℎ ↓ 0. We denote by ˆ𝐼𝑄

𝑣

𝜎ℎ , 𝑈𝜎ℎ the statistics analogous to ˆ𝐼𝑄
𝑣

ℎ, 𝑈ℎ but constructed from

𝑋ℎ
𝑡 = 𝑥0+

∫ 𝑡

0 𝑎𝑠𝑑𝑠+
∫ 𝑡

0 𝜎ℎ
𝑠 𝑑𝑊𝑠+𝐿𝑡, 𝑡 ∈]0, 𝑇 ]. In the case of constant 𝜎 and 𝜎ℎ and finite jump intensity using

standard results on convergence of sums of a triangular array [14, Lemmas 4.1. and 4.3.],

ˆ𝐼𝑄
𝑣

𝜎ℎ

𝑢𝑐𝑝→ 𝑣4𝑇, 𝑈𝜎ℎ
𝑑→ lim

ℎ→0

(𝜎ℎ)2√
ℎ

𝑇 +
√
2𝑣2𝑍𝑇 ,

where
𝑢𝑐𝑝→ denotes uniform convergence in probability on compacts subsets of [0, 𝑇 ] [24] and 𝑍 is a standard

Brownian motion. So either 𝑈𝜎ℎ tends in distribution to 𝑐 +
√
2𝑣2𝑍𝑇 , if 𝜎

ℎ = 𝑂(ℎ1/4), or 𝑈𝜎ℎ → ∞, if
ℎ1/4 = 𝑜(𝜎ℎ). So if 𝑐 is a (possibly zero) constant we have

if 𝜎ℎ

ℎ1/4 → 𝑐 then 𝑃{𝑈𝜎ℎ > 1.64∣𝐻ℎ
1 } → 𝑃{𝑍1 > 1.64−𝑐2𝑇√

2𝑇𝑣2
}

if 𝜎ℎ

ℎ1/4 → +∞ then 𝑃{𝑈𝜎ℎ > 1.64∣𝐻ℎ
1 } → 1.

For values of 𝑣 in section 4 we have 1.64/
√
2𝑇𝑣2 = 𝑂(108) thus the local power of the test is small if 𝜎ℎ = 𝑂(ℎ1/4).

3.2 Testing whether the jump component has finite variation

To construct a test for discriminating 𝛼 < 1 from 𝛼 ≥ 1, Theorem 2.5 suggests to use ( ˆ𝐼𝑉 ℎ − 𝐼𝑉 )/

√
2ℎ ˆ𝐼𝑄ℎ

but this requires knowing the process 𝜎 to compute 𝐼𝑉 . We propose a feasible alternative. Consider instead

the estimator

𝐻̂ℎ :=
𝑛∑

𝑖=1

Δ𝑖𝑋𝐼{(Δ𝑖𝑋)2>𝑟ℎ} = 𝑋𝑇 −
𝑛∑

𝑖=1

Δ𝑖𝑋𝐼{(Δ𝑖𝑋)2≤𝑟ℎ}.

Proposition 3.1. When 𝛼 < 1, 𝐻̂ℎ is a consistent estimator of 𝐽𝑇 +𝑚𝑇 , 𝑚 :=
∫ 1

−1 𝑥𝜈(𝑑𝑥).

Consider 𝑍𝑖 = Δ𝑖𝑊
𝑣, where 𝑊 𝑣 is a Wiener process independent from 𝑊,𝐿 and define

Δ𝑖𝐻̂
𝑣 := Δ𝑖𝑋𝐼{(Δ𝑖𝑋)2>𝑟ℎ} + 𝑣

√
ℎ𝑍𝑖 and 𝐻𝑣

𝑇 := 𝐽𝑇 +𝑚𝑇 + 𝑣𝑊 𝑣
𝑇 .

Under the null hypothesis 𝛼 < 1,
ˆ𝐼𝑉

𝐻𝑣

ℎ :=
∑
𝑖

(Δ𝑖𝐻̂
𝑣)2𝐼{(Δ𝑖𝐻̂𝑣)2≤𝑟ℎ}

is an estimator of the integrated variance 𝑣2𝑇 of 𝐻𝑣, so under the null hypothesis (𝐻0) 𝛼 < 1 we can find

𝛽 > 1
2−𝛼 ∈] 12 , 1[ such that

𝑈
(𝛼)
ℎ :=

ˆ𝐼𝑉
𝐻𝑣

ℎ − 𝑣2𝑇√
2ℎ ˆ𝐼𝑄

𝐻𝑣

ℎ

𝑑→ 𝑁(0, 1), (15)

where ˆ𝐼𝑄
𝐻𝑣

ℎ := 1
3ℎ

∑
𝑖(Δ𝑖𝐻̂

𝑣)4𝐼{(Δ𝑖𝐻̂𝑣)2≤𝑟ℎ} and 𝑟ℎ = ℎ𝛽 . In particular 𝑃
{
∣𝑈 (𝛼)

ℎ ∣ > 1.96
}
→ 5%.

If on the contrary 𝛼 ≥ 1, then reasoning as in theorem 2.5, for any 𝛽 ∈]0, 1[ we have 𝑈 (𝛼)
ℎ

𝑃→ +∞, so the test is

consistent. If ∣𝑈 (𝛼)
ℎ ∣ > 1.96, we reject (𝐻0) 𝛼 < 1 at 95% confidence level.

Remark. To apply this test we first need to decide whether 𝛼 < 1, using the previously described test.
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4 Numerical experiments

4.1 Testing the finite variation of the jump component

We simulate 𝑛 increments Δ𝑖𝑋 of a process 𝑋 = 𝜎𝑊 + 𝐿, where 𝐿 is a symmetric 𝛼−stable Lévy process,
𝜎 = 0.2. We generate 1000 independent samples containing 𝑛 increments each, and compute 𝑈

(𝛼)
ℎ as in (15) for

a range of values of 𝑣, ℎ (1 minute, 5 minutes, 1 hour, 1 day) and number of observations 𝑛. The table below

reports the percentage pct of outcomes where ∣𝑈 (𝛼)
ℎ(𝑗)∣ > 1.96, 𝑗 = 1..1000, for threshold exponent 𝛽 = 0.999.

Note that with 𝑛 = 1000 and ℎ equal to five minutes (ℎ = 1/(252× 84)) we have 𝑇 < 1 year; for 𝛼 = 0.6 the

lower bound for 𝛽 is 1
2−𝛼 = 0.71; when 𝑛 = 1000, ℎ = 1/(84× 252) and the BG index of 𝐿 is 0.6 (resp. 1.6) the

ratio of 𝑣 = 10−4 to the standard deviation of the increments Δ𝑖𝑋 is 0.074 (resp. 0.022).

𝑛 ℎ 𝑣 𝛼 𝑝𝑐𝑡 𝛼 𝑝𝑐𝑡

1000 5 min 0.000001 0.6 0.067 1.6 0.439

1000 5 min 0.0001 0.6 0.056 1.6 0.407

1000 5 min 0.01 0.6 0.047 1.6 0.250

1000 5 min 0.1 0.6 0.053 1.6 0.726

1000 1 min 0.0001 0.6 0.049 1.6 0.241

1000 1 hour 0.0001 0.6 0.051 1.6 0.875

1000 1 day 0.0001 0.6 0.066 1.6 0.984

100 5 min 0.0001 0.6 0.065 1.6 0.137

10000 5 min 0.0001 0.6 0.065 1.6 0.928

The test results are observed to be reliable if we use 𝑛 = 10000 observations, a time resolution of five minutes

and 𝑣 = 10−4. In fact when the data generating process has BG index 0.6 the test leads us to accept the

hypothesis (𝐻0) 𝛼 < 1 in about 94 cases out of 100. On the contrary when the process has BG index 1.6 the

test tells us to reject (𝐻0) in 92 cases out of 100.

4.2 Test for the presence of a Brownian component.

We simulate 1000 independent paths of a process 𝑋𝑡 =
∫ 𝑡

0 𝜎𝑢𝑑𝑊𝑢 + 𝐿, for different Lévy processes 𝐿 and

constant or stochastic 𝜎, on a time grid with 𝑛 steps. We take threshold 𝑟ℎ = ℎ0.999. For each trial 𝑗 = 1..1000

we compute 𝑈ℎ(𝑗) given in (14) and report the percentage pct of cases where ∣𝑈ℎ(𝑗)∣ > 1.96.

Example 4.1. (Brownian motion plus compound Poisson process, BG index 𝛼 = 0). We consider

here constant 𝜎 and 𝐿 =
∑𝑁𝑡

𝑖=1 𝐵𝑖, a compound Poisson process with IID 𝑁(0, 0.62) sizes of jump and jump

intensity 𝜆 = 5 (as in [1]). The table below illustrates the performance of our test for various time steps ℎ,

number of observations 𝑛 and noise level 𝑣:

𝑛 ℎ 𝑣 𝜎 𝑝𝑐𝑡 𝜎 𝑝𝑐𝑡

1000 5 min 0.000001 0 0.043 0.2 1

1000 5 min 0.0001 0 0.048 0.2 1

1000 5 min 0.01 0 0.054 0.2 1

1000 5 min 0.1 0 0.041 0.2 1

1000 1 min 0.0001 0 0.047 0.2 1

1000 1 hour 0.0001 0 0.054 0.2 1

1000 1 day 0.0001 0 0.082 0.2 1

100 5 min 0.0001 0 0.065 0.2 1

10000 5 min 0.0001 0 0.049 0.2 1

Note that when 𝜎 = 0 (resp. 0.2), 𝑛 = 1000𝑎𝑛𝑑ℎ = 1/(84×252) the ratio of 𝑣 = 10−4 on the standard deviation

of the returns Δ𝑖𝑋 equals 0.007 (resp. 0.052).
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We find that the test is reliable for values 𝑛 = 1000, ℎ = 5 minutes and 𝑣 = 10−4, since it correctly accepts (𝐻0)

in 95 cases out of 100 and rejects (𝐻0) in all cases when it is false.

Example 4.2. (Brownian motion + 𝛼-stable jumps: 𝛼 ∈]0, 2[). Here 𝐿 is a symmetric 𝛼-stable Lévy

process and 𝜎 is constant. The following results confirm the satisfactory performance of the test when 𝛼 =

0.3 < 1 for 𝑛 = 1000, ℎ = 5 minutes and 𝑣 = 10−4 chosen as above.

𝑛 ℎ 𝑣 𝜎 𝑝𝑐𝑡 𝜎 𝑝𝑐𝑡

1000 5 min 0.000001 0 0.042 0.2 1

1000 5 min 0.0001 0 0.026 0.2 1

1000 5 min 0.01 0 0.054 0.2 1

1000 5 min 0.1 0 0.053 0.2 1

1000 1 min 0.0001 0 0.046 0.2 1

1000 1 hour 0.0001 0 0.140 0.2 1

1000 1 day 0.0001 0 0.805 0.2 1

100 5 min 0.0001 0 0.056 0.2 1

10000 5 min 0.0001 0 0.165 0.2 1

The next table, for the case 𝛼 = 1.2 > 1, confirms that we cannot rely on the test results in this case: even

when 𝜎 ≡ 0 the statistic 𝑈ℎ diverges if 𝛼 ≥ 1.

𝑛 ℎ 𝑣 𝜎 𝑝𝑐𝑡 𝜎 𝑝𝑐𝑡

1000 5 min 0.000001 0 1 0.2 1

1000 5 min 0.0001 0 1 0.2 1

1000 5 min 0.01 0 1 0.2 1

1000 5 min 0.1 0 1 0.2 1

1000 1 min 0.0001 0 1 0.2 1

1000 1 hour 0.0001 0 1 0.2 1

1000 1 day 0.0001 0 1 0.2 1

100 5 min 0.0001 0 0.994 0.2 1

10000 5 min 0.0001 0 1 0.2 1

The main point here is that we may use a model-free choice of threshold.

Example 4.3. (Stochastic volatility plus Variance Gamma jumps: 𝛼 = 0). Let us now consider a

model 𝑋 with stochastic volatility 𝜎𝑡, correlated with the Brownian motion driving 𝑋 , and with jumps given

by an independent Variance Gamma process:

𝑑𝑋𝑡 = (𝜇− 𝜎2
𝑡 /2)𝑑𝑡+ 𝜎𝑡𝑑𝑊

(1)
𝑡 + 𝑑𝐿𝑡,

where

𝜎𝑡 = 𝑒𝐾𝑡 , 𝑑𝐾𝑡 = −𝑘(𝐾𝑡 − 𝐾̄)𝑑𝑡+ 𝜍𝑑𝑊
(2)
𝑡 , 𝑑 < 𝑊 (1),𝑊 (2) >𝑡= 𝜌𝑑𝑡, (16)

𝑊 (ℓ) are standard Brownian motions, ℓ = 1, 2, 3 and 𝐿𝑡 = 𝑐𝐺𝑡 + 𝜂𝑊
(3)
𝐺𝑡

is an independent Variance Gamma

process, a pure jump Lévy process with BG index 𝛼 = 0 [18]: 𝐺 is a Gamma subordinator independent from

𝑊 (3) with 𝐺ℎ ∼ Γ(ℎ/𝑏, 𝑏). For 𝜎 we choose 𝐾0 = ln(0.3), 𝑘 = 0.09, 𝐾̄ = ln(0.25), 𝜍 = 0.05 to ensure that 𝜎

fluctuates in the range 0.2–0.4. As for the jump part of 𝑋 we use 𝑉 𝑎𝑟(𝐺1) = 𝑏 = 0.23, 𝜂 = 0.2, 𝑐 = −0.2,
estimated from the SP500 index in [18]. The remaining parameters are 𝜌 = −0.7 and 𝜇 = 0. The following

results confirm the reliability of the test for the presence of a Brownian component with 𝑛 = 1000, ℎ = 5 minutes

and 𝑣 = 10−4.
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𝑛 ℎ 𝑣 𝜎 𝑝𝑐𝑡 𝜎 𝑝𝑐𝑡

1000 5 min 0.000001 0 0.032 stoch 1

1000 5 min 0.0001 0 0.017 stoch 1

1000 5 min 0.01 0 0.027 stoch 1

1000 5 min 0.1 0 0.054 stoch 1

1000 1 min 0.0001 0 0.034 stoch 1

1000 1 hour 0.0001 0 0.918 stoch 1

1000 1 day 0.0001 0 1.000 stoch 1

100 5 min 0.0001 0 0.049 stoch 1

10000 5 min 0.0001 0 0.912 stoch 1

Remark. In [21] a variable threshold function is used to estimate the volatility, in order to account for

heteroskedasticity and volatility clustering, with results very similar to the ones obtained with a constant

threshold. This is justified by the fact that in most applications values of 𝜎 are within the range [0.1, 0.8], thus

the order of magnitude of Λ in (7) is of 1.

5 Applications to financial time series

We apply our tests to explore the fine structure of price fluctuations in two financial time series. We consider

the DM/USD exchange rate from 1-10-1991 to 29-11-1994 and the SPX futures prices from 3-1-1994 to 18-12-

1997. From high-frequency time series, we build 5-minute log-returns (excluding, in the case of SPX futures,

overnight log-returns). This sampling frequency avoids many microstructure effects seen at shorter time scales

(e.g. seconds) while leaving us with a relatively large sample.

5.1 Deutschemark/USD exchange rate

The DM/$ exchange rate time series was compiled by Olsen & Associates. We consider the series of 64284

equally spaced 5 minutes log-returns, with ℎ = 1
252×84 ≈ 4.7× 10−5, displayed in Figure 5.2.
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Figure 5.1. Left: DEM/USD five minutes log-returns, October 1991 to November 1994. Center: plot of

Δ𝑖𝑋𝐼{(Δ𝑖𝑋)2≤𝑟ℎ}, 𝑖 = 1..𝑛. Right: increments with jumps Δ𝑖𝑋𝐼{(Δ𝑖𝑋)2>𝑟ℎ}, 𝑖 = 1..𝑛.

Barndorff-Nielsen and Shephard [6] provide evidence for the presence of jumps in this series using non-

parametric methods. Using as threshold 𝑟ℎ = ℎ0.999, we apply the test of section 4.1 to the degree of activity

of the jump component. As in the simulation study, we divide the data into 64 non-overlapping batches of

𝑛 = 1000 observations each and compute for each batch the statistic 𝑈
(𝛼)
ℎ(𝑗), 𝑗 = 1..64 with 𝑣 = 10−4. Only 4.7%

of the values observed are outside the interval [−1.96, 1.96], hence we cannot reject the assumption (𝐻0) 𝛼 < 1.
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Given this result, we can now use the test in Section 4.2 for the presence of a Brownian component in the

price process. Computation of the statistic 𝑈ℎ shows values much larger than 1.96 for all batches: we reject

(𝐻0) 𝜎 ≡ 0.

These results indicate, for instance, that a Variance Gamma model, with no Brownian component, would

be inadequate for the DM/$ time series.

5.2 SPX index

We consider the series of 78497 non-overlapping 5 minute log-returns displayed in Figure 5.2. Using as threshold

𝑟ℎ = ℎ0.999, we decompose the series into periods displaying jumps and other periods, as displayed in Figure

5.2 (central and right panels).
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Figure 5.2. Left: SPX five minutes log-returns, January 1994 to December 1997. Center: plot of Δ𝑖𝑋𝐼{(Δ𝑖𝑋)2≤𝑟ℎ}, 𝑖 =

1..𝑛. Right: increments with jumps Δ𝑖𝑋𝐼{(Δ𝑖𝑋)2>𝑟ℎ}, 𝑖 = 1..𝑛.

We divide the data into 78 non-overlapping batches of 𝑛 = 1000 observations each and compute for each

batch the statistic 𝑈
(𝛼)
ℎ(𝑗), 𝑗 = 1..64 with 𝑣 = 10−4. 5.1% of the values observed are outside the interval

[−1.96, 1.96]: for this period we cannot reject the assumption (𝐻0) 𝛼 < 1. Given this result, we can use the test

for the presence of a Brownian component in the price process. Computation of the statistic 𝑈ℎ shows values

much larger than 1.96 for all batches: we reject (𝐻0) 𝜎 ≡ 0. The test thus indicates the presence of a Brownian

martingale component.

We note that our findings contradict the conclusion of Carr et al. [8] who model the (log) SPX index from

1994 to 1998 as a tempered stable Lévy process plus a Brownian motion and conclude towards a pure jump

model using a parametric estimation method. Under less restrictive assumptions on the structure of the process

and using our non-parametric test, we find evidence for a non–zero Brownian component in the index.

6 Appendix: technical results and proofs

Proof of lemma 2.1. By [23, Theorem 25.1 ] there exists a sequence (𝑛𝑘) such that

sup
𝑡𝑗∈Π(𝑛𝑘)

∣∣(Δ𝑗𝑀)2 −
∑

𝑠∈]𝑡𝑗−1,𝑡𝑗 ]

(Δ𝑀𝑠)
2
∣∣ 𝑎.𝑠→ 0, (17)

where Π(𝑛𝑘) is the partition of [0, 𝑇 ] on which the increments (Δ𝑖𝑀)2 are constructed. Let us rename 𝑛𝑘 by 𝑛.

Using Ito’s formula we have

(Δ𝑖𝑀)2 −
∑

𝑠∈]𝑡𝑖−1,𝑡𝑖]

(Δ𝑀𝑠)
2 = 2

∫ 𝑡𝑖

𝑡𝑖−1

(𝑀𝑠− −𝑀𝑡𝑖−1)𝑑𝑀𝑠.
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i) For 𝛼 < 1 our statement is proved in [21], lemma A.2, where it is used that the speed of convergence to 0 of∑𝑛
𝑖=1 ∣

∫ 𝑡𝑖
𝑡𝑖−1

(𝑀𝑠− −𝑀𝑡𝑖−1)𝑑𝑀𝑠∣ is shown in [12] to be 𝑢𝑛 = 𝑛. For 𝛼 = 1 the same reasoning can be repeated

since 𝑢𝑛 = 𝑛/(log𝑛)2 does not change the conclusion.

ii) If 𝛼 > 1 we have 𝑢𝑛 = (𝑛/ log𝑛)
1/𝛼, and we can only conclude that a.s. for small ℎ

sup
𝑖

∣∣∣ ∫ 𝑡𝑖

𝑡𝑖−1

(𝑀𝑠− −𝑀𝑡𝑖−1)𝑑𝑀𝑠

∣∣∣ ≤ 𝑐𝑢−1
𝑛

with 𝑐 > 0, so that a.s. for small ℎ we have

sup
𝑖

( ∑
𝑠∈]𝑡𝑖−1,𝑡𝑖]

(Δ𝑀𝑠)
2
)
𝐼{(Δ𝑖𝑀)2≤4𝑟ℎ} ≤ sup

𝑖

∣∣∣(Δ𝑖𝑀)2 −
∑

𝑠∈]𝑡𝑖−1,𝑡𝑖]

(Δ𝑀𝑠)
2
∣∣∣+ sup

𝑖
∣(Δ𝑖𝑀)2∣

≤ 𝑐𝑢−1
𝑛 + 4𝑟ℎ = 𝑂(𝛿

1
𝛼 log

1
𝛼
1

ℎ
).

Lemma 6.1. Under (5)

i) there exists a strictly positive variable ℎ̄ such that for all 𝑖 = 1..𝑛,

𝐼{ℎ≤ℎ̄} 𝐼{(Δ𝑖𝑋0)2>𝑟ℎ} = 0 𝑎.𝑠., (18)

𝑖𝑖) ∀𝑐 > 0, 𝑛𝑃{Δ𝑖𝑁 ∕= 0, (Δ𝑖𝑀)2 > 𝑐𝑟ℎ} ℎ→0→ 0 (19)

iii) In the case 𝑟ℎ = ℎ𝛽, 𝛽 ∈]0, 1[, we have

lim sup
ℎ→0

ℎ
𝛼𝛽
2

𝑛∑
𝑖=1

𝑃{(Δ𝑖𝑋)
2 > 𝑟ℎ} ≤ 𝑐 (20)

Proof. Equality (18) is a consequence of (7), while (19) is a consequence of the fact that 𝑁 and 𝑀 are

independent and of the Chebyshev inequality: as ℎ → 0

𝑛𝑃{Δ𝑖𝑁 ∕= 0, (Δ𝑖𝑀)2 > 𝑐𝑟ℎ} ≤ 𝑛𝑂(ℎ) ⋅ 𝐸[(Δ𝑖𝑀)2]

𝑐𝑟ℎ
= 𝑂

(
ℎ

𝑟ℎ

)
.

The proof of (20) can be done as in [3, Lemma 6] but we give a simpler proof under our assumptions. It is

sufficient to show that

𝑃{(Δ𝑖𝑋)
2 > 𝑟ℎ} ≤ 𝑐ℎ1−𝛼𝛽

2 . (21)

First we show that

𝑃{∣Δ𝑖𝑋 ∣ > √
𝑟ℎ} = 𝑃{∣Δ𝑖𝑀 ∣ > √

𝑟ℎ/4}+𝑂(ℎ1−𝛼𝛽/2) (22)

so that for (21) it is sufficient to prove that

𝑃{∣Δ𝑖𝑀 ∣ > √
𝑟ℎ/4} ≤ 𝑐ℎ1−𝛼𝛽

2 . (23)

To show (22) note that if ∣Δ𝑖𝑋 ∣ > √
𝑟ℎ either Δ𝑖𝐽 ∕= 0 or ∣Δ𝑖𝑀 ∣ > √

𝑟ℎ/4, since for small ℎ,

√
𝑟ℎ < ∣Δ𝑖𝑋 ∣ ≤ ∣Δ𝑖𝑋0∣+ ∣Δ𝑖𝐽 ∣+ ∣Δ𝑖𝑀 ∣ ≤ √

𝑟ℎ/2 + ∣Δ𝑖𝐽 ∣+ ∣Δ𝑖𝑀 ∣ 𝑎.𝑠. (24)

Thus 𝑃{∣Δ𝑖𝑋 ∣ > √
𝑟ℎ} ≤ 𝑃{Δ𝑖𝐽 ∕= 0}+ 𝑃{∣Δ𝑖𝑀 ∣ > √

𝑟ℎ/4},
and since 𝑃{Δ𝑖𝐽 ∕= 0} = 𝑂(ℎ) = 𝑜(ℎ1−𝛼𝛽/2), (22) is verified.

In order to verify (23), define 𝑁̃𝑡 :=
∑

𝑠≤𝑡 𝐼{∣Δ𝑀𝑠∣>√
𝑟ℎ/4} and write

𝑃{∣Δ𝑖𝑀 ∣ > √
𝑟ℎ/4} = 𝑃{Δ𝑖𝑁̃ = 0, ∣Δ𝑖𝑀 ∣ > √

𝑟ℎ/4}+ 𝑃{Δ𝑖𝑁̃ ≥ 1, ∣Δ𝑖𝑀 ∣ > √
𝑟ℎ/4}

≤ 𝑃{Δ𝑖𝑁̃ ≥ 1}+ 𝑃{Δ𝑖𝑁̃ = 0, ∣Δ𝑖𝑀 ∣ > √
𝑟ℎ/4}. (25)
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Note that 𝑁̃𝑡 =
∫ 𝑡

0

∫
∣𝑥∣>√

𝑟ℎ/4
𝜇(𝑑𝑥, 𝑑𝑡) is a compound Poisson process with intensity 𝜈{∣𝑥∣ >

√
𝑟ℎ/4} =

𝑂(𝑟
−𝛼/2
ℎ ), so 𝑃{Δ𝑖𝑁̃ ≥ 1} = 𝑂(ℎ𝜈{∣𝑥∣ >

√
𝑟ℎ/4}) = 𝑂(ℎ1−𝛼𝛽/2) and thus the first term above is domi-

nated by ℎ1−𝛼𝛽/2 as we need. Finally on {Δ𝑖𝑁̃ = 0},𝑀 does not have jumps bigger than
√
𝑟ℎ/4 on the interval

]𝑡𝑖−1, 𝑡𝑖], so

Δ𝑖𝑀 =

∫ 𝑡𝑖

𝑡𝑖−1

∫
∣𝑥∣≤√

𝑟ℎ/4

𝑥𝜇̃(𝑑𝑥, 𝑑𝑡)− ℎ

∫
√
𝑟ℎ/4<∣𝑥∣≤1

𝑥𝜈(𝑑𝑥),

therefore

𝑃{Δ𝑖𝑁̃ = 0, ∣Δ𝑖𝑀 ∣ > √
𝑟ℎ/4} ≤ 𝑃{ ∣Δ𝑖𝑀 ∣ > √

𝑟ℎ/4, ∣Δ𝑀𝑠∣ ≤ √
𝑟ℎ/4 for all 𝑠 ∈]𝑡𝑖−1, 𝑡𝑖]}

≤ 4
𝐸
[
(Δ𝑖𝑀)2𝐼{∣Δ𝑀𝑠∣≤√

𝑟ℎ/4 for all 𝑠∈]𝑡𝑖−1,𝑡𝑖]}
]

𝑟ℎ
= 𝑂

(ℎ𝜂2(√𝑟ℎ
4 )

𝑟ℎ

)
= 𝑂(ℎ1−𝛼𝛽/2),

and (23) is verified.

Proof of proposition 2.3.

∑
𝑖(Δ𝑖𝑋)4𝐼{(Δ𝑖𝑋)2≤𝑟ℎ}

3ℎ =
∑

𝑖(Δ𝑖𝑋1)
4𝐼{(Δ𝑖𝑋1)2≤4𝑟ℎ}
3ℎ +

1
3ℎ

∑
𝑖(Δ𝑖𝑋1)

4(𝐼{(Δ𝑖𝑋)2≤𝑟ℎ} − 𝐼{(Δ𝑖𝑋1)2≤4𝑟ℎ}) +
∑4

𝑘=1

( 4
𝑘

)∑
𝑖(Δ𝑖𝑋1)

4−𝑘(Δ𝑖𝑀)𝑘𝐼{(Δ𝑖𝑋)2≤𝑟ℎ}
3ℎ :=

∑3
𝑗=1 𝐼𝑗(ℎ)

By proposition 1 in [20], 𝐼1(ℎ) tends to
∫ 𝑇

0 𝜎4
𝑡 𝑑𝑡 in probability. We show here that the other terms tends to

zero in probability. Let us consider 𝐼2(ℎ) :=
1
3ℎ

∑
𝑖(Δ𝑖𝑋1)

4(𝐼{(Δ𝑖𝑋)2≤𝑟ℎ} − 𝐼{(Δ𝑖𝑋1)2≤4𝑟ℎ}): on {(Δ𝑖𝑋)
2 ≤

𝑟ℎ, (Δ𝑖𝑋1)
2 > 4𝑟ℎ} we have

√
𝑟ℎ ≥ ∣Δ𝑖𝑋 ∣ > ∣Δ𝑖𝑋1∣ − ∣Δ𝑖𝑀 ∣ > 2

√
𝑟ℎ − ∣Δ𝑖𝑀 ∣ (26)

so ∣Δ𝑖𝑀 ∣ > √
𝑟ℎ. Moreover if ∣Δ𝑖𝑋1∣ > 2

√
𝑟ℎ we necessarily have Δ𝑖𝑁 ∕= 0, since

∣Δ𝑖𝑋0∣+ ∣Δ𝑖𝐽 ∣ ≥ ∣Δ𝑖𝑋1∣ > 2
√
𝑟ℎ (27)

and by (18), a.s. for sufficiently small ℎ, for all 𝑖 = 1..𝑛, ∣Δ𝑖𝑋0∣ ≤ √
𝑟ℎ thus ∣Δ𝑖𝐽 ∣ > 2

√
𝑟ℎ − ∣Δ𝑖𝑋0∣ ≥ √

𝑟ℎ. It

follows that

𝑃
{ 1
ℎ

∑
𝑖

(Δ𝑖𝑋1)
4𝐼{(Δ𝑖𝑋)2≤𝑟ℎ,(Δ𝑖𝑋1)2>4𝑟ℎ} ∕= 0

}
≤ 𝑛𝑃{∣Δ𝑖𝑀 ∣ > √

𝑟ℎ,Δ𝑖𝑁 ∕= 0} → 0

by lemma 6.1. On the other hand, for all 𝑖 = 1..𝑛 on {(Δ𝑖𝑋1)
2 ≤ 4𝑟ℎ} we have, for sufficiently small ℎ,

Δ𝑖𝑁 = 0, because

∣Δ𝑖𝐽 ∣ − ∣Δ𝑖𝑋0∣ ≤ ∣Δ𝑖𝑋1∣ ≤ 2
√
𝑟ℎ (28)

so if Δ𝑖𝑁 ∕= 0 then a.s. for small ℎ in fact Δ𝑖𝑁 = 1 and Δ𝐽𝑠 ≥ 1 by definition of 𝐽 , therefore if Δ𝑖𝑁 ∕= 0 we

would have 1 ≤ ∣Δ𝑖𝐽 ∣ ≤ 2
√
𝑟ℎ +

√
𝑟ℎ = 3

√
𝑟ℎ, which is impossible for small ℎ. It follows that

{(Δ𝑖𝑋)
2 > 𝑟ℎ, (Δ𝑖𝑋1)

2 ≤ 4𝑟ℎ} ⊂ {(Δ𝑖𝑋0 +Δ𝑖𝑀)2 > 𝑟ℎ} ⊂ {(Δ𝑖𝑋0)
2 >

𝑟ℎ
4
} ∪ {(Δ𝑖𝑀)2 >

𝑟ℎ
4
}.

This implies by (18) and (23) that a.s. as ℎ → 0

1

ℎ

∑
𝑖

(Δ𝑖𝑋1)
4𝐼{(Δ𝑖𝑋)2>𝑟ℎ,(Δ𝑖𝑋1)2≤4𝑟ℎ} ≤

∑
𝑖(Δ𝑖𝑋0)

4𝐼{(Δ𝑖𝑀)2>𝑟ℎ/4}
ℎ

≤ Λ4ℎ ln2
1

ℎ

∑
𝑖

𝐼{(Δ𝑖𝑀)2>𝑟ℎ/4}
𝑃→ 0,
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We can conclude that 𝐼2(ℎ)
𝑃→ 0, as ℎ → 0. Now consider 𝐼3(ℎ) :=

∑4
𝑘=1

( 4
𝑘

)
𝐼3,𝑘(ℎ), where

𝐼3,𝑘(ℎ) :=
1

3ℎ

∑
𝑖

(Δ𝑖𝑋1)
4−𝑘(Δ𝑖𝑀)𝑘𝐼{(Δ𝑖𝑋)2≤𝑟ℎ}, 𝑘 = 1..4

is decomposable as

1

3ℎ

∑
𝑖

(Δ𝑖𝑋1)
4−𝑘(Δ𝑖𝑀)𝑘𝐼{(Δ𝑖𝑋)2≤𝑟ℎ,(Δ𝑖𝑀)2≤4𝑟ℎ} +

1

3ℎ

∑
𝑖

(Δ𝑖𝑋1)
4−𝑘(Δ𝑖𝑀)𝑘𝐼{(Δ𝑖𝑋)2≤𝑟ℎ,(Δ𝑖𝑀)2>4𝑟ℎ} (29)

We have a.s. for small ℎ, ∀𝑖 on {(Δ𝑖𝑋)
2 ≤ 𝑟ℎ, (Δ𝑖𝑀)2 > 4𝑟ℎ} then Δ𝑖𝑁 ∕= 0, since

2
√
𝑟ℎ − ∣Δ𝑖𝑋1∣ < ∣Δ𝑖𝑀 ∣ − ∣Δ𝑖𝑋1∣ ≤ ∣Δ𝑖𝑋 ∣ ≤ √

𝑟ℎ

and then ∣Δ𝑖𝑋1∣ > √
𝑟ℎ and, similarly as in (27), ∣Δ𝑖𝐽 ∣ > 3

√
𝑟ℎ/4. So the probability that the second term of

(29) differs from zero is bounded by (19) and tends to zero. As for the first term, a.s. for sufficiently small ℎ,

∀𝑖 on {(Δ𝑖𝑋)
2 ≤ 𝑟ℎ, (Δ𝑖𝑀)2 ≤ 4𝑟ℎ} we have Δ𝑖𝑁 = 0, because

∣Δ𝑖𝑋1∣ − ∣Δ𝑖𝑀 ∣ ≤ ∣Δ𝑖𝑋 ∣ ≤ √
𝑟ℎ

thus ∣Δ𝑖𝑋1∣ < 3
√
𝑟ℎ and we proceed as in (28). So the first term in (29) is a.s. dominated by

∑
𝑖 ∣Δ𝑖𝑋1∣4−𝑘∣Δ𝑖𝑀 ∣𝑘𝐼{Δ𝑖𝑁=0,(Δ𝑖𝑀)2≤4𝑟ℎ}

3ℎ
≤

∑
𝑖 ∣Δ𝑖𝑋0∣4−𝑘∣Δ𝑖𝑀 ∣𝑘𝐼{(Δ𝑖𝑀)2≤4𝑟ℎ}

3ℎ
.

Now for 𝑘 = 4 we apply to 𝑀 property (C.19) in [4, Lemma 5], with 𝛽 there being 𝛼 here, 𝑢𝑛 =
√
𝑟ℎ = ℎ

𝛽
2 ,

𝑝 = 4, 𝑣ℎ = ℎ𝜙 for a proper exponent 𝜙 we specify below, 𝛽′ = 0. Result (C.19) of [4] then implies

1

ℎ
𝐸
[∣∣∣ 𝑛∑

𝑖=1

(Δ𝑖𝑀)4𝐼{∣Δ𝑖𝑀∣≤2
√
𝑟ℎ} −

∑
𝑣≤𝑇

∣Δ𝑀𝑣∣4𝐼{∣Δ𝑀𝑣 ∣≤2
√
𝑟ℎ}

∣∣∣] ≤ 𝑐ℎ
𝛽
2 (4−𝛼)−1 ⋅ 𝜂4,𝑛,

where 𝜂4,𝑛 = ℎ(ℎ
𝛽
2 𝑣ℎ)

−𝛼 + ℎ2ℎ
𝛼𝛽
2 (ℎ

𝛽
2 𝑣ℎ)

−3𝛼 + ℎℎ
𝛼𝛽
2 (ℎ

𝛽
2 )−2𝛼 + (2ℎ

𝛽
2 )𝛼 + ℎ

1
4 ℎ− 4−𝛼

4
𝛽
2 + 𝑣

4−𝛼
4

ℎ . As soon as 𝛽 >

1/(2− 𝛼/2) and we choose 𝜙 ∈]0, 1−𝛽
3 [, so that for all 𝛼 ∈]0, 2[ we have 𝜙 < (2/𝛼− 𝛽)/3, it is guaranteed both

that ℎ
𝛽
2 (4−𝛼)−1 → 0 and that ℎ

𝛽
2 (4−𝛼)−1 ⋅ 𝜂4,𝑛 → 0. Thus

lim
ℎ

∑
𝑖 ∣Δ𝑖𝑀 ∣4𝐼{(Δ𝑖𝑀)2≤4𝑟ℎ}

3ℎ
= lim

ℎ

∑
𝑖

∫ 𝑡𝑖
𝑡𝑖−1

∫
∣𝑥∣≤2

√
𝑟ℎ

∣𝑥∣4𝜇(𝑑𝑥, 𝑑𝑡)
3ℎ

,

and 𝐸[
∑

𝑖

∫ 𝑡𝑖
𝑡𝑖−1

∫
∣𝑥∣≤2

√
𝑟ℎ

∣𝑥∣4𝜇(𝑑𝑥, 𝑑𝑡)/3ℎ] = 𝑂
( ∫

∣𝑥∣≤2
√
𝑟ℎ

∣𝑥∣4𝜈(𝑑𝑥)/ℎ
)
= 𝑂(ℎ

𝛽
2 (4−𝛼)−1) → 0, given that 𝛽 >

1/(2− 𝛼/2).

To show that further the terms
∑

𝑖 ∣Δ𝑖𝑋0∣4−𝑘∣Δ𝑖𝑀∣𝑘𝐼{(Δ𝑖𝑀)2≤4𝑟ℎ}
3ℎ tend to zero in probability for 𝑘 = 1, 2, 3 we use

that, by (11), each term is dominated by (recall the notation in (10))

𝑐

∑
𝑖 ∣Δ𝑖𝑋0∣4−𝑘∣Δ𝑖𝑀

(ℎ)∣𝑘
3ℎ

+ 𝑐

∑
𝑖 ∣Δ𝑖𝑋0∣4−𝑘∣ℎ𝑑(2 4

√
𝑟ℎ)∣𝑘

3ℎ

Now a.s. ∑
𝑖 ∣Δ𝑖𝑋0∣4−𝑘∣ℎ𝑑(2 4

√
𝑟ℎ)∣𝑘

3ℎ
≤ (

ℎ ln
1

ℎ

) 4−𝑘
2 𝑛ℎ𝑘−1

[
∣𝑐+ 𝑟

1−𝛼
4

ℎ ∣𝑘𝐼{𝛼∕=1} + ln
𝑘 1

𝑟
1/4
ℎ

𝐼{𝛼=1}
]
≤

𝑐ℎ𝑘/2
(
ln
1

ℎ

) 4−𝑘
2 + 𝑐ℎ𝑘/2

(
ln
1

ℎ

) 4−𝑘
2 𝑟

𝑘 1−𝛼
4

ℎ + ℎ
ℎ
2 ln2−𝑘/2 1

ℎ𝑟
1/4
ℎ

= 𝑜(1) + 𝑐ℎ𝑘[ 12+𝛽 1−𝛼
4 ] log

4−𝑘
2
1

ℎ
→ 0
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∀ 𝑘 = 1, 2, 3 as 𝑟ℎ = ℎ𝛽 , 𝛽 ∈]0, 1[. As for ∑
𝑖 ∣Δ𝑖𝑋0∣4−𝑘∣Δ𝑖𝑀

(ℎ)∣𝑘
3ℎ

, (30)

we need to deal separately with each 𝑘 = 1, 2, 3. Note that since 𝑎 and 𝜎 are locally bounded on Ω×[0, 𝑇 ], we can
assume they are bounded without loss of generality, so 𝐸[(

∫ 𝑡𝑖
𝑡𝑖−1

𝜎𝑠𝑑𝑊𝑠)
2𝑘] = 𝑂(ℎ𝑘) for each 𝑘 = 1, 2, 3, using e.g.

the Burkholder inequality [24, p. 226], and a.s. (
∫ 𝑡𝑖
𝑡𝑖−1

𝑎𝑠𝑑𝑠)
2𝑘 = 𝑜(ℎ𝑘). Therefore 𝐸[(Δ𝑖𝑋0)

2𝑘] = 𝑂(ℎ𝑘) for each

𝑘 = 1, 2, 3. For 𝑘 = 1 the expected value of (30) is bounded by 𝑛
3ℎ

√
𝐸[(Δ𝑖𝑋0)6]

√
𝐸(Δ𝑖𝑀 (ℎ))2 =𝑂(𝑟

1
4 (1−𝛼

2 )

ℎ )

and thus it tends to zero as ℎ → 0. As for 𝑘 = 2,∑
𝑖(Δ𝑖𝑋0)

2(Δ𝑖𝑀
(ℎ))2

ℎ
≤ ℎ ln

1

ℎ

∑
𝑖(Δ𝑖𝑀

(ℎ))2

ℎ
, (31)

whose expected value is given by

ln
1

ℎ
𝜂2(2𝑟

1
4

ℎ )→ 0,

as ℎ → 0, since 𝑟ℎ = ℎ𝛽 , with 𝛽 > 0. Concerning 𝑘 = 3, we have∑
𝑖 ∣Δ𝑖𝑋0∣∣Δ𝑖𝑀

(ℎ)∣3
ℎ

≤ 𝑐

ℎ

∑
𝑖

(Δ𝑖𝑋0)
2(Δ𝑖𝑀

(ℎ))2 +
𝑐

ℎ

∑
𝑖

(Δ𝑖𝑀
(ℎ))4,

so that this step is reduced to the steps with 𝑘 = 2, 4 we dealt with previously.

Proof of theorem 2.4. Let us define 𝐾𝑛𝑖 :=
(∫ 𝑡𝑖

𝑡𝑖−1

∫
∣𝑥∣≤𝜀

𝑥𝜇̃(𝑑𝑥, 𝑑𝑡) − ℎ
∫
𝜀<∣𝑥∣≤1

𝑥𝜈(𝑑𝑥)
)2

. We apply the

Lindeberg-Feller theorem to the double array sequence 𝐻𝑛𝑖 given by the normalized versions of the variables

𝐾𝑛𝑖, 𝑖 = 1, .., 𝑛 and 𝑛 = 𝑇/ℎ. Using relations (9) we have

𝐸 [𝐾𝑛𝑖] = ℎℓ2,ℎ𝜀
2−𝛼 +

(
ℎ

∫
𝜀<∣𝑥∣≤1

𝑥𝜈(𝑑𝑥)

)2

= ℎℓ2,ℎ𝜀
2−𝛼 + ℓ21,ℎℎ

2
[
(𝑐+ 𝜀1−𝛼)2𝐼{𝛼∕=1} +

(
ln2
1

𝜀

)
𝐼{𝛼=1}

]
. (32)

Taking 𝜀 = ℎ𝑢, any 𝑢 ∈]0, 1/2], we obtain that

𝑣2𝑛𝑖 := 𝑣𝑎𝑟 [𝐾𝑛𝑖] = 𝐸

⎡
⎣
(∫ 𝑡𝑖

𝑡𝑖−1

∫
∣𝑥∣≤𝜀

𝑥𝜇̃(𝑑𝑥, 𝑑𝑡) − ℎ

∫
𝜀<∣𝑥∣≤1

𝑥𝜈(𝑑𝑥)

)4
⎤
⎦− 𝐸2

𝑛𝑖 ∼ ℎ

∫
∣𝑥∣≤𝜀

𝑥4𝜈(𝑑𝑥) = ℎℓ4,ℎ𝜀
4−𝛼,

as ℎ → 0. Consider then

𝐻𝑛𝑖 :=
𝐾𝑛𝑖 − 𝐸[𝐾𝑛𝑖]√

𝑛 𝑣𝑛𝑖
∼

𝐾𝑛𝑖 − ℎℓ2,ℎ𝜀
2−𝛼 − ℓ21,ℎℎ

2
[
(𝑐+ 𝜀1−𝛼)2𝐼{𝛼∕=1} +

(
ln2 1

𝜀

)
𝐼{𝛼=1}

]
√
𝑇
√

ℓ4,ℎ𝜀2−𝛼/2

We now show that for any 𝛿 > 0, there exists a 𝑞 > 1 such that

𝑛∑
𝑖=1

𝐸[𝐻2
𝑛𝑖𝐼{∣𝐻𝑛𝑖∣>𝛿}] ≤ 𝑐𝜀

𝛼
2𝑞 → 0, (33)

as ℎ → 0, so the Lindeberg condition is satisfied and implies that

𝑛∑
𝑖=1

𝐻𝑛𝑖
𝑑→ 𝑁(0, 1). (34)

Noting that ℎ/𝜀2−𝛼/2 and (ℎ𝜀1−𝛼)/(𝜀2−𝛼/2)𝐼{𝛼∕=1} + (ℎ ln
2(1/𝜀))/(𝜀2−𝛼/2)𝐼{𝛼=1} tend to zero as ℎ → 0, (34)

leads to (12). To show inequality (33), consider

𝑛𝐸[𝐻2
𝑛1𝐼{∣𝐻𝑛1∣>𝛿}] ≤ 𝑛𝐸

1
𝑝 [𝐻2𝑝

𝑛1]𝑃
1
𝑞 {∣𝐻𝑛1∣ > 𝛿} : (35)
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as for the last factor above we note that ∣𝐻𝑛1∣ > 𝛿 iff either

𝐾𝑛1 < ℎℓ2,ℎ𝜀
2−𝛼 + ℓ21,ℎℎ

2
[
(𝑐+ 𝜀1−𝛼)2𝐼{𝛼∕=1} +

(
ln2

1

𝜀

)
𝐼{𝛼=1}

]
− 𝛿

√
𝑇 ℓ4,ℎ𝜀

2−𝛼
2 = 𝜀2−

𝛼
2

(
𝑜(1)− 𝑐𝛿

)
where 𝑐 denotes a generic constant, or

𝐾𝑛1 > ℎℓ2,ℎ𝜀
2−𝛼 + ℓ21,ℎℎ

2
[
(𝑐+ 𝜀1−𝛼)2𝐼{𝛼∕=1} +

(
ln2

1

𝜀

)
𝐼{𝛼=1}

]
+ 𝑐𝛿𝜀2−

𝛼
2 = 𝑂(𝜀2−

𝛼
2 ),

However 𝐾𝑛1 ≥ 0 while for sufficiently small ℎ the right hand term of the first inequality above is strictly

negative, therefore ∣𝐻𝑛1∣ > 𝛿 iff 𝐾𝑛1 > 𝑐𝜀2−
𝛼
2 , i.e. either

−𝑐𝜀1−
𝛼
4 ∼ ℎ(𝑐+ 𝜀1−𝛼)𝐼{𝛼∕=1} + 𝐼{𝛼=1}ℎ ln

1

𝜀
− 𝑐𝜀1−

𝛼
4 >

∫ 𝑡1

0

∫
∣𝑥∣≤𝜀

𝑥𝜇̃(𝑑𝑥, 𝑑𝑡)

or, for sufficiently small ℎ,
∫ 𝑡1
0

∫
∣𝑥∣≤𝜀

𝑥𝜇̃(𝑑𝑥, 𝑑𝑡) > 𝑐𝜀1−
𝛼
4 , and so ∣𝐻𝑛1∣ > 𝛿 iff

∣∣∣∣∣
∫ 𝑡1

0

∫
∣𝑥∣≤𝜀

𝑥𝜇̃(𝑑𝑥, 𝑑𝑡)

∣∣∣∣∣ > 𝑐𝜀1−
𝛼
4 .

This entails that for sufficiently small ℎ,

𝑃{∣𝐻𝑛1∣ > 𝛿} = 𝑃

{∣∣∣ ∫ 𝑡1

0

∫
∣𝑥∣≤𝜀

𝑥𝜇̃(𝑑𝑥, 𝑑𝑡)
∣∣∣ > 𝑐𝜀1−

𝛼
4

}
≤ 𝑐

𝐸[∣ ∫ 𝑡1
0

∫
∣𝑥∣≤𝜀

𝑥𝜇̃(𝑑𝑥, 𝑑𝑡)∣2]
𝜀2−

𝛼
2

= ℎ1−𝛼𝑢
2 → 0.

The first two factors of the r.h.s in (35) are dominated by

𝑐𝑛

𝐸
1
𝑝

[(
𝐾𝑛1 − ℎℓ2,ℎ𝜀

2−𝛼 − ℎ2ℓ21,ℎ

[
(𝑐+ 𝜀1−𝛼)2𝐼{𝛼∕=1} + (ln

2 1
𝜀 )𝐼{𝛼=1}

])2𝑝
]

𝜀4−𝛼

≤ 𝑐𝑛
𝐸

1
𝑝

[
𝐾2𝑝

𝑛1

]
+ (ℎ𝜀2−𝛼)2 + ℎ4(1 − 𝜀1−𝛼)4 + ℎ4 ln4 1

𝜀

𝜀4−𝛼
,

The last three terms give no contribution to (35) since

𝑛
(ℎ𝜀2−𝛼)2 + ℎ4(1 − 𝜀1−𝛼)4 + ℎ4 ln4 1

𝜀

𝜀4−𝛼
ℎ(1−𝛼𝑢

2 ) 1
𝑞 → 0.

On the other hand, by choosing e.g. 𝑝 = 5/4 we have

𝐸
[
𝐾2𝑝

𝑛1

]
= 𝑂(ℎ𝜀5−𝛼),

so we are left to deal with 𝑛 (ℎ𝜀5−𝛼)
1
𝑝

𝜀4−𝛼 ℎ(1−𝛼𝑢
2 ) 1

𝑞 = 𝜀
𝛼
2𝑞 , so that the inequality in (33) is proved.

Lemma 6.2. As ℎ → 0: if 𝑟ℎ → 0, 𝑛 = 𝑇/ℎ and sup𝑖=1..𝑛 ∣𝑎ℎ𝑖∣ = 𝑂(𝑟ℎ) then∑
𝑖

∣𝑎ℎ𝑖∣𝐼{(Δ𝑖𝑋)2≤𝑟ℎ} −
∑
𝑖

∣𝑎ℎ𝑖∣𝐼{(Δ𝑖𝑀)2≤4𝑟ℎ,Δ𝑖𝑁=0}
𝑃→ 0.

Proof. On {(Δ𝑖𝑋)
2 ≤ 𝑟ℎ} we have ∣Δ𝑖𝐿∣− ∣Δ𝑖𝑋0∣ ≤ ∣Δ𝑖𝑋 ∣ ≤ √

𝑟ℎ and thus, by (7), for small ℎ, ∣Δ𝑖𝐿∣ ≤ 2
√
𝑟ℎ,

so that a.s.

lim
ℎ→0

∑
𝑖

∣𝑎ℎ𝑖∣𝐼{(Δ𝑖𝑋)2≤𝑟ℎ} ≤ lim
ℎ→0

∑
𝑖

∣𝑎ℎ𝑖∣𝐼{(Δ𝑖𝐿)2≤4𝑟ℎ}.

However ∑
𝑖

∣𝑎ℎ𝑖∣𝐼{(Δ𝑖𝐿)2≤4𝑟ℎ,Δ𝑖𝑁 ∕=0} ≤ sup
𝑖

∣𝑎ℎ𝑖∣𝑁𝑇
𝑎.𝑠.→ 0, (36)
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as ℎ → 0, and thus a.s.

lim
ℎ→0

∑
𝑖

∣𝑎ℎ𝑖∣𝐼{(Δ𝑖𝑋)2≤𝑟ℎ} ≤ lim
ℎ→0

∑
𝑖

∣𝑎ℎ𝑖∣𝐼{(Δ𝑖𝐿)2≤4𝑟ℎ,Δ𝑖𝑁=0} = lim
ℎ→0

∑
𝑖

∣𝑎ℎ𝑖∣𝐼{(Δ𝑖𝑀)2≤4𝑟ℎ,Δ𝑖𝑁=0}.

Now we show that on the other hand the positive quantity

lim
ℎ→0

∑
𝑖

∣𝑎ℎ𝑖∣(𝐼{(Δ𝑖𝐿)2≤4𝑟ℎ,Δ𝑖𝑁=0} − 𝐼{(Δ𝑖𝑋)2≤𝑟ℎ}) = 0 𝑎.𝑠.

In fact {(Δ𝑖𝐿)
2 ≤ 4𝑟ℎ,Δ𝑖𝑁 = 0} − {(Δ𝑖𝑋)

2 ≤ 𝑟ℎ} = {(Δ𝑖𝐿)
2 ≤ 4𝑟ℎ,Δ𝑖𝑁 = 0, (Δ𝑖𝑋)

2 > 𝑟ℎ} ⊂
{∣Δ𝑖𝐿∣ ≤ 2

√
𝑟ℎ,Δ𝑖𝑁 = 0, ∣Δ𝑖𝑋0∣+ ∣Δ𝑖𝑀 ∣ > √

𝑟ℎ} ⊂ {∣Δ𝑖𝑋0∣>√𝑟ℎ/2} ∪ {∣Δ𝑖𝑀 ∣ ≤ 2
√
𝑟ℎ, ∣Δ𝑖𝑀 ∣>√𝑟ℎ/2} .

Since, by (18), a.s. for sufficiently small ℎ
∑

𝑖 ∣𝑎ℎ𝑖∣𝐼{∣Δ𝑖𝑋0∣>√
𝑟ℎ/2} = 0, we a.s. have

lim
ℎ→0

∑
𝑖

∣𝑎ℎ𝑖∣(𝐼{(Δ𝑖𝐿)2≤4𝑟ℎ,Δ𝑖𝑁=0} − 𝐼{(Δ𝑖𝑋)2≤𝑟ℎ}) ≤ lim
ℎ→0

∑
𝑖

∣𝑎ℎ𝑖∣𝐼{∣Δ𝑖𝑀∣≤2
√
𝑟ℎ,∣Δ𝑖𝑀∣>√

𝑟ℎ/2} ,

however, by Remark 2.2, as ℎ → 0

𝐸[
∑
𝑖

∣𝑎ℎ𝑖∣𝐼{∣Δ𝑖𝑀∣≤2
√
𝑟ℎ,∣Δ𝑖𝑀∣>√

𝑟ℎ/2}] ≤ 𝑂(𝑟ℎ)𝑛𝑃{∣Δ𝑖𝑀 ∣ ≤ 2
√
𝑟ℎ, ∣Δ𝑖𝑀 ∣ > √

𝑟ℎ/2} ≤

𝑂(𝑟ℎ)𝑛𝑃{∣Δ𝑖𝑀 ∣𝐼{∣Δ𝑖𝑀∣≤2
√
𝑟ℎ} >

√
𝑟ℎ/2} ≤ 𝑂(𝑟ℎ)𝑛

𝐸[(Δ𝑖𝑀)2𝐼{∣Δ𝑖𝑀∣≤2
√
𝑟ℎ}]

𝑟ℎ
= 𝑂(𝑟ℎ)𝑛

ℎ𝜂2(2𝑟
1
4

ℎ )

𝑟ℎ
→ 0,

Lemma 6.3. Under the assumptions of theorem 2.5, for all 𝛼 ∈ [0, 2[
∑𝑛

𝑖=1(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2≤𝑟ℎ/16} − 𝑜𝑃 (ℎ
1−𝛼/2) ≤ ∑𝑛

𝑖=1(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑋)2≤𝑟ℎ,(Δ𝑖𝑀)2≤4𝑟ℎ}

≤ ∑𝑛
𝑖=1(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2≤9𝑟ℎ/4} + 𝑜𝑃 (ℎ

1−𝛼/2) 𝑎.𝑠.

(37)

Proof. Let us first deal with
∑𝑛

𝑖=1(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑋)2>𝑟ℎ,(Δ𝑖𝑀)2≤4𝑟ℎ}.

As in (24), on {(Δ𝑖𝑋)
2 > 𝑟ℎ} we have either ∣Δ𝑖𝐽 ∣ > √

𝑟ℎ/4 or ∣Δ𝑖𝑀 ∣ > √
𝑟ℎ/4, so

𝑛∑
𝑖=1

(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑋)2>𝑟ℎ,(Δ𝑖𝑀)2≤4𝑟ℎ} ≤

𝑛∑
𝑖=1

(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑋)2>𝑟ℎ,Δ𝑖𝐽 ∕=0,(Δ𝑖𝑀)2≤4𝑟ℎ} +
𝑛∑

𝑖=1

(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑋)2>𝑟ℎ,(Δ𝑖𝑀)2>
𝑟ℎ
16 ,(Δ𝑖𝑀)2≤4𝑟ℎ}.

However

𝐸
[∑𝑛

𝑖=1(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2≤4𝑟ℎ,Δ𝑖𝑁 ∕=0}
ℎ1−𝛼/2

]
= 𝑂

(ℎ𝜂2(𝑟 1
4

ℎ )𝑁𝑇

ℎ1−𝛼/2

)
→ 0,

so

𝑛∑
𝑖=1

(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑋)2>𝑟ℎ,(Δ𝑖𝑀)2≤4𝑟ℎ} ≤ 𝑜𝑃 (ℎ
1−𝛼/2) +

𝑛∑
𝑖=1

(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2≤4𝑟ℎ,(Δ𝑖𝑀)2>𝑟ℎ/16}

= 𝑜𝑃 (ℎ
1−𝛼/2) +

𝑛∑
𝑖=1

(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2≤4𝑟ℎ} −
𝑛∑

𝑖=1

(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2≤4𝑟ℎ,(Δ𝑖𝑀)2≤𝑟ℎ/16}

= 𝑜𝑃 (ℎ
1−𝛼/2) +

𝑛∑
𝑖=1

(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2≤4𝑟ℎ} −
𝑛∑

𝑖=1

(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2≤𝑟ℎ/16}. (38)
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Consider now
∑𝑛

𝑖=1(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2≤4𝑟ℎ,(Δ𝑖𝑀)2>9𝑟ℎ/4}: on {2√𝑟ℎ ≥ ∣Δ𝑖𝑀 ∣ > 3
2

√
𝑟ℎ} either Δ𝑖𝑁 ∕= 0, in which

case ∑𝑛
𝑖=1(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2≤4𝑟ℎ,Δ𝑖𝑁 ∕=0}

ℎ1−𝛼/2

𝑃→ 0

as before, or Δ𝑖𝑁 = 0, in which case ∣Δ𝑖𝑋 ∣ > ∣Δ𝑖𝑀 ∣ − ∣Δ𝑖𝑋0∣ > 3
2

√
𝑟ℎ − 1

2

√
𝑟ℎ =

√
𝑟ℎ so

𝑛∑
𝑖=1

(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑋)2>𝑟ℎ,(Δ𝑖𝑀)2≤4𝑟ℎ} + 𝑜𝑃 (ℎ
1−𝛼/2) ≥

𝑛∑
𝑖=1

(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2≤4𝑟ℎ,(Δ𝑖𝑀)2>9𝑟ℎ/4}

therefore

𝑛∑
𝑖=1

(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑋)2>𝑟ℎ,(Δ𝑖𝑀)2≤4𝑟ℎ} ≥ −𝑜𝑃 (ℎ
1−𝛼/2) +

𝑛∑
𝑖=1

(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2≤4𝑟ℎ} −
𝑛∑

𝑖=1

(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2≤9𝑟ℎ/4}.

(39)

Combining now (38) and (39), we obtain (37) since

𝑛∑
𝑖=1

(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑋)2≤𝑟ℎ,(Δ𝑖𝑀)2≤4𝑟ℎ} =
𝑛∑

𝑖=1

(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2≤4𝑟ℎ} −
𝑛∑

𝑖=1

(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑋)2>𝑟ℎ,(Δ𝑖𝑀)2≤4𝑟ℎ}

Proof of theorem 2.5. Note that under 𝛽 > 1
2−𝛼/2 the assumptions of proposition 2.3 are satisfied. Since

𝑋 = 𝑋1 +𝑀 , we decompose

ˆ𝐼𝑉 ℎ − 𝐼𝑉√
2ℎ ˆ𝐼𝑄ℎ

=

∑𝑛
𝑖=1(Δ𝑖𝑋)

2𝐼{(Δ𝑖𝑋)2≤𝑟ℎ} − 𝐼𝑉
√
2ℎ

√∑
𝑖(Δ𝑖𝑋)4𝐼{(Δ𝑖𝑋)2≤𝑟ℎ}

3ℎ

=

∑𝑛
𝑖=1(Δ𝑖𝑋1)

2𝐼{(Δ𝑖𝑋1)2≤4𝑟ℎ} − 𝐼𝑉√
2
3

∑
𝑖(Δ𝑖𝑋)4𝐼{(Δ𝑖𝑋)2≤𝑟ℎ}

+ (40)

+
√
2ℎ𝐼𝑄√

2
3

∑
𝑖(Δ𝑖𝑋)4𝐼{(Δ𝑖𝑋)2≤𝑟ℎ}

[∑𝑛
𝑖=1(Δ𝑖𝑋1)

2
(
𝐼{(Δ𝑖𝑋)2≤𝑟ℎ}−𝐼{(Δ𝑖𝑋1)2≤4𝑟ℎ}

)
√
2ℎ𝐼𝑄

+2
∑𝑛

𝑖=1 Δ𝑖𝑋1Δ𝑖𝑀𝐼{(Δ𝑖𝑋)2≤𝑟ℎ}√
2ℎ𝐼𝑄

+
∑𝑛

𝑖=1(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑋)2≤𝑟ℎ}√
2ℎ𝐼𝑄

]
:=

∑4
𝑗=1 𝐼𝑗(ℎ).

(41)

The proof [20, Thm 2] shows that 𝐼1(ℎ) converges stably in law to a standard Gaussian random variable. To

show that the remaining terms either tend to zero or to infinity, we can assume w.l.g. that both 𝑎 and 𝜎 are

bounded a.s. If (Δ𝑖𝑋)
2 ≤ 𝑟ℎ and (Δ𝑖𝑋1)

2 > 4𝑟ℎ then ∣Δ𝑖𝑀 ∣ > √
𝑟ℎ and Δ𝑖𝑁 ∕= 0, exactly as for 𝐼2(ℎ) in

Proposition 2.3. It follows that

𝑃
{∑𝑛

𝑖=1(Δ𝑖𝑋1)
2𝐼{(Δ𝑖𝑋)2≤𝑟ℎ,(Δ𝑖𝑋1)2>4𝑟ℎ}√

2ℎ𝐼𝑄
∕= 0

}
≤ 𝑛𝑃{Δ𝑖𝑁 ∕= 0, ∣Δ𝑖𝑀 ∣ > √

𝑟ℎ} → 0

by (19). The main factor of the remaining part of 𝐼2(ℎ) is∑𝑛
𝑖=1(Δ𝑖𝑋1)

2𝐼{(Δ𝑖𝑋)2>𝑟ℎ,(Δ𝑖𝑋1)2≤4𝑟ℎ}√
2ℎ𝐼𝑄

.

We recall that on {∣Δ𝑖𝑋1∣ ≤ 2
√
𝑟ℎ} we have Δ𝑖𝑁 = 0, thus (Δ𝑖𝑋1)

2 = (Δ𝑖𝑋0)
2. Moreover

∑𝑛
𝑖=1

( ∫ 𝑡𝑖
𝑡𝑖−1

𝑎𝑢𝑑𝑢
)2
𝐼{(Δ𝑖𝑋)2>𝑟ℎ,(Δ𝑖𝑋1)2≤4𝑟ℎ}√
2ℎ𝐼𝑄

= 𝑂𝑃 (
√
ℎ)→ 0,

and, by (20)

1√
2ℎ𝐼𝑄

𝑛∑
𝑖=1

∫ 𝑡𝑖

𝑡𝑖−1

𝑎𝑢𝑑𝑢

∫ 𝑡𝑖

𝑡𝑖−1

𝜎𝑢𝑑𝑊𝑢𝐼{(Δ𝑖𝑋)2>𝑟ℎ,(Δ𝑖𝑋1)2≤4𝑟ℎ} ≤ 𝑐
√
ℎ

√
ℎ ln

1

ℎ

𝑛∑
𝑖=1

𝐼{(Δ𝑖𝑋)2>𝑟ℎ}

= 𝑂
(
ℎ1−𝛼𝛽/2

√
ln
1

ℎ

)
→ 0.
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Therefore in probability

lim
ℎ→0

𝐼2(ℎ) = lim
ℎ→0

−
∑𝑛

𝑖=1

( ∫ 𝑡𝑖
𝑡𝑖−1

𝜎𝑢𝑑𝑊𝑢

)2
𝐼{(Δ𝑖𝑋)2>𝑟ℎ,(Δ𝑖𝑋1)2≤4𝑟ℎ}√
2ℎ𝐼𝑄

.

Now we show that term 𝐼3(ℎ)/2 in (41) tends to zero in probability. First recall that Δ𝑖𝑋1 = Δ𝑖𝑋0 +Δ𝑖𝐽,

and within the sum
∑𝑛

𝑖=1Δ𝑖𝐽Δ𝑖𝑀𝐼{(Δ𝑖𝑋)2≤𝑟ℎ}/
√
ℎ term 𝑖 contributes only when Δ𝑖𝑁 ∕= 0, in which case we

also have (Δ𝑖𝑋1)
2 > 4𝑟ℎ and thus ∣Δ𝑖𝑀 ∣ > √

𝑟ℎ as in (26). That implies

𝑃

{∑𝑛
𝑖=1Δ𝑖𝐽Δ𝑖𝑀𝐼{(Δ𝑖𝑋)2≤𝑟ℎ}√

2ℎ𝐼𝑄
∕= 0

}
≤ 𝑛𝑃{Δ𝑖𝑁 ∕= 0, ∣Δ𝑖𝑀 ∣ > √

𝑟ℎ} → 0.

As for
∑𝑛

𝑖=1 Δ𝑖𝑋0Δ𝑖𝑀𝐼{(Δ𝑖𝑋)2≤𝑟ℎ}√
ℎ

, as in the proof of lemma 6.2, we have

∑𝑛
𝑖=1Δ𝑖𝑋0Δ𝑖𝑀𝐼{(Δ𝑖𝑋)2≤𝑟ℎ}√

ℎ
=

∑𝑛
𝑖=1Δ𝑖𝑋0Δ𝑖𝑀𝐼{(Δ𝑖𝑋)2≤𝑟ℎ,(Δ𝑖𝐿)2≤4𝑟ℎ}√

ℎ
, (42)

however since both 𝑃
{

1√
ℎ

∑𝑛
𝑖=1Δ𝑖𝑋0Δ𝑖𝑀𝐼{(Δ𝑖𝑋)2≤𝑟ℎ,(Δ𝑖𝐿)2≤4𝑟ℎ,Δ𝑖𝑁 ∕=0} ∕= 0

}
and 𝑃

{
1√
ℎ

∑𝑛
𝑖=1Δ𝑖𝑋0⋅ Δ𝑖𝑀𝐼{(Δ𝑖𝑋)2≤𝑟ℎ,(Δ

are dominated by 𝑛𝑃{Δ𝑖𝑁 ∕= 0, (Δ𝑖𝑀)2 > 𝑐𝑟ℎ} → 0 we have

lim
ℎ

1√
ℎ

𝑛∑
𝑖=1

Δ𝑖𝑋0Δ𝑖𝑀𝐼{(Δ𝑖𝑋)2≤𝑟ℎ,(Δ𝑖𝐿)2≤4𝑟ℎ} = lim
ℎ

1√
ℎ

𝑛∑
𝑖=1

Δ𝑖𝑋0Δ𝑖𝑀𝐼{(Δ𝑖𝑋)2≤𝑟ℎ,(Δ𝑖𝐿)2≤4𝑟ℎ,Δ𝑖𝑁=0}

= lim
ℎ

1√
ℎ

𝑛∑
𝑖=1

Δ𝑖𝑋0Δ𝑖𝑀𝐼{(Δ𝑖𝑋)2≤𝑟ℎ,(Δ𝑖𝑀)2≤4𝑟ℎ,Δ𝑖𝑁=0} = lim
ℎ

1√
ℎ

𝑛∑
𝑖=1

Δ𝑖𝑋0Δ𝑖𝑀𝐼{(Δ𝑖𝑋)2≤𝑟ℎ,(Δ𝑖𝑀)2≤4𝑟ℎ}.

Moreover by the Cauchy-Schwartz inequality, we have

∑𝑛
𝑖=1

∫ 𝑡𝑖
𝑡𝑖−1

𝑎𝑢𝑑𝑢Δ𝑖𝑀𝐼{(Δ𝑖𝑋)2≤𝑟ℎ,(Δ𝑖𝑀)2≤4𝑟ℎ}√
ℎ

≤
√∑𝑛

𝑖=1(
∫ 𝑡𝑖
𝑡𝑖−1

𝑎𝑢𝑑𝑢)2√
ℎ

√√√⎷ 𝑛∑
𝑖=1

(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2≤4𝑟ℎ}

≤ 𝑐

√√√⎷ 𝑛∑
𝑖=1

(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2≤4𝑟ℎ}, (43)

which tends to zero in probability, since by remark 2.2 as ℎ → 0

𝐸

[
𝑛∑

𝑖=1

(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2≤4𝑟ℎ}

]
=

∫ 𝑇

0

∫
∣𝑥∣≤2𝑟

1/4
ℎ

𝑥2𝜈(𝑑𝑥) = 𝑇𝜂2(𝑟
1/4
ℎ )→ 0. (44)

On the other hand

1√
ℎ

𝑛∑
𝑖=1

( ∫ 𝑡𝑖

𝑡𝑖−1

𝜎𝑢𝑑𝑊𝑢

)
Δ𝑖𝑀𝐼{(Δ𝑖𝑋)2≤𝑟ℎ,(Δ𝑖𝑀)2≤4𝑟ℎ}=

1√
ℎ

𝑛∑
𝑖=1

( ∫ 𝑡𝑖

𝑡𝑖−1

𝜎𝑢𝑑𝑊𝑢

)
Δ𝑖𝑀

(ℎ)𝐼{(Δ𝑖𝑋)2≤𝑟ℎ,(Δ𝑖𝑀)2≤4𝑟ℎ}

− 1√
ℎ

𝑛∑
𝑖=1

( ∫ 𝑡𝑖

𝑡𝑖−1

𝜎𝑢𝑑𝑊𝑢

)
ℎ𝑑(2 4

√
𝑟ℎ)𝐼{(Δ𝑖𝑋)2≤𝑟ℎ,(Δ𝑖𝑀)2≤4𝑟ℎ}, (45)

where, using that
∫ 𝑡𝑖
𝑡𝑖−1

𝜎𝑢𝑑𝑊𝑢 and Δ𝑖𝑀
(ℎ) are martingale increments with zero quadratic covariation, the 𝐿1(Ω)

norm of the first right-hand term is bounded by

√
𝐸
[∑𝑛

𝑖=1

( ∫ 𝑡𝑖
𝑡𝑖−1

𝜎𝑢𝑑𝑊𝑢

)2
(Δ𝑖𝑀(ℎ))2

ℎ

]
which is dealt similarly as

in (31) and tends to zero. Moreover

𝐸
[ 1√

ℎ

𝑛∑
𝑖=1

( ∫ 𝑡𝑖

𝑡𝑖−1

𝜎𝑢𝑑𝑊𝑢

)
ℎ𝑑(2 4

√
𝑟ℎ)𝐼{(Δ𝑖𝑋)2≤𝑟ℎ,(Δ𝑖𝑀)2≤4𝑟ℎ}

]
=
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𝑐
√
ℎ
[
𝐼𝛼∕=1(𝑐+ 𝑟

1−𝛼
4

ℎ ) + 𝐼𝛼=1 ln
1

𝑟
1/4
ℎ

]
𝐸
[ 𝑛∑

𝑖=1

( ∫ 𝑡𝑖

𝑡𝑖−1

𝜎𝑢𝑑𝑊𝑢

)
𝐼{(Δ𝑖𝑋)2≤𝑟ℎ,(Δ𝑖𝑀)2≤4𝑟ℎ}

]
≤

𝑐
√
ℎ
[
𝐼𝛼∕=1(𝑐+ 𝑟

1−𝛼
4

ℎ ) + 𝐼𝛼=1 ln
1

𝑟
1/4
ℎ

]√√√⎷𝐸
[ 𝑛∑
𝑖=1

( ∫ 𝑡𝑖

𝑡𝑖−1

𝜎𝑢𝑑𝑊𝑢

)2] → 0.

Using that
√
2ℎ 𝐼𝑄√

2/3
∑

𝑖(Δ𝑖𝑋)4𝐼{(Δ𝑖𝑋)2≤𝑟ℎ}
tends to 1 in probability, doing for 𝐼4(ℎ) as in (42) and putting together

the simplified version of 𝐼2(ℎ) we obtain that ( ˆ𝐼𝑉 ℎ − 𝐼𝑉 )/

√
2ℎ ˆ𝐼𝑄ℎ is the sum of a term which converges in

distribution to a 𝑁(0, 1) r.v. plus a negligible term and a remainder

−
∑𝑛

𝑖=1

( ∫ 𝑡𝑖
𝑡𝑖−1

𝜎𝑢𝑑𝑊𝑢

)2
𝐼{(Δ𝑖𝑋)2>𝑟ℎ,(Δ𝑖𝑋1)2≤4𝑟ℎ}√
2ℎ𝐼𝑄

+

∑𝑛
𝑖=1(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑋)2≤𝑟ℎ,(Δ𝑖𝑀)2≤4𝑟ℎ}√

2ℎ𝐼𝑄
. (46)

a) if 𝛼 < 1, the first term of (46) is negligible with respect to
𝑟
1−𝛼/2
ℎ√
2ℎ𝐼𝑄

, in fact

∑𝑛
𝑖=1

( ∫ 𝑡𝑖
𝑡𝑖−1

𝜎𝑢𝑑𝑊𝑢

)2
𝐼{(Δ𝑖𝑋)2>𝑟ℎ,(Δ𝑖𝑋1)2≤4𝑟ℎ}

𝑟
1−𝛼/2
ℎ

≤
∑𝑛

𝑖=1 ℎ ln
1
ℎ𝐼{(Δ𝑖𝑋)2>𝑟ℎ}

𝑟
1−𝛼/2
ℎ

where

𝐸

[∑𝑛
𝑖=1 ℎ ln

1
ℎ𝐼{(Δ𝑖𝑋)2>𝑟ℎ}

𝑟
1−𝛼/2
ℎ

]
≤ ℎ1−𝛽 ln

1

ℎ
→ 0.

Therefore (46) can be written as

𝑟
1−𝛼/2
ℎ√
2ℎ𝐼𝑄

[
𝑜𝑃 (1) +

∑𝑛
𝑖=1(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑋)2≤𝑟ℎ,(Δ𝑖𝑀)2≤4𝑟ℎ}

𝑟
1−𝛼/2
ℎ

]
. (47)

Using (37), lemma 2.1 i) and theorem 2.4 we reach∑𝑛
𝑖=1(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑋)2≤𝑟ℎ,(Δ𝑖𝑀)2≤4𝑟ℎ}

𝑟
1−𝛼/2
ℎ

≤
∑𝑛

𝑖=1(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2≤9𝑟ℎ/4} + 𝑜𝑃 (ℎ
1−𝛼/2)

𝑟
1−𝛼/2
ℎ

∼

∑𝑛
𝑖=1(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2≤9𝑟ℎ/4}

𝑟
1−𝛼/2
ℎ

≤
∑

𝑖

(∫ 𝑡𝑖
𝑡𝑖−1

∫
∣𝑥∣≤3

√
𝑟ℎ/2

𝑥𝜇̃(𝑑𝑥, 𝑑𝑡) − ℎ
∫
3
√
𝑟ℎ/2<∣𝑥∣≤1

𝑥𝜈(𝑑𝑥)
)2

𝑟
1−𝛼/2
ℎ

= 𝑅ℎ + 𝑇𝑐+ 𝑇𝑐
( ℎ

𝑟ℎ

)𝛼
2

ℎ1−𝛼
2

𝑃→ 𝑇𝑐

where term 𝑅ℎ has variance ∼ 𝑐𝑟
𝛼/2
ℎ → 0 so converges to zero in probability. Since

𝑟
1−𝛼/2
ℎ√

ℎ
→ 0, we reach

ˆ𝐼𝑉 ℎ − 𝐼𝑉√
2ℎ ˆ𝐼𝑄ℎ

𝑠𝑡→ 𝑁(0, 1).

b) If 𝛼 > 1 define 𝑅𝑡 :=
∑

𝑠≤𝑡 𝐼{∣Δ𝑀𝑠∣>
√
ℎ} then by (37) last term (times

√
2𝐼𝑄) in (46) dominates

∑𝑛
𝑖=1(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2≤𝑟ℎ/16} − 𝑜𝑃 (ℎ

1−𝛼/2)√
ℎ

=

1√
ℎ

[∑
𝑖

(Δ𝑖𝑀)2𝐼{Δ𝑖𝑅=0} +
∑
𝑖

(Δ𝑖𝑀)2
[
𝐼{(Δ𝑖𝑀)2≤𝑟ℎ/16} − 𝐼{Δ𝑖𝑅=0}

]]
− 𝑜𝑃 (ℎ

1
2−𝛼

2 ) ≥

−𝑜𝑃 (ℎ
1
2−𝛼

2 ) +

∑
𝑖

(∫ 𝑡𝑖
𝑡𝑖−1

∫
∣𝑥∣≤√

ℎ
𝑥𝜇̃(𝑑𝑥,𝑑𝑡)−ℎ

∫√
ℎ<∣𝑥∣≤1

𝑥𝜈(𝑑𝑥)
)2

√
ℎ

−
∑

𝑖(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2>𝑟ℎ/16,Δ𝑖𝑅=0}√
ℎ

. (48)
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First

∑
𝑖

(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2>
𝑟ℎ
16 ,Δ𝑖𝑅=0} =

∑
𝑖

[
Δ𝑖[𝑀 ] + 2

∫ 𝑡𝑖

𝑡𝑖−1

(𝑀𝑠− −𝑀𝑡𝑖−1)𝑑𝑀𝑠

]
𝐼{(Δ𝑖𝑀)2>

𝑟ℎ
16 ,Δ𝑖𝑅=0} :

As in Lemma 2.1 the sum of the right terms within brackets is of order 𝑢𝑛 = (𝑛/ log𝑛)
1/𝛼, so that

∑
𝑖 ∣
∫ 𝑡𝑖
𝑡𝑖−1

(𝑀𝑠− −𝑀𝑡𝑖−1)𝑑𝑀𝑠∣√
ℎ

=
𝑢𝑛

∑
𝑖 ∣
∫ 𝑡𝑖
𝑡𝑖−1

(𝑀𝑠− −𝑀𝑡𝑖−1)𝑑𝑀𝑠∣
𝑢𝑛

√
ℎ

𝑃→ 0,

since 𝑢𝑛

√
ℎ =

(
𝑛(1− 𝛼

2
)

log𝑛

) 1
𝛼 → +∞. Theorem 2.4 applied with 𝑢 = 1/2 yields that with 𝜀 = ℎ

1
2

∑
𝑖

(∫ 𝑡𝑖

𝑡𝑖−1

∫
∣𝑥∣≤√

ℎ

𝑥𝜇̃(𝑑𝑥, 𝑑𝑡)− ℎ

∫
√
ℎ<∣𝑥∣≤1

𝑥𝜈(𝑑𝑥)

)2

= 𝜀2−
𝛼
2 𝑌ℎ + 𝑇𝑐𝜀2−𝛼 + 𝑇𝑐ℎ𝜀2−2𝛼.

where 𝑣𝑎𝑟(𝑌ℎ)→ 1. Therefore in (48) we remain with

ℎ
1
2−𝛼

2

[
−𝑜𝑃 (1) + ℎ

𝛼
4 𝑌 + 𝑇𝑐+ 𝑇𝑐ℎ1−𝛼

2 −
∑

𝑖Δ𝑖[𝑀 ]𝐼{(Δ𝑖𝑀)2>𝑟ℎ/16,Δ𝑖𝑅=0}
ℎ1−𝛼

2

]
𝑎.𝑠.→ +∞,

where the divergence is due to the facts that ℎ
1
2−𝛼

2 → +∞ while
∑

𝑖 Δ𝑖[𝑀 ]𝐼{(Δ𝑖𝑀)2>𝑟ℎ/16,Δ𝑖𝑅=0}
ℎ1−𝛼

2
tends to zero in

probability since its expected value is dominated by

𝑛

ℎ1−𝛼
2
𝐸

1
2

[(
Δ𝑖[𝑀 ]𝐼{Δ𝑖𝑅=0}

)2]
𝑃

1
2 {(Δ𝑖𝑀)2 > 𝑟ℎ/16,Δ𝑖𝑅 = 0}

≤ 𝑛

ℎ1−𝛼
2

(
ℎ

∫
∣𝑥∣≤√

ℎ

𝑥4𝜈(𝑑𝑥)
) 1

2

ℎ(2−𝛼
2 −𝛽) 1

2 = ℎ
1−𝛽
2 → 0,

having used that

𝑃{(Δ𝑖𝑀)2 > 𝑟ℎ,Δ𝑖𝑅 = 0} = 𝑃{(Δ𝑖𝑀)2𝐼{Δ𝑖𝑅=0} > 𝑟ℎ} ≤ 𝐸[(Δ𝑖𝑀)2𝐼{Δ𝑖𝑅=0}]
𝑟ℎ

(49)

=
ℎ
∫
∣𝑥∣≤√

ℎ 𝑥
2𝜈(𝑑𝑥)

𝑟ℎ
= ℎ2−𝛼

2 −𝛽 .

On the other hand the first term in (46) is negligible with respect to ℎ
1
2−𝛼

2 (the speed of divergence of(∑𝑛
𝑖=1(Δ𝑖𝑀)2𝐼{(Δ𝑖𝑀)2≤𝑟ℎ/16} − 𝑜𝑃 (ℎ

1−𝛼
2 )
)
/
√
ℎ) because

∑𝑛
𝑖=1

( ∫ 𝑡𝑖
𝑡𝑖−1

𝜎𝑢𝑑𝑊𝑢

)2
𝐼{(Δ𝑖𝑋)2>𝑟ℎ,(Δ𝑖𝑋1)2≤4𝑟ℎ}√

ℎℎ
1
2−𝛼

2

≤ ℎ log 1
ℎℎ

−𝛼𝛽
2

ℎ1−𝛼
2

= ℎ
𝛼
2 (1−𝛽) log

1

ℎ
→ 0,

therefore (46) explodes to +∞. Finally if 𝛼 = 1 in (46) the first term is negligible, as

∑𝑛
𝑖=1

( ∫ 𝑡𝑖
𝑡𝑖−1

𝜎𝑢𝑑𝑊𝑢

)2
𝐼{(Δ𝑖𝑋)2>𝑟ℎ,(Δ𝑖𝑋1)2≤4𝑟ℎ}√
ℎ

= 𝑂𝑝(ℎ
1−𝛽
2 log

1

ℎ
)→ 0.

For the second term we take a 𝛿 > 0 such that 2/3 < 𝛽 + 𝛿 < 1, we choose 𝜀 = ℎ
𝛽+𝛿
2 and we make the same

steps as to reach (48) for 𝛼 > 1, but we consider 𝑅̃𝑡 =
∑

𝑠≤𝑡 𝐼{∣Δ𝑀𝑠∣>𝜀} in place of 𝑅𝑡. Using also theorem 2.4

we obtain that the second term in (46) dominates

𝑌ℎ𝜀
3
2√

2ℎ𝐼𝑄
+

𝜀√
2ℎ𝐼𝑄

−
∑
Δ𝑖[𝑀 ]𝐼{(Δ𝑖𝑀)2>

𝑟ℎ
16 ,Δ𝑖𝑅̃=0}√

2ℎ𝐼𝑄
−
2
∑𝑛

𝑖=1

∫ 𝑡𝑖
𝑡𝑖−1

(𝑀𝑠− −𝑀𝑡𝑖−1)𝑑𝑀𝑠𝐼{(Δ𝑖𝑀)2>
𝑟ℎ
16 ,Δ𝑖𝑅̃=0}√

2ℎ𝐼𝑄
,
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where the variance of 𝑌ℎ tends to 1, so 𝑌ℎ𝜀
3
2 /

√
ℎ tends to zero in probability. The second term tends to +∞

at rate 𝜀/
√
ℎ. The third term is negligible with respect to 𝜀/

√
ℎ: applying (49) with 𝑅̃ in place of 𝑅 and the

Cauchy-Schwarz inequality we get

𝐸
[1
𝜀

∑∫ 𝑡𝑖

𝑡𝑖−1

∫
∣𝑥∣≤1

𝑥2𝜇(𝑑𝑥, 𝑑𝑡)𝐼{(Δ𝑖𝑀)2>
𝑟ℎ
16 ,Δ𝑖𝑅̃=0}

]
= 𝑂(ℎ

𝛿
2 )→ 0;

finally the last term is also negligible since the speed of convergence to zero of the numerator is 𝑢𝑛 = 𝑛/ log2 𝑛

(as in the proof of lemma 2.1) and 𝑢𝑛

√
ℎ → +∞. So even for 𝛼 = 1 the normalized bias ( ˆ𝐼𝑉 ℎ − 𝐼𝑉 )/

√
2ℎ ˆ𝐼𝑄ℎ

diverges to +∞.

Proof of proposition 3.1. As in lemma 6.2 with
√
𝑟ℎ in place of 𝑟ℎ as bound for the max𝑖=1..𝑛 ∣𝑎𝑛𝑖∣, using

that 𝛼 < 1 and applying lemma 2.1 i), we reach that 𝐻̂ℎ has the same limit in probability as

𝑋𝑇 −
𝑛∑

𝑖=1

(Δ𝑖𝑋0 +Δ𝑖𝑀)𝐼{Δ𝑖𝑁=0,(Δ𝑖𝑀)2≤𝑟ℎ},

when ℎ → 0. Moreover, since a.s. 𝑁𝑇 < ∞ and
∑𝑛

𝑖=1Δ𝑖𝑋0𝐼{(Δ𝑖𝑀)2>𝑟ℎ}) = 𝑂𝑃 (ℎ
(1−𝛼𝛽)/2

√
log(1/ℎ)) → 0,

taking 𝑅̃𝑡 =
∑

𝑠≤𝑡 𝐼{∣Δ𝑀𝑠∣>√
𝑟ℎ}, the above term has limit in probability equal to

𝑋𝑇 − lim
ℎ

𝑛∑
𝑖=1

(Δ𝑖𝑋0 +Δ𝑖𝑀𝐼{(Δ𝑖𝑀)2≤𝑟ℎ}) = 𝑋𝑇 −𝑋0𝑇 − lim
ℎ

[ 𝑛∑
𝑖=1

∫ 𝑡𝑖

𝑡𝑖−1

∫
∣𝑥∣≤√

𝑟ℎ

𝑥𝜇̃(𝑑𝑥, 𝑑𝑡)

−𝑇

∫
√
𝑟ℎ<∣𝑥∣≤1

𝑥𝜈(𝑑𝑥)
]
− lim

ℎ

∑
𝑖

Δ𝑖𝑀(𝐼{(Δ𝑖𝑀)2≤𝑟ℎ} − 𝐼{Δ𝑖𝑅̃=0}) :

using that 𝑃{Δ𝑖𝑅̃ ≥ 1} = 𝑂(ℎ1−𝛼𝛽/2) as after (25) we reach
∑

𝑖Δ𝑖𝑀𝐼{(Δ𝑖𝑀)2≤𝑟ℎ,Δ𝑖𝑅̃≥1} = 𝑂𝑃 (ℎ
(1−𝛼)𝛽/2)→ 0;

using Holder inequality with exponents 𝑝 = 𝑞 = 2 we have
∑

𝑖Δ𝑖𝑀𝐼{(Δ𝑖𝑀)2>𝑟ℎ,Δ𝑖𝑅̃=0} = 𝑂𝑃 ( 𝑟
(1−𝛼)𝛽/2
ℎ )→ 0;

finally
∫ 𝑇

0

∫
∣𝑥∣≤√

𝑟ℎ
𝑥𝜇̃(𝑑𝑥, 𝑑𝑡)

𝐿2→ 0 and
∫
√
𝑟ℎ<∣𝑥∣≤1

𝑥𝜈(𝑑𝑥)→ 𝑚, so that 𝐻̂ℎ,𝑇
𝑃→ 𝐽𝑇 +𝑚𝑇 .
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