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Abstract

We propose two nonparametric tests for investigating the pathwise properties of a signal modeled as
the sum of a Lévy process and a Brownian semimartingale. Using a nonparametric threshold estimator
for the continuous component of the quadratic variation, we design a test for the presence of a continuous
martingale component in the process and a test for establishing whether the jumps have finite or infinite
variation, based on observations on a discrete time grid. We evaluate the performance of our tests using
simulations of various stochastic models and use the tests to investigate the fine structure of the DM/USD
exchange rate fluctuations and SPX futures prices. In both cases, our tests reveal the presence of a non-zero

Brownian component and a finite variation jump component.

Continuous-time stochastic models based on discontinuous semimartingales have been increasingly used in many
applications, such as financial econometrics, option pricing and stochastic control. Some of these models are
constructed by adding ITD jumps to a continuous process driven by Brownian motion [22, 16], while others are
based on purely discontinuous processes which move only through jumps [18, 8]. Even within the class of purely
discontinuous models, one finds a variety of models with different path properties— finite/infinite jump intensity,
finite/infinite variation— which turn to have an importance in applications such as optimal stopping [5] and the
asymptotic behavior of option prices [9, 10]. It is therefore of interest to investigate which class of models —
diffusion, jump-diffusion or pure jump— is the most appropriate for a given data set. Nonparametric procedures
have been recently proposed for investigating the presence of jumps [6, 2, 17] and studying some fine properties
of the jumps [3, 4, 25, 26] in a signal. We address here related, but different, issues: for a semimartingale
whose jump component is a Lévy process, we propose a test for the presence of a continuous martingale
component in the price process, which allows to discriminate between pure-jump and jump-diffusion models,
and a test for determining whether the jump component has finite or infinite variation. Our tests are based on a
nonparametric threshold estimator [20] for the integrated variance -defined as the continuous component of the
quadratic variation- based on observations on a discrete time grid. Without imposing restrictive assumptions on
the continuous martingale component, we obtain a central limit theorem for this threshold estimator (Section
2) and use it to design our tests (Section 3).

Using simulations of stochastic models commonly used in finance, we check the performance of our tests for
realistic sample sizes (section 4). Applied to time series of the DM /USD exchange rate and SPX futures prices
(section 5), our tests reveal in both cases the presence of a non-zero Brownian component, combined with a
finite variation jump component. These results suggest that these asset prices may be modeled as the sum of a
Brownian martingale and a jump component of finite variation.
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1 Definitions and notations

We consider a semimartingale (X¢);c[o,7), defined on a (filtered) probability space (€2, (Ft):ejo, 17, F, P) with
paths in D([0,T],R), driven by a (standard) Brownian motion W and a pure jump Lévy process L:

t t
X =2 +/ asds +/ os dWs + Ly, t €]0,T], (1)
0 0

where a, o are adapted processes with right continuous paths with left limits (cadlag processes) such that (1)
admits a unique strong solution X on [0, 7] which is adapted and cadlag [11]. L has Lévy measure v and may
be decomposed as L; = J; + My, where

Jp = /Ot /|x|>1 zp(de ds) = :[:w, M; = /Ot /|a:|<1 z[p(dx ds) — v(dz)dt]. (2)

J is a compound Poisson process representing the “large” jumps of X, u is a Poisson random measure on
[0,7] x R with intensity measure v(dx)dt, N is a Poisson process with intensity v({z,|z| > 1}) < oo, ¢ are
IID and independent of N and the martingale M is the compensated sum of small jumps of L. We will denote
p(dx,dt) — v(dx)dt =: ji(dz,dt) the compensated Poisson random measure associated to u. We allow for the
infinite activity (TA) case v(R) = oo, where small jumps of L occur infinitely often. For a semimartingale Z we
denote A, Z = Z;, — Z,_, its increments and AZ; = Z; — Z;_ its jump at time t. The Blumenthal-Getoor (BG)
index of L, defined as

a = inf{d > 0, / |z°v(dz) < 400} < 2,

lz[<1

measures the degree of activity of small jumps. A compound Poisson process has @ = 0, while an a-stable
process has BG index equal to a €]0,2[. The Gamma process and the Variance Gamma (VG) process are
examples of infinite activity Lévy processes with a = 0. A pure jump Lévy process with BG index « < 1 has
paths with finite variation, while for a > 1 then the sample paths have infinite variation almost-surely. When
a = 1 the paths may have either finite or infinite variation [7]. The Normal Inverse Gaussian process (NIG) and
the Generalized Hyperbolic Lévy motion (GHL) have infinite variation and « = 1. Tempered stable processes
[8, 10] allow for o € [0,2[. We call IV = fOT o2du the integrated variance of X and IQ = fOT oldu the integrated
quarticity of X and denote

t ¢
Xoo= [Cadst [CoudWe  Xo = Xort
0 0
We will use the following assumption:

Assumption A1l Ja € 10,2] : / 2*v(dz) ~ 7% ase — 0, (3)
lz|<e

where f(h) ~ g(h) means that f(h) = O(g(h)) and g(h) = O(f(h)) as h — 0. This assumption implies that
o is the BG index of L. A1 is satisfied if for instance v has a density which behaves as ‘;‘(ﬁ when z — 0%,
where K1 > 0. In particular A1 holds for all Lévy processes commonly used in finance [10]: NIG, Variance

Gamma, tempered stable processes or Generalized Hyperbolic processes.

Typically, we observe X; in form of a discrete record {xg, X¢,.. X¢, _,, X+, } on a time grid t; = ih with

h =T/n. Our goal is to provide, given such a discrete observations, nonparametric tests for
e detecting the presence of a continuous martingale component in the price process

e analyzing the qualitative nature of the jump component i.e. whether it has finite or infinite variation.



2 CLT for a threshold estimator of integrated variance

The “realized variance” Y|" (A;X)* of the semimartingale X converges in probability [24] to

T T
[X]r ::/ afdt—l—/ / 22 p(dx, ds).
0 0o Jr—{0}

A threshold estimator [19, 20] of the integrated variance IV = fOT oZdt is based on the idea of summing only
some of the squared increments of X, those whose absolute value is smaller than some threshold ry,:

n
IVy =Y (AiX)*Ta,x)2<m)- (4)
i=1
The term fOT fm_{o} 22p(dw, ds) due to jumps vanishes as h — 0 for an appropriate choice of the threshold.
Paul Lévy’s law for the modulus of continuity of the Brownian paths implies

A
P | lim sup ﬂ<1 =1

holigqiny y /2pInd

and allows to choose such a threshold. It is shown in [20, Cor 2, Thm 4] that, under the above assumptions, if

we choose a deterministic threshold r;, such that

1
lim r, = 0 and lim foln =

0 5
h—0 h—0 Tp ( )

then IV, 21 V, as h — 0. If the jumps have finite intensity the thresholding procedure allows, as h — 0, to
detect a jump in J¢t;—1,¢;]. In fact since a and o are cadlag (or caglad), their paths are a.s. bounded on [0, 7] so

ti t;
sup; | [, as(w)ds| sup; | [, o3 (w)ds|

lim sup < A(w) < oo and limsup <XEw) <o as. (6)
h—0 h h—0 h
It follows from [20] that
[ asds+ [} o, dW|
a.s. sup i S <AVh+VE41:=A. (7)

i \/2hlog +

Since realistic values of o for asset prices belong to [0.1,0.8] (in annual units), we have that for small h
the r.v. A has order of magnitude of 1, thus in the finite jump intensity case, a.s. for sufficiently small h,
(A X)2 >y, > 2hlog,—ll indicates the presence of jumps in |¢;_1, #;].

When L has infinite activity, >>;; (AiX)*I{(a,x)2<r,) behaves like 377" (AiX)? Iia, y—0,ja,Mm|<2yr, } for small
h (lemma 6.2). Moreover for any § > 0 the jumps contributing to the increments A; X such that (A;X)? < rp,
for small h have size smaller than cy/r, + 0 [20, Lemma 1] so their contribution vanishes when h — 0. Note
that 7, = ch? satisfy condition (5) for any 3 €]0, 1[ and any constant c. Since v/20 ~ 1 in most applications,

we use ¢ = 1. Denote

n*(e) = / 2?v(dx), d(e) :== / av(dx) (8)
|z|<e e<|z|<1
Let us remark that if }llin%) rp = 0 then by A1 we have, as h — 0,
—

e

1—a k—a
n? (2y/h) = fll‘lﬁ%/ﬁ 2*v(dz) ~r, 2, f\x\é%/ﬁ shu(de) ~r, 7, k=34
1 o)
1o _ /2
o o<1 T (da) ~ [C+ s }I{a;ﬂ} + [lﬂ —2\/1ﬁ}l{a:1}a o<tz V(d@) ~

where « is the BG index of L. The following lemma, proved in the appendix, states that under (5), each
increment A; M such that |A; M| < 2,/r}, only contains jumps of magnitude less than 2,/r, if @ < 1, or smaller
than 2hza log% }_11 if a > 1.



Lemma 2.1. Define, for h > 0, vy, := hs logi +. Under (5) there exists a sequence hy, = T/ny tending to

zero as k — oo such that, for ko sufficiently large and h € {hy, k > ko},
i) if « <1, then for alli=1..n

ti t;
AiM Iga, mry2<dr,) = (/ / xf(dx, dt) 7/ / :El/(d:c)dt)f{(A7M)2<4,.h} a.s.
T ti1d [e|<2/rn ti_1d 2T <|z|<1 T

it) if a > 1, then for all i = 1..n we have

ti t;
AiM Iga, my2<ar,) = (/ / xf(dx, dt) 7/ / :m/(d:c)dt)I{(A%M)zq,.h} a.s.
B ti_1/ |z|<2vp ti—1v 2v, <|z|<1 -

Remark 2.2. Note that vy, < 7“}/4 so that in the case i) above (o > 1), for all i = 1..n the jumps of M on
{(A;M)? < 4ry,} are bounded by r,ll/4.

Definition. Denote

t t Li
i [ - [ ] sutdoyit, M@= [ [ sdn,an, (o)
0 Jz|< 2 0 J2ym<|z|<1 tioy Jla| <29

By lemma 2.1, on a subsequence a.s. for sufficiently small h, Vi = 1..n, on {(A;M)? < 47, } we have
AM = A LW = A;M™ — hd(2¢r,) - (11)

A; M ™ is the compensated sum of jumps smaller in absolute value than 2.y, while hd(2{/ry) is the compen-
sator of the (missing) jumps larger than 2./ry,.

In [20] a CLT for I V', was shown in the case of finite intensity jumps and cadlag adapted o. Theorem 2.5
extends this to the case of infinite activity without extra assumptions on ¢. In particular when o < 1 the error
IV}, — IV has the same rate of convergence and asymptotic variance as in the case of finite intensity jumps.
The following proposition gives the asymptotic variance of (I V-1 V)/v/2h when o < 1.

Proposition 2.3. If r, = h% with 1> 3 > ﬁ €[1/2,1] then as h — 0

. (AX) T (a,xy22r T
1Q, = 2l )3}{1‘“){’25’“} £1Q :/ otdt.
0

The following result will be used to prove Theorem 2.5:

Theorem 2.4. Under assumption A1, as h — 0

L ti ~ ti 2 —« —2a
> (ftH Spopeewilda,dt) — [ oo xz/(dx)dt) — Tl e — T2 he? =2 [( 41,
VTl €25

where e = h*, 0 < u < 1/2, {;), = f‘x‘gaxjy(dac)/zsj_o‘ for j = 2,4, and ¢, = fa<|x|§1 acl/(dx)/[(C-i-

4 N(0,1)  (12)

El_o‘)l{a#l} +In Q—IEI{azl}} tend to non-zero constants depending on v.

We are now ready to state our central limit theorem for the estimator I Vh. A sequence (X,,) is said to
converge stably in law to a random variable X (defined on an extension (£, F’, P’) of the original probability
space) if im E[U f(X,,)] = E'[Uf(X)] for every bounded continuous function f : R — R and all bounded

random variables U. This is obviously stronger than convergence in law [15].

Theorem 2.5. Assume Al and o # 0; choose r, = h® with B > 27;7% €[1/2,1]. Then

a) if a < 1 we have, with it denoting stable convergence in law,

IV, — IV &

EN(0,1); (13)
\/2hIQ,
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Testo inserito
2-\alpha
nota: beta>1/(2-\alpha/2) serve per la cv di hat{IQ}, mentre nella dimo del teo 2.5, nel punto i) alpha<1 affinché r^{1-\alpha/2}/\sqrt h \ri 0 serve 
beta>1/(2-\alpha) il che cmq implica 
beta>1/(2-\alpha/2) perché
beta>1/(2-\alpha)>1/(2-\alpha/2)



IV, — IV o
7‘/}1 Va%'Jroo

\/2hIQ,

Remark For a < 1 Jacod [13, Thm 2.10, i)], has shown a related central limit result for the threshold
estimator of IV where L is a semimartingale but under the additional assumption that ¢ is an Ito semimartingale.

b) if a>1,

The proof of Theorem 2.5 in the case @ < 1 does not rely on Theorem 2.10 i) of [13]. An alternative proof

under the Ito semimartingale assumption for o could combine the results [20] with [13, Thm 2.10, i)], in that
V-1V _ V(X)) IV V(M) 3 (AX) (Tanxy<n) = Iiacxar<ny)
Vh Vh vh vh

S (M) (Ia,xy2 <y — Tamn2<r,y) N o2zt DX AM (A x)2<r)
Vh Vh ’

n n

Where IV(Xl) = Z(AiX1)2I{(AiX1)2STh}’ IV(M) = Z(AiM)QI{(AiMFgrh}-

i=1 i=1
The first term converges stably in law by [20], the second one converges stably to zero by theorem 2.10 i) of

[13]. That the remaining terms are negligible needs some work (see proof of Theorem 2.5).

3 Statistical tests

3.1 Test for the presence of a continuous martingale component

We now use the above results to design a test to detect the presence of a continuous martingale component
fot o+dWy given discretely recorded observations. Our test is feasible in the case when L has BG index a < 1 i.e.
the jumps are of finite variation (see Section 3.2). The test proceeds as follows. First, we choose a coefficient
B € [1/2,1] close to 1. If we have an estimate & of the BG index [26, 3, 25] we may choose 3 > 51— (recall that
ﬁ € [1/2,1]). We choose a threshold 7, = h? and use the estimator IQh of the integrated quarticity defined
in Proposition 2.3. We have shown in theorem 2.5 that, when o # 0 in the case o < 1, the estimator IV, is
asymptotically Gaussian as h — 0. However if ¢ = 0 then both the numerator and the denominator of (13)

tend to zero. To handle this case we add an IID noise term:

n T
Ash—0, > (AX"Y)? 5 XYy = / o2ds +v*T + T/ 2?p(dx, ds),
i=1 0 R—{0}
and Ig(a, xv)2<r,} removes the jumps of X", so that under the assumptions of theorem 2.5, as h — 0

n T
IA‘/Z = Z(AiXU)QI{(Ain)2§Th} £> / U?ds + ’UQT.
i=1 0
Under the null hypothesis o = 0 we have IV}, 5 02T, IQ;, = S (DX A xvy2 <1/ (BR) 5 AT and

~ U

IVh — ’U2T st
AU -
\/2R1Q,

Note that if on the contrary o # 0 we have that the limit in probability of I VZ is strictly larger than v?>T and,

Uy = N. (14)

by lemma 6.2, passing to a subsequence, a.s.

1.
3 Jim (AiX) A, N=0,(a0)2<2m,)

P
lim b 1Q) = 3 lim > (AX)V Iaixopany =
%



1
gh—>0 (A Xo-‘rAM-‘r’U\/_Z) I{AM)2<2rh}
i

c .. C 4
<3 lm o (A Xo)* +3 Jim, ZAM Liaone<zn) + 3 hm _ (vWhZ)*.

Using that }1zl—>rnO Zi(AiM)4I{(AiM)2§2Th} < }Ll_% 2ry, Zi(AiM)QI{(AiM)2§2Th} =0 by (44), ZZ(A1X0)4/h £>

chT otds and Y, (vWhZ)*/h “3 cv?, we have, as h — 0, h IQZ £ 0. Therefore under the alternative
(Hy) 0 #0, Up, = +o0 and P{|Up| > 1.96} — 1 so the test is consistent.

Local power of the test. To investigate the local power of test Uy, we consider a sequence of alternatives
H{l) o = o" where ¢ | 0. We denote by IQZM U, the statistics analogous to IQZ, U}, but constructed from
XP=xo+ f(f asds + fg ol AW+ Ly, t €]0,T). In the case of constant o and ¢" and finite jump intensity using

standard results on convergence of sums of a triangular array [14, Lemmas 4.1. and 4.3.],

h\2
~ uc . g
Q0. “ForT, U S lim ( \/E) T+ V202 Zr,

where “¥ denotes uniform convergence in probability on compacts subsets of [0,T] [24] and Z is a standard
Brownian motion. So either U,» tends in distribution to ¢ + v2v?Zyp, if o" = O(h1/4), or Uyn — oo, if
h'/4 = o(c"). Soif cis a (possibly zero) constant we have

if

— ¢ then P{U,n > 1.64|H!} — P{Z, > L64=C'T

h1/4 V2T v2

if % — +00 then P{U,n > L.64|H]'} — 1.

For values of v in section 4 we have 1.64/v/2Tv? = O(10®) thus the local power of the test is small if o = O(h!/4).

3.2 Testing whether the jump component has finite variation

To construct a test for discriminating o < 1 from a > 1, Theorem 2.5 suggests to use (IV, — IV)/1/2hIQ,
but this requires knowing the process o to compute I'V. We propose a feasible alternative. Consider instead

the estimator

ﬁ}l = Z AiXI{(AiX)2>rh} = XT — ZAiXI{(AiX)2STh,}'

i=1 i=1
Proposition 3.1. When a < 1, Hy, is a consistent estimator of J;y +mT, m := f_ll av(dr).

Consider Z; = A; W7, where WV is a Wiener process independent from W, L and define
AHY = N XIga,x)25my +0VhZ; and  HY = Jp +mT + oW

Under the null hypothesis a < 1,
~ HY A
IV, =Y (AH I a geypany

i
is an estimator of the integrated variance v2T of HY, so under the null hypothesis (Hy) a < 1 we can find
B> 51— €]%,1[ such that

~ HV

IV, —v°T

\V2r1Q

where IQ,Il{ = o > (A HY)T (A )2 <y And T = hP. In particular P {|Uf(ba)| > 1.96} — 5%.

U = 4 N(0,1), (15)

If on the contrary a > 1, then reasoning as in theorem 2.5, for any g €]0, 1] we have U}(La) LS 400, so the test is
consistent. If |U,(La)| > 1.96, we reject (Hp) @ < 1 at 95% confidence level.
Remark. To apply this test we first need to decide whether o < 1, using the previously described test.



4 Numerical experiments

4.1 Testing the finite variation of the jump component

We simulate n increments A; X of a process X = oW + L, where L is a symmetric a—stable Lévy process,
o = 0.2. We generate 1000 independent samples containing n increments each, and compute U, f(ba) as in (15) for
a range of values of v, h (1 minute, 5 minutes, 1 hour, 1 day) and number of observations n. The table below
reports the percentage pct of outcomes where |U}(L‘(D‘j))| > 1.96, 7 = 1..1000, for threshold exponent g = 0.999.
Note that with n = 1000 and h equal to five minutes (h = 1/(252 x 84)) we have T' < 1 year; for & = 0.6 the
lower bound for 3 is 32— = 0.71; when n = 1000, h = 1/(84 x 252) and the BG index of L is 0.6 (resp. 1.6) the
ratio of v = 107* to the standard deviation of the increments A; X is 0.074 (resp. 0.022).

n h v « pct « pct
1000 5 min 0.000001 0.6 0.067 1.6 0.439
1000 5 min 0.0001 0.6 0.056 1.6 0.407
1000 5 min 0.01 0.6 0.047 1.6 0.250
1000 5 min 0.1 0.6 0.053 1.6 0.726
1000 1 min 0.0001 0.6 0.049 1.6 0.241
1000 1 hour  0.0001 0.6 0.051 1.6 0.875
1000 1 day 0.0001 0.6 0.066 1.6 0.984
100 5 min 0.0001 0.6 0.065 1.6 0.137

10000 5 min 0.0001 0.6 0.065 1.6 0.928

The test results are observed to be reliable if we use n = 10000 observations, a time resolution of five minutes
and v = 1074, In fact when the data generating process has BG index 0.6 the test leads us to accept the
hypothesis (Hy) a < 1 in about 94 cases out of 100. On the contrary when the process has BG index 1.6 the
test tells us to reject (Hp) in 92 cases out of 100.

4.2 Test for the presence of a Brownian component.

We simulate 1000 independent paths of a process X; = fot 0, dW, + L, for different Lévy processes L and
constant or stochastic o, on a time grid with n steps. We take threshold rj, = h%%9°. For each trial j = 1..1000
we compute Uy, ;) given in (14) and report the percentage pct of cases where |Uy, ;)| > 1.96.

Example 4.1. (Brownian motion plus compound Poisson process, BG index « = 0). We consider
here constant ¢ and L = vaztl B;, a compound Poisson process with IID N (0,0.62) sizes of jump and jump
intensity A = 5 (as in [1]). The table below illustrates the performance of our test for various time steps h,

number of observations n and noise level v:

n h v o pct o pct
1000 5 min  0.000001 0 0.043 02 1
1000 5 min 0.0001 0 0.048 02 1
1000 5 min 0.01 0 0.054 02 1
1000 5 min 0.1 0 0.041 02 1
1000 1 min 0.0001 0 0.047 02 1
1000 1 hour  0.0001 0 0.054 02 1
1000 1 day 0.0001 0 0.082 02 1
100 5 min 0.0001 0 0.065 02 1

10000 5 min 0.0001 0 0.049 02 1

Note that when o = 0 (resp. 0.2), n = 1000andh = 1/(84 x 252) the ratio of v = 10~* on the standard deviation
of the returns A; X equals 0.007 (resp. 0.052).



We find that the test is reliable for values n = 1000, h = 5 minutes and v = 10™%, since it correctly accepts (Hp)

in 95 cases out of 100 and rejects (Hp) in all cases when it is false.

Example 4.2. (Brownian motion + a-stable jumps: « €]0,2[). Here L is a symmetric a-stable Lévy
process and o is constant. The following results confirm the satisfactory performance of the test when o =
0.3 < 1 for n = 1000, h = 5 minutes and v = 10~* chosen as above.

n h v o pct o pct
1000 5 min  0.000001 0 0.042 02 1
1000 5 min 0.0001 0 0.026 02 1
1000 5 min 0.01 0 0.054 02 1
1000 5 min 0.1 0 0.053 02 1
1000 1 min 0.0001 0 0.046 02 1
1000 1 hour  0.0001 0 0.140 02 1
1000 1 day 0.0001 0 0.805 02 1
100 5 min 0.0001 0 0.056 02 1

10000 5 min 0.0001 0 0.165 02 1

The next table, for the case a = 1.2 > 1, confirms that we cannot rely on the test results in this case: even

when o = 0 the statistic Uy, diverges if a > 1.

n h v o pct o pct
1000 5 min  0.000001 0 1 02 1
1000 5 min 0.0001 0 1 02 1
1000 5 min 0.01 0 1 02 1
1000 5 min 0.1 0 1 02 1
1000 1 min 0.0001 0 1 02 1
1000 1 hour  0.0001 0 1 02 1
1000 1 day 0.0001 0 1 02 1
100 5 min 0.0001 0 0.994 02 1

10000 5 min 0.0001 0 1 02 1

The main point here is that we may use a model-free choice of threshold.

Example 4.3. (Stochastic volatility plus Variance Gamma jumps: « = 0). Let us now consider a
model X with stochastic volatility oy, correlated with the Brownian motion driving X, and with jumps given

by an independent Variance Gamma process:
dX; = (n— 02/2)dt + o dW" + dL,,

where
op = e, dK, = k(K — K)dt +<dW®, d<W®O W@ >,= pat, (16)

W® are standard Brownian motions, £ = 1,2,3 and L; = ¢Gy + nWC(i) is an independent Variance Gamma,
process, a pure jump Lévy process with BG index o = 0 [18]: G is a Gamma subordinator independent from
W®) with Gy, ~ T'(h/b,b). For o we choose Ko = In(0.3), k = 0.09, K = In(0.25), ¢ = 0.05 to ensure that o
fluctuates in the range 0.2-0.4. As for the jump part of X we use Var(G1) = b = 0.23, n = 0.2, ¢ = —0.2,
estimated from the SP500 index in [18]. The remaining parameters are p = —0.7 and p = 0. The following
results confirm the reliability of the test for the presence of a Brownian component with n = 1000, ~ = 5 minutes

and v = 104



n h v o pct o pct
1000 5 min  0.000001 0 0.032 stoch 1
1000 5 min 0.0001 0 0.017 stoch 1
1000 5 min 0.01 0 0.027 stoch 1
1000 5 min 0.1 0 0.054 stoch 1
1000 1 min 0.0001 0 0.034 stoch 1
1000 1 hour  0.0001 0 0918 stoch 1
1000 1 day 0.0001 0 1.000 stoch 1
100 5 min 0.0001 0 0.049 stoch 1

10000 5 min 0.0001 0 0.912 stoch 1

Remark. In [21] a variable threshold function is used to estimate the volatility, in order to account for
heteroskedasticity and volatility clustering, with results very similar to the ones obtained with a constant
threshold. This is justified by the fact that in most applications values of o are within the range [0.1, 0.8], thus

the order of magnitude of A in (7) is of 1.

5 Applications to financial time series

We apply our tests to explore the fine structure of price fluctuations in two financial time series. We consider
the DM/USD exchange rate from 1-10-1991 to 29-11-1994 and the SPX futures prices from 3-1-1994 to 18-12-
1997. From high-frequency time series, we build 5-minute log-returns (excluding, in the case of SPX futures,
overnight log-returns). This sampling frequency avoids many microstructure effects seen at shorter time scales

(e.g. seconds) while leaving us with a relatively large sample.

5.1 Deutschemark/USD exchange rate

The DM/$ exchange rate time series was compiled by Olsen & Associates. We consider the series of 64284

1

s53es1 ~ 4.7 x 107°, displayed in Figure 5.2.

equally spaced 5 minutes log-returns, with A =

x10'

Figure 5.1. Left: DEM/USD five minutes log-returns, October 1991 to November 1994. Center: plot of

A XI{a,x)2<r,}> @ = 1l.n. Right: increments with jumps A; XTra, x)255,}, @ = 1.0

Barndorff-Nielsen and Shephard [6] provide evidence for the presence of jumps in this series using non-

parametric methods. Using as threshold 75, = h%-999

, we apply the test of section 4.1 to the degree of activity
of the jump component. As in the simulation study, we divide the data into 64 non-overlapping batches of
n = 1000 observations each and compute for each batch the statistic U}(Z?), j =1..64 with v = 10~%. Only 4.7%

of the values observed are outside the interval [—1.96,1.96], hence we cannot reject the assumption (Hp) o < 1.



Given this result, we can now use the test in Section 4.2 for the presence of a Brownian component in the
price process. Computation of the statistic U;, shows values much larger than 1.96 for all batches: we reject
(Hp) o =0.

These results indicate, for instance, that a Variance Gamma model, with no Brownian component, would
be inadequate for the DM/$ time series.

5.2 SPX index

We consider the series of 78497 non-overlapping 5 minute log-returns displayed in Figure 5.2. Using as threshold

rn, = hY999 we decompose the series into periods displaying jumps and other periods, as displayed in Figure

5.2 (central and right panels).

SXP futures five minutes returns 0.02 0.02

.01

BRIy
0

- \ T
-0.01 -0.01

-0.015 -0.015

-0.02 -0.02

-0.025 -0.025

3
from 3-1-1994 to 18-12-1997 x10°

Figure 5.2. Left: SPX five minutes log-returns, January 1994 to December 1997. Center: plot of A; X T¢(a, x)2<p,}, & =
1.n. Right: increments with jumps A; XI;(a; x)25r,}, ¢ = 1.1

We divide the data into 78 non-overlapping batches of n = 1000 observations each and compute for each
batch the statistic U,(L(()‘j)), j = 1..64 with v = 107*. 5.1% of the values observed are outside the interval
[—1.96,1.96]: for this period we cannot reject the assumption (Hp) o < 1. Given this result, we can use the test
for the presence of a Brownian component in the price process. Computation of the statistic U} shows values
much larger than 1.96 for all batches: we reject (Hp) o = 0. The test thus indicates the presence of a Brownian
martingale component.

We note that our findings contradict the conclusion of Carr et al. [8] who model the (log) SPX index from
1994 to 1998 as a tempered stable Lévy process plus a Brownian motion and conclude towards a pure jump
model using a parametric estimation method. Under less restrictive assumptions on the structure of the process

and using our non-parametric test, we find evidence for a non—zero Brownian component in the index.

6 Appendix: technical results and proofs

Proof of lemma 2.1. By [23, Theorem 25.1 | there exists a sequence (ny) such that

sup (A M)? = Y (AM,)?| %50, (17)

t;eI(my) s€)t;_1,t]

where TI(") is the partition of [0, T] on which the increments (A;M)? are constructed. Let us rename ny by n.

Using Ito’s formula we have

(AM)? = > (AM,)? = 2/“ (My_ — My, ,)dM,.

SEJt;_1,t4] ti-1

10



i) For @ < 1 our statement is proved in [21], lemma A.2, where it is used that the speed of convergence to 0 of

Yoy |ftl (Ms_ — My, ,)dMyg| is shown in [12] to be u,, = n. For a = 1 the same reasoning can be repeated

ti—1
since u, = n/(logn)? does not change the conclusion.

1/a

ii) If & > 1 we have u,, = (n/logn)'/“, and we can only conclude that a.s. for small h

1

ti
sup ‘/ (My_ — My, ,)dM,| < cu,,
i ti—1

with ¢ > 0, so that a.s. for small A we have
sup (D (AM)?) Iasmye<any < sup|(AM)P = 37 (AM)| + sup |(A:M)?)
¢ SEJt;_1,t4] ‘ SEJt;_1,t4] ¢

1
Scugl—i-élrh:O(éi log ™ =). O]

>

Lemma 6.1. Under (5)

i) there exists a strictly positive variable h such that for all i = 1..n,
In<ny Tyaixoyz>my =0 as., (18)

i) Ye>0, nP{AN #£0,(AM)% > er,} 3% (19)
i) In the case r, = h®, 3 €]0,1[, we have
lim sup hY ZP{(AZ-X)2 >rpt<c (20)
h—0 i—1
Proof. Equality (18) is a consequence of (7), while (19) is a consequence of the fact that N and M are

independent and of the Chebyshev inequality: as h — 0

nP{A;N #0,(A;M)? > cryp} <nO(h) - E[(%}.M)Q] =0 <%> .

The proof of (20) can be done as in [3, Lemma 6] but we give a simpler proof under our assumptions. It is
sufficient to show that

P{AX)? >} < ch ™% (21)
First we show that
P{lAX| > \/ri} = P{|AM]| > /rin/4} + O(h'~*F/2) (22)
so that for (21) it is sufficient to prove that
P{IAM| > /i /4} < ch1~F. (23)

To show (22) note that if [A; X| > /7, either A;J # 0 or |A;M| > \/rp, /4, since for small h,
Ve <A X] < AXo| 4+ [A T+ [AM] < ra/2 + |Ad |+ [A M as. (24)

Thus  P{AX| > i} < P{AW # 0} + P{IAM]| > /i /4},

and since P{A;J # 0} = O(h) = o(h'=*8/2) (22) is verified.
In order to verify (23), define N, = ngt Iy an, > /4y and write

P{|AM]| > /rin/4} = P{AN = 0,|AM| > /i /4} + P{AN > 1,|AM| > /ri,/4}

< P{A;N > 1} + P{A;N = 0,|A;M| > \/r1,/4}. (25)

11



Note that N, = fg flx|>\/ﬁ/4 p(dx,dt) is a compound Poisson process with intensity v{|z| > /rn/4} =
O(r,:aﬂ), so P{A;N > 1} = O(hwf|z| > /rn/4}) = O(h'~%/2) and thus the first term above is domi-
nated by h'~*#/2 as we need. Finally on {A;N = 0}, M does not have jumps bigger than \/Th/4 on the interval

Jti—1,ti], so
12
AM :/ / xfi(dx, dt) — h/ av(dx),
ti—1 Jz|</rn/4 Ve /4<|z|<1

therefore

P{AiN =0,|A;M| > /ri/4} < P{|AiM| > /ri /4, |AM,| < \/ry /4 for all s €]t;—1,t;]}

2 3
. 4E (A; M) I{‘AMS\S\/TT,/AL for all se]ti,l,ti]}} _ O(}WQ(@)) _ O(hl_aB/Q)a
Th Th
and (23) is verified. O

Proof of proposition 2.3.

X (AX) a2 <y Zi(Ale)4I{<Aixl)2s<u~h}+
3h - 3h

. ) Z QXTI AM) L a x22ry)

3 2a( QX Laxeemy — Iaxz<any) + iy <k e =30 Li(h)

By proposition 1 in [20], I;(h) tends to fOT o}dt in probability. We show here that the other terms tends to
zero in probability. Let us consider Ir(h) = 3= 3, (AiX1)* (Iya, x)2<my — Liaixi)2<amy): on {(A;X)?* <
Th, (A; X1)? > 41} we have

so |A;M| > \/r,. Moreover if |A; X1| > 2,/7), we necessarily have A;N # 0, since
|AiXo| + [Ai]| > |AiXa| > 2¢/rp, (27)

and by (18), a.s. for sufficiently small h, for all i = 1..n, |A; Xo| < \/rp, thus |A;J| > 24/, — [AiXo| > /7. It
follows that

1
P{E Z(Aixl)41{(AiX)2§rh,(AiX1)2>4rh} # 0} <nP{|AM]| > \/rh, AiN #0} — 0

?

by lemma 6.1. On the other hand, for all i = 1..n on {(A;X1)? < 4r,} we have, for sufficiently small h,
A;N = 0, because

AT = |AiXo| < |AXH| <2y (28)
so if A;N # 0 then a.s. for small h in fact A;N =1 and AJs > 1 by definition of J, therefore if A; N # 0 we
would have 1 < |A;J| < 2\/T, + /T = 3/Th, which is impossible for small h. It follows that

{(AiX)? > 1, (AiX1)? < drp} C {(AiXo + AiM)? > 1} C {(AiXo)? > %} U{(aM)? > % :
This implies by (18) and (23) that a.s. as h — 0

1 > (A X0) Ty (a M2 5 ry 4}
7 E (Ain)41{(AiX)2>rh,(AiX1)2§4rh} < ‘ W !
K3

1 P
< A*hIn? 7 Z Iy a2 >ry, /4y =0,
%

12



4
We can conclude that Iz(h) £0, as h — 0. Now consider Is(h) = Zi:l (k>l3’k(h)7 where

4—k
Lsy(h) = o7 Z (DX F(AM) I A x)2 <y, k=14
is decomposable as
1 _ 1 _
3—hzi:(AiX1)4 FAM) T(a,x)2 < (A2 <ary} T 3_hzi:(A"X1)4 FADM) I A x )2 < (Aib)25ar) (29)

We have a.s. for small h, Vi on {(A;X)? <7, (A;M)? > 41y} then A;N # 0, since

and then |A; X,| > /r, and, similarly as in (27), |A;J| > 3,/74/4. So the probability that the second term of
(29) differs from zero is bounded by (19) and tends to zero. As for the first term, a.s. for sufficiently small A,
Vi on {(A;X)? < rp, (A;M)? < 4rp,} we have A; N = 0, because

[AiXa ] = |AM] < |AX] < /i

thus |A; X1| < 3,/r, and we proceed as in (28). So the first term in (29) is a.s. dominated by

2 AKX PTHAMI A =0 ar2<any 2 1A X0 THAMIM T a1y <am
3h - 3h ’
Now for k = 4 we apply to M property (C.19) in [4, Lemma 5], with § there being « here, u,, = /1, = hg,
p =4, v, = h? for a proper exponent ¢ we specify below, 3’ = 0. Result (C.19) of [4] then implies

n

1
EEH Z(AiM)4I{IAiM|§2\/H} - Z |AMU|4I{|AM,J|§2\/T7,}
i=1 v<T

] < Chg(ﬁlia)il *Nan,

where 14, = h(hZvp)~% + h2h% (h5v,) 3% + hh'% (h2)~2% 4+ (2h5)* + hih~ 75 +vh . As soon as 3 >
1/(2 - a/2) and we choose ¢ €]0, 1= ’6[ so that for all a €]0, 2] we have ¢ < (2/a — (8)/3, it is guaranteed both
that h2(4=)=1 5 0 and that h7 - “) v ngn — 0. Thus

i 2 1B M*T{(a,my2<ar) lim PO Jiaj<oymr 2| u(d, dt)

h 3h Tk 3h '

and B[, [ | fioj<oue |2l u(da, dt) /3] = O(f|x|<2ﬁ|:c|4y(d:c)/h> — O(h34=)=1y 5 0, given that § >
1/(2 - a/2).

A Xo|*FIAMFI, A . . .
To show that further the terms ZilAiXol | 3h| LAM?2sam} tond to zero in probability for k = 1,2, 3 we use

that, by (11), each term is dominated by (recall the notation in (10))

o il Xol[* A M(h| o 2ilA Xo|**hd(2/mn)|*
3h 3h
Now a.s.

5 1A X[ hd(2 /)| T .1
3h S (hh’l E) 2 ’nh 1|:|C+’I“h4 | I{a;ﬁl} +h’l 1—/4[{0‘:1}:| S

Th
1, 4=k 1,4k pl-a ho oo 1 1,31« a-r 1

k k 2—k/2 k
ch /Q(IHE) 2 +ch /Q(IHE) > ry, " +hzln / hr}lb/‘l =o(l)+ch [5+673 ]10g 2 E%O
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Vk=1,2,3asr, =h? B€]0,1[. As for

> 1A X4 R | A MM|E
3h ’

(30)

we need to deal separately with each k£ = 1,2, 3. Note that since a and ¢ are locally bounded on 2 x [0, T'], we can
assume they are bounded without loss of generality, so E[(ftt_i1 osdW,)*] = O(h¥) for each k = 1,2, 3, using e.g.

the Burkholder inequality [24, p. 226], and a.s. (f:;l asds)?* = o(h*). Therefore E[(A;X0)?*] = O(h*) for each
k =1,2,3. For k =1 the expected value of (30) is bounded by %\/E[(AiXO)G]\/E(AZ—M(h))Q :O(T,%(lf%))
and thus it tends to zero as h — 0. As for k = 2,

> (A X0)? (A M (M)2

< hlp-&=—t 7 1
_hnh ) (3)

whose expected value is given by

as h — 0, since 7, = h?, with 8 > 0. Concerning k = 3, we have

S IAXo||[AMME e 2 (2 , € (h)y4
— < 2 DX (AMP) 4 2 3 (AMP)
K3

i

so that this step is reduced to the steps with k = 2,4 we dealt with previously. O

2
t; ~

Proof of theorem 2.4. Let us define K,,; := (Li—l f\z\gs zp(dz, dt) — hf5<|m|§1 :cz/(d:c)) . We apply the

Lindeberg-Feller theorem to the double array sequence H,; given by the normalized versions of the variables

Kpi,i=1,..,n and n = T/h. Using relations (9) we have

2
1
E[Kpi] = hlgpe?™® + (h/ xu(d:c)) = hly pe*™* + @,th {(c + slfa)QI{a#} + (ln2g)1{a=1}] (32)

<|z|<1

Taking € = h*, any u €]0,1/2], we obtain that

t; 4
vZ = wvar K, =F / / xfi(dx, dt) — h/ av(dx) —E2%, ~ h/ rtv(dr) = hly pe*™,
ti—1 Jz|<e e<|z|<1 |z|<e

as h — 0. Consider then

o K= BlKy) i mhlaae 0,0 (e )2 aery + (10° 1) Iy |
e \/ﬁ Uni \/T\/€47h52_0‘/2

We now show that for any é > 0, there exists a ¢ > 1 such that

> ElH I(n,. 55 < ce =0, (33)
=1

as h — 0, so the Lindeberg condition is satisfied and implies that

zn:Hm- 4 N(0,1). (34)

i=1

Noting that 1/e27%/2 and (he'=®)/(e2~%/?)I10z1y + (RIn*(1/€))/(27/?)I {41} tend to zero as h — 0, (34)
leads to (12). To show inequality (33), consider

nE[H2 In,, |>5)) < nE?[H2|Pi{|Hy| > 6} : (35)

14



as for the last factor above we note that |H,;| > ¢ iff either

1
Kot < btz 4+ 6 1 |(e 4= L) + (I0° D) Lamy | — 3/ Tlape®

vl

I
[0

()
|

vl

—
o)
~

—
~—

\
o)
=

S—

where ¢ denotes a generic constant, or
1 (o7
Ky > h€27h52_a + f% hh2 |:(C + EI_Q)QI{OG&I} + (ln2 _)I{azl}i| + 022 = 0(62_5)7
’ €

However K,; > 0 while for sufficiently small h the right hand term of the first inequality above is strictly
negative, therefore |H,1| > 0 iff K1 > 052_%, i.e. either

—cel™

w2

1 o h
~ e+ ") az1y + I{a=13h 10 - - cel”T > / /I | xji(da, dt)
0 x|<e

or, for sufficiently small h, fot )

o] <e zji(dr,dt) > ce'~%, and so |H,1| > § iff

t1
/ / xfi(dx, dt)
0 |z|<e

>celT.

This entails that for sufficiently small h,

2 . Bl f3* [ <. wi(de, dt)[?] »
P{|Hm|>6}=P{\/ / xﬂ(dx,dt>\>cel-4}s(: h s R S0
0 |z|<e

232

The first two factors of the r.h.s in (35) are dominated by

1 2p
Er [(Knl — hfg,h{:i_a — hQE%h {(C + El_a)2l{a¢1} + (1112 %)I{azl}}> :|

cn i-a

Ev [Kflﬂ + (he?™ )2 + h*(1 — =)t + htln* L
<cn

= gd—a ’

The last three terms give no contribution to (35) since

h27a2+h417 17a4+h414l o
n e (547i ) SR SE N}

On the other hand, by choosing e.g. p = 5/4 we have
E [Kﬁ] = O(he®™®),

(he>=)7 p (1-32)

so we are left to deal with n——= @ = £24, so that the inequality in (33) is proved. O

Lemma 6.2. Ash — 0: if r, = 0, n=T/h and sup;_,_,, |an:| = O(rp) then
P
Z lanil l{a, x)2<rn} — Z lanil (A, )2 <drp,a,8N=0} — 0.
Proof. On {(A;X)? <1} we have |A;L| — |A; Xo| < |A;X| </ and thus, by (7), for small h, |A;L| < 24/,
so that a.s.
Yim > Jani a2y < Jim > lansl (s, nyz<an,y-
However

Z lanilI{(a;L)2<ary,,a, N0} < sup |an;| Nt “30, (36)

K2
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as h — 0, and thus a.s.
%;HIOZ lanilIa,x)y2<rpy < }Ll_%z lanilI{(a,0)2<arp,a,N=0} = }Ll_%z lanilI{(a,m)2<dry, 0, N=0} -
3 K3 K3

Now we show that on the other hand the positive quantity

lim > Jani| (I, py<am, anv=0y = (8, x)2<n)) =0 a:s.

In fact {(A;L)? < 4rp,, A;N =0} — {(AiX)? <7} = {(AL)? < 4y, A;N =0, (A X)? >} C
(AL < 207, AN = 0, [A:Xo| + [AM] > i} © {|A:Xo|>m/2} U{IAM] < 2/, |AM| >/ 2}
Since, by (18), a.s. for sufficiently small h ), |ani|I{ja, xo|> /2y = 0, We a.s. have

Yim > Janil (g, pyz<an, aov=0y = Lax2<ny) < 1> 7 lanillan<aym 01> v /2)

however, by Remark 2.2, as h — 0

B anil T a,mi<aymiami)s yr/2y) < Orn)nP{AM| < 24/, |AM| > /iy /2} <

%

1
E[(AiM)*Tya, mi<2yiry] hn?(2r}
O(rp)nP{|AM|I A, mi<2my > VTR/2) < O(rn)n ‘ i‘h |<2vrndl _ O(Th)n% 0,
O
Lemma 6.3. Under the assumptions of theorem 2.5, for all a € [0, 2]
Z?:l(AiM)QI{(AiM)2§Th/16} - OP(hl_a/2) < Z?:l(AiM)QI{(AiX)2§Th,(AiM)2S4Th}
(37)
< S (AM)2 I, ary2<0r, jay + op(R7%) aus.
Proof. Let us first deal with 7" | (A;M)2I (A, X)2 50, (A M)2<dry }-
Asin (24), on {(A;X)? > rj,} we have either |A;J| > \/r,/4 or |A;M]| > \/r, /4, so
n
D (AiM)PT((a,x)25m (A2 <t} <
i=1
D (AM) LA x5, 870,002 <ar + 2 (AM)P (A X025, (802 5 (802 Ara)
=1 i=1
However
E{Zz V(DM T (A, m)2 <ar, A, N;ﬁO}} <h772(rh NT) Lo
hl-— a/2 hl a/2
80 Z(AiM)QI{(AiX)Q>T;L,(AiM)2§47';L} < OP hl a/Q + Z AzM I{(A M)2<dry, ,(A;M)2>r), /16}
i=1 i=1
n n
= op(h' %)+ Y (AM) Ty aanp<aryy — Y (AiM)*Ii(a 002 <dry (A1) <rn/16)
i=1 i=1
n n
= OP(hlia/2) + Z(AiM)2I{(AiM)2S4Th} — Z(AiM)2I{(AiM)2§rh/16}- (38)
i=1 i=1
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Consider now Y71 (A;M)?Ii(a, my2<ary,(AiM)2 59, /43 00 {2y/Th > |[A;M| > 2./7,} either A;N # 0, in which
case . )

Do (AiM)?Ig(a, M2 <ar,, A, N£0} P

hl—a/2 =

as before, or A;N = 0, in which case |A; X| > |A; M| — |A; Xo| > % Th — %\/r_ = /Th s0

0

Z(AiM)QI{(A7,X)2>7-,L,(A7,M)2g4rh} +op(h' /%) > Z(AiM)QI{(A7,M)2§47-,L,(A7,M)2>9rh/4}
i=1 i=1
therefore
n n n
Z(AiM)QI{(AiX)Q>r;L,(A7,M)2§47';L} > —op(h'™*/%) + Z(AiM)QI{(Aq,M)2§4m} - Z(AiM)QI{(AiMPS%hM}'
i=1 i=1 i=1
(39)
Combining now (38) and (39), we obtain (37) since
n n n
D (AMPIiaxe <o ainp<ary = 2 (AM) Iiannz<ar,y = Y (DM Iia,x)2sm, anz<ar,) O
i=1 i=1 i=1
Proof of theorem 2.5. Note that under g > ﬁ the assumptions of proposition 2.3 are satisfied. Since
X = Xy + M, we decompose
V-1V _ Zi AKX haesny = IV Y AX) Iiaxecany — IV (40)
> A7,X 4[ ) .
V2h1Q, Va2 e e, VESAAX) (s x)2<0)
+ V2hIQ [ (A X7 (I{(AiX)QS"'h}71{(A7,X1)2§47'h})
VE S A (5 x02 40, VZhIQ
(41)
2 AaXaAMIp A xy2<r,y Z?:I(Ailvj)21{(AiX)2§rL} 4
+2 V2hIQ =+ V2hIQ : } = Zj:l Ij(h)-

The proof [20, Thm 2] shows that I;(h) converges stably in law to a standard Gaussian random variable. To
show that the remaining terms either tend to zero or to infinity, we can assume w.l.g. that both a and o are
bounded a.s. If (A;X)? < rj, and (A;X1)? > 4r, then |A; M| > /15 and A;N # 0, exactly as for Ir(h) in
Proposition 2.3. It follows that

P{ Do (A X0)?T(a, x)2 <y (A, X0)2 >4
V2hIQ

by (19). The main factor of the remaining part of Iz(h) is

b4 o} < nP{AN #£0,|A:M| > i} — 0

i1 (A X1)2 (A )25, (A X1)2 <4}
V2hIQ '

We recall that on {|A;X;| < 2,/r,} we have A;N = 0, thus (A;X1)? = (A;X()?. Moreover

ti 2
Simn (S audu) " Ta, x)2 5, (A X0)2 <4}

\/m = OP(\/E) - 0;

and, by (20)

n

] >
Z Gy du UuquI{(AiX)Q>T;,,,(A.;X1)2§4rh} < evVhy/hln = Z I{(AiX)2>rh}
2h1Q ~ J,, hi

ti—1
- O(hlaﬁ/Q\/E) 0.
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Therefore in probability

t; 2
. o i (L) ond W) A x)es e (auxi2<an,)
h—0 h—0 V2hIQ '
Now we show that term I3(h)/2 in (41) tends to zero in probability. First recall that A; Xy = A; Xo + A,

and within the sum >, AiJAiMI{(AiX)2§rh}/\/E term ¢ contributes only when A; N # 0, in which case we
also have (A;X1)% > 4rj, and thus |A;M| > \/r;, as in (26). That implies

Dieg DT AMIA, x)2<r,)
V2hIQ

y o} < nPIAN £ 0,[AM] > i} 0.
s AiXUAiIVII{(AiXﬂgT,L}
Vi
izt AiXoAiMIya xy2<ry _ Xz BiXoBAiMIya, xyp<r (aiL)?<ir)
Vh vh ’

however since both P {ﬁ Dy A XoAMIp(a,x)2<rp,(A;L)2<dry,,A;N£0} 7 O} and P {ﬁ S A Xo AiMIga,x)y2<r,
are dominated by nP{A;N # 0, (A;M)? > cr,} — 0 we have

As for

, as in the proof of lemma 6.2, we have

(42)

1 < 1l ¢
h}ILIl ﬁ ; AiXOAiMI{(Aq,X)QST;L,(Aq,L)2§4rh} = h}ILIl ﬁ ; AiXOAiMI{(AiX)z§T;L,(A7,L)2§4T;L,AiN=O}

= hm — Z Ai XoAiMIya,x)2<ry, (A M)?<dr, ,A;N=0} = hm 7 Z AiXoAiMIp(a,x)2<ry,(AiM)2<dry}-

Moreover by the Cauchy-Schwartz inequality, we have

i ti n
Z?:l 'fti—l auduAiMI{(A7’X)2§T}L,(A7’M)2§4rh} - \/Z?:l(fti71 audu)2

< D (AM) I a a2 <am,)
7 Vi ’

n

<c Z(AiM)2I{(AiIVI)2§4rh}7 (43)

i=1

which tends to zero in probability, since by remark 2.2 as h — 0

E Z(AiM)QI{(AiMVgM;L ] / / <ot T dr) = T772(r}lb/4) — 0. (44)

i=1

On the other hand

1

n .
_h Z / UudW A MI{(A X)2<rp,(A; M)2<4r,}— \/— Z / UudW )AiM(h)I{(A.;X)QST;,,,(A-;M)2§4Th}
=1 - ti—

ti—1

1 < ti
~h > (/ 0udWou ) hd(2/T1) [{( A, x)2 <rn,(A:M)2 <drp}s (45)
=1

where, using that ftt_il 0y dW, and A; MM are martingale increments with zero quadratic covariation, the L' ()

2
n ttq, cudWy ) (A;M(h))2 ) ) o
norm of the first right-hand term is bounded by \/ E{ i=1 (f o 78 ) ( ) ] which is dealt similarly as

n (31) and tends to zero. Moreover

EE

Uuqu)hd(2%)I{(AiX)z§7',L,(AiM)2§47',L}} =

ti—1
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C\/E[Ia;,gl(C‘FTh )+Ia 11n 1/4] {Z / Uuqu)I{(Aq,X)QS'r';L,(Aq,M)2§4r;L}:| <
" i=1 -

n

VAot i)+ i) B[S [ aamy] o

i=1 Jti-1

Using that V2h 1Q tends to 1 in probability, doing for I,(h) as in (42) and putting together
\/2/3 (A X) (A x)2 <)

the simplified version of I5(h) we obtain that (IV} — IV)/1/2hIQ,, is the sum of a term which converges in

distribution to a N(0,1) r.v. plus a negligible term and a remainder

tm 2 n
Sict (J) oudWa) " Tiacx)zsm, (axiz<ary 0 (AiM)2I{(a,x)2 <o (A M2 <dr)

— : = = L= ) 46
V2RIQ + V2RhIQ (46)
1—a/2
a) if o < 1, the first term of (46) is negligible with respect to ymilQ’ in fact

n t; 2
2it (hl, oudW) Taismoaca<an S, hIn I a,x)2om,)

T}lz a/2 - r}lb a/2
where
Y hlnl , 1
g | Ziz M i;? iX)P>rn} | < 1=y = 0,
L h

Therefore (46) can be written as

1—0(/2 A M I
"h {0p(1)+ 2o (DM I, x)2<r (A M)2<4rh}} (47)
V2hIQ TiIL /2
Using (37), lemma 2.1 i) and theorem 2.4 we reach
Do (AiM)?Tr(A, X )2 <rp (A M)? <drn} Z?Zl(AiM)2I{(A My2<or, /a3 +op(h! /%)
1-a/2 - 1—a/2 ~
T Th
ts - 2
D (DM Ia, M2 <om /4 2 (ftH Sz ympe wildm, dt) = h [y o 11y xl’(dﬂf))
1—a/2 l1—a/2
Tn Th
h\% i_a P
:Rh+Tc+Tc(—) hi™2 > Tec
Th
1—a/2
where term R}, has variance ~ CTZ‘/ > 5050 converges to zero in probability. Since ‘- N 0, we reach
IV, -1V st
—h X = N(0,1).
\/2hIQ,
b) If o> 1 define Ry := 3, It o pr, > 7y then by (37) last term (times +/21Q) in (46) dominates
S it (A M) Tya ary2<r 16y — 0P (W' ~/%)
Vh
1 1_a
7h Z(AiM)2I{Aq,R:O} + Z(AiM)2 [I{(AiM)Qgrh/lG} - I{Aﬂ:o}ﬂ —op(h#™%) >
2
1iay S feevreilded)—h [ 5, o av(de) S (AiM)2 I (A )25 ry j16,0, Re
—0p(h2 2)+ ( lz| < VH — h<|z|< ) _ {(A\J\//IE) >rp /16,84 R=0} (48)
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First

ti
Z(AiM)QI{(AiIVI)2>%,AiR:0} - Z {Ai[M] + 2/ (M — My, )dM; I{(AiM)2>%7AiR:0} :

4 i ti—1

As in Lemma 2.1 the sum of the right terms within brackets is of order u,, = (n/logn)/®, so that

ti 3
Zi | ftifl(Msf - Mti—l)dMsl . Un Zz | ftifl(Msf - Mti—l)dMsl g 0
Vh v ’

1

since u,vVh = ("(17%))3 — +00. Theorem 2.4 applied with u = 1/2 yields that with ¢ = h2

logn

t; 2
> / / zfi(dx, dt) — h / zv(dr) | =e* %Y, 4 T + Tche® 2~
i ti—1 J|z|<VR Vh<|z|<1

where var(Ys) — 1. Therefore in (48) we remain with

X Az‘[M]I{(Ahill\/_l);>7‘;L/16,AiR=O} a8 oo

N

h

-3 |:0p(1) +h%Y +Te+ Teh'™%

2 Ai[M]I{(Ail\/I)Q >rp

6,A; R=0 .
-3 /16,2720 tends to zero in

where the divergence is due to the facts that h2~% — +00 while

probability since its expected value is dominated by

g B [(Ai[M]I{AiH})Q}P%{(AiMﬁ > 1 /16, AR = 0}

1
<— h/ sude)) R 58% = it o,
h'=z ( |z|<Vh ( )>
having used that

E[(AiM)*I{a, r=0}]

P{(AM)? > rp, AjR = 0} = P{(A;M)*I{a,p0} > T} < .
h

(49)

B hf‘z‘gﬁﬁy(dac)
- -

=h*"2 0

On the other hand the first term in (46) is negligible with respect to hz—% (the speed of divergence of
(Z?:l(AiM)2I{(AiIVI)2STh/16} - Op(hl_%)>/\/ﬁ) because

ap

n i 2
it (i 0udWa) “Tra x)2 s, (a2 <ara) _ hloggh~%
Vhhz—% I

therefore (46) explodes to +oo. Finally if « =1 in (46) the first term is negligible, as

a 1
=h31-F) log 7 0,

t; 2
ic (i oudWa) " T, x)2 5, (A0 X1 )2 <}
Vh

For the second term we take a 6 > 0 such that 2/3 < 8+ < 1, we choose € = h”%* and we make the same

1— 1
= Op(hTﬂ log E) — 0.

steps as to reach (48) for a > 1, but we consider R, = ngt Ifiam, >y in place of R;. Using also theorem 2.4
we obtain that the second term in (46) dominates

Yheg € _ PIPAY [M]I{(AiM)2>h AiR=0} 2 Z?:l ftf;l(Msf - MtH)dMsI{(A,-M)2>%,AiR:0}

16

V2hIQ * V2hIQ V2hIQ V2hIQ ’
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where the variance of Y}, tends to 1, so Ve / V'h tends to zero in probability. The second term tends to 4oco
at rate £/v/h. The third term is negligible with respect to £/v/h: applying (49) with R in place of R and the
Cauchy-Schwarz inequality we get

1 ti 9 5
E{g Z /ti1 /|x|<1 r”p(de, dt)I{(AiM)2>%,AiR:O} =0(hz) = 0;

finally the last term is also negligible since the speed of convergence to zero of the numerator is u,, = n/ log®n

(as in the proof of lemma 2.1) and u,v/h — +00. So even for a = 1 the normalized bias (IV;, — IV)/\/2hIQ,
diverges to +o0. O

Proof of proposition 3.1. As in lemma 6.2 with /7, in place of r;, as bound for the max;—; ., |an;|, using
that @ < 1 and applying lemma 2.1 i), we reach that Hj, has the same limit in probability as

n

Xr — Z(AiXO + AiM)I{a, N=0,(2:M)2<rp}>

i=1

when h — 0. Moreover, since a.s. Ny < oo and Y1y A Xol{a;an2sr,y) = Op(h1=29/2\/log(1/h)) — 0,
taking Ry = > s<t Itian, >y > the above term has limit in probability equal to

n n ti
Xr — lim N Xo+ AiMIga, 2 = X7 — Xor — lim / / xii(dx, dt
r — lin Z( 0 (A M)2<rp}) T or — lin [; o e ( )

=1

7T/ I'I/(dl') — lim A,LM(I A; M)2<r), -1 P )Z
P } 3 XZ: {«( )2<rn} T 4{A; R=0}

using that P{A;R > 1} = O(h'~*F/2) as after (25) we reach 3", AiMI{A 2 <y AR 1) = Op(h(1=)B8/2) — 0;
(1-a)B/2

using Holder inequality with exponents p = ¢ = 2 we have ), AZ—MI{(A%M)QM}“A%R:O} =0p(r), ) — 0;
2 ~
finally foT f\;cKWxQ(dx’ dt) 550 and f\/ﬁ<\x\<1 zv(dx) — m, so that Hy, p B Jr+mT. O
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