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Abstract

The main purpose of the paper is to show that the process of household formation in a compet-
itive market does not necessarily lead to outcomes that are efficient at the economy level, even
assuming that members of each household take efficient collective consumption decisions. To
this end, we consider a generalization of the Arrow-Debreu exchange economy model in which
endogenous household formation is introduced, we assume efficient household decision processes,
and we show that if there are many households which can potentially be formed, then there is a
not negligible set of economies admitting inefficient equilibrium allocations.
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1 Introduction

The main goal of the paper is to present a general equilibrium model of endogenous household
formation in which members of each household take efficient collective consumption decisions but
efficiency of market outcomes is not necessarily obtained. To this end, we consider a generalization of
the Arrow-Debreu exchange economy model in which rational individuals compete both for resources
and for membership to households. After having introduced suitable definitions of equilibrium,
efficient allocation and efficient household demand, we show that if individuals have the possibility
to choose the household they want to belong to among many, that is, individuals have many outside
options, then efficiency of household decisions does not imply efficiency of equilibrium allocations.

Before describing in details the model, we observe that only few contributions about the analysis
of endogenous household formation in a general equilibrium context are available in the literature.
In the models of Club theory (Ellickson et al. (1999)), where individuals exchange private goods and
memberships to clubs, equilibria exist and associated allocations are efficient. The general approach
presented by Gersbach and Haller (2005) and related articles quoted therein, as well as the viewpoint
proposed by Gori and Villanacci (2009), is very close to ours. A brief description of those works is
useful for a better understanding and assessment of our results.

∗I’m very grateful to Antonio Villanacci and Marina Pireddu for reading preliminary versions of the paper and
providing many helpful comments and suggestions.
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The presence of positive externalities can be easily recognized as the basic source of household
formation. Indeed, the formation of some households may affect individual utilities or allow the pro-
duction of a certain amount of goods. Therefore, if some individuals realize that forming a household
produces positive externalities, then they might reach an agreement on staying together in order
to improve their welfare. Externalities are of three main types: utility of one individual is affected
by some characteristic of the household she belongs to (group externality), utility of one individual
depends on the consumption of other members of her household (consumption externality), and the
aggregate endowment of one household is different from the sum of the endowments owned by its
members before forming an alliance (endowment externality).

In their papers Gersbach and Haller present a general approach to the household formation pro-
cess using all externalities listed above, but focusing in particular on the first two. In their models,
they describe household choice rules by not specified and exogenously given demand correspondences
and propose several notions of equilibrium. The common feature of all those notions is that dissat-
isfied individuals have the option to leave their household and form other households but nobody
wants to exercise that option. The only difference among those notions of equilibrium consists in the
different options individuals may choose from. More precisely, Gersbach and Haller consider three
types of options: each individual can leave her household and stay alone (free exit), each individual
can join a household (free joining) and each group of individuals can form a new household (free
household formation)1. Then they consider different types of equilibria according to the stability
properties satisfied by household allocations. Finally, they introduce a suitable notion of efficiency
at the economy level, namely Full Pareto Optimality, which is a modified version of the very stan-
dard notion of Pareto Optimality taking into account the variable structure of households. In the
described framework, the authors investigate whether endogenous household formation, increasing
competition among individuals, makes efficiency easier to get.

The contributions by Gersbach and Haller provide interesting results. In particular, Gersbach
and Haller (2003) propose a model with group externalities, households making efficient decisions
and in which free exit is allowed and they present an example of an economy for which there are
Pareto rankable equilibrium allocations associated with the same equilibrium price. In particular,
at least one of them is not Fully Pareto Optimal. This result suggests that, for equilibria with free
exit, “efficiency (at the household level) may beget inefficiency (at the economy level)”. Gersbach
and Haller (2005) prove instead that if household demand correspondences are efficient and other
very mild conditions are assumed, then every equilibrium with free household formation is efficient
at the economy level. In other words, for equilibria with free household formation, “efficiency (at
the household level) begets inefficiency (at the economy level)”. Moreover, in the same paper, they
also give sufficient, strong conditions under which not necessarily efficient household decision rules
lead to efficient choices in equilibrium.

Gori and Villanacci (2009) consider a model in which individuals in the market are exogenously
divided in pairs and each pair can produce a given amount of goods beyond initial individual
endowments. Production does take place if an agreement on the distribution of the potential surplus
is reached by the two members as a result of a bargaining game. If an agreement on the distribution
is (not) reached, the household is (not) formed. When bargaining is over, individuals are left with
their personal initial endowments plus the, possibly zero, share of household production. At that
stage, they behave as price taking consumers in a standard Arrow-Debreu exchange economy. The
authors introduce then a suitable notion of equilibrium concept which is consistent with the following

1Note that the name we choose for the third stability condition is different from the one in Gersbach and Haller
(2003) and (2005). In fact, in those papers the authors call free household formation the union of free exit and free
joining conditions, and describe the third one saying that no group of consumers can benefit from forming a new
household.
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requirements: individuals are utility maximizers in the process of household formation and rules of
that process allow households which are advantageous for their members not to be necessarily
formed. Then, they show existence of equilibria in which decision rules of household formed in
equilibrium are efficient but equilibrium allocations are inefficient at the economy level. In other
words, “efficiency (at the household level) may beget inefficiency (at the economy level)” as already
highlighted in one of their models by Gersbach and Haller. Indeed, Gori and Villanacci (2009)
support that conclusion in a quite different equilibrium model, where a different type of externality
is considered, household formation is the result of an explicitly modeled strategic interaction, and
lack of efficiency at the economy level arises because of rational disagreement among individuals
within households.

We can now describe the main features of our model. We consider a finite number of individuals
who are allowed to form only households belonging to an exogenously given set, called constitu-
tion. In general, constitution may differ from the power set of the set of individuals because of
physical constraints or laws preventing the formation of some households. Note that this aspect
is not present in the quoted papers by Gersbach and Haller where no constraint on the household
formation is considered. As in Gori and Villanacci (2009), we assume that each household having
at least two members can produce a given amount of commodities beyond initial endowments of its
members. Group and consumption externalities are not introduced and then the unique motive to
form households is a positive endowment externality. As in Gersbach and Haller, we assume there
are exogenously given household demand correspondences describing the outcomes of household
decision processes.

The definition of efficiency at the economy level we consider agrees with the notion of Full Pareto
Optimality introduced by Gersbach and Haller (2003). The notion of equilibrium we propose is in-
stead different from the ones introduced in the models previously described. In fact, agreeing with
Gersbach and Haller (2005), we think that every reasonable definition of equilibrium has to require a
suitable stability condition for households2 to hold true. However, in our opinion, definitions intro-
duced by Gersbach and Haller present some conceptual difficulties. In fact, free exit and free joining
conditions, even when considered together, are not enough to thoroughly describe the mechanism of
household formation. Moreover, free joining and free household conditions implicitly assume that if
members of a certain household realize that an affordable collective consumption is more advanta-
geous than the candidate equilibrium consumption, then they always agree to demand it. However,
in general, the set of collective consumptions on which household members really agree is much
smaller than the set of affordable collective consumptions. In fact, because of disagreement among
household members, even though an affordable collective consumption makes everybody better off,
it might not be really chosen. That suggests that Gersbach and Haller’s stability conditions need
revision3.

The definition of equilibrium we propose tries to overcome the just mentioned difficulties by
requiring a modification of the free household formation property to be satisfied. Our equilibrium
concept is simply described as follows. Given commodity prices, individuals divide into households
belonging to the constitution and household members decide household demand. In equilibrium,
total household demands do not exceed total supply, formed households have no incentive to modify
their demands and individuals have no incentive to form new households. Of course, according
to the above observations, members of a household can deviate from the equilibrium resource and
household allocation only if they can really find an agreement on an advantageous collective con-
sumption, that is, only if the advantageous collective consumption is found via the household demand

2Note that the definition of equilibrium in Gori and Villanacci (2009) requires no explicit stability condition because
of the special structure of the set of potential households.

3For further comments on the topic, see Section 2.
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correspondence.
The equilibrium concept we propose has interesting welfare implications. As for the equilibrium

concept by Gersbach and Haller, efficiency may not occur in equilibrium unless we provide suitable
assumptions on the way households make their choices. Then, we specialize on household demand
correspondences satisfying the so called internal efficiency property. A household has an internally
efficient demand correspondence if it cannot afford consumption vectors for its members that Pareto
improve upon any household demand, that is, any possible outcome of the household decision
process. Such property, first introduced by Haller (2000), is also the notion of efficiency at the
household level used by Gersbach and Haller.

When internally efficient household demand correspondences are considered, the differences be-
tween Gersbach and Haller’s equilibrium with free household formation and ours just turn out to
be essential. Indeed, as already said, the free household formation is sufficient for efficiency at the
economy level. On the contrary, our stability condition is not. That result is the major novelty
of our paper. It shows that, unlike Gersbach and Haller’s, our definition of equilibrium implies
existence of inefficient equilibrium allocations even though households efficiently choose their de-
mands. Moreover, in our opinion, many other remarkable welfare results regarding equilibria with
free household formation, like the already quoted result about the property of equilibrium to make
potential inefficient household choices efficient (Proposition 3, Gersbach and Haller (2005)) and the
one showing that each equilibrium is a valuation equilibrium for a club model (Proposition 3, Gers-
bach and Haller (2010)), don’t hold true anymore. Pointing out conditions on household demands
such that those results can be proved seems to be an interesting research project.

The above described inefficiency result is in fact a byproduct of the analysis of a particular case
of the general model discussed in the first part of the paper. That special model is characterized by
demand correspondences that are explicitly built assuming specific decision processes for households.
Moreover, differently from the model in Gori and Villanacci (2009), we suppose that members of
each household always reach an agreement on the distribution of all the surplus that household
can produce, that is, they efficiently choose their collective demand. More precisely, for every
household, we exogenously associate individual bargaining powers with its members and we assume
that household decision is always the outcome of the corresponding (possibly asymmetric) Nash
bargaining within the household. We observe that the household decision rule we choose is the
same as the one considered in Gersbach and Haller (2009), where the authors are interested in
analysing the effects of a shift of bargaining power within households operating in a competitive
market environment on resource allocations and welfare. We also note that, because of the above
assumptions, inefficiency at the economy level cannot be a consequence of the disagreement in
bargaining processes as the surplus is never wasted and household decisions are always efficient.

In that special framework, we prove that if the constitution has a very simple structure, that is,
individuals are only allowed to stay alone or to belong at most to one household having more than
one member, then existence of equilibria is always assured, and other nice properties of equilibria,
such as generic finiteness and smooth dependence on the economy, hold true. On the other hand,
we show that if the constitution is complex enough, that is, individuals have many outside options,
then we can find robust examples of both economies admitting equilibria that are efficient at the
economy level and economies admitting equilibria that aren’t. In particular, as already said, we
find economies where households behave efficiently but equilibrium allocations are not Fully Pareto
Optimal. We finally note that those results definitely highlight the significant role that outside
options may have in determining inefficiency of equilibria at the economy level.

The paper is organized as follows. In Section 2, we present the general set-up of the model,
definitions of Full Pareto Optimality and equilibrium, and related observations. In Section 3, we
describe the special model where individual bargaining powers are introduced to build household
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demand correspondences and we state and comment the results obtained. Section 4 contains some
remarks about the generality of the main assumptions, the role of constitutions and the possibility
to evaluate welfare implications caused by a change of constitution. In Section 4, we also discuss
another equilibrium concept in which the stability condition takes into account the fact that some
household objections might be not justified because of the presence of suitable counter-objections
proposed by other households. Finally, Section 5 contains the proofs of the results stated in the
previous sections. In order to make things clearer, many technical details are proved in the Appendix.

2 General set-up of the model

We consider a market in which there are I ≥ 2 individuals, denoted by i ∈ I = {1, ..., I}, and C ≥ 2
types of different commodities, denoted by c ∈ C = {1, ..., C}. Individuals in the market are allowed
to divide into households and then commodities are exchanged by households and distributed among
their members. We assume that each individual owns a certain amount of initial endowment. We
assume further that, when at least two individuals decide to form a feasible household, a given
amount of commodities beyond initial individual endowments is produced by that household. Each
individual, consistently with the rational behaviour paradigm, compares the consumption she could
get within each household and chooses the household she desires to belong to in order to maximize
her own utility.

In our framework, a household is a nonempty subset of I while a household allocation is a
partition of I. Later on, we denote by P(I) the set of households and by P(I) the set of household
allocations. We define also4

Pσ(I) = {H ∈ P(I) : |H| = 1}, Pν(I) = {H ∈ P(I) : |H| ≥ 2}.

For every i ∈ I, individual i is characterized by an initial endowment ωi ∈ RC++ and a utility function

ui : RC++ → R, xi 7→ ui(xi),

representing her preferences over her consumption set RC++
5. In what follows, we assume

ui ∈ C2; (1)

for every xi ∈ RC++, Dui(xi)� 0 ; (2)

for every xi ∈ RC++ and v ∈ RC \ {0}, v D2ui(xi) v < 0 ; (3)

for every xi ∈ RC++,
{
xi ∈ RC++ : ui(xi) ≥ ui(xi)

}
is a closed subset of RC , (4)

and we denote by UC the set of such functions. For every H ∈ Pν(I), household H is characterized
by a vector ηH ∈ RC+ \ {0}, representing the additional endowment which is jointly owned by all the
members of household H. Finally, we define the set of economies as

E(I, C) = RCI++ × UIC × (RC+ \ {0})|Pν(I)| × Σ(I, C), (5)

4In what follows, the cardinality of a set S is denoted by |S|.
5For every positive integer N , we define the binary relations�, ≥ and > over RN as follows: given v = (v1, . . . , vN )

and w = (w1, . . . , wN ) ∈ RN , we write

v � w if vi > wi, ∀ i ∈ {1, . . . , N} ;
v ≥ w if vi ≥ wi, ∀ i ∈ {1, . . . , N} ;
v > w if v ≥ w and v 6= w.

We also define the sets RN+ = {v ∈ RN : v ≥ 0} and RN++ = {v ∈ RN : v � 0}.

5



with generic element E =
(
(ωi)i∈I , (ui)i∈I , (η

H)H∈Pν(I), σ
)
, and where RCI++ describes household

endowments, UIC describes individual utility functions, (RC+ \ {0})|Pν(I)| describes additional endow-
ments for households having at least two members and Σ(I, C) contains further information about
individuals and households. Different qualifications of Σ(I, C) allow to consider different models
each of them focusing on specific features of economic agents and then catching particular economic
relations.

The presence of physical constraints and laws in the market may prevent individuals from forming
some households. In order to formalize the effects of such constraints, we associate with the market
a set H ⊆ P(I) whose elements, called feasible households, are just the households that individuals
can really form. Such a set is called constitution and we assume that every singleton belongs to it,
that is, individuals cannot be prevented from staying alone. The set of constitutions in then defined
as

H(I) =
{
H ⊆ P(I) : Pσ(I) ⊆ H

}
.

For every H ∈ H(I), we define also the set

PH(I) = {π ∈ P(I) : π ⊆ H},

whose elements, called feasible household allocations, are household allocations that are compatible
with constitution H. Of course, because of assumptions on H, we have PH(I) 6= ∅.

In what follows, we assume that market properties are thoroughly described by the pair (E,H) ∈
E(I, C)× H(I).

Definition 1. Let us fix I, C ≥ 2 and consider (E,H) ∈ E(I, C) × H(I). An allocation associated
with (E,H) is an element of the set P(I)×RCI++. An allocation (π, x) = (π, (xi)i∈I) associated with
(E,H) is called feasible if

1.1. π ∈ PH(I),

1.2.
∑
i∈I

xi ≤
∑
i∈I

ωi +
∑

H∈π∩Pν(I)

ηH.

The set of feasible allocations associated with (E,H) is denoted by Af (E,H).

In the definition below, we are introducing a suitable notion of efficiency at the economy level for
allocations. Of course, such notion depends on how much power a social planner is granted to
have. Here, we focus on the case in which the social planner is allowed both to force people to form
households and to allocate resources among individuals. This notion, called Full Pareto Optimality,
follow the same line in Gersbach and Haller (2001) and (2005).

Definition 2. Let us fix I, C ≥ 2 and consider (E,H) ∈ E(I, C)×H(I) and (π, x) ∈ Af (E,H). We
say that (π, x) is a Fully Pareto Optimal allocation associated with (E,H) if there is no (π∗, x∗) ∈
Af (E,H) such that (ui(x

∗
i ))i∈I > (ui(xi))i∈I . The set of Fully Pareto Optimal allocations associated

with (E,H) is denoted by Pf (E,H).

The following proposition, whose proof is a simple modification of Propositions 1 and 2 of Gersbach
and Haller (2001), says that there are always Fully Pareto Optimal allocations.

Proposition 3. Let us fix I, C ≥ 2 and consider (E,H) ∈ E(I, C)× H(I). Then Pf (E,H) 6= ∅.
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Commodity prices are described by a vector p ∈ RC++. For every H ∈ P(I), the budget correspon-
dence of household H is the correspondence

BH : RC++ × E(I, C) ⇒ RC|H|++ , (p,E) ⇒ BH(p,E),

where, for every (p,E) ∈ RC++ × E(I, C),

BH(p,E) =


{
xi ∈ RC++ : pxi ≤ pωi

}
, if H ∈ Pσ(I),H = {i}{

(xi)i∈H ∈ RC|H|++ : p
∑
i∈H

xi ≤ p
∑
i∈H

ωi + pηH

}
, if H ∈ Pν(I)

while a demand correspondence of household H is a correspondence

DH : RC++ × E(I, C) ⇒ RC|H|++ , (p,E) ⇒ DH(p,E),

such that, for every (p,E) ∈ RC++ × E(I, C), DH(p,E) ⊆ BH(p,E). Finally, a demand correspon-
dence profile is a vector D = (DH)H∈P(I) such that, for every H ∈ P(I), DH is a demand correspon-

dence of household H. We denote the set of demand correspondence profiles by D(RC++× E(I, C)).
When the commodity price vector is p and the properties of economic agents are described by

E, BH(p,E) represents the set of aggregate consumption vectors that household H can afford while
DH(p,E) represents the set of aggregate consumption vectors that members of household H agree
to demand, that is, the set of all the possible outcomes of household H’s decision process. Of course,
such outcomes has to be affordable for that household. Moreover, there might be affordable aggregate
consumption vectors of a household that cannot be obtained as outcome of the decision process of
that household. In fact, disagreement might prevent household members from obtaining specific
internal distributions of commodities. We note also that household decision is a complex procedure
influenced by many factors like, for instance, personal relationships among household members and
their relative bargaining powers. Qualifying Σ(C, I) means just to provide a formalization of some
of the factors entering in household decision processes and to allow demand correspondences to
explicitly depend on such factors.

We are now ready to give the definition of equilibrium.

Definition 4. Let us fix I, C ≥ 2, (E,H) ∈ E(I, C) × H(I) and D ∈ D(RC++× E(I, C)). An
equilibrium associated with (E,H, D) is a vector (π, x, p) ∈ P(I)× RCI++ × RC++ such that

4.1. for every H ∈ π, (xi)i∈H ∈ DH(p,E);

4.2. (π, x) ∈ Af (E,H);

4.3. there is no J ∈ H and (yi)i∈J ∈ DJ (p,E) such that (ui (yi))i∈J > (ui (xi))i∈J .

The set of equilibria associated with (E,H, D) is denoted by W (E,H, D). We also define the set of
equilibrium allocations associated with (E,H, D) as

Ae(E,H, D) =
{

(π, x) ∈ P(I)× RCI++ : ∃p ∈ RC++ such that (π, x, p) ∈W (E,H, D)
}
.

In intuitive terms, equilibria can be described proceeding backward in time as follows. Given
commodity prices, individuals divide into households and members of each household compute the
value of household initial endowment and choose one of the affordable aggregate consumption vectors
they agree to demand (see Condition 4.1). Of course, the considered household allocation has to be
feasible and total household demand does not have to exceed total household supply (see Condition
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4.2). Moreover, formed households and their demands have to be stable with respect to all inside
and outside options. In other words, members of no feasible household can find an agreement over
an affordable aggregate consumption vectors which makes at least one of its members better off and
does not make the other ones worse off, that is, no household objects to the alleged equilibrium
allocation (see Condition 4.3).

As already explained in the introduction, the purpose of the paper is to carry on a welfare
analysis. First of all, let us observe that, because of the very general definition of household demand
correspondence, equilibrium allocations are not necessary efficient at the economy level. This can
be shown by considering, for instance, D̂ ∈ D(RC++× E(I, C)) defined, for every H ∈ P(I) and
(p,E) ∈ RC++× E(I, C), as

D̂H(p,E) =

{
(xi)i∈H ∈ RC|H|++ : ∀i ∈ H, xi ∈ arg max

yi∈RC++

{ui(yi) : pyi ≤ pωi}

}
. (6)

For every H ∈ P(I), the unique element of the set D̂H(p,E) can be interpreted as the aggregate
consumption vector of household H when, as a consequence of the household decision process,
household members disagree about the distribution of the produced surplus ηH, decide not to use it
and consume only what they can afford by their own initial endowments. Using well-known results
about standard exchange economy models, it is immediate to prove the following proposition.

Proposition 5. Let us fix I, C ≥ 2, (E,H) ∈ E(I, C) × H(I) and consider D̂ ∈ D(RC++× E(I, C))
defined in (6). The following properties hold true.

5.1. W (E,H, D̂) 6= ∅.

5.2. For every π ∈ PH(I), there exists (x, p) ∈ RCI++ × RC++ such that (π, x, p) ∈W (E,H, D̂).

5.3. If H 6= Pσ(I), then there exists (π, x, p) ∈W (E,H, D̂) such that (π, x) 6∈ Pf (E,H).

In the above example, inefficiency at the economy level is due to the fact that the value of the aggre-
gate consumption vector demanded by each household having at least two individuals is less then
the value of household endowments, that is, to inefficiency of household decision processes. Moving
from these observations, we have that further assumptions on demand correspondence profiles are
needed in order to get efficiency of equilibria at the economy level. Moreover, such assumptions
have to capture the idea of efficient household decision. The following property, first introduced by
Haller (2000), just is fit for purpose.

Given D ∈ D(RC++× E(I, C)) and E ∈ E(I, C), we say that D satisfies the internal efficiency
property at E if, for every H ∈ P(I), p ∈ RC++ and (xi)i∈H ∈ DH(p,E), we have that

there is no (yi)i∈H ∈ BH(p,E) such that (ui(yi))i∈H > (ui(xi))i∈H . (7)

Such a property simply means that, for each household, there is no affordable aggregate consumption
vector that Pareto improves upon any possible outcome of the household decision process. The set
of demand correspondence profiles satisfying the internal efficiency property at every economy is
denoted by De(RC++× E(I, C)).

The following proposition, which immediately follows from Corollary 1 in Haller (2000), says that
internal efficiency property implies equilibrium allocations to satisfy a weaker notion of efficiency at
the economy level.

Proposition 6. Let us fix I, C ≥ 2, (E,H) ∈ E(I, C) × H(I) and D ∈ D(RC++× E(I, C)). If
D satisfies the internal efficiency property at E, then, for every (π, x) ∈ Ae(E,H, D), there is no
x∗ ∈ RCI++ such that (π, x∗) ∈ Af (E,H) and (ui(x

∗
i ))i∈I > (ui(xi))i∈I .

8



Let us move on now to consider Full Pareto Optimality of equilibrium allocations. For a better
understanding of the novelty of our results, some preliminary remarks are necessary.

The concept of equilibrium we propose in Definition 4 is similar to the notion of “D-equilibrium
at which no group of consumers can benefit from forming a new household” by Gersbach and Haller
(2005, p.114). In fact, the only difference is that the latter one considers, instead of Condition 4.3,
the following stability condition

there is no J ∈ H \ π and (yi)i∈J ∈ BJ (p,E) such that (ui (yi))i∈J � (ui (xi))i∈J . (8)

Of course, assumptions on utility functions imply that if the internal efficiency property is satisfied
by the demand correspondence profile at the considered economy, then every equilibrium in the sense
of Gersbach and Haller is an equilibrium in the sense of Definition 4, as well. Moreover, Condition
(8) together with the internal efficiency property guarantees Full Pareto Optimality of equilibrium
allocations. The following proposition, whose proof is a simple modification of Proposition 4 in
Gersbach and Haller (2005), just states that interesting property.

Proposition 7. Let us fix I, C ≥ 2, (E,H) ∈ E(I, C) × H(I) and D ∈ D(RC++× E(I, C)). If D
satisfies the internal efficiency property at E and (π, x, p) ∈ P(I)×RCI++×RC++ satisfies Conditions
4.1, 4.2 and (8), then (π, x) ∈ Pf (E,H).

Condition (8) means that in equilibrium there is no household outside the equilibrium household
allocation that could afford consumption vectors for its members that make everybody better off.
Of course, the use of such a condition in the definition of equilibrium implies that we are implicitly
assuming that if members of a certain household realize that there is an affordable aggregate con-
sumption vector which Pareto improves upon the alleged equilibrium allocation, then they always
agree to demand it. However, in our opinion, this viewpoint is not appropriate and needs to be
revised. The reason is that it does not take into account that, by definition, the decision process
of each household is able to select, for a given price and a given economy, only elements belonging
to the image of that price and that economy under its demand correspondence. As a result, there
might be affordable aggregate consumption vectors that are advantageous for a certain household
but that household members cannot agree on. In fact, Gersbach and Haller’s stability condition
seems to suggest the existence of a social planner that forces households to choose a Pareto improv-
ing aggregate consumption vector, if any, despite relationships and interactions among members of
those households could make impossible reach that outcome.

Moreover, when property (7) is not satisfied, equilibria in the sense of Gersbach and Haller might
have the property that members of a formed household also agree to demand an affordable aggregate
consumption vector which is Pareto superior to the aggregate consumption vector demanded in
equilibrium. However, in our opinion, a stability condition should assure not only that individuals
don’t want to break the equilibrium household allocation by forming new and more advantageous
households but, at the same time, it should assure that households formed in equilibrium don’t want
to modify their own demands.

On the basis of the above observations, we propose Condition 4.3 in the definition of equilibrium,
that is, we require that in equilibrium there is no household whose decision process can lead to an
outcome that makes at least one of the members better off and does not make the other ones
worse off. In particular, for every household belonging to the equilibrium household allocation,
the household decision process cannot lead to an affordable aggregate consumption vector which is
Pareto superior to the one demanded in equilibrium.

Considering our stability condition instead of Condition (8) has important welfare implications.
Indeed, equilibrium allocations in the sense of Definition 4 are not necessarily Fully Pareto Optimal,
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even assuming the internal efficiency property for demand correspondence profiles. This result is
obtained as a byproduct of Theorem 10 stated in Section 3. In that section, we focus on a very special
demand correspondence profile obtained by assuming that each household chooses its demand via a
specific bargaining process among its members based on their individual relative bargaining powers.

3 Bargaining power and household decisions

As already explained, we are going to build a specific demand correspondence profile explicitly
depending on relative bargaining powers of individuals in each household. We assume then that
each individual chooses the household she desires to belong to and decides the consumption of
commodities in order to maximize her own utility without spending more than her own wealth.
Individual wealth depends on the household she is member of, on initial endowments and preferences
of all the members of that household, and on prices. If an individual is alone, then her wealth is
simply the value of her initial endowment. If instead an individual belongs to a household having
more than one member, then her wealth is equal to the value of her initial endowment plus a
certain share of the value of the additional endowment produced by that household. Within each
household, such individual shares of the produced surplus are the outcome of a bargaining process
performed by household members before entering the market and whose outcome depend on their
relative bargaining powers. Following the approach in Gersbach and Haller (2009), we assume that
household decisions are Nash-bargained.

The formalization of what above described requires to qualify Σ(I, C) in order to make it contain
information on relative bargaining powers of household members. For this purpose, for every H ∈
Pν(I), we associate with household H a vector θH = (θHi )i∈H ∈ ∆H, where

∆H =

{
(θHi )i∈H ∈ (0, 1)|H| :

∑
i∈H

θHi = 1

}
,

and, for every i ∈ H, θHi measures the relative bargaining power of individual i within household
H. We define

Σ(I, C) =

(
×

H∈Pν(I)
∆H

)
.

The set of economies is

E(I, C) = RCI++ × UIC × (RC+ \ {0})|Pν(I)| ×

(
×

H∈Pν(I)
∆H

)
(9)

with generic element E =
(
(ωi, ui)i∈I , (η

H, θH)H∈Pν(I)

)
. We define also, for every H ∈ P(I), the

set

EH(I, C) =

 RC++ × UC , if H ∈ Pσ(I)

RC|H|++ × U |H|C × (RC+ \ {0})×∆H, if H ∈ Pν(I)

with generic element

eH =

{
(ωi, ui), if H ∈ Pσ(I),H = {i}(
(ωi, ui)i∈H, η

H, θH
)
, if H ∈ Pν(I)

Finally, given E ∈ E(I, C) and H ∈ P(I), we denote by EH the obvious projection of E on EH(I, C).
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We assume that the consumption of an individual belonging to a certain feasible household
depends only on the components of the economy related to that household and prices. Given a
household H ∈ P(I), eH ∈ EH(I, C), and p ∈ RC++, we have that individual i belonging to H can
compute her consumption vector as follows.

If H ∈ Pσ(I), H = {i}, then the wealth of individual i is defined as the value of her initial
endowment ωi, that is, pωi. Consequently, individual i consumption vector is the unique solution
χHi (p, eH) ∈ RC++ to the problem

max
xi∈RC++

ui(xi) subject to pxi ≤ pωi.

If H ∈ Pν(I), we assume that the household decision is Nash-bargained and that, for every
i ∈ H, individual i’s threat point is individual i’s indirect utility in the household {i} at the price
vector p. Consequently, consumption vectors of individuals in H are obtained by considering the

unique solution (χHi (p, eH))i∈H ∈ RC|H|++ to the problem

max
(xi)i∈H∈R

C|H|
++

∏
i∈H

(
ui(xi)− V p,H

i (0)
)θHi

subject to


ui(xi) ≥ V p,H

i (0), i ∈ H

p
∑
i∈H

xi ≤ p
∑
i∈H

ωi + pηH
(10)

where
V p,H
i (0) = max

{
ui(xi) : xi ∈ RC++, pxi ≤ pωi

}
.

First of all, note that Problem (10) is exactly the same as the household decision problem considered
in Gersbach and Haller (2009, p.683). Moreover, we stress that considering V p,H

i (0) as individual i’s
threat point in the bargaining process presumes that individual i has indeed the possibility to stay
alone, that is, the option to form the household {i}. As a result, the assumption that constitutions
contain the set of singletons is essential in the definition of household decision processes we are
dealing with.

From the above discussion, for every H ∈ P(I), we obtain the demand function of household H

χH : RC++ × EH(I, C)→ RC|H|++ ,
(
p, eH

)
→ χH(p, eH) =

(
χHi (p, eH)

)
i∈H . (11)

Of course, the vector χ = (χH)H∈P(I) can be also interpreted as an element of D(RC++× E(I, C)),

and it is immediate to verify that, in particular, χ ∈ De(RC++× E(I, C)).
Moreover, for every (E,H) ∈ E(I, C)×H(I), an equilibrium associated with (E,H, χ) is a vector

(π, x, p) ∈ P(I)× RCI++ × RC++ such that

for every H ∈ π, (xi)i∈H = χH(p,EH); (12)

(π, x) ∈ Af (E,H); (13)

there is no J ∈ H such that
(
ui
(
χJi (p,EJ )

))
i∈J > (ui (xi))i∈J . (14)

Note that, equilibria associated with the demand correspondence profile χ are “competitive equi-
libria with free exit” in the sense of Gersbach and Haller (2003). Moreover, such equilibria are
invariant under nominal changes in prices. Then, without loss of generality, we can assume the
C-th commodity to be the numeraire commodity, that is, we can normalize its price. The following
proposition, whose proof is straightforward, states this property.

Proposition 8. Let us fix I, C ≥ 2, (E,H) ∈ E(I, C)×H(I) and χ ∈ De(RC++×E(I, C)) defined in
(11). Then, we have

W (E,H, χ) =
{

(π, x, λp) ∈ P(I)× RCI++ × RC++ : (π, x, p) ∈Wn(E,H, χ), λ ∈ R++

}
,
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Ae(E,H, χ) =
{

(π, x) ∈ P(I)× RCI++ : there exists p ∈ RC++ such that (π, x, p) ∈Wn(E,H, χ)
}
,

where Wn(E,H, χ) =
{

(π, x, p) ∈W (E,H, χ) : pC = 1
}

is called set of normalized equilibria asso-
ciated with (E,H, χ).

Let us consider now the topological space

V(I, C) = RCI++ ×
(
C2(RC++)

)I × RC|Pν(I)| ×

(
×

H∈Pν(I)
R|H|

)
, (15)

endowed with the product topology of the natural topologies on each of the spaces in the cartesian

product. In particular, following among others Allen (1981), we consider on
(
C2(RC++)

)I
the C2

compact-open topology. In what follows, we endow E(I, C) ⊆ V(I, C) with the topology induced by
V(I, C).

Finally, let us consider the following subsets of H(I)

Hf (I) = {H ∈ H(I) : H,K ∈ H ∩Pν(I), H ∩K 6= ∅ ⇒ H = K} , Hv(I) = H(I) \ Hf (I).

The set Hf (I) represents the set of constitutions allowing each individual to belong at most to one
household having more than one member. For every H ∈ Hf (I), let us define

π̂(H) = (Pν(I) ∩H) ∪

{i} : i ∈ I \
⋃

H∈Pν(I)∩H

H

 ,

and note that,
π̂(H) ∈ PH(I) and H = π̂(H) ∪Pσ(I). (16)

We are now ready to present the main results of the paper. We stress that Theorem 9 and Theorem
10 are both about properties of equilibria when demand correspondence profile χ is considered.

Theorem 9. Let us fix I, C ≥ 2, H ∈ Hf (I) and χ ∈ De(RC++× E(I, C)) defined in (11). The
following statements hold true.

9.1. For every E ∈ E(I, C), Wn(E,H, χ) 6= ∅.

9.2. For every E ∈ E(I, C), if (π, x, p) ∈Wn(E,H, χ), then π = π̂(H).

9.3. For every E ∈ E(I, C), Ae(E,H, χ) ⊆ Pf (E,H).

9.4. There exists an open and dense subset D(I, C,H) ⊆ E(I, C) such that, for every E∗ ∈
D(I, C,H), there exists a positive integer K such that

|Wn(E∗,H, χ)| = K and Wn(E∗,H, χ) = {(π̂(H), xk∗, pk∗)}Kk=1, (17)

and there exist an open neighborhood O(E∗) ⊆ E(I, C) of E∗ and, for every k ∈ {1, . . . ,K},
an open neighborhood O(xk∗, pk∗) ⊆ RCI++ × RC++ of (xk∗, pk∗) and gk : O(E∗) → O(xk∗, pk∗)
such that:

gk ∈ C0, gk(E
∗) = (xk∗, pk∗) and O(xk∗, pk∗) ∩ O(xh∗, ph∗) = ∅, for k 6= h; (18){

(E, x, p) ∈ O(E∗)×O(xk∗, pk∗) : (π̂(H), x, p) ∈Wn(E,H, χ)
}

= graph(gk); (19){
(E, x, p) ∈ O(E∗)× RCI++ × RC++ : (π̂(H), x, p) ∈Wn(E,H, χ)

}
=

K⋃
k=1

graph(gk). (20)
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Theorem 10. Let us fix I, C ≥ 2, H ∈ Hv(I) and χ ∈ De(RC++× E(I, C)) defined in (11). The
following statements hold true.

10.1. There exists a nonempty open set O1 ⊆ E(I, C) such that, for every E ∈ O1,

W (E,H, χ) 6= ∅ and Ae(E,H, χ) ∩ Pf (E,H) 6= ∅.

10.2. There exists a nonempty open set O2 ⊆ E(I, C) such that, for every E ∈ O2,

W (E,H, χ) 6= ∅ and Ae(E,H, χ) ∩ (Af (E,H) \ Pf (E,H)) 6= ∅.

Theorem 9 shows that if the constitution is simple enough, then there is existence of equilibria,
equilibrium allocations are efficient and, in a suitable open and dense subset of the set of economies,
the (normalized) equilibria are finite in number and smoothly depend on the economy. In particular,
such a result demonstrates that, in fact under suitable and strong assumptions which make the
model very similar to the Arrow-Debreu exchange economy one, the study of regular economies can
be extended to models with multi-member households whose decision processes are described by
a non-unitary models. Moreover, note that if H ∈ Hf (I), then the singletons that do not belong
to π̂(H) are inessential in determining equilibria and their properties, even though, as already
explained, they are fundamental to justify the specific household decision processes defining χ. As
a consequence, Theorem 9 can be formally thought as a theorem analysing the case in which the
household allocation π̂(H) is fixed and then, in particular, it indeed adds to the other existence
results related to fixed household allocations (see Gersbach and Haller (1999) and Sato (2009)).

Theorem 10 shows instead that if there is a wide range of outside options for individuals, then
both efficiency and inefficiency of equilibrium allocations are not negligible in the set of economies.
In fact, we prove that if the constitution is rich enough, then there are robust examples of both
economies having at least an equilibrium whose associated allocation is efficient at the economy
level and economies having at least an equilibrium whose associated allocation is not efficient at the
economy level. The importance of Theorem 10 is due to the fact that it shows how the acceptance
of the definition of equilibrium proposed in this paper, instead of the one proposed by Gersbach
and Haller (2005), makes efficient choices of households be no more sufficient to beget efficiency of
equilibrium allocations at the economy level for a lot of economies. In other words, in our framework,
the inefficiency of household decisions becomes only one of the sources of inefficiency of equilibrium
allocations.

4 Some final remarks

A. Definitions 1, 2 and 4 can be simply adapted to more general settings in which, for instance,
individual consumption set is RC+, individual preferences take into account consumption and group
externalities and household endowments are elements in RC+ without any further specification. Even
though excluding group and consumption externalities from the model, the choice of RC++ as individ-
ual consumption set and properties (1), (2), (3) and (4) on utility functions are certainly restrictions
under an economic viewpoint, such assumptions are really used to get Theorems 9 and 10 and then
we decided to introduce them from the beginning in order to simplify the notation. However, a
discussion about the possibility to weaken them is certainly needed.

While stating and proving Theorems 9 and 10 when individual utility functions take into ac-
count group or consumption externalities seems to require substantial work, the choice of RC++ as
consumption set and properties (1), (2), (3) and (4) on utility functions are assumptions that can
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be relaxed. As in a large part of general equilibrium literature about regularity of equilibria, simi-
lar assumptions are introduced to employ differential techniques and use theorems from differential
topology (see, Villanacci et al. (2002)). However, the same differential techniques can be employed
even considering the case in which the consumption set is RC+, provided the assumptions on the util-
ity functions are obviously modified in order to take into account their new domain, and theorems
similar to ours can be proved following analogous methods (see, Cass et al. (2001)).

Nevertheless, in our opinion, those more general conditions only imply technical discussions about
many mathematical details and makes notation and proofs more complicated without gaining more
economic insight. Indeed, in order to introduce our definition of equilibrium, explain its meaning
and show it does not make efficient choices of households beget efficiency at the economy level of
equilibrium allocations, the setting we have chosen just serves the purpose.

B. The model considered in this paper does not encompass group externality for individuals. An
interesting issue is to understand if in that more general setting the concept of constitution gets
redundant, as it seems possible to rule out certain households in equilibrium just imposing sufficiently
negative group externalities to individuals forming those households. In our opinion, it is not the
case. The main reason is that, under an interpretative viewpoint, imposing that a certain household
is forbidden by physical constraints or laws is very different from imposing that individuals belonging
to that household don’t want to stay together because they can always find more advantageous
households to belong to. Indeed, we can easily conceive situations in which people are forbidden to
stay together but, if they could, they would.

Moreover, using constitutions instead of group externalities has another advantage. In fact, this
viewpoint allows to study welfare implications of a social planner intervention on the constitution,
that is, we can analyse what are the consequences for individuals if the set of feasible households
changes. Of course, such an issue would look quite strange on the economic ground if we excluded
households via group externalities. In fact, in that case, in order to make the social planner able to
modify the set of feasible households we should assume he has the capability to change individual
preferences. However, this assumption is very often judged too strong.

The proposition below, whose proof immediately follows from the definition of equilibrium,
considers just those kind of questions and states that, for every equilibrium, the addition of new
feasible households to the constitution cannot determine a Pareto inferior equilibrium allocation,
provided prices are not changed. However, we guess that, dropping the assumption about prices,
Proposition 11 does not hold true.

Proposition 11. Let us fix I, C ≥ 2, E ∈ E(I, C), H,H∗ ∈ H(I) and D ∈ D(RC++× E(I, C))
and consider (π, x, p) ∈ W (E,H, D) and (π∗, x∗, p∗) ∈ W (E,H∗, D). If H ⊆ H∗ and p = p∗, then
(ui(xi))i∈I 6> (ui(x

∗
i ))i∈I .

C. The stability condition in Definition 4 requires that there is no household objecting to the
alleged equilibrium allocation. By that condition, we are implicitly assuming that individuals are
not very forward looking. In fact, if individuals would analyse more carefully household objections,
they might understand that some of those objections are not justified as they are balanced by
suitable counter-objections. Of course, in real world, some individuals are not interested in such an
analysis. However, we think it would certainly be worth considering also equilibrium concepts in
which individuals are more forward looking and evaluate the role of counter-objections to household
objections, as well.

There are surely at least as many ways to address that issue as different notions of bargaining
sets in cooperative game theory. Just to fix ideas, in what follows, we propose a definition of
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equilibrium whose stability condition is the same as the one in the solution concept for cooperative
games introduced by Mas-Colell (1989).

Definition 12. Let us fix I, C ≥ 2, (E,H) ∈ E(I, C) × H(I) and D ∈ D(RC++× E(I, C)). An
MC-equilibrium associated with (E,H, D) is a vector (π, x, p) ∈ P(I)× RCI++ × RC++ such that

12.1. for every H ∈ π, (xi)i∈H ∈ DH(p,E);

12.2. (π, x) ∈ Af (E,H);

12.3. for every J ∈ H and (yi)i∈J ∈ DJ (p,E) such that (ui (yi))i∈J > (ui (xi))i∈J there exists
K ∈ H such that K ∩ J 6= ∅ and (zi)i∈K ∈ DK(p,E) such that

∀i ∈ K ∩ J , ui (zi) ≥ ui (yi) , (21)

∀i ∈ K \ J , ui (zi) ≥ ui (xi) , (22)

where at least one of the inequalities in (21) or (22) is strict.

The set of MC-equilibria associated with (E,H, D) is denoted by WMC(E,H, D).

Condition 12.3 simply requires that if a household is an advantageous outside option for its members,
that is, it belongs to the constitution and has the property that at MC-equilibrium prices it makes
at least one of its members better off and does not make the other ones worse off, then it is not really
formed. This is due to the fact that a subset of its members find more convenient form another
household, possibly together with other individuals who do not object to join them.

Of course, each equilibrium in the sense of Definition 4 is a MC-equilibrium. As a consequence,
MC-equilibrium allocations are not necessarily Fully Pareto Optimal. Moreover, as shown by Propo-
sition 13 below, welfare implications caused by changing the constitution are now different from the
ones described in Proposition 11. Indeed, in the new framework, an enrichment of the set of feasible
households may lead to a reduction of allocative efficiency even at the same equilibrium prices.

Proposition 13. Let us fix I ≥ 3, C ≥ 2 and H = {I} ∪ {{i} : i ∈ I}. Then there exists
E∗ ∈ E(I, C), x∗, x∗∗ ∈ RCI++ and p∗ ∈ RC++ such that

(Pσ(I), x∗, p∗) ∈WMC(E∗,P(I), χ), ({I}, x∗∗, p∗) ∈WMC(E∗,H, χ), (23)

(u∗i (x
∗∗))i∈I > (u∗i (x

∗))i∈I . (24)

Finally, we guess that similar results can be obtained also assuming definitions of equilibrium based
on different notions of bargaining set.

5 Proofs

As already noted, Propositions 3, 5, 6, 7, 8 and 11 can be deduced by prior results or are straight-
forward. Then, we are left with proving Theorems 9, 10 and Proposition 13. In what follows, we
refer to the notation introduced in Section 3.

Fixed I, C ≥ 2, p ∈ RC++, H ∈ P(I), eH ∈ EH(I, C) and i ∈ H, let us define the function6

V p,H
i : [0, 1]→ R, ai 7→ V p,H

i (aHi ) = max
{
ui(xi) : xi ∈ RC++, pxi ≤ pωi + aipη

H} ,
6Note that, in order to simplify the notation and since no confusion should arise, we do not make V p,Hi explicitly

depend on eH.
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representing the indirect utility for individual i in household H at prices p in the case in which she
gets a share ai of pηH. It is simple to verify that Assumptions (1)-(4) assure that V p,H

i is C1, strictly
increasing and strictly concave on [0, 1].

If H ∈ Pν(I), we have that χHi (p, eH) is the unique solution to the problem

max
xi∈RC++

ui(xi) subject to pxi ≤ pωi + αHi (p, eH)pηH, (25)

where αHi (p, eH) is the share of the value of the additional endowment ηH she has obtained by the
bargain within the household. The vector

(
αHi (p, eH)

)
i∈H, representing individual shares of pηH in

household H, is the unique solution to the problem

max
∏
i∈H

(
V p,H
i (ai)− V p,H

i (0)
)θHi

subject to


ai ≥ 0, i ∈ H∑
i∈H

ai = 1
(26)

that is, the unique solution to the problem

max
∑
i∈H

θHi ln
(
V p,H
i (ai)− V p,H

i (0)
)

subject to (ai)i∈H ∈ ∆H. (27)

The above discussion allows to define, for every H ∈ Pν(I), the share function of household H,

αH : RC++ × EH(I, C)→ ∆H, (p, eH)→ αH(p, eH) =
(
αHi (p, eH)

)
i∈H .

Let us now recall some fundamental results from differential topology. The general formulation of
the Implicit Function Theorem given in Theorem 14 can be found in Mas-Colell (1985). Theorem
15 and 16 can instead be found in Villanacci et al. (2002).

Theorem 14. Let us consider F : O × V → Rn, where O is an open subset of Rn and V is a
topological space. Assume that F is continuous, for every (x, v) ∈ O × V, DxF (x, v) exists and the
function7 DxF : O × V →M(n) is continuous. Let (x∗, v∗) ∈ O × V be such that F (x∗, v∗) = 0 and
detDxF (x∗, v∗) 6= 0. Then there exist an open neighborhood O(x∗) ⊆ O of x∗, an open neighborhood
O(v∗) ⊆ V of v∗ and ϕ : O(v∗)→ O(x∗) such that ϕ ∈ C0, ϕ(v∗) = x∗ and

{(x, v) ∈ O(x∗)×O(v∗) : F (x, v) = 0} = {(x, v) ∈ O(x∗)×O(v∗) : x = ϕ(v)}.

Theorem 15. Let M and N be two C2 boundaryless manifolds of the same dimension, y ∈ N and
F,G :M→N be continuous functions. Assume that G is C1 in an open neighborhood O of G−1(y),
y is a regular value for G restricted to O,

∣∣G−1(y)
∣∣ is finite and odd and there exists a continuous

homotopy H :M× [0, 1]→ N from F to G such that H−1(y) is compact. Then F−1(y) 6= ∅.

Theorem 16. Let m, p, n, α be positive integers and M, Ω and N be Cα manifolds of dimensions
m, p and n, respectively. Let F :M× Ω→ N be a Cα function. Assume α > max{m− n, 0}. If y
is a regular value for F , then there exists a full measure subset Ω∗ of Ω such that, for every ω ∈ Ω∗,
y is a regular value for the function F (·, ω) : M → N , x 7→ F (x, ω).

Proposition 17. Let us fix I, C ≥ 2, H ∈ Pν(I), eH ∈ EH(I, C,H) and p ∈ RC++. Then the
following statements hold true.

7For every positive integer k, M(k) denotes the set of square matrices having real elements, k rows and k columns.
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17.1. If (a∗i )i∈H = αH(p, eH) and (x∗i )i∈H = χH(p, eH), then there exists a unique(
(λ∗i , x

∗
i , λ
∗
i )i∈H , µ

H∗) ∈ (R× RC++ × R
)|H| × R

such that the vector(
(x∗i , λ

∗
i , x
∗
i , λ
∗
i , a
∗
i )i∈H , µ

H∗) ∈ (RC++ × R× RC++ × R× (0, 1)
)|H| × R (28)

is solution to the system

i ∈ H, Dui(xi)− λip = 0 (29.1)

i ∈ H, −p(xi − ωi − aiηH) = 0 (29.2)

i ∈ H, Dui(xi)− λip = 0 (29.3)

i ∈ H, −p(xi − ωi) = 0 (29.4)

i ∈ H, θHi λipη
H − µH (ui(xi)− ui(xi)) = 0 (29.5)

−
∑
i∈H

ai + 1 = 0 (29.6)

(29)

17.2. System (29) has a unique solution and if (28) solves (29), then (a∗i )i∈H = αH(p, eH) and
(x∗i )i∈H = χH(p, eH).

Proof. First, let us present some useful remarks. Fix i ∈ H and ai ∈ (0, 1). It is well known that if
xi(ai) is the unique element of the set

arg max
{
ui (xi) : xi ∈ RC++, pxi ≤ pωi + aipη

H} , (30)

then there exists a unique λi(ai) ∈ R such that (xi(ai), λi(ai)) is solution to{
Dui(xi)− λip = 0

−p(xi − ωi − aiηH) = 0
(31)

and that if (xi(ai), λi(ai)) ∈ RC++ × R is solution to (31), then xi(ai) is the unique element of the
set (30). Then the two functions xi : (0, 1)→ RC++ and λi : (0, 1)→ R are well defined and, because
of the assumptions on utility functions, they are C1. Moreover, via the envelope theorem, we have
also

d

d ai
ui(xi(ai)) = λi(ai)pη

H. (32)

Let us prove now Statement 17.1. If, for every i ∈ H, a∗i = αHi
(
p, eH

)
and x∗i = χHi

(
p, eH

)
, then

there exists a unique λ∗i ∈ R such that (x∗i , λ
∗
i ) solves the system{

Dui(xi)− λip = 0

−p(xi − ωi − a∗i ηH) = 0

and, as (a∗i )i∈H solves the maximization problem

max
∑
i∈H

θHi ln
(
V p,H
i (ai)− V p,H

i (0)
)

subject to (ai)i∈H ∈ ∆H, (33)
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there exists a unique µH∗ ∈ R such that
(
(a∗i )i∈H , µ

H∗) solves the system
i ∈ H, θHi

d
d ai

V p,H
i (ai)− µH

(
V p,H
i (ai)− V p,H

i (0)
)

= 0

−
∑
i∈H

ai + 1 = 0
(34)

By the preliminary remarks and the definition of V p,H
i , we have V p,H

i (a∗i ) = ui(x
∗
i ),

d

d ai
V p,H
i (a∗i ) = λ∗i pη

H,

and V p,H
i (0) = ui(x

∗
i ), where (x∗i , λ

∗
i ) is the unique solution to the system{

Dui(xi)− λip = 0

−p(xi − ωi) = 0

The desired result immediately follows from the above relations.
The proof of Statement 17.2 is a simple consequence of the preliminary remarks and of the fact

that if (
(a∗i )i∈H , µ

H∗) ∈ (0, 1)|H| × R

is solution to (34), then (a∗i )i∈H is solution to (33).

Proposition 18. Let us fix I, C ≥ 2 and H ∈ Pν(I). Then the following statements hold true.

18.1. The functions αH and χH are continuous.

18.2. For every p ∈ RC++, (ωi, ui)i∈H ∈ RC|H|++ × U |H|C , ηH ∈ RC+ \ {0}, ε > 0 and i∗ ∈ H, there
exists θH ∈ ∆H such that

αHi∗
(
p, (ωi, ui)i∈H, η

H, θH
)
< ε.

Proof. In order to prove Statement 18.1, let us define

ZH =
(
RC++ × R× RC++ × R× (0, 1)

)|H| × R

with generic element ζH =
(
(xi, λi, xi, λi, ai)i∈H , µ

H). Consider then the function

GH : ZH × RC++ × EH(I, C)→ R|H|(2C+3)+1(
ζH, p, eH

)
7→ left hand side of System (29)

and note that GH is continuous. From Proposition 17, we know that, for every (p, eH) ∈ RC++ ×
EH(I, C), there exists a unique ζH ∈ ZH such that GH(ζH, p, eH) = 0. Then we can define

ΦH : RC++ × EH(I, C)→ ZH,

(p, eH) 7→ the unique element of the set
{
ζH ∈ ZH : GH(ζH, p, eH) = 0

}
.

As proved in the Appendix, we have that

ΦH is continuous, (35)

and then the continuity of αH and χH follows.

18



In order to prove Statement 18.2, let us fix p, (ωi, ui)i∈H, ηH, ε, i∗ and a sequence (θH[n])∞n=1 in

∆H such that θ
H[n]
i∗ → 0 as n→∞, and prove there exists n∗ ∈ N∗ such that

αHi∗
(
p, (ωi, ui)i∈H, η

H, θH[n∗]
)
< ε.

Assume by contradiction that, for every n ∈ N∗, αHi∗
(
p, (ωi, ui)i∈H, η

H, θH[n]
)
≥ ε. We know that,

for every n ∈ N∗, System (34) has a unique solution ((a
[n]
i )i∈H, µ

H[n]) ∈ ∆H × R and that such a

solution satisfies a
[n]
i∗ ≥ ε. Note also that, for every i ∈ H,

µH[n] =
θ
H[n]
i

d
dai
V p,H
i (a

[n]
i )

V p,H
i (a

[n]
i )− V p,H

i (0)
.

Assuming i = i∗, we deduce that µH[n] → 0 as n → ∞, for the denominator is uniformly bounded
away from zero and the numerator goes to zero. Consider now any i∗ ∈ H such that (up to a

subsequence) θ
H[n]
i∗
→ L > 0. Since

µH[n] =
θ
H[n]
i∗

d
dai∗

V p,H
i∗

(a
[n]
i∗

)

V p,H
i∗

(a
[n]
i∗

)− V p,H
i∗

(0)
≥

θ
H[n]
i∗

d
dai∗

V p,H
i∗

(1)

V p,H
i∗

(1)− V p,H
i∗

(0)
,

we get
lim inf
n→∞

µH[n] > 0,

and the contradiction is found.

Let us introduce now further notation. Given H ∈ Hf (I), let us define

Hσ = H \Pν(I) and Hν = H ∩Pν(I).

Note also that Hσ = Pσ(I) ∩ π̂(H) and Hν = Pν(I) ∩ π̂(H). The notation used in the proofs of
Propositions 19, 20 and 21 and Theorem 9 implicitly assumes that both Hσ 6= ∅ and Hν 6= ∅, but
it can be easily adapted to treat the other cases.

Proposition 19. Let us fix I, C ≥ 2, H ∈ Hf (I), E ∈ E(I, C) and (x, p) ∈ RCI++ ×RC++. Then, the
two following conditions are equivalent 8.

19.1. (π̂(H), x, p) ∈Wn(E,H, χ)

19.2. pC = 1, for every H ∈ π̂(H), (xi)i∈H = χH(p,EH) and∑
{i}∈Hσ

x
\
i +

∑
H∈Hν

∑
i∈H

x
\
i =

∑
i∈I

ω
\
i +

∑
H∈Hν

ηH\. (36)

Proof. Assume at first that 19.2 holds true and prove (π̂(H), x, p) ∈ Wn(E,H, χ). Condition (12)
is satisfied. By Assumption (2), for every {i} ∈ Hσ, pxi = pωi, and, for every H ∈ Hν , i ∈ H,

pxi = pωi + αHi (p,EH)pηH.

Then ∑
{i}∈Hσ

pxi +
∑
H∈Hν

∑
i∈H

pxi =
∑
i∈I

pωi +
∑
H∈Hν

pηH.

8For every v = (vc)Cc=1 ∈ RC , we set v\ = (vc)C−1
c=1 ∈ RC−1.
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Using now (36) we have∑
{i}∈Hσ

pCxCi +
∑
H∈Hν

∑
i∈H

pCxCi =
∑
i∈I

pCωCi +
∑
H∈Hν

pCηH,C ,

and since pC = 1, we have indeed∑
{i}∈Hσ

xi +
∑
H∈Hν

∑
i∈H

xi =
∑
i∈I

ωi +
∑
H∈Hν

ηH, (37)

that is, Condition (13) is fulfilled. Condition (14) is trivially satisfied since H ∈ Hf (I).
In order to prove the converse, assume (π, x, p) ∈ Wn(E,H, χ). Of course, by definition of

normalized equilibrium, pC = 1 and, for every H ∈ π̂(H), (xi)i∈H = χH(p,EH). Finally, following
an argument similar to the one used in the first part of the proof, we have that Assumption (2) and
Condition (13) imply (37) that immediately implies (36).

Proposition 20. Let us fix I, C ≥ 2, H ∈ Hf (I) and E ∈ E(I, C). Then the following statements
hold true.

20.1. If (π̂(H), x∗, p∗) ∈Wn(E,H, χ), then there exists a unique(
(λ∗i ){i}∈Hσ

,
(
(λ∗i , x

∗
i , λ
∗
i , a
∗
i )i∈H , µ

H∗)
H∈Hν

)
∈ R|Hσ |××

H∈Hν

((
R× RC++ × R× (0, 1)

)|H| × R
)

such that the vector

ξ∗ =
(

(x∗i , λ
∗
i ){i}∈Hσ

,
(
(x∗i , λ

∗
i , x
∗
i , λ
∗
i , a
∗
i )i∈H , µ

H∗)
H∈Hν

, p∗
)
∈ (38)

(
RC++ × R

)|Hσ | × ×
H∈Hν

((
RC++ × R× RC++ × R× (0, 1)

)|H| × R
)
× RC++ = Ξ

is solution to the system

{i} ∈ Hσ, Dui(xi)− λip = 0 (39.1)

{i} ∈ Hσ, −p(xi − ωi) = 0 (39.2)

H ∈ Hν, i ∈ H, Dui(xi)− λip = 0 (39.3)

H ∈ Hν, i ∈ H, −p(xi − ωi − aiηH) = 0 (39.4)

H ∈ Hν, i ∈ H, Dui(xi)− λip = 0 (39.5)

H ∈ Hν, i ∈ H, −p(xi − ωi) = 0 (39.6)

H ∈ Hν, i ∈ H, θHi λipη
H − µH (ui(xi)− ui(xi)) = 0 (39.7)

H ∈ Hν, −
∑
i∈H

ai + 1 = 0 (39.8)

∑
i∈I

x
\
i −

∑
i∈I

ω
\
i −

∑
H∈Hν

ηH\ = 0 (39.9)

pC − 1 = 0 (39.10)

(39)

and,
∀H ∈ Hν , i ∈ H, a∗i = αHi (p∗, EH). (40)
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20.2. If (38) is solution to (39), then (π̂(H), x∗, p∗) ∈Wn(E,H, χ) and (40) holds true.

Proof. The above relations easily follow from Proposition 17.

Proposition 21. Let us fix I, C ≥ 2, H ∈ Hf (I) and E ∈ E(I, C). Then there exist ε > 0, p̃ ∈ RC++,
x̃ ∈ RCI++, such that the following properties hold true:

y ∈ RCI++,
∑
i∈I

yi ≤
∑
i∈I

x̃i + ε
∑
H∈Hν

ηH ⇒

(ui(yi))i∈I 6>
(

(ui(x̃i)){i}∈Hσ
,
((
ui
(
x̃i + ε

|H|η
H))

i∈H

)
H∈Hν

)
,

(41)

∀ {i} ∈ Hσ, p̃ =
Dui(x̃i)

DxCi
ui(x̃i)

, (42)

∀H ∈ Hν , i ∈ H, p̃ =
Dui

(
x̃i + ε

|H|η
H)

DxCi
ui
(
x̃i + ε

|H|η
H
) . (43)

Proof. Consider z ∈ RCI++ and the problem

max
x∈RCI++

u1(x1) s.t.


ui(xi) ≥ ui(zi), i ∈ {2, . . . , I}∑
i∈I

xi ≤
∑
i∈I

zi
(44)

It is well known that (44) has a unique solution x̂ ∈ RCI++ satisfying the following properties:

y ∈ RCI++,
∑
i∈I

yi ≤
∑
i∈I

x̂i ⇒
(
(ui(yi))i∈I

)
6>
(
(ui(x̂i))i∈I

)
, (45)

∀i, j ∈ I, Dui(x̂i)

DxCi
ui(x̂i)

=
Duj(x̂j)

DxCj
uj(x̂j)

. (46)

Define then

v =

(
max

{
ηH,c

|H|
: H ∈ Hν

})
c∈C
∈ RC+ \ {0}, w = (min {x̂ci : i ∈ I})c∈C ∈ RC++,

and let ε > 0 be such that εv � w. Then, for every H ∈ Hν , i ∈ H, x̂Hi − ε
|H|η

H � 0, and the proof
is complete by defining

∀ {i} ∈ Hσ, x̃i = x̂i,

∀ H ∈ Hν , i ∈ H, x̃i = x̂Hi − ε
|H|η

H

and

p̃ =
Dui(x̂i)

DxCi
ui(x̂i)

,

where i ∈ I is arbitrarily chosen.

Proof of Statement 9.1 of Theorem 9. Using Proposition 20, we are going to prove via Theorem 15
that the function9

F : Ξ× E(I, C)→ Rdim Ξ

9By dim Ξ we denote the dimension of the manifold Ξ.
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(ξ, E) 7→ F(ξ, E) = left hand side of the System (39)

has the property that
∀E ∈ E(I, C), {ξ ∈ Ξ : F(ξ, E) = 0} 6= ∅. (47)

Let us fix then
E =

(
(ωi, ui)i∈I ,

(
ηH, θH

)
H∈Pν(I)

)
∈ E(I, C),

and, from Proposition 21, consider ε > 0, p̃ ∈ RC++, x̃ ∈ RCI++ satisfying (41), (42) and (43).
Moreover, for every H ∈ Hν , consider a function φH : (0, 1)→ R such that φH ∈ C1, φH(|H|−1) = 0,
for every s ∈ (0, 1), DφH(s) < 0 and

lim
s→0+

φH(s) = +∞, lim
s→1−

φH(s) = −∞.

Consider then the system in the unknowns (ξ, τ) ∈ Ξ× [0, 1] given by

{i} ∈ Hσ, Dui(xi)− λip = 0 (48.1)

{i} ∈ Hσ, −p(xi − (1− τ)ωi − τ x̃i) = 0 (48.2)

H ∈ Hν, i ∈ H, Dui(xi)− λip = 0 (48.3)

H ∈ Hν, i ∈ H, −p(xi − (1− τ)ωi − τ x̃i − ((1− τ) + τε) aiη
H) = 0 (48.4)

H ∈ Hν, i ∈ H, Dui(xi)− λip = 0 (48.5)

H ∈ Hν, i ∈ H, −p(xi − (1− τ)ωi − τ x̃i) = 0 (48.6)

H ∈ Hν, i ∈ H, (1− τ)θHi λipη
H + τφH(ai)− µH (ui(xi)− ui(xi)) = 0 (48.7)

H ∈ Hν, −
∑
i∈H

ai + 1 = 0 (48.8)

∑
i∈I

x
\
i − τ

∑
i∈I

x̃
\
i − (1− τ)

∑
i∈I

ω
\
i − ((1− τ) + τε)

∑
H∈Hν

ηH\ = 0 (48.9)

pC − 1 = 0 (48.10)
(48)

and define the functions

H : Ξ× [0, 1]→ Rdim Ξ, (ξ, τ) 7→ H(ξ, τ) = left hand side of the System (48),

F : Ξ→ Rdim Ξ, ξ 7→ F (ξ) = H(ξ, 0),

G : Ξ→ Rdim Ξ, ξ 7→ G(ξ) = H(ξ, 1).

Note that F agrees with the left hand side of the System (39), while G with the left hand side of
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the following system

{i} ∈ Hσ, Dui(xi)− λip = 0 (49.1)

{i} ∈ Hσ, −p(xi − x̃i) = 0 (49.2)

H ∈ Hν, i ∈ H, Dui(xi)− λip = 0 (49.3)

H ∈ Hν, i ∈ H, −p(xi − x̃i − εaiηH) = 0 (49.4)

H ∈ Hν, i ∈ H, Dui(xi)− λip = 0 (49.5)

H ∈ Hν, i ∈ H, −p(xi − x̃i) = 0 (49.6)

H ∈ Hν, i ∈ H, φH(ai)− µH (ui(xi)− ui(xi)) = 0 (49.7)

H ∈ Hν, −
∑
i∈H

ai + 1 = 0 (49.8)

∑
i∈I

x
\
i −

∑
i∈I

x̃
\
i − ε

∑
H∈Hν

ηH\ = 0 (49.9)

pC − 1 = 0 (49.10)

(49)

We have that F,G,H are continuous on their domains and G is C1 on Ξ. As proved in the Appendix,
we have

G−1(0) = {ξ∗}, (50)

DξG(ξ∗) ∈M(dim Ξ) is not singular, (51)

H−1(0) is compact. (52)

Then (47) follows from Theorem 15.

Proof of Statement 9.2 of Theorem 9. Since H ∈ Hf (I), the result follows from Condition (14).

Proof of Statement 9.3 of Theorem 9. Since H ∈ Hf (I) and χ ∈ De(RC++× E(I, C)), the result is a
consequence of Proposition 6.

Proof of Statement 9.4 of Theorem 9. Some preliminary remarks are needed. First of all, note that
F is continuous on Ξ× E(I, C) and the function

DξF : Ξ× E(I, C)→M(dim Ξ)

is well defined and continuous on Ξ× E(I, C), as well. Moreover, as proved in the Appendix,

π : F−1(0)→ E(I, C), (ξ, E) 7→ E,
is a proper function, that is, the pre-image of any compact set is compact.

(53)

In particular, as π is also continuous, π is closed, that is, the image of any closed set is closed. Given
now the set

D = {E ∈ E(I, C) : F(ξ, E) = 0 ⇒ detDξF (ξ, E) 6= 0} ,

we have that D is open and dense in E(I, C). In fact, openness of D immediately follows from
continuity of F and detDξF and (53). The proof of the density of D is instead more subtle. Fixed

E∗ =
(

(ω∗i , u
∗
i )i∈I ,

(
ηH∗, θH∗

)
H∈Pν(I)

)
∈ E(I, C),
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let us prove there exists a sequence (E[n])∞n=1 in D such that E[n] → E∗. To this end, define, for
every γ = (γi)i∈I ∈ RCI++, the element of E(I, C) given by

E∗[γ] =
(

(ω∗i + γi, u
∗
i )i∈I ,

(
ηH∗, θH∗

)
H∈Pν(I)

)
.

If we prove that there exists a full measure subset Ω∗ of RCI++ such that, for every γ ∈ Ω∗, E∗[γ] ∈ D,
then the proof is complete. Indeed, if we consider any sequence (γ[n])∞n=1 in Ω∗ such that γ[n] → 0,
then E∗[γ[n]]→ E∗. Consider now the function

F̃ : Ξ× RCI++ → Rdim Ξ, (ξ, γ) 7→ F̃(ξ, γ) = F(ξ, E∗[γ]).

A cumbersome computation allows to verify that 0 is a regular value for F̃ and then, from Theorem
16, we obtain the desired result.

We complete the proof defining D(I, C,H) = D and showing that every E∗ ∈ D has all the
properties required in Statement 9.2 of Theorem 9. Since 0 is a regular value of

F(·, E∗) : Ξ→ Rdim Ξ, ξ 7→ F(ξ, E∗),

and since (53) holds true, we get

|{ξ ∈ Ξ : F(ξ, E∗) = 0}| = K and {ξ ∈ Ξ : F(ξ, E∗) = 0} = {ξk∗}Kk=1, (54)

where K is a positive integer. From Theorem 14, there exist an open neighborhood O(E∗) ⊆ E(I, C)
of E∗ and, for every k ∈ {1, . . . ,K}, an open neighborhood O(ξk∗) ⊆ Ξ of ξk∗ and a function
ϕk : O(E∗)→ O(ξk∗) such that:

ϕk ∈ C0, ϕk(E
∗) = ξk∗, and O(ξk∗) ∩ O(ξh∗) = ∅ for k 6= h, (55){

(ξ, E) ∈ O(ξk∗)×O(E∗) : F(ξ, E) = 0
}

=
{

(ξ, E) ∈ O(ξk∗)×O(E∗) : ξ = ϕk(E)
}
. (56)

Moreover, again from (53), we have that

{(ξ, E) ∈ Ξ×O(E∗) : F(ξ, E) = 0} =

K⋃
k=1

{(ξ, E) ∈ Ξ×O(E∗) : ξ = ϕk(E)} . (57)

Of course, (54), (55), (56) and (57) imply (17), (18), (19) and (20), respectively.

Proof of Statement 10.1 of Theorem 10. Consider the set

SPH(I) = {π ∈ PH(I) : J ⊆ I, |J | ≥ 2, ∀j ∈ J , {j} ∈ π ⇒ J 6∈ H} .

As proved in the Appendix,
SPH(I) 6= ∅. (58)

Fix now π∗ ∈ SPH(I) and define H∗ = π∗ ∪Pσ(I). Note that

π∗ ∩Pν(I) 6= ∅, (H ∩Pν(I)) \ π∗ 6= ∅, H∗ ∈ Hf (I), π̂(H∗) = π∗,

and remember the equalities H∗σ = H∗ \ Pν(I) and H∗ν = H∗ ∩ Pν(I). As shown in the proof of
Statement 9.4 of Theorem 9, for every(

(ui)i∈I ,
(
ηH, θH

)
H∈H∗ν

)
∈ UIC × (RC+ \ {0})|H

∗
ν | ×

(
×
H∈H∗ν

∆H

)
,
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there exists (ωi)i∈I ∈ RC++ such that, for every(
ηH, θH

)
H∈Pν(I)\H∗ν

∈ ×
H∈Pν(I)\H∗ν

(
(RC+ \ {0})×∆H

)
, (59)

we have
E =

(
(ωi, ui)i∈I ,

(
ηH, θH

)
H∈Pν(I)

)
∈ D(I, C,H∗).

Let us build now E∗ ∈ D(I, C,H∗) as follows. Fix any (u∗i )i∈I ∈ UIC and, for every H ∈ H∗ν , define10

ηH∗ = 3 · 1C , θH∗ =

(
1

|H|
, . . . ,

1

|H|

)
∈ ∆H.

Consider then (ω∗i )i∈I satisfying the above property and complete the definition of E∗ choosing any
vector in (59). Of course. from Theorem 9, we know there exists (x∗, p∗) ∈ RCI++ × RC++ such that
(π∗, x∗, p∗) ∈Wn(E∗,H∗, χ).

Let us observe now that if E∗∗ ∈ E(I, C) is such that all its components but the ones in (59)
agree with the ones of E∗, then E∗∗ ∈ D(I, C,H∗) and (π∗, x∗, p∗) ∈ Wn(E∗∗,H∗, χ). On the basis
of that observation, with a slight abuse of notation, we are going to properly choose the components
of E∗ in (59) in order to have (π∗, x∗, p∗) ∈Wn(E∗,H, χ) and (π∗, x∗) ∈ Pf (E,H).

Choose any
(
ηH∗

)
H∈Pν(I)\H∗ν

such that∑
H∈Pν(I)\H∗ν

ηH∗ � 1C .

Fix now H ∈ Pν(I) \ H∗ν . Since π∗ ∈ SPH(I), we know there is j∗ ∈ H such that {j∗} 6∈ π∗

and then Hj∗(π∗) ∈ Pν(I), where Hj∗(π∗) is the unique element of π∗ which j∗ belongs to. From
Proposition 18, we can find θH∗ ∈ ∆H such that

αHj∗
(
p∗, (ω∗i , u

∗
i )i∈H, η

H∗, θH∗
)

< α
Hj∗ (π∗)
j∗

(
p∗, (ω∗i , u

∗
i )i∈Hj∗ (π∗), η

Hj∗ (π∗), θHj∗ (π∗)
)
.

(60)

Let us prove now that (π∗, x∗, p∗) ∈ Wn(E∗,H, χ). Indeed, Conditions (12) and (13) are trivially
fulfilled, while Condition (14) follows since, for every J ∈ H, the relation

∀i ∈ J , ui
(
χJi
(
p∗, E∗J

))
≥ ui

(
χ
Hi(π∗)
i

(
p∗, E∗Hi(π

∗)
))

is never satisfied. Finally, let us prove that (π∗, x∗) ∈ Pf (E,H). As proved in the Appendix,

π∗∗ ∈ PH(I) ⇒
∑

H∈π∗∗∩Pν(I)

ηH ≤
∑

H∈π∗∩Pν(I)

ηH. (61)

If by contradiction there is (π∗∗, x∗∗) ∈ Af (E∗,H) such that (ui(x
∗∗
i ))i∈I > (ui(x

∗
i ))i∈I , then we

have (π∗, x∗∗) ∈ Af (E∗,H) and we contradict Proposition 6.
Finally, as E∗ ∈ D(I, C,H∗), we can apply Theorem 9 and find an open neighborhood O(E∗) ⊆

D(I, C,H∗) of E∗, an open neighborhood O(x∗, p∗) ⊆ RCI++ × RC++ of (x∗, p∗) and a continuous
function g : O(E∗)→ O(x∗, p∗) such that, for every E ∈ O(E∗), (π∗, g(E)) ∈Wn(E,H∗, χ). As, by
Proposition 18, we know that, for every H ∈ Pν(I), αH is continuous on its domain, we can find a

10In what follows, 1C = (1, . . . , 1) ∈ RC .
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(not renamed) smaller open neighborhood of E∗ and a suitable restriction of g such that, for every
E ∈ O(E∗),

•

∑
H∈Pν(I)\H∗ν

ηH � 2 · 1C ,

• ∀ H ∈ H∗ν , ηH � 2 · 1C ,

• ∀ H ∈ Pν(I) \H∗ν , αHj∗
(
g(E), (ωi, ui)i∈H, η

H, θH
)

< α
Hj∗ (π∗)
j∗

(
g(E), (ωi, ui)i∈Hj∗ (π∗), η

Hj∗ (π∗), θHj∗ (π∗)
)
.

Then, arguing as for E∗, we have that, for every E ∈ O(E∗), (π∗, g(E)) ∈ Wn(E,H, χ) and the
corresponding equilibrium allocation belongs to Pf (E,H). The desired result is then proved defining
O1 = O(E∗).

Proof of Statement 10.2 of Theorem 10. As the present proof is very similar to the previous one,
some details are omitted. Fix π∗ ∈ SPH(I) and define H∗ = π∗ ∪Pσ(I).

Let us build now E∗ ∈ D(I, C,H∗) as follows. Fix any (u∗i )i∈I ∈ UIC and, for every H ∈ H∗ν ,
define

ηH∗ = 1C , θH∗ =

(
1

|H|
, . . . ,

1

|H|

)
∈ ∆H.

Choose then (ω∗i )i∈I satisfying the same property used in the proof of Statement 10.1 of Theorem
10 and complete the definition of E∗ choosing any vector in (59). From Theorem 9, we know
there exists (x∗, p∗) ∈ RCI++ × RC++ such that (π∗, x∗, p∗) ∈ Wn(E∗,H∗, χ). As already noted, if
E∗∗ ∈ E(I, C) is such that all its components but the ones in (59) agree with the ones of E∗, then
E∗∗ ∈ D(I, C,H∗) and (π∗, x∗, p∗) ∈ Wn(E∗∗,H∗, χ). Then, with a slight abuse of notation, we are
going to properly choose the components of E∗ in (59) in order to have (π∗, x∗, p∗) ∈Wn(E∗,H, χ)
and (π∗, x∗) 6∈ Pf (E,H).

Fixed H ∈ Pν(I) \H∗ν , choose any ηH∗ ∈ RC++ such that

ηH∗ � 3|H∗ν | · 1C .

Moreover, we know there is j∗ ∈ H such that {j∗} 6∈ π∗ and thenHj∗(π∗) ∈ Pν(I). From Proposition
18, we can find θH∗ ∈ ∆J such that (60) holds true.

The economy E∗ just built satisfies (π∗, x∗, p∗) ∈ Wn(E∗,H, χ). Finally, let us prove that
(π∗, x∗) 6∈ Pf (E∗,H). Indeed, consider K ∈ (H ∩Pν(I)) \H∗ν and define

π∗∗ = {K} ∪ {{i} : i ∈ I \ K} ∈ PH(I).

Of course ∑
H∈π∗∗∩Pν(I)

ηH = ηK �
∑

H∈π∗∩Pν(I)

ηH

and we can immediately build (π∗∗, x∗∗) ∈ Af (E,H) such that such that (ui(x
∗∗
i ))i∈I > (ui(x

∗
i ))i∈I .

Then we have (π∗, x∗) 6∈ Pf (E,H).
As E∗ ∈ D(I, C,H∗), we can apply Theorem 9 and find an open neighborhood O(E∗) ⊆

D(I, C,H∗) of E∗, an open neighborhood O(x∗, p∗) ⊆ RC++ of (x∗, p∗) and a continuous func-
tion g : O(E∗) → O(x∗, p∗) such that, for every E ∈ O(E∗), (π∗, g(E)) ∈ Wn(E,H∗, χ). As by
Proposition 18 we know that, for every H ∈ Pν(I), αH is continuous on its domain, we can find a
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(not renamed) smaller open neighborhood of E∗ and a suitable restriction of g such that, for every
E ∈ O(E∗),

• ∀ H ∈ Pν(I) \H∗ν , ηH � 2|H∗ν | · 1C ,

• ∀ H ∈ H∗ν , ηH � 2 · 1C ,

• ∀ H ∈ Pν(I) \H∗ν , αHj∗
(
g(E), (ωi, ui)i∈H, η

H, θH
)

< α
Hj∗ (π∗)
j∗

(
g(E), (ωi, ui)i∈Hj∗ (π∗), η

Hj∗ (π∗), θHj∗ (π∗)
)
.

Then, arguing as for E∗, we have that, for every E ∈ O(E∗), (π∗, g(E)) ∈ Wn(E,H, χ) and the
corresponding equilibrium allocation does not belong to Pf (E,H). The desired result is then proved
defining O2 = O(E∗).

Proof of Theorem 13.1. Our purpose is to build an economy

E∗ =
(
(ω∗i , u

∗
i )i∈I , (η

H∗, θH∗)H∈Pν(I)

)
∈ E(I, C,P(I)),

and find a suitable price p∗ ∈ RC++ such that (23) and (24) are satisfied, provided x∗ and x∗∗ in the
statement are obtained by Condition (12). Define first, for every i ∈ I, ω∗i = 1C , and

u∗i : RC++ → R, xi 7→ u∗i (xi) =
∑
c∈C

ln(xci ).

Consider now p∗ = 1C . It is simple to verify that, for every i ∈ I,

χ
{i}
i (p∗, (ω∗i , u

∗
i )) = 1C , u∗i

(
χ
{i}
i (p∗, (ω∗i , u

∗
i ))
)

= 0

and, in particular, ∑
i∈I

χ
{i}
i (p∗, (ω∗i , u

∗
i )) =

∑
i∈I

ω∗i . (62)

In order to complete the definition of E∗, we have to choose, for every H ∈ Pν(I), (ηH∗, θH∗) ∈
RC++ ×∆H in such a way that (23) and (24) hold true. Define then, for every H ∈ Pν(I) such that
|H| ≥ 3,

ηH∗ = |H| · 1C , θH∗ =
1

|H|
(1, . . . , 1) ∈ ∆H,

and, for every H ∈ Pν(I) such that |H| = 2,

ηH∗ = 4 · 1C , θH� =
1

2
(1, 1) ∈ ∆H.

Then we are left with defining, for every H ∈ Pν(I) such that |H| = 2, θH∗ ∈ ∆H. Note that, for
every H ∈ Pν(I) such that |H| ≥ 3, i ∈ H,

χHi
(
p∗, (ω∗i , u

∗
i )i∈H, η

H∗, θH∗
)

= 2 · 1C , u∗i
(
χHi
(
p∗, (ω∗i , u

∗
i )i∈H, η

H∗, θH∗
))

= C ln(2),

and, for every H ∈ Pν(I) such that |H| = 2, i ∈ H,

χHi
(
p∗, (ω∗i , u

∗
i )i∈H, η

H∗, θH�
)

= 3 · 1C , u∗i
(
χHi
(
p∗, (ω∗i , u

∗
i )i∈H, η

H∗, θH�
))

= C ln(3).
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Using Proposition 18 and because of the special structure of the objects we have introduced, it is
simple to verify that there exists β ∈ R and, for every H ∈ Pν(I) such that |H| = 2, θH∗ ∈ ∆H such
that if H = {i1, i2} with i1 < i2, (i1, i2) 6= (1, I), then

C ln
(
11
4

)
< u∗i1

(
χ
{i1,i2}
i1

(
p∗, (ω∗i , u

∗
i )i∈{i1,i2}, η

{i1,i2}∗, θ{i1,i2}∗
))

< β < u∗i2

(
χ
{i1,i2}
i2

(
p∗, (ω∗i , u

∗
i )i∈{i1,i2}, η

{i1,i2}∗, θ{i1,i2}∗
))

,

while if H = {1, I}, then

C ln
(
11
4

)
< u∗I

(
χ
{1,I}
I

(
p∗, (ω∗i , u

∗
i )i∈{1,I}, η

{1,I}∗, θ{1,I}∗
))

< β < u∗1

(
χ
{1,I}
1

(
p∗, (ω∗i , u

∗
i )i∈{1,I}, η

{1,I}∗, θ{1,I}∗
))

.

Let us verify now that the economy E∗ just built satisfies (23) and (24). Let us prove at first that

(Pσ(I), x∗, p∗) ∈WMC(E∗,P(I), χ), (63)

where, for every i ∈ I, x∗i = χ
{i}
i (p∗, E∗). Of course, Conditions 12.1 and 12.2 in Definition 12 follow

by definition and by (62), respectively. In order to verify that Condition 12.3 in Definition 12 holds
true, consider any H ∈ Pν(I) and find a suitable K ∈ Pν(I) such that the required inequalities hold
true. Using (2), we have that if |H| ≥ 3, then we can choose any K ⊆ H such that |K| = 2, while if
H = {i1, i2}, i1 < i2, then we can choose

K = {i1 − 1, i1} if 1 < i1,
K = {i1, I} if i1 = 1, i2 < I,
K = {I − 1, I} if i1 = 1, i2 = I.

We stress that the above argument requires I ≥ 3. Defined now, for every i ∈ I, x∗∗i = χ
{I}
i (p∗, E∗),

it is immediate to prove both ({I}, x∗∗, p∗) ∈WMC(E∗,H, χ) and (24).

A Appendix

Proof of (35). In order to show that ΦH is continuous, it suffices to prove that each sequence
(ζH[n], p[n], eH[n])∞n=1 in (GH)−1(0), such that (p[n], eH[n])∞n=1 converges in RC++ ×EH(I, C), admits a
converging subsequence in (GH)−1(0). More precisely, assume that

(p[n], eH[n]) = (p[n], (ω
[n]
i , u

[n]
i )i∈H, η

H[n], θH[n])→

(p�, eH�) = (p�, (ω�i , u
�
i )i∈H , η

H�, θH�) ∈ RC++ × EH(I, C).

Then it suffices to show that, up to a subsequence, (ζH[n])∞n=1 converges to a certain ζH� ∈ ZH as
the condition GH(ζH�, p�, eH�) = 0 follows by the continuity of GH. We are going to use a diagonal
argument and then, in particular, when we speak about a converging sequence, in fact we only mean

it has a converging subsequence. Of course, for every i ∈ H, we have a
[n]
i → a�i ∈ [0, 1].

Fix i ∈ H and prove first that (x
[n]
i )∞n=1 converges to an element of RC++. Note that ω

[n]
i → ω�i .

Then, for every n ∈ N∗,

u
[n]
i (x

[n]
i ) ≥ u[n]

i (ω
[n]
i ) ≥ min

xi∈Si
u

[n]
i (xi) ≥ min

xi∈Si
u�i (xi)− εn,
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where Si = {ω[n]
i }∞n=1 ∪ {ω�i } is a compact subset of RC++ and

εn = max
xi∈Si

∣∣∣u[n]
i (xi)− u�i (xi)

∣∣∣ .
Of course, by the definition of the open-compact topology on C2(RC++), we have εn → 0 as n→∞.
Let x∗i ∈ Si be such that

min
xi∈Si

u�i (xi) = u�i (x
∗
i ),

and let δ > 0 be small enough such that x∗i − 2δ1C ∈ RC++. Since by (2), u�i (x
∗
i ) > u�i (x

∗
i − δ1C),

there exists n1 ∈ N∗ such that, for every n ≥ n1,

u
[n]
i (x

[n]
i ) ≥ u�i (x∗i )− εn > u�i (x

∗
i − δ1C). (64)

Moreover, for every n ∈ N∗, we have that

p[n]x
[n]
i ≤ p

[n]ω
[n]
i + a

[n]
i p[n]ηH[n],

and then, since p[n] → p�, ω
[n]
i → ω�i , η

H[n] → ηH� and a
[n]
i ∈ [0, 1], it is immediate to prove that

there exists a constant k > 0 such that, for every n ∈ N∗, x[n]
i ∈ [0, k1C ].

Let us consider now x�i ∈ [0, k1C ] a cluster point of the set {x[n]
i }∞n=1 and assume x

[n]
i → x�i .

Consider any x̃i ∈ RC++ such that u�i (x̃i) = u�i (x
∗
i − 2δ1C). For n ∈ N∗ large enough, by (64) we get

u
[n]
i (x

[n]
i )− u[n]

i (x̃i) ≥ 0 and then

0 ≤ u[n]
i (x

[n]
i )− u[n]

i (x̃i) ≤ Du[n]
i (x̃i)(x

[n]
i − x̃i)

=
(
Du

[n]
i (x̃i)−Du�i (x̃i)

)
(x

[n]
i − x̃i) +Du�i (x̃i)(x

[n]
i − x̃i).

Taking now the limit as n goes to infinity in the previous inequality, we obtain Du�i (x̃i)(x
�
i − x̃i) ≥ 0.

More precisely, the following relation holds true

x�i ∈
⋂

x̃i∈{zi∈RC++:u�i (zi)=u�i (x∗i−2δ1C)}

{
yi ∈ RC : Du�i (x̃i)(yi − x̃i) ≥ 0

}
. (65)

Moreover, Assumptions (3) and (4) and a well-known result from convex analysis assure that the
right hand side of (65) is equal to the set

{y ∈ RC++ : u�i (y) ≥ u�i (x∗i − 2δ1C)}.

Then x�i ∈ RC++ and the proof is complete. A very similar argument allows to prove that, for

every i ∈ H, the sequence (x
[n]
i )∞n=1 converges to x�i ∈ RC++. Moreover, from the above results, we

immediately have that, for every i ∈ H, (λ
[n]
i )∞n=1 converges to λ�i ∈ R++ and (λ

[n]
i )∞n=1 converges to

λ�i ∈ R++.
We are left with proving that a�i ∈ (0, 1) and (µH[n])∞n=1 converges in R. Assume by contradiction

there exists i∗ ∈ H such that a
[n]
i∗ → a�i∗ = 0. Of course, we have

ω
[n]
i∗ + a

[n]
i∗ η
H[n] → ω�i∗ and ω

[n]
i∗ → ω�i∗ ,
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and then 11

lim
n→∞

(
u

[n]
i∗ (x

[n]
i∗ )− u[n]

i∗ (x
[n]
i∗ )
)

= 0.

From (29.5), we deduce the equality

µH[n] =
θ
H[n]
i λ

[n]
i p[n]ηH[n]

u
[n]
i (x

[n]
i )− u[n]

i (x
[n]
i )

, (66)

where i ∈ H is arbitrarily chosen. Using (66) with i = i∗, we obtain

lim
n→∞

µH[n] = +∞

for the denominator goes to zero as n goes to infinity and it is always positive, and the numerator

converges to a positive number. From (29.6) we obtain that there exists i∗ ∈ H such that a
[n]
i∗
→

a�i∗ > 0 and then

lim
n→∞

(
u

[n]
i∗

(x
[n]
i∗

)− u[n]
i∗

(x
[n]
i∗

)
)

= u�i∗(x
�
i∗)− u

�
i∗(x

�
i∗) > 0.

Using now (66) with i = i∗, we obtain that (µH[n])∞n=1 is uniformly bounded from above and the
contradiction is found. Then we have that, for every i ∈ H, a�i > 0 and by (29.6) we get that, for
every i ∈ H, a�i ∈ (0, 1). Finally, the convergence of (µH[n])∞n=1 follows from (66) and the previous
considerations.

Proof of (50). Let us consider the vector

ξ∗ =
(

(x∗i , λ
∗
i ){i}∈Hσ

,
(
(x∗i , λ

∗
i , x
∗
i , λ
∗
i , a
∗
i )i∈H , µ

H∗)
H∈Hν

, p∗
)
∈ Ξ

defined as follows:

∀ {i} ∈ Hσ, x∗i = x̃i,
∀ {i} ∈ Hσ, λ∗i = DxCi

ui(x̃i),

∀H ∈ Hν , i ∈ H, x∗i = x̃i + ε
|H|η

H,

∀H ∈ Hν , i ∈ H, λ∗i = DxCi
ui

(
x̃i + ε

|H|η
H
)
,

∀H ∈ Hν , i ∈ H, a∗i = 1
|H| ,

∀H ∈ Hν , µH∗ = 0,
p∗ = p̃,

∀H ∈ Hν , i ∈ H, (x∗i , λ
∗
i ) is the unique solution to the system

{
Dui(xi)− λip̃ = 0

−p̃(xi − x̃i) = 0

(67)

It is simple to verify that G(ξ∗) = 0. In order to prove that ξ∗ is indeed the unique solution to
G(ξ) = 0, let us consider ξ� such that G(ξ�) = 0 and show that ξ∗ = ξ�. First of all, note that, for
every H ∈ Hν , i ∈ H,

p�x�i = p�
(
x̃i + εa∗i η

H) > p�x̃i = p�x�i .

11Note that the solution (xi, λi) to the problem{
Dui(xi)− λip = 0

−p(xi − ωi) = 0

continuously depends on (p, ωi, ui) ∈ RC++ × RC++ × UC .
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Then ui(x
�
i ) > ui(x

�
i ). Consider now H ∈ Hν and prove that µH� = 0. If by contradiction µH� > 0,

then, for every i ∈ H, φH(a�i ) > 0 and then a�i <
1
|H| . Then it follows∑

i∈H
a�i < 1

and the contradiction is found. Analogously, if by contradiction µH� < 0, then, for every i ∈ H,
φH(a�i ) < 0 and then a�i >

1
|H| . Then it follows∑

i∈H
a�i > 1

and the contradiction is found again. Then we obtain µH� = 0 and, for every i ∈ H, a�i = 1
|H| .

From (49.1), (49.2), (49.3) and (49.4) we have that, for every i ∈ I, ui(x
�
i ) ≥ ui(x

∗
i ) and from

(49.2), (49.4), (49.9) we have ∑
i∈I

x∗i =
∑
i∈I

x̃i + ε
∑
H∈Hν

ηH,

and ∑
i∈I

x�i =
∑
i∈I

x̃i + ε
∑
H∈Hν

ηH.

If by contradiction x∗ 6= x�, then we can define, for every i ∈ I, x◦i = 1
2(x∗i + x�i ). Thus we have

that (x◦i )i∈I satisfies ∑
i∈I

x◦i =
∑
i∈I

x̃i + ε
∑
H∈Hν

ηH,

as well and, because of (3), for every i ∈ I, ui(x
◦
i ) ≥ ui(x

∗
i ) with at least a strict inequality. Then,

by the definition of (x∗i )i∈I and (41), a contradiction is found. As x� = x∗, we immediately have
that, for every i ∈ I, λ�i = λ∗i , x

�
i = x∗i , λ

�
i = λ∗i and p� = p∗.

Proof of (51). In order to prove (51), we have to show that if

∆ξ =
(

(∆xi,∆λi){i}∈Hσ
,
(
(∆xi,∆λi,∆xi,∆λi,∆ai)i∈H ,∆µ

H)
H∈Hν

,∆p
)
∈ Rdim Ξ (68)

is such that DG(ξ∗)∆ξ = 0, then ∆ξ = 0. Using in particular the fact that, for every H ∈ Hν ,
µH∗ = 0, the linear system DG(ξ∗)∆ξ = 0 can be written as

{i} ∈ Hσ, D2ui(x
∗
i )∆xi −∆λip

∗ − λ∗i∆p = 0 (69.1)

{i} ∈ Hσ, −p∗∆xi = 0 (69.2)

H ∈ Hν, i ∈ H, D2ui(x
∗
i )∆xi −∆λip

∗ − λ∗i∆p = 0 (69.3)

H ∈ Hν, i ∈ H, −p∗∆xi + εp∗ηH∆ai = 0 (69.4)

H ∈ Hν, i ∈ H, D2ui(x
∗
i )∆xi −∆λip

∗ − λ∗i∆p = 0 (69.5)

H ∈ Hν, i ∈ H, −p∗∆xi −∆p(x∗i − x̃i) = 0 (69.6)

H ∈ Hν, i ∈ H, DφH(a∗i )∆ai −∆µH (ui(x
∗
i )− ui(x∗i )) = 0 (69.7)

H ∈ Hν,
∑
i∈H

∆ai = 0 (69.8)

∑
i∈I

∆x
\
i = 0 (69.9)

∆pC = 0 (69.10)

(69)
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First of all, note that, for every H ∈ Hν , i ∈ H, we have DφH(a∗i ) < 0, ui(x
∗
i )−ui(x∗i ) > 0 and then

from (69.7),

∆ai =
∆µH

DφH(a∗i )
(ui(x

∗
i )− ui(x∗i )) .

Summing up for i ∈ H, we obtain

0 =
∑
i∈H

∆ai =
∆µH

DφH(a∗i )

∑
i∈H

(ui(x
∗
i )− ui(x∗i )) .

That implies ∆µH = 0 and then, for every i ∈ H, ∆ai = 0.
From (69.1) we get, for every {i} ∈ Hσ,

∆xiD
2ui(x

∗
i )∆xi −∆λip

∗∆xi − λ∗i∆p∆xi = 0

and from (69.2) we obtain
∆xiD

2ui(x
∗
i )∆xi

λ∗i
= ∆p∆xi.

Analogously, for every H ∈ Hν , i ∈ H, using (69.3), (69.4) and the fact that ∆ai = 0, we obtain
that

∆xiD
2ui(x

∗
i )∆xi

λ∗i
= ∆p∆xi.

Then, from the above relations and (69.9) and (69.10),

∑
i∈I

∆xiD
2ui(x

∗
i )∆xi

λ∗i
= ∆p\

(∑
i∈I

∆x
\
i

)
+ ∆pC

(∑
i∈I

∆xCi

)
= 0.

Then, for every i ∈ I, we have ∆xi = 0. From (69.1), (69.3) and (69.10), it immediately follows
that, for every i ∈ I, ∆λi = 0 and ∆p = 0. Then from (69.5), (69.6) we finally have that, for every
i ∈ I, ∆xi = 0 and ∆λi = 0 and the proof is complete.

Proof of (52). Let us consider a sequence (ξ[n], τ [n])∞n=1 in Ξ × [0, 1] such that, for every n ∈ N∗,
H(ξ[n], τ [n]) = 0 and prove that, up to a subsequence, (ξ[n], τ [n]) → (ξ�, τ�) ∈ Ξ × [0, 1]. As in the
proof of (35) we are going to use a diagonal argument and again, when we speak about a converging
sequence, in fact we only mean it has a converging subsequence. We surely have τ [n] → τ� ∈ [0, 1]

and, for every H ∈ Hν , i ∈ H, a
[n]
i → a�i ∈ [0, 1].

Fix now {i} ∈ Hσ and prove (x
[n]
i )∞n=1 converges to an element of RC++. Note that

(1− τ [n])ωi + τ [n]x̃i → (1− τ�)ωi + τ�x̃i.

Then, for every n ∈ N∗,
ui(x

[n]
i ) ≥ ui

(
(1− τ [n])ωi + τ [n]x̃i

)
≥

min
{
ui(xi) : xi ∈

{
(1− τ [n])ωi + τ [n]x̃i : n ∈ N∗

}
∪ {(1− τ�)ωi + τ�x̃i}

}
.

As the set
Si =

{
(1− τ [n])ωi + τ [n]x̃i : n ∈ N∗

}
∪ {(1− τ�)ωi + τ�x̃i} ⊆ RC++
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is compact, there is an element vi ∈ Si such that, for every n ∈ N∗, ui(x
[n]
i ) ≥ ui(vi). Note also that,

arguing as in the proof of Proposition 19, we have∑
i∈I

x
[n]
i − (1− τ [n])

∑
i∈I

ωi − τ [n]
∑
i∈I

x̃i −
(

(1− τ [n]) + τ [n]ε
) ∑
H∈Hν

ηH = 0. (70)

It follows there exists wi ∈ RC++ such that, for every n ∈ N∗, x[n]
i ≤ wi. Then, for every n ∈ N∗,

x
[n]
i ∈ C

1
i ∩ C2

i

where
C1
i =

{
xi ∈ RC++ : ui(xi) ≥ ui(vi)

}
, C2

i =
{
xi ∈ RC++ : 0 ≤ xi ≤ wi

}
.

As by (4), C1
i ∩C2

i is a compact subset of RC++, the sequence (x
[n]
i )∞n=1 has a subsequence converging

to an element of RC++. Fixed H ∈ Hν , i ∈ H, the proof that (x
[n]
i )∞n=1 and (x

[n]
i )∞n=1 converge to an

element of RC++ is completely analogous to the previous case. Moreover, from the above results, we

immediately have that, for every i ∈ I, (λ
[n]
i )∞n=1 converges to λ�i ∈ R++, for every H ∈ Hν , i ∈ H,

(λ
[n]
i )∞n=1 converges to λ�i ∈ R++, and (p[n])∞n=1 converges to p� ∈ RC++.

We are left with proving that a�i ∈ (0, 1) and (µH[n])∞n=1 converges in R. Fix H ∈ Hν and assume

by contradiction there exists i∗ ∈ H such that a
[n]
i∗ → a�i∗ = 0. Of course, we have

(1− τ [n])ωi∗ + τ [n]x̃i∗ +
(

(1− τ [n]) + τ [n]ε
)
a

[n]
i∗ η
H → (1− τ�)ωi∗ + τ�x̃i∗ ,

and
(1− τ [n])ωi∗ + τ [n]x̃i∗ → (1− τ�)ωi∗ + τ�x̃i∗ ,

and then
lim
n→∞

(
ui∗(x

[n]
i∗ )− ui∗(x[n]

i∗ )
)

= 0.

From (48.7) we deduce the equality

µH[n] =
(1− τ [n])θHi λ

[n]
i p[n]ηH + τ [n]φH(a

[n]
i )

ui(x
[n]
i )− ui(x[n]

i )
, (71)

where i ∈ H is arbitrarily chosen. Using now (71) with i = i∗, we obtain

lim
n→∞

µH[n] = +∞

for the denominator goes to zero as n goes to infinity and it is always positive, and there exists

c > 0 such that, for n large enough, the numerator is greater than c. Indeed, as long as a
[n]
i∗ <

1
|H| ,

the numerator is positive. Moreover if τ� < 1, then

lim inf
n→∞

(1− τ [n])θHi∗λ
[n]
i∗ p

[n]ηH > 0

while if τ� = 1, then

lim
n→∞

τ [n]φH(a
[n]
i∗ ) = +∞.

From (48.8) we obtain there exists i∗ ∈ H such that a
[n]
i∗
→ a�i∗ > 0 and then

lim
n→∞

(
ui∗(x

[n]
i∗

)− ui∗(x
[n]
i∗

)
)

= ui∗(x
�
i∗)− ui∗(x

�
i∗) > 0.
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Using now (71) with i = i∗, we have that (µH[n])∞n=1 is uniformly bounded from above and the
contradiction is found. Then we have that, for every i ∈ H, a�i > 0 and by (48.8) we get that, for
every i ∈ H, a�i ∈ (0, 1). Finally, it is immediate to prove that thanks to (48.8) we can assume there

exists i∗∗ ∈ H such that, for every n ∈ N∗, a[n]
i∗∗ ≤

1
|H| . Then, the convergence of (µH[n])∞n=1 follows

from (71) with i = i∗∗ and the previous considerations.

Proof of (53). In order to show that π is proper, we have to prove that each sequence (ξ[n], E[n])∞n=1

in F−1(0), such that (E[n])∞n=1 converges in E(I, C), admits a converging subsequence in F−1(0).
Assume that

(E[n])∞n=1 =
(

(ω
[n]
i , u

[n]
i )i∈I , (η

H[n], θH[n])H∈Pν(I)

)
→

E� =
(

(ω�i , u
�
i )i∈I ,

(
ηH�, θH�

)
H∈Pν(I)

)
∈ E(I, C).

Then it suffices to show that, up to a subsequence, (ξ[n])∞n=1 converges to a certain ξ� ∈ Ξ as the
condition F (ξ�, E�) = 0 follows by the continuity of F . As in the proof of (35) we are going to use
a diagonal argument and again, when we speak about a converging sequence, in fact we only mean

it has a converging subsequence. We surely have, for every H ∈ Hν , i ∈ H, a
[n]
i → a�i ∈ [0, 1].

Fix {i} ∈ Hσ and prove (x
[n]
i )n∈N converges to an element of RC++. Note that ω

[n]
i → ω�i . Then,

for every n ∈ N∗,
u

[n]
i (x

[n]
i ) ≥ u[n]

i (ω
[n]
i ) ≥ min

xi∈Si
u

[n]
i (xi) ≥ min

xi∈Si
u�i (xi)− εn,

where Si = {ω[n]
i }∞n=1 ∪ {ω�i } is a compact subset of RC++ and

εn = max
xi∈Si

∣∣∣u[n]
i (xi)− u�i (xi)

∣∣∣ .
By the definition of the open-compact topology on C2(RC++), we have that ε → 0 as n → ∞. Let
x∗i ∈ Si be such that

min
xi∈Si

u�i (xi) = u�i (x
∗
i ),

and let δ > 0 be small enough such that x∗i − 2δ1C ∈ RC++. Since by (2), u�i (x
∗
i ) > u�i (x

∗
i − δ1C),

there exists n1 ∈ N∗ such that, for every n ≥ n1,

u
[n]
i (x

[n]
i ) ≥ u�i (x∗i )− εn > u�i (x

∗
i − δ1C). (72)

Of course, we can find n2 ≥ n1 such that, for every n ≥ n2,

0� x
[n]
i ≤

∑
i∈I

ω
[n]
i +

∑
H∈Hν

ηH[n] ≤
∑
i∈I

ω�i +
∑
H∈Hν

ηH� + 1C .

Let us consider now

x�i ∈

[
0,
∑
i∈I

ω�i +
∑
H∈Hν

ηH� + 1C

]

a cluster point of the set {x[n]
i }∞n=1 and assume x

[n]
i → x�i . Consider any x̃i ∈ RC++ such that

u�i (x̃i) = u�i (x
∗
i − 2δ1C). For n ∈ N∗ large enough, by (72) we get u

[n]
i (x

[n]
i )− u[n]

i (x̃i) ≥ 0 and then

0 ≤ u[n]
i (x

[n]
i )− u[n]

i (x̃i) ≤ Du[n]
i (x̃i)(x

[n]
i − x̃i)

=
(
Du

[n]
i (x̃i)−Du�i (x̃i)

)
(x

[n]
i − x̃i) +Du�i (x̃i)(x

[n]
i − x̃i).
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Taking now the limit as n goes to infinity in the previous inequality, we obtain Du�i (x̃i)(x
�
i − x̃i) ≥ 0.

More precisely, the following relation holds true

x�i ∈
⋂

x̃i∈{zi∈RC++:u�i (zi)=u�i (x∗i−2δ1C)}

{
yi ∈ RC : Du�i (x̃i)(yi − x̃i) ≥ 0

}
. (73)

Moreover, Assumptions (3) and (4) and a well-known result from convex analysis assure that the
right hand side of (73) is equal to the set

{y ∈ RC++ : u�i (y) ≥ u�i (x∗i − 2δ1C)}.

Then x�i ∈ RC++ and the proof is complete. A very similar argument allows to prove that, for every

H ∈ Hν , i ∈ H, the sequences (x
[n]
i )∞n=1 and (x

[n]
i )∞n=1 converge in RC++. Moreover, from the above

results, we immediately have that, for every i ∈ I, (λ
[n]
i )∞n=1 converges to λ�i ∈ R++, for every

H ∈ Hν , i ∈ H, (λ
[n]
i )∞n=1 converges to λ�i ∈ R++, and (p[n])∞n=1 converges to p� ∈ RC++.

We are left with proving that a�i ∈ (0, 1) and (µH[n])∞n=1 converges in R. Fix H ∈ Hν and assume

by contradiction there exists i∗ ∈ H such that a
[n]
i∗ → 0. Of course, we have

ω
[n]
i∗ + a

[n]
i∗ η
H → ω�i∗ and ω

[n]
i∗ → ω�i∗ ,

and then
lim
n→∞

(
u

[n]
i∗ (x

[n]
i∗ )− u[n]

i∗ (x
[n]
i∗ )
)

= 0.

From (39.7), we obtain the equality

µH[n] =
θ
H[n]
i λ

[n]
i p[n]ηH[n]

u
[n]
i (x

[n]
i )− u[n]

i (x
[n]
i )

, (74)

where i ∈ H is arbitrarily chosen. Using (74) with i = i∗, we have that

lim
n→∞

µH[n] = +∞

for the denominator goes to zero as n goes to infinity and it is always positive, and the numerator

converges to a positive number. From (39.8), there exists i∗ ∈ H such that a
[n]
i∗
→ a�i∗ > 0 and then

lim
n→∞

(
u

[n]
i∗

(x
[n]
i∗

)− u[n]
i∗

(x
[n]
i∗

)
)

= u�i∗(x
�
i∗)− u

�
i∗(x

�
i∗) > 0.

Using now (74) with i = i∗, we have that (µH[n])∞n=1 is uniformly bounded from above and the
contradiction is found. Then we have that, for every i ∈ H, a�i > 0 and using (39.8) we get that, for
every i ∈ H, a�i ∈ (0, 1). Finally, the convergence of (µH[n])∞n=1 follows from (74) and the previous
considerations.

Proof of (58). Assume by contradiction that SPH(I) = ∅. Fixed π1 ∈ PH(I), there exists J1 ∈
Pν(I) ∩H such that, for every j ∈ J1, {j} ∈ π1. Then we can define

π2 = (π1 \ {{j} : j ∈ J1}) ∪ {J1} ∈ PH(I).

Note that |π1| > |π2|. Arguing as before, we can build a sequence (πn)∞n=1 in PH(I) such that, for
every n ∈ N∗, |πn| > |πn+1|. In particular, for every n,m ∈ N∗, n 6= m, we have πn 6= πm. Then we
have shown that PH(I) is infinite and the contradiction is found.
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Proof of (61). Consider any π∗∗ ∈ PH(I) and prove that∑
H∈π∗∗∩Pν(I)

ηH ≤
∑

H∈π∗∩Pν(I)

ηH. (75)

Assume there exists H∗ ∈ (π∗ ∩Pν(I)) \ (π∗∗ ∩Pν(I)). Then (75) immediately follows as

∑
H∈π∗∗∩Pν(I)

ηH =

 ∑
H∈π∗∩π∗∗∩Pν(I)

ηH

+

 ∑
H∈(π∗∗∩Pν(I))\π∗

ηH



≤

 ∑
H∈π∗∩π∗∗∩Pν(I)

ηH

+ ηH
∗ ≤

∑
H∈π∗∩Pν(I)

ηH.

Assume now that (π∗ ∩Pν(I)) ⊆ (π∗∗ ∩Pν(I)). We show (75) proving that π∗∗ = π∗. First
of all, let us prove that (π∗∗ ∩Pν(I)) ⊆ (π∗ ∩Pν(I)). Suppose by contradiction there exists
H∗ ∈ (π∗∗ ∩Pν(I)) \ (π∗ ∩Pν(I)). Then, for every H ∈ π∗ ∩ Pν(I), H 6= H∗. Moreover, since
(π∗ ∩Pν(I)) ⊆ (π∗∗ ∩Pν(I)) and π∗∗ ∈ PH(I), we have that, for everyH ∈ π∗∩Pν(I),H∩H∗ = ∅.
Then, for every i ∈ H∗, {i∗} ∈ π∗ and the contradiction is found as π∗ ∈ SPH(I).

Then we have (π∗ ∩Pν(I)) = (π∗∗ ∩Pν(I)). It is immediate to prove that the previous equality
implies π∗∗ = π∗.
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