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Abstract

In this paper a structural model of corporate debt is analyzed following an approach of
optimal stopping problem. We extend Leland model [5] introducing a dividend δ paid to eq-
uity holders and studying its effect on corporate debt and optimal capital structure. Varying
the parameter δ affects not only the level of endogenous bankruptcy, which is decreased, but
modifies the magnitude of a change on the endogenous failure level as a consequence of an
increase in risk free rate, corporate tax rate, riskiness of the firm and coupon payments. Con-
cerning the optimal capital structure, the introduction of dividends allows to obtain results
more in line with historical norms: lower optimal leverage ratios and higher yield spreads,
compared to Leland’s [5] results.

1 Introduction

Many firm value models have been proposed since Merton’s work [8] which provides an analytical
framework in which the capital structure of a firm is analyzed in terms of derivatives contracts.
We focus on the corporate model proposed by Leland [5] assuming that the firm’s assets value
evolves as a geometric Brownian motion. According to Modigliani - Miller theorem [9] the
activities of the firm are independent from the financial structure. The firm realizes its capital
from both debt and equity. Debt is perpetual, it pays a constant coupon C per instant of time
and this determines tax benefits proportional to coupon payments. Bankruptcy is determined
endogenously by the inability of the firm to raise sufficient equity capital to cover its debt
obligations. On the failure time T , agents which hold debt claims will get the residual value
of the firm (because of bankruptcy costs), and those who hold equity will get nothing (the
strict priority rule holds). This paper examines the case where the firm has net cash outflows
resulting from payments to bondholders or stockholders, for instance if dividends are paid to
equity holders. The interest in this problem is posed in [5] section VI-B, nevertheless the resulting
optimal capital structure is not analyzed in detail. The aim of this note is twofold: from one
hand we complete the study of corporate debt and optimal leverage in the presence of dividends
in all analytical aspects, from the other hand we study numerically the effects of this variation
on the capital structure. We will follow Leland [5] by considering only cash outflows which are
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proportional to firm’s assets value but our analysis differs from Leland’s one since we solve the
optimal control problem as an optimal stopping problem (see also [2] for a similar approach).
We find that the increase of the dividend parameter δ affects not only the level of endogenous
bankruptcy, which is decreased, but modifies the magnitude of a change on the endogenous
failure level as a consequence of an increase in risk free rate, corporate tax rate, riskiness of the
firm and coupon payments. Further the introduction of dividends allows to obtain lower optimal
leverage ratios and higher yield spreads, compared to Leland’s [5] results.

The paper is organized as follows: Section 2 introduces the model and determines the
optimal failure time as an optimal stopping time, getting the endogenous failure level. Then, the
influence of coupon, dividend and corporate tax rate on all financial variables is studied. Section
4 describes optimal capital structure as a consequence of optimal coupon choice.

2 Capital Structure Model with Dividends

In this section we introduce the model, which is very close to Leland’s [5], but we modify the
drift with a parameter δ, which might represent a constant proportional cash flow generated by
the assets and distributed to security holders. A firm realizes its capital from both debt and
equity. Debt is perpetual and pays a constant coupon C per instant of time. On the failure time
T , agents which hold debt claims will get the residual value of the firm, and those who hold
equity will get nothing. We assume that the firm activities value is described by the process
Vt = V eXt , where Xt evolves, under the risk neutral probability measure, as

dXt =

(

r − δ − 1

2
σ2

)

dt + σdWt, X0 = 0, (1)

where W is a standard Brownian motion, r the constant risk-free rate, r, δ and σ > 0. When
bankruptcy occurs at stopping time T , a fraction α (0 ≤ α < 1) of firm value is lost (for instance
payed because of bankruptcy procedures), debt holders receive the rest and stockholders nothing,
meaning that the strict priority rule holds. We suppose that the failure time T is a stopping
time. Thus, applying contingent claim analysis in a Black-Scholes setting, for a given stopping
(failure) time T, debt value is

D(V, C, T ) = EV

[
∫ T

0
e−rsCds + (1 − α)e−rT VT

]

, (2)

where the expectation is taken with respect to the risk neutral probability and we denote

EV [·] := E[·|V0 = V ].

We assume that from paying coupons the firm obtains tax deductions, namely τ , 0 ≤ τ < 1,
proportionally to coupon payments, so we get equity value

E(V, C, T ) = V − EV

[

(1 − τ)

(
∫ T

0
e−rsCds

)

+ e−rT VT

]

. (3)

The total value of the (levered) firm can always be expressed as sum of equity and debt
value: this leads to write the total value of the levered firm as the firm’s asset value (unlevered)
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plus tax deductions on debt payments C less the value of bankruptcy costs:

v(V, C, T ) = V + EV

[

τ

∫ T

0
e−rsCds − αe−rT VT

]

. (4)

2.1 Endogenous Failure Level

On the set of stopping times we maximize the equity value T 7→ E(V, C, T ), for an arbitrary
level of the coupon rate C. By optimal stopping theory (see [3]) and following [1, 2], the failure
time, “optimal stopping time”, is known to be a constant level hitting time. Hence default
happens at passage time T when the value V. falls to some constant level VB. The value of VB is
endogenously derived and will be determined with an optimal rule later. Further we note that,
given (1), it holds that T = inf{t ≥ 0 : Vt ≤ VB} = inf{t ≥ 0 : Xt ≤ log VB

V }. Moreover it holds
VT = VB, as the process Vt is continuous.

Thus, the optimal stopping problem of equity holders is turned to maximize the equity
function defined in (3) as a function of VB:

E : VB 7→ V − (1 − τ)C

r
(1 − EV [e−rT ]) − VBEV [e−rT ]. (5)

In order to compute the equity value (5) it remains to determine EV

[

e−rT
]

. To this hand
we use the following formula for the Laplace transform of a constant level hitting time by a
Brownian motion with drift ([4] p. 196-197):

Proposition 2.1 Let Xt = µt + σWt and Tb = inf{s : Xs = b}, then, for all γ > 0, it holds

E[e−γTb ] = exp

[

µb

σ2
− |b|

σ

√

µ2

σ2
+ 2γ

]

.

Since Vt = V exp[(r − δ − 1
2σ2)t + σWt] by (1), we get EV [e−rT ] =

(

VB

V

)λ(δ)
where

λ(δ) =
r − δ − 1

2σ2 +
√

(r − δ − 1
2σ2)2 + 2rσ2

σ2
. (6)

Remark 2.2 As a function of δ, the coefficient λ(δ) in (6) is decreasing and convex. In order
to simplify the notation, we will denote λ(δ) as λ in the sequel.

Finally the equity function to be optimized w.r.t. VB is

E : VB 7→ V − (1 − τ)C

r
+

(

(1 − τ)C

r
− VB

)(

VB

V

)λ

, (7)

and the following properties must be satisfied:

E(V, C, T ) ≥ E(V, C,∞) and E(V, C, T ) ≥ 0 for all V ≥ VB. (8)
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Considering the equity function in (7), the first property in (8) is equivalent to

E(V, C, T ) − E(V, C,∞) =

(

(1 − τ)C

r
− VB

)(

VB

V

)λ

≥ 0.

In fact this term is the option embodied in equity. Since this is an option to be exercised by the
firm, this must have positive value, so it must be (1−τ)C

r − VB ≥ 0. Finally we are led to the
constraint:

VB ≤ C(1 − τ)

r
. (9)

As for the second property in (8), we observe that if VB was chosen by the firm, then the
total value of the firm v would be maximized by setting VB as low as possible. Nevertheless,
because equity has limited liability, then VB cannot be arbitrary small, but E(V, C, T ) must be

nonnegative. Note that E(V, C,∞) = V − C(1−τ)
r ≥ 0 under the following constraint

V ≥ C(1 − τ)

r
. (10)

A natural constraint on VB is VB < V, indeed, if not, the optimal stopping time would necessarily
be T = 0 and then

E(V, C, T ) = V − (1 − τ)C

r
+

[

(1 − τ)C

r
− VB

]

= V − VB < 0.

Finally E(V, C, T ) ≥ 0 for all V ≥ VB.

Proposition 2.3 The endogenous failure level is

VB(C; δ, τ) =
C(1 − τ)

r

λ

λ + 1
, (11)

where λ is given by (6).

Proof: In order to obtain the endogenous failure level VB we maximize the function (7), which
turns in maximizing

VB 7→
(

(1 − τ)C

r
− VB

)(

VB

V

)λ

.

This is a concave function achieving its maximum when (1 − τ)Cλ = (λ + 1)rVB. •

Remark 2.4 Note that (11) satisfies the smooth pasting condition (see [7] footnote 60):

∂E

∂V
|V =VB

= 0.

We observe that the equity function is convex w.r.t. firm’s current assets value V, as con-
straint (9) is satisfied:

VB(C; δ, τ) <
(1 − τ)C

r
.

Further (11) has to satisfy VB ≤ V , therefore the following inequality holds:

C(1 − τ)

r

λ

λ + 1
≤ V. (12)
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Remark 2.5 As a particular case when δ = 0 we obtain Leland [5], where λ = 2r
σ2

E(V, C, VB) = V − (1 − τ)C

r
+

(

(1 − τ)C

r
− VB

)(

VB

V

)2r/σ2

,

and the failure level is

VB(C; 0, τ) =
C(1 − τ)

r + 1
2σ2

. (13)

Since the application δ 7→ λ
λ+1 is decreasing, (13) is greater than (11) for any value of τ :

VB(C; δ, τ) =
C(1 − τ)

r

λ

λ + 1
< VB(C; 0, τ) =

C(1 − τ)

r + 1
2σ2

, (14)

The failure level VB(C; δ, τ) is decreasing with respect to τ, r, σ2 and proportional to the
coupon C, for any value of δ. We note that the dependence of VB(C; δ, τ) on all parameters

τ, r, σ2, C is affected by the choice of the parameter δ. In fact the application δ 7→ ∂VB(C;δ,τ)
∂τ

is negative and increasing, while δ 7→ ∂VB(C;δ,τ)
∂C is positive and decreasing: thus introducing a

dividend δ > 0 implies a lower reduction (increase) of the optimal failure level as a consequence
of a higher tax rate (coupon), if compared to the case δ = 0. Similarly a change in the risk free
rate r or in the riskiness σ2 of the firm has a different impact on VB(C; δ, τ) depending on the
choice of δ.

In line with the results in [5] the failure level VB(C; δ, τ) in (11) is independent of both firm’s
assets value V and α, the fraction of firm value which is lost in the event of bankruptcy (since
the strict priority rule holds). The choice of the optimal failure level VB(C; δ, τ) is a consequence
of equity holders maximizing behaviour: this is why it is independent of α. In order to find the
optimal failure level equity holders face the problem of maximizing VB 7→ E(V, C, VB) given
by (7) and equity value is not affected by bankruptcy costs since the strict priority rule holds.
Equity holders will get nothing at bankruptcy, and this value is not affected by the parameter
α: only debt holders will bear bankruptcy costs.

2.2 Expected Time to Default

We have proved that introducing dividends has an actual influence on the endogenous failure level
VB(C; δ, τ): in particular we showed that a positive dividend δ lowers the failure boundary when
we consider the coupon being fixed. Also when the coupon is chosen to maximize the total value
of the firm, the optimal failure level V ∗

B(V ; δ, τ) reduces as a consequence of a positive dividend,
as we will show in subsection 4. Consistent with our base case parameters’ values, Table 2 gives
an idea of the magnitude of this reduction in terms of new optimal default triggering level. An
interesting point should be to analyze not only the influence of dividends on the failure level,
but also on expected time to default. How long does it take for V to reach the failure level VB?
Do dividends have a quantitatively significant effect on expected time to default or not? Since
we are considering a framework with infinite horizon, it should be interesting to analyze whether
introducing dividends will have a significant influence on the postponement of default. We know
that firm’s activities value evolves as a log-normal variable, thus the expected time for process
Vt to reach the failure level can be studied as shown in the following proposition.
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Proposition 2.6 Let Tb defined in Proposition 2.1. Consider µ := r− δ − 1
2σ2 and b := log VB

V ,
with V ≥ VB. The following holds:

• if µ > 0, EV [Tb] = −
(

VB

V

)
2µ

σ2 log
VB
V

µ ,

• if µ < 0, EV [Tb] =
log

VB
V

µ .

Proof: The result follows by Proposition 2.1 and

EV [Tb] = −∂E[e−γTb ]

∂γ
|γ=0.

•
When the drift µ is positive, the expected time to default is decreasing w.r.t. µ, thus

increasing w.r.t. dividend δ. In the opposite case, meaning µ < 0, EV [Tb] is instead increasing
w.r.t. the drift term µ. Dividends will postpone bankruptcy through rising the expected time
to default: firm’s activities value will take a longer time to reach the failure level. Equity value
is increasing w.r.t. δ: as a consequence, the inability of the firm to cover its debt obligations
(meaning equity equal to 0) will be later.

3 Comparative statics of financial variables

In this section we aim at analyzing the dependence of all financial variables on C, δ, τ at the
endogenous failure level VB(C; δ, τ). By substituting its expression (11) into equity, debt and
total value of the firm, we obtain the following functions:

E : (C; δ, τ) 7→ V − (1 − τ)C

r
+

(1 − τ)C

r

1

λ + 1

(

C(1 − τ)

rV

λ

λ + 1

)λ

(15)

D : (C; δ, τ) 7→ C

r
− C

r

(

1 − (1 − α)(1 − τ)
λ

λ + 1

)(

C(1 − τ)

rV

λ

λ + 1

)λ

(16)

v : (C; δ, τ) 7→ V +
τC

r
− C

r

(

τ + α(1 − τ)
λ

λ + 1

)(

C(1 − τ)

rV

λ

λ + 1

)λ

. (17)

Figure 1 shows the behaviour of equity, debt and total value of the firm given by (15)-(17)
as function of dividend δ.

3.1 Equity

We analyze equity’s behaviour with respect to δ.

Proposition 3.1 The equity function (15) is decreasing and convex as function of λ.
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Table 1: Comparative statics of financial variables. The table shows the behaviour of all
financial variables at VB(C; δ, τ) under constraint (10).

Limit as Behaviour w.r.t.

Variable V → ∞ V → VB C δ τ

E ∼ V − (1−τ)C
r 0 Convex, ց ր Convex, ր

D C
r

λC(1−τ)(1−α)
r(1+λ) Concave, ∩-Shaped ց ր

v ∼ V + τC
r

λC(1−τ)(1−α)
r(1+λ) Concave ց a ր

R r r(1+λ)
λ(1−α)(1−τ) Concave ր ց

R − r 0 r(1+λ(α+τ−ατ))
λ(1−α)(1−τ) Concave ր ց

a See Proposition 3.7.

Proof: Equity’s behaviour w.r.t. λ is summarized by

f(λ) =
1

λ + 1

(

C(1 − τ)

rV

λ

1 + λ

)λ

. (18)

The logarithmic derivative of (18) is log(C(1−τ)
rV

λ
λ+1) which is negative by (12). Moreover

f ′′(λ) =
1

λ(1 + λ)
f(λ) +

(

log
C(1 − τ)

rV
+ log

λ

1 + λ

)

f ′(λ) > 0, (19)

thus equity is decreasing and convex w.r.t. λ. •
As a consequence of Proposition 3.1 and Remark 2.2, equity is increasing w.r.t. δ. Concern-

ing equity’s convexity w.r.t. δ, the following result holds.

Proposition 3.2 The equity function (15) is convex w.r.t. δ if

V > VB(C; δ, τ)e
2r

λ2
√

µ2+2rσ2 (20)

where VB(C; δ, τ) is given by (11).

Proof: In order to study equity’s convexity w.r.t. δ, we evaluate ∂2
δ E using (18) and (19),

obtaining:

∂2
δ E =

[

1

λ(1 + λ)
f(λ) +

(

log2 C(1 − τ)

rV

λ

1 + λ

)

f(λ)

]

λ2

µ2 + 2rσ2

+ f(λ)

(

log
C(1 − τ)

rV

λ

1 + λ

)

2r

(µ2 + 2rσ2)
√

µ2 + 2rσ2
(21)

Substituting VB(C; δ, τ) = C(1 − τ)λ/(r(1 + λ)) and re-arranging terms gives:

∂2
δ E =

f(λ)

µ2 + 2rσ2

[

λ

1 + λ
+ log

VB

V

(

λ2 log
VB

V
+

2r
√

µ2 + 2rσ2

)]

(22)
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Figure 1: Equity, debt and total value of the firm as function of δ. This plot shows the behaviour of
equity (15), debt (16) and total value of the firm (17) as function of δ, for a fixed level of coupon C = 6.5 satisfying
(10). We assume V = 100, r = 6%, σ = 0.2, τ = 0.35, α = 0.5.

As V ≥ VB then log VB

V < 0 for each parameters’ choice, then a sufficient condition for
equity’s convexity w.r.t. δ is

λ2 log
VB

V
+

2r
√

µ2 + 2rσ2
< 0,

which is equivalent to (20). •

Remark 3.3 Equity’s dependence on dividend δ is strictly related to equity’s dependence on µ.
Observe that ∂2

δ E = ∂2
µE, since ∂µλ = −∂δλ and ∂2

µλ = ∂2
δ λ.

Introducing dividends has a positive effect on equity: this positive effect is even magnified if the
initial distance to default is big enough, meaning constraint (20) being satisfied.

Studying equity’s behaviour w.r.t. C and τ , we can observe that E in (15) is a function of
the product C(1− τ); thus E(C; δ, τ) is: i) decreasing and convex w.r.t. coupon C, ii) increasing
and convex w.r.t. the corporate tax rate τ .

We observe that also in the presence of a dividend δ > 0, equity holders have incentives
to increase the riskiness of the firm, since λ decreases with higher volatility. These incentives
are higher as dividend increases: Figure 2 shows the behaviour of ∂E

∂σ as function of V, for three

different levels of δ. For each value of V , ∂E
∂σ increases with δ, meaning that a higher dividend

produces greater incentives for shareholders to increase the riskiness of the firm, thus rising
potential agency costs due to incentive compatibility problem between shareholders and debt
holders.
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Figure 2: Effect of a change in σ on equity value. This plot shows the behaviour of ∂E
∂σ

as function
of firm’s current assets value V, for a fixed level of coupon C = 6.5 and different values of δ. We consider
r = 0.06, σ = 0.2, α = 0.5, τ = 0.35. Equity value is given by (15).

3.2 Debt and Yield Spread

We consider now the debt function D(C; δ, τ) in (16). The application D(C; δ, τ) is concave
w.r.t. coupon C, allowing to analyze the maximum capacity of debt of the firm as it is shown
in the following Proposition.

Proposition 3.4 The application C 7→ D(C; δ, τ) is concave and it achieves a maximum at

Cmax(V, δ, τ) =
rV (1 + λ)

λ(1 − τ)

(

1

λ(τ + α(1 − τ)) + 1

)
1
λ

. (23)

Cmax(V, δ, τ) represents the maximum capacity of the firm’s debt. Substituting this value for
the coupon into debt function D(C; δ, τ) and simplifying yields:

Dmax(V, δ, τ) =
V

1 − τ

(

1

λ(τ + α(1 − τ)) + 1

)
1
λ

. (24)

Equation (24) represents the debt capacity of the firm: the maximum value that debt can
achieve by choosing the coupon C. Not surprisingly the debt capacity of the firm is proportional
to firm’s current assets value V , decreases with higher bankruptcy costs α and increases if the
corporate tax rate rises. In the presence of a positive dividend, if τ changes, its effect on debt
capacity is lower than in case δ = 0, since δ 7→ ∂Dmax(V ;δ,τ)

∂τ is decreasing.

Under constraint (10), as δ increases, debt decreases as shown in the following Proposition.

Proposition 3.5 Debt value D(C; δ, τ) defined in (16) is a decreasing function of dividend δ.
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Figure 3: Debt value as function of the coupon. This plot shows the behaviour of debt value given in (16)
as function of coupon payments C, for different levels of δ. We assume V = 100, r = 0.06, σ = 0.2, τ = 0.35,
α = 0.5. We consider three different levels of δ: δ = 0, δ = 0.01, δ = 0.05. The value C̄ = rV

(1−τ)
is the maximum

value that coupon C can assume due to constraint C(1 − τ) − rV < 0.

Proof: It is enough to study the monotonicity of debt function with respect to λ. Debt’s
dependence on λ is the opposite of

g(λ) =

(

1 − (1 − α)(1 − τ)
λ

λ + 1

)(

C(1 − τ)

rV

λ

λ + 1

)λ

,

its log-derivative being

h(λ) =
g′

g
(λ) =

(

log
λ

λ + 1
+

α + τ − ατ

1 + λ(α + τ − ατ)
+ log

C(1 − τ)

rV

)

.

Function h admits a positive derivative

h′(λ) =
1

λ(λ + 1)
−
(

α + τ − ατ

1 + λ(α + τ − ατ)

)2

=
λ(α + τ − ατ)(2 − α − τ + ατ) + 1

λ(λ + 1)(1 + λ(α + τ − ατ))2
≥ 0.

This inequality implies that h(λ) increases from −∞ to log C(1−τ)
rV , which is negative by (10). •

As dividend δ increases, the maximum capacity of debt reduces (the application λ 7→
Dmax(V ; δ, τ) is increasing) and Cmax increases. Equity holders have incentives to increase the
riskiness of the firm since ∂E

∂σ > 0, while the opposite happens for debt holders, ∂D
∂σ < 0 :

higher volatility decreases debt value. The ”asset substitution” problem still exists. There is an
incentive compatibility problem between debt holders and equity holders: once debt is issued,
shareholders will benefit from an increase in σ, through transferring value from debt to equity
(also if equity is not exactly an ordinary call option, see [6] footnote 29). In Figure 4 we analyze
which is the effect of a change in the volatility level σ on equity and debt value, when dividends
are introduced. Following [6] we study the magnitude of this effect as function of V . Considering
three different levels of dividend δ = 0, 0.01, 0.05 we compute ∂E

∂σ , ∂D
∂σ and analyze them as

functions of V . The firm will bear agency costs for the range of values V such that ∂E
∂σ > 0,
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∂D
∂σ < 0. Figure 4 shows that introducing dividends increases this range, thus rising the problem
of adverse incentives between debt holders and equity holders and so potential agency costs for
the firm. Considering a positive δ, as V becomes higher, the incentive compatibility problem
becomes more difficult to solve, since the distance between ∂E

∂σ and ∂D
∂σ increases with a greater

δ. This is still true also considering a ”pure” Modigliani-Miller framework with zero tax benefits
and bankruptcy costs, where ∂E

∂σ = −∂D
∂σ . In such a case the conflict approaches a zero sum game

as found in [6] and the introduction of dividends increases its magnitude (see Figure 5).
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Figure 4: Effect of a change in σ on equity and debt values. This plot shows the behaviour of ∂E
∂σ

(dashed
line) and ∂D

∂σ
(solid line) as function of firm’s current assets value V, for a fixed level of coupon C = 6.5. We

consider r = 0.06, σ = 0.2, α = 0.5, τ = 0.35. Equity value is given by (15), debt value by (16).

Finally, a higher coupon C has a positive effect on the interest rate paid by risky debt,
yield, defined as

R(C; δ, τ) :=
C

D(C; δ, τ)
, (25)

with D(C; δ, τ) given in (16).

Actually yield R(C; δ, τ) is increasing as function of C and decreasing as function of τ . A
higher corporate tax rate τ will reduce both yield R(C; δ, τ) and yield spread R(C; δ, τ) − r
by rising debt (lowering the endogenous failure level VB(C; δ, τ), see also [5] footnote 22): this

follows by the relation ∂τR(C; δ, τ) = −C ∂τ D(C;δ,τ)

(D(C;δ,τ))2
.

Proposition 3.6 The function yield R(C; δ, τ) defined in (25) is increasing w.r.t. dividend δ.

Proof: As D is an increasing function of λ and ∂λR = −C ∂λD
D2 , we obtain that R is a decreasing

function of λ. Thus by Remark 2.2 R is increasing w.r.t. δ. •
Observe that R can be expressed as:

R : (C; δ, τ) 7→ rR̄

(

C

V

)

, (26)
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Figure 5: Effect of a change in σ on equity and debt values when α = τ = 0. This plot shows the
behaviour of ∂E

∂σ
(dashed line) and ∂D

∂σ
(solid line) as function of firm’s current assets value V, for a fixed level of

coupon C = 6.5. We consider r = 0.06, σ = 0.2, α = 0.5, τ = 0.35 and two different levels of dividend δ = 0, 0.05.
Equity value is given by (15), debt value by (16).

with

R̄

(

C

V

)

=

[

1 −
(

C

V

)λ((1 − τ)

r

λ

λ + 1

)λ(

1 − (1 − α)(1 − τ)
λ

λ + 1

)

]−1

. (27)

As increasing function of the ratio C
V , the term R̄

(

C
V

)

represents the risk-adjustment factor
paid to debt holders. Introducing dividends rises debt’s volatility as Figure 6 shows: as a conse-
quence, the compensation paid by the firm to debt holders for the risk assumed must be higher,
and this is why R̄

(

C
V

)

increases.
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Figure 6: Volatility of Equity and Debt. This plot shows the behaviour of equity and debt volatility σE , σD

as function of dividends, for a fixed level of coupon C = 6.5. We consider V = 100, r = 0.06, σ = 0.2, α = 0.5, τ =
0.35. By Ito calculus formula we derive the behaviour of equity and debt volatility σE , σD.
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When V → ∞, yield spread R−r approaches to r, ∂D
∂σ → 0 and debt becomes risk free: this

is exactly as in [5], since in such a case, the hypothesis of debt being redeemed in full becomes
quite certain and this is not affected by the choice of dividend δ. A positive dividend will instead
rise R in case V → VB, considering a ”pure” Modigliani-Miller [9] framework: if α = τ = 0, as
V approaches the failure level VB, R → r(1 + 1

λ), while in case δ = 0 we have R → r + 1
2σ2. If

there are no bankruptcy costs or tax benefits of debt, introducing dividends allows to have yield
exceeding the risk free rate r by more than 1

2σ2, since r
λ > 1

2σ2, thus providing to bondholders
a higher compensation for risk.

3.3 Total Value

The total value of the firm v(C; δ, τ) in (17) is a concave function of coupon C and an
increasing function of corporate tax rate τ . The following proposition shows the behaviour of
the total value of the firm with respect to dividend δ.

Proposition 3.7 The total value v(C; δ, τ) defined in (17) is decreasing w.r.t. δ if

V > VB(C; δ, τ)e
x+α

x+λ(x+α) (28)

with x = τ
1−τ , and VB(C; δ, τ) given in (11).

Proof: The behaviour of v(C; δ, τ) is the one of the following:

G : λ 7→ (τ + λ(τ + α(1 − τ))
1

λ + 1

(

C(1 − τ)

rV

λ

λ + 1

)λ

,

which satisfies, letting x = τ
1−τ :

G′

G
(λ) = h(λ) =

x + α

x + λ(x + α)
+ log

(

C(1 − τ)

rV

λ

λ + 1

)

=
x + α

x + λ(x + α)
+ log

VB(C; δ, τ)

V
.

Actually, the behaviour of G is given by the sign of h(λ), with x+α
x+λ(x+α) > 0 and log VB(C;δ,τ)

V < 0.

Thus, in case

V > VB(C; δ, τ)e
x+α

x+λ(x+α)

we have h(λ) < 0 and the total value of the firm is decreasing w.r.t. δ. •
The economic intuition behind constraint (28) being satisfied, is that if the initial value

of the firm V is sufficiently greater than the failure level, δ 7→ v(C; δ, τ) is decreasing since
introducing dividends makes bankruptcy more likely.

Figure 7 shows the cumulative probability F (s) of going bankruptcy in the interval [0, s):

F (s) = N

(

b − µs

σ
√

s

)

+ e2bµ/σ2
N

(

b + µs

σ
√

s

)

, (29)

where N(·) is the normal cumulative probability function and b := log VB

V , see also Equation (15)
in [6]. As observed in [6], while the probability of going bankruptcy is negligible if we consider
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only the first few years, it rises if we look at a longer period of time. In line with [6] footnote
27, Figure 7 shows that the probability of default is quite dependent on the drift r − δ assumed
for the process Vt. What we want to study is dividend influence on the cumulative probability
of going bankruptcy F (s).

As an example we consider three different levels δ = 0, 0.01, 0.05. Looking at cumulative
probability over a period longer than 10 years shows that introducing dividends makes debt
riskier, since it strongly increases the likelihood of default. Considering a period of 20 years, the
probability of default is 41% with a dividend δ = 0.05 rather than 21% in case δ = 0.

At the same time, we observe an opposite behaviour of F (s) if we look at very short time
intervals (approximately less than 6 years with our base case values): the cumulative probability
of going bankruptcy is less with dividends if compared to the case δ = 0. Intuitively we could
think of this in the following way: when the interval [0, s) is very short, the probability of going
bankruptcy is low, thus default is not imminent and this is independent of the dividend level.
In such a case, introducing dividends will lower F (s) since its only effect is to make the failure
level farer.
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Figure 7: Cumulative Probability of Default. This plot shows the cumulative probability of default F (s)

over the period (0, s], considering Equation (29). The plot shows F (s) for three different values of parameter δ.

We consider: δ = 0, 0.01, 0.05. Base case parameters’ values are V = 100, r = 0.06, σ = 0.2, α = 0.5, τ = 0.35; the

coupon is chosen optimally.

4 Optimal Leverage

Now we turn to the optimization of the total value of the firm v(C; δ, τ) with respect to the
coupon C, depending on the failure level VB(C; δ, τ) in (11). This application is concave since

A := τ
r + αλ(1−τ)

r(λ+1) > 0 and λ > 0, therefore the following result holds.
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Proposition 4.1 For any fixed δ, τ , the optimal coupon is:

C∗(V ; δ, τ) =
rV (λ + 1)

λ(1 − τ)

(

τ

λ(τ + α(1 − τ)) + τ

)
1
λ

. (30)

We observe that C∗(V ; δ, τ) < Cmax(V ; δ, τ), where Cmax is defined in (23). Moreover, this max-

coupon satisfies V > (1−τ)Cmax

r
λ

λ+1 .
The optimal coupon C∗(V ; δ, τ) is an increasing function of τ . In fact

∂C∗(V, δ, τ)

∂τ
=

(

1

1 − τ
+

α

τ(τ(1 + λ) + αλ(1 − τ))

)

C∗(V, δ, τ) > 0.

Replacing (30) in (11) yields the optimal failure level

V ∗
B(V ; δ, τ) = V

(

τ

λ(τ + α(1 − τ)) + τ

)
1
λ

. (31)

Remark 4.2 In case δ = 0, we have λ = 2r
σ2 and we get the same results as in [5]:

V ∗
B(V ; 0, τ) = V

(

τσ2

2r(τ + α(1 − τ)) + τσ2

)

σ2

2r

. (32)
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Figure 8: Optimal Coupon. This plot shows the behaviour of optimal coupon C∗(V ; δ, τ) as function of
dividend δ and corporate tax rate τ . We consider V = 100, r = 0.06, σ = 0.2, α = 0.5.

Proposition 4.3 Consider the optimal failure level (31). The following results hold:
i) δ 7→ V ∗

B(V ; δ, τ) is a decreasing function;
ii) τ 7→ V ∗

B(V ; δ, τ) is an increasing function.
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Proof: i) Using Remark 2.2, it is enough to study the following function

F : λ 7→ − 1

λ
log

(

τ + λ(τ + α(1 − τ))

τ

)

.

Taking the derivative w.r.t. λ, we obtain:

F ′(λ) =
1

λ2

(

log (1 + z) − z

1 + z

)

,

with z := λ
(

1 + α
(

1−τ
τ

))

. It is sufficient to study the sign of

G : z 7→ log (z + 1) − z

1 + z
,

with z ∈
[

0, 2r
σ2

(

1 + α
(

1−τ
τ

))]

. Since G(0) = 0 and G′(z) ≥ 0, for any z the function F is
increasing. Finally δ 7→ V ∗

B(V ; δ, τ) is decreasing.

ii) The result follows by:

∂V ∗
B(V ; δ, τ)

∂τ
:=

∂V ∗
B(C∗(V ; δ, τ))

∂τ
=

∂V ∗
B(C∗(V ; δ, τ))

∂C∗

∂C∗(V ; δ, τ)

∂τ
> 0.

•
Introducing a positive dividend into (31) has an actual influence: δ 7→ V ∗

B(V ; δ, τ) is a
decreasing function for any value of τ, while τ 7→ V ∗

B(V ; δ, τ) is increasing for any value of δ.
Similarly optimal coupon C∗(V ; δ, τ) given by (30) will benefit from a higher corporate tax rate
and decrease w.r.t. dividend δ, as Figure 8 shows.

Table 2: Effect of dividend δ on all financial variables at the optimal leverage ratio. Base case
parameters’ values: V = 100, σ = 0.2, τ = 0.35, r = 0.06, α = 0.5. The first and last rows of the table show
Leland’s framework with his base case parameters’ values, in particular with δ = 0 and 0.055 (in this last case
the drift r − δ of process V· is exactly as in [6]). R∗, L∗ are in percentage (%), R∗

− r is in basis points (bps).

δ C∗ D∗ R∗ R∗ − r E∗ V ∗
B v∗ L∗

0 6.5010 96.2742 6.7526 75.26 32.1675 52.8204 128.4417 74.9556
0.005 6.4592 94.9261 6.8045 80.45 32.8775 51.6352 127.8036 74.2750
0.01 6.4188 93.5455 6.8617 86.17 33.6038 50.4201 127.1493 73.5714
0.015 6.3803 92.1378 6.9248 92.48 34.3437 49.1799 126.4815 72.8469
0.02 6.3444 90.7095 6.9942 99.42 35.0940 47.9207 125.8034 72.1041
0.025 6.3116 89.2682 7.0703 107.03 35.8507 46.6494 125.1189 71.3467
0.03 6.2826 87.8228 7.1537 115.37 36.6095 45.3743 124.4323 70.5788
0.035 6.2581 86.3826 7.2446 124.46 37.3657 44.1039 123.7482 69.8051
0.04 6.2386 84.9573 7.3433 134.33 38.1143 42.8473 123.0716 69.0308
0.045 6.2248 83.5563 7.4498 144.98 38.8508 41.6132 122.4071 68.2610
0.05 6.2169 82.1886 7.5642 156.42 39.5705 40.4099 121.7592 67.5010
0.055 6.2154 80.8621 7.6864 168.64 40.2696 39.2446 121.1317 66.7555

The capital structure of the firm is strongly affected by dividends: Tables 2 and 3 show
the behaviour of all financial variables at optimal leverage ratio, when the parameter δ moves
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away from zero. Consistent with our base case, these tables report both numerical results and a
qualitative analysis.

Let y := λ(τ + α(1 − τ)), the following holds:

C∗ =
rV (1 + λ)

λ(1 − τ)

(

τ

y + τ

)
1
λ

(33)

V ∗
B = V

(

τ

y + τ

)
1
λ

(34)

D∗ =
V

λ(1 − τ)

(

τ

y + τ

)
1
λ
(

λ +
y(1 − τ)

y + τ

)

(35)

E∗ = V

(

1 −
(

τ

y + τ

)
1
λ 1

λ

(

1 + λ +
τ

y + τ

)

)

(36)

R∗ =
r(1 + λ)

λ + y(1−τ)
y+τ

. (37)

Columns 6 and 7 of Table 2 show equity and debt values when the coupon C is chosen
to maximize the total value of the firm. Optimal equity value increases with a higher dividend,
while optimal debt decreases. These two effects have a different magnitude: δ influence on debt
is in fact greater than δ influence on equity, as a consequence the optimal total value of the firm,
v∗ := D∗ + E∗, reduces. Now consider optimal leverage ratio, defined as L∗ := D∗

v∗
. The last

column of Table 2 shows that increasing dividends decreases optimal leverage ratio L∗, and this
effect is more pronounced as δ is higher. Considering our base case, optimal leverage can drop
from approximately 75% to 66.75% passing from δ = 0 to δ = 0.055. Firms paying dividends can
choose very different optimal leverage ratios, depending on the level of their riskiness. Figure 9
shows optimal leverage as function of δ for three different values of σ. For each level of δ, optimal
leverage ratio decreases as σ rises. Observe also that L∗ is decreasing w.r.t. δ for each level of
σ, but this reduction in optimal leverage is lower as the riskiness of the firm rises.

Recall from Section 2 that introducing dividends rises the probability of going bankruptcy
given by (29): as a consequence, when δ rises, optimal yield R∗ and optimal yield spread R∗ − r
increase. Leland [5] observes that as bankruptcy costs rise, surprisingly optimal yield spread
reduces when the coupon is chosen optimally. This is due to the fact that a higher α will
decrease the optimal coupon. Our analysis shows that when a dividend is introduced, optimal
yield spreads are decreasing w.r.t. α for each level of δ (see Figure 10). Dividends influence on
optimal yield spreads is higher as α reduces. Considering as extreme cases δ = 0 and δ = 0.055,
optimal yield spread rises from 71.6778 bps (basis points) to 156.2624 bps with α = 0.8, from
75.2554 bps to 168.6365 bps with α = 0.5 and from 81.2559 bps to 188.424 bps with α = 0.2.

We now turn to the study of tax deduction τ influence on all financial variables. Tables 4 and
5 show the behaviour of all financial variables at optimal coupon level C∗ for different values of
the corporate tax rate τ when a dividend δ = 0.01 is introduced. As the tax deduction increases,
all financial variables, except equity, will benefit from this. This result extends Table II in [5]
since it allows for a dividend δ > 0. Concerning the optimal failure level V ∗

B(V ; δ, τ) we observe
that by (31) the corporate tax rate τ has no influence on the optimal failure level at optimal
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Figure 9: Optimal leverage ratio as function of δ. This plot show optimal leverage ratio L∗ as function of
δ for three different levels of volatility σ. We consider V = 100, r = 0.06, α = 0.5, τ = 0.35.
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Figure 10: Optimal spreads as function of δ. This plot show optimal spreads R∗

− r as function of δ for
three different levels of α. We consider V = 100, r = 0.06, σ = 0.2, τ = 0.35.
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Table 3: Effect of dividend δ on all financial variables at the optimal leverage ratio. The table shows
for each financial variable the effect of increasing δ. Considering our base case, we report the sign of change in
each variable as the dividend moves away from 0.

Financial Variables C∗ D∗ R∗ R∗−r E∗ V ∗
B v∗ L∗

Sign of change as δ ր < 0 < 0 > 0 > 0 > 0 < 0 < 0 < 0

leverage ratio in case α = 0. The same holds for equity value E∗ at optimal leverage ratio: a
change in the corporate tax rate has no effect on equity value in the absence of bankruptcy
costs.

Table 4: Effect of a change in the corporate tax rate τ on all financial variables at the optimal

leverage ratio. This table considers a case in which a dividend δ is introduced (δ = 0.01) and studies the effect

of a change in the corporate tax τ . R∗, L∗ are in percentage (%), R∗ is in basis points (bps).

τ C∗ D∗ R∗ R∗ − r E∗ V ∗
B v∗ L∗

0.35 6.4188 93.5455 6.8617 86.17 33.6038 50.4201 127.1493 73.5714
0.30 5.7425 85.0717 6.7502 75.02 35.7472 48.5775 120.8189 70.4126
0.25 5.1154 77.0816 6.6363 63.63 38.3728 46.3633 115.4544 66.7637
0.20 4.5132 69.2273 6.5193 51.93 41.6807 43.6322 110.9081 62.4187
0.15 3.9071 61.0635 6.3984 39.84 46.0189 40.1338 107.0824 57.0248

Table 5: Effect of corporate tax rate τ on all financial variables at the optimal leverage ratio. The

table shows for each financial variable the effect of increasing τ for fixed δ = 0.01. Considering our base case, we

report the sign of change in each variable as the corporate tax rate increases.

Financial Variables C∗ D∗ R∗ R∗−r E∗ V ∗
B v∗ L∗

Sign of change as τ ր > 0 > 0 > 0 > 0 < 0a > 0a > 0 > 0

a No effect if α = 0.

5 Conclusions

Adding dividends has an actual influence on all financial variables: for an arbitrary coupon
level C, a positive dividend increases equity and decreases both debt and total value of the
firm, making bankruptcy more likely. Dividends strongly modify the influence of all parameters
r, τ, C, σ2 on the endogenous failure level VB(C; δ, τ) (magnitude of the change). Concerning
optimal capital structure Leland’s [5] results show too high leverage ratios (and/or too low yield
spreads): assuming δ > 0 allows to overcome this, providing lower optimal leverage ratios (and
higher yield spreads).
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