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Abstract

We prove a sharp three sphere inequality for solutions to third order pertur-
bations of a product of two second order elliptic operators with real coefficients.
Then we derive various kinds of quantitative estimates of unique continuation for
the anisotropic plate equation. Among these, we prove a stability estimate for the
Cauchy problem for such an equation and we illustrate some applications to the size
estimates of an unknown inclusion made of different material that might be present
in the plate. The paper is self-contained and the Carleman estimate, from which
the sharp three sphere inequality is derived, is proved in an elementary and direct
way based on standard integration by parts.
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1 Introduction

In the present paper we shall prove some quantitative estimates of unique continuation
for fourth order elliptic equations arising in linear elasticity theory.
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The equations we are most concerned with are those describing the equilibrium of a
thin plate having uniform thickness. Working in the framework of the linear elasticity for
infinitesimal deformations and under the kinematical assumptions of the Kirchhoff-Love
theory (see [Fi], [Gu]), the transversal displacement u of the plate satisfies the following
equation

(1.1) Lu :=
2∑

i,j,k,l=1

∂2
ij(Cijkl(x)∂2

klu) = 0, in Ω,

where Ω is the middle surface of the plate and {Cijkl(x)}2
i,j,k,l=1 is a fourth order tensor

describing the response of the material of the plate. In the sequel we shall assume that
the following standard symmetry conditions are satisfied

(1.2) Cijkl(x) = Cklij(x) = Clkij(x), i, j, k, l = 1, 2, in Ω.

In addition we shall assume that Cijkl ∈ C1,1(Ω), i, j, k, l = 1, 2, and that the following
strong convexity condition is satisfied

(1.3) Cijkl(x)AijAkl ≥ γ|A|2, in Ω,

for every 2 × 2 symmetric matrix A = {Aij}2
i,j=1, where γ is a positive constant and

|A|2 =
∑2

i,j=1 A2
ij.

More precisely, the quantitative estimates of unique continuation which we obtain are
in the form of a three sphere inequality (see Theorem 6.2, Theorem 6.5 and Theorem 6.6),
in developing which we have mainly had in mind its applications to two kinds of inverse
problems for thin elastic plates:

a) the stability issue for the inverse problem of the determination of unknown bound-
aries,

b) the derivation of size estimates for unknown inclusions made of different elastic
material.

Let us give a brief description of problems a) and b).

Problem a). We consider a thin elastic plate, having middle surface Ω, whose boundary
is made by an accessible portion Γ and by an unknown inaccessible portion I, to be deter-
mined. Assuming that the boundary portion I is free, a possible approach to determine
I consists in applying a couple field M̂ on Γ and measuring the resulting transversal dis-
placement u and its normal derivative ∂u

∂n
on an open subset of Γ. In [M-Ro] it was proved

that, under suitable a priori assumptions, a single measurement of this kind is sufficient
to detect I. The stability issue, which we address here, asks whether small perturbations
of the measurements produce or not small perturbations of the unknown boundary I.
Since assigning a couple field M̂ results in prescribing the so called Neumann conditions
for the plate, that is two boundary conditions of second and third order respectively, it
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follows that Cauchy data are known in Γ. Therefore it is quite reasonable, also in view
of the literature about stability results for the determination of unknown boundaries in
other physical frameworks (see for instance [Al-B-Ro-Ve], [Si], [Ve]), that the first step
to be proved in order to get such a stability result consists in stability estimates for the
Cauchy problem for the fourth order equation (1.1). For this reason, in the present paper
we derive a stability result for the Cauchy problem, see Theorem 3.8, having in mind
applications to this inverse problem and to the analogous ones, consisting in the deter-
mination of cavities or rigid inclusions inside the plate. We refer to [M-Ro-Ve3] and to
[M-Ro] respectively for uniqueness results for these two inverse problems.

Problem b). We consider a thin elastic plate, inside which an unknown inclusion made
of different material might be present. Denoting by Ω and D the middle surface of the
plate and of the inclusion respectively, a problem of practical interest is the evaluation
of the area of D. In [M-Ro-Ve1] we derived upper and lower estimates of the area of D
in terms of boundary measurements, for the case of isotropic material and assuming a
“fatness” condition on the set D, see [M-Ro-Ve1, Theorem 4.1]. Since the proof of that
result was mainly based on a three sphere inequality for |∇2u|2 (here ∇2u denotes the
Hessian matrix of u), where u is a solution of the plate equation, we emphasize here that
Theorem 4.1 of [M-Ro-Ve1] extends to the more general anisotropic assumptions on the
elasticity tensor stated in Theorem 6.5 of the present paper, in which such a three sphere
inequality is established.

Concerning the Cauchy problem, along a classical path, [Ni], recently revived in
[Al-R-Ro-Ve] in the framework of second order elliptic equations, we derive the stabil-
ity estimates for the Cauchy problem for equation (1.1) as a consequence of smallness
propagation estimates from an open set for solution to (1.1). Such smallness propagation
estimates are achieved by a standard iterative application of the three sphere inequality.

In view of the applications to problems a) and b), we took care to study with particular
attention the sharp character of the exponents appearing in the three sphere inequality
because of its natural connection with the unique continuation property for functions
vanishing at a point with polynomial rate of convergence (strong unique continuation
property, [Co-Gr], [Co-Gr-Ta], [Ge], [LeB], [L-N-W], [M-Ro-Ve1]) or with exponential
rate of convergence, [Co-Ko], [Pr]. As a byproduct of our three sphere inequality, we
reobtain the result in [Co-Ko], in the case of C1,1 coefficients, stating that, if u(x) =

O
(
e−|x−x0|−β

)
as x → x0, for some x0 ∈ Ω and for an appropriate β > 0 which is

precisely defined below, then u ≡ 0 in Ω. Indeed it is not worthless to stress that
such kinds of unique continuation properties, especially the quantitative version of the
strong unique continuation property (three sphere inequalities with optimal exponent
and doubling inequalities, in the interior and at the boundary) have provided crucial
tools to prove optimal stability estimates for inverse problems with unknown boundaries
[Al-B-Ro-Ve], [Si], [Ve] and to get size estimates for unknown inclusions, [Al-M-Ro1],
[Al-M-Ro2], [Al-M-Ro3], [Al-Ro-S], [M-Ro-Ve1], [M-Ro-Ve2]. Concerning problem b),
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we stress that the application of doubling inequalities allows to get size estimates of the
unknown inclusion D under fully general hypotheses on D, which is assumed to be merely
a measurable set, see [M-Ro-Ve2].

The strong unique continuation property for equation (1.1) holds true, [Co-Gr], [LeB],
[L-N-W], [M-Ro-Ve1]), when the tensor {Cijkl(x)}2

i,j,k,l=1 satisfies isotropy hypotheses,
that is

(1.4) Cijkl(x) = δijδklλ(x) + (δikδjl + δilδjk) µ(x), i, j, k, l = 1, 2, in Ω,

where λ and µ are the Lamé moduli.
On the other hand, in view of Alinhac Theorem [Ali], it seems extremely improbable

that the solutions to (1.1) can satisfy the strong unique continuation property under

the general hypotheses (1.2) and (1.3) on the tensor {Cijkl(x)}2
i,j,k,l=1. Indeed, let L̃ =∑4

h=0 a4−h(x)∂h
1 ∂4−h

2 be the principal part of the operator L. Let z1, z2, z1, z2 (here zj is
the conjugate of the complex number zj) be the complex roots of the algebraic equation∑4

h=0 a4−h(x0)z
h = 0. In [Ali] it is proved that if z1 6= z2 then there exists an operator

Q of order less than four such that the strong unique continuation property in x0 doesn’t
hold true for the solutions to the equation L̃u + Qu = 0. A fortiori, it seems hopeless the
possibility that solutions to (1.1) can satisfy the doubling inequality.

At the best of our knowledge, concerning both weak and strong unique continuation
property for equation (1.1), under the general assumptions (1.2), (1.3) and some reason-
able smoothing condition on the coefficients Cijkl, neither positive answers nor counterex-
amples are available in the literature. On the other hand, it is clear that, in order to face
the issue of unique continuation property for equation (1.1) under the above mentioned
conditions, the two-dimensional character of equation (1.1) or the specific structure of
the equation should play a crucial role. Indeed, a Pl̆ıs’s example, [Pl], [Zu], shows that
the unique continuation property fails for general three-dimensional fourth order elliptic
equations with real C∞ coefficients.

For the reasons we have just outlined, in the present paper we have a bit departed from
the specific equation (1.1) and we have derived the three sphere inequality that we are
interested in, as a consequence of a three sphere inequality for solutions to the equation

(1.5) P4(u) + Q(u) = 0, in B1 = {x ∈ Rn | |x| < 1},

where n ≥ 2, Q is a third order operator with bounded coefficients and P4 is a fourth
order elliptic operator such that

(1.6) P4 = L2L1,

where L1 and L2 are two second order uniformly elliptic operator with real and C1,1(B1)
coefficients. Our approach is also supported by the fact that the operator L can be
written, under very general and simple conditions (see sections 3 and 6), as follows

(1.7) L = P4 + Q,
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where P4 satisfies (1.6) and Q is a third order operator with bounded coefficients. We have
conventionally labeled such conditions (see Definition 3.1 in Section 3) the dichotomy con-
dition. On the other hand, the conditions under which the decomposition (1.7) is possible
are, up to now, basically the same under which the unique continuation property holds for
fourth order elliptic equation in two variables [Wat], [Zu]. More precisely, such conditions
guarantee the weak unique continuation property for solution to Lu = 0 provided that
the complex characteristic lines of the principal part of operator L satisfy some regularity
hypothesis.

We prove the three sphere inequality for solutions to equation (1.5) (provided that
P4 satisfies (1.6)) in Theorem 5.3. By such a theorem we immediately deduce, Corollary
5.4, the following unique continuation property. Let Lk =

∑n
i,j=1 gij

k (x)∂2
ij, k = 1, 2,

where gk = {gij
k (x)}n

i,j=1 are symmetric valued function whose entries belong to C1,1
(
B1

)
.

Assuming that {gij
k (x)}n

i,j=1, k = 1, 2 satisfy a uniform ellipticity condition in B1, let

ν∗ and ν∗ (µ∗ and µ∗) be the minimum and the maximum eigenvalues of {gij
1 (0)}n

i,j=1

({gij
2 (0)}n

i,j=1) respectively, and let β >
√

µ∗ν∗
µ∗ν∗

− 1. We have that

(1.8) if u(x) = O
(
e−|x|

−β
)

, as x → 0, then u ≡ 0 in B1.

Since (1.8) has been proved for the first time in [Co-Ko], see also [Co-Gr-Ta], where
the sharp character of property (1.8) has been emphasized, we believe useful to compare
our procedure with the one followed in [Co-Ko]. In the present paper, as well as in
[Co-Ko], the bulk of the proof consists in obtaining a Carleman estimate for P4 = L2L1

with weight function e−(σ0(x))−β

, where β >
√

µ∗ν∗
µ∗ν∗

− 1 and (σ0(x))2 is a suitable positive

definite quadratic form (Theorem 5.2). In turn, here and in [Co-Ko], the Carleman
estimate for P4 is obtained by an iteration of two Carleman estimates for the operators
L1 and L2 with the same weight function e−(σ0(x))−β

. However, while in [Co-Ko] and
[Co-Gr-Ta] the proof of Carleman estimates for L1 and L2 is carried out by a careful
analysis of the pseudoconvexity conditions, [Hö1], [Hö2], [Is], in the present paper, Section
4, we obtain the same estimates by a more elementary and direct way. More precisely,
we adapt appropriately a technique introduced in [Es-Ve] in the context of parabolic
operators. A prototype of this technique was already used in [Ke-Wa] in the issue of the
boundary unique continuation for harmonic functions. Such a technique, which is based
only on integration by parts and on the fundamental theorem of calculus, being direct
and elementary, makes it possible to easily control the constants that occur in the final
three sphere inequality.

Finally, let us notice that the above results can be extended also to treat fourth order
operators having leading part Lu given by (1.1) and involving lower order terms. An
example of practical relevance is, for instance, the equilibrium problem for a thin plate
resting on an elastic foundation. According to the Winkler model [Win], the corresponding
equation is

(1.9) Lu + ku = 0, in Ω,
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where k = k(x) is a smooth, strictly positive function. Indeed, in view of Theorem 5.3,
the three sphere inequalities established in Section 6 extend to equation (1.9).

The plan of the paper is as follows. In Section 2 we introduce some basic notation.
In Section 3 we present the main results for the Cauchy problem, see Theorem 3.8. In
Section 4 we prove a Carleman estimate for second order elliptic operators, Theorem 4.5,
which will be used in Section 5 to derive a Carleman estimate for fourth order operators
obtained as composition of two second order elliptic operators, Theorem 5.2. In the same
Section, as a consequence of Theorem 5.2, we also derive a three sphere inequality and
the unique continuation property for such fourth order operators, see Theorem 5.3 and
Corollary 5.4 respectively. Finally, in Section 6, the results of Section 5 are applied to the
anisotropic plate operator, obtaining the desired three sphere inequality, see Theorems
6.2, 6.5 and 6.6.

2 Notation

Let P = (x1(P ), x2(P )) be a point of R2. We shall denote by Br(P ) the ball in R2 of radius
r and center P and by Ra,b(P ) the rectangle of center P and sides parallel to the coordinate
axes, of length a and b, namely Ra,b(P ) = {x = (x1, x2) | |x1−x1(P )| < a, |x2−x2(P )| <
b}. To simplify the notation, we shall denote Br = Br(O), Ra,b = Ra,b(O).
When representing locally a boundary as a graph, we use the following definition.

Definition 2.1. (Ck,α regularity) Let Ω be a bounded domain in R2. Given k, α, with
k ∈ N, 0 < α ≤ 1, we say that a portion S of ∂Ω is of class Ck,α with constants ρ0,
M0 > 0, if, for any P ∈ S, there exists a rigid transformation of coordinates under which
we have P = 0 and

Ω ∩R ρ0
M0

,ρ0
= {x = (x1, x2) ∈ R ρ0

M0
,ρ0

| x2 > ψ(x1)},

where ψ is a Ck,α function on
(
− ρ0

M0
, ρ0

M0

)
satisfying

ψ(0) = 0,

ψ′(0) = 0, when k ≥ 1,

‖ψ‖
Ck,α

(
− ρ0

M0
,

ρ0
M0

) ≤ M0ρ0.

When k = 0, α = 1, we also say that S is of Lipschitz class with constants ρ0, M0.

Remark 2.2. We use the convention to normalize all norms in such a way that their
terms are dimensionally homogeneous with the L∞ norm and coincide with the standard
definition when the dimensional parameter equals one. For instance, the norm appearing
above is meant as follows

‖ψ‖
Ck,α

(
− ρ0

M0
,

ρ0
M0

) =
k∑

i=0

ρi
0‖ψ(i)‖

L∞
(
− ρ0

M0
,

ρ0
M0

) + ρk+α
0 |ψ(k)|

α,
(
− ρ0

M0
,

ρ0
M0

),
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where

|ψ(k)|
α,

(
− ρ0

M0
,

ρ0
M0

) = sup
x′, y′∈

(
− ρ0

M0
,

ρ0
M0

)

x′ 6=y′

|ψ(k)(x′)− ψ(k)(y′)|
|x′ − y′|α .

Similarly, denoting by ∇iu the vector which components are the derivatives of order i
of the function u,

‖u‖Ck,1(Ω) =
k+1∑
i=0

ρ0
i‖∇iu‖L∞(Ω),

‖u‖L2(Ω) = ρ−1
0

(∫

Ω

u2

) 1
2

,

‖u‖Hm(Ω) = ρ−1
0

(
m∑

i=0

ρ2i
0

∫

Ω

|∇iu|2
) 1

2

,

and so on for boundary and trace norms such as ‖ · ‖
H

1
2 (∂Ω)

, ‖ · ‖
H− 1

2 (∂Ω)
.

Notice also that, when Ω = BR(0), then Ω satisfies Definition 2.1 with ρ0 = R, M0 = 2
and therefore, for instance,

‖u‖Hm(BR) = R−1

(
m∑

i=0

R2i

∫

BR

|∇iu|2
) 1

2

,

Given a bounded domain Ω in R2 such that ∂Ω is of class Ck,α, with k ≥ 1, we consider
as positive the orientation of the boundary induced by the outer unit normal n in the
following sense. Given a point P ∈ ∂Ω, let us denote by τ = τ(P ) the unit tangent at the
boundary in P obtained by applying to n a counterclockwise rotation of angle π

2
, that is

(2.1) τ = e3 × n,

where × denotes the vector product in R3, {e1, e2} is the canonical basis in R2 and
e3 = e1 × e2.

Given any connected component C of ∂Ω and fixed a point P ∈ C, let us define as pos-
itive the orientation of C associated to an arclength parametrization ϕ(s) = (x1(s), x2(s)),
s ∈ [0, l(C)], such that ϕ(0) = P and ϕ′(s) = τ(ϕ(s)). Here l(C) denotes the length of C.

Throughout the paper, we denote by ∂iu, ∂su, and ∂nu the derivatives of a function
u with respect to the xi variable, to the arclength s and to the normal direction n,
respectively, and similarly for higher order derivatives.

We denote by M2 the space of 2× 2 real valued matrices and by L(X, Y ) the space of
bounded linear operators between Banach spaces X and Y .

For every 2 × 2 matrices A, B and for every L ∈ L(M2,M2), we use the following
notation:

(2.2) (LA)ij = LijklAkl,
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(2.3) A ·B = AijBij,

(2.4) |A| = (A · A)
1
2 ,

(2.5) Asym =
1

2

(
A + At

)
,

where At denotes the transpose of the matrix A. Notice that here and in the sequel
summation over repeated indexes is implied.

3 Stability estimates for the Cauchy problem

Let us consider a thin plate Ω × [−h
2
, h

2
] with middle surface represented by a bounded

domain Ω in R2 and having uniform thickness h, h << diam(Ω). Given a positive constant
M1, we assume that

(3.1) |Ω| ≤ M1ρ
2
0.

Let us assume that the plate is made of nonhomogeneous linear elastic material with
elasticity tensor C(x) ∈ L(M2,M2) and that body forces inside Ω are absent. We denote
by M̂ a couple field acting on the boundary ∂Ω.

We shall assume throughout that the elasticity tensor C has cartesian components
Cijkl which satisfy the following conditions

(3.2) Cijkl = Cklij = Cklji i, j, k, l = 1, 2, a.e. in Ω.

We recall that the symmetry conditions (3.2) are equivalent to

(3.3) CA = CAsym,

(3.4) CA is symmetric,

(3.5) CA ·B = CB · A,

for every 2× 2 matrices A, B.
In order to simplify the presentation, we shall assume that the tensor C is defined in

all of R2.
On the elasticity tensor C we make the following assumptions:

I) Regularity

(3.6) C ∈ C1,1(R2,L(M2,M2)),
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with

(3.7)
2∑

i,j,k,l=1

2∑
m=0

ρm
0 ‖∇mCijkl‖L∞(R2) ≤ M,

where M is a positive constant;
II) Ellipticity (strong convexity) There exists γ > 0 such that

(3.8) CA · A ≥ γ|A|2, in R2,

for every 2× 2 symmetric matrix A.
Condition (3.2) implies that instead of 16 coefficients we actually deal with 6 coeffi-

cients and we denote




C1111 = A0, C1122 = C2211 = B0,

C1112 = C1121 = C1211 = C2111 = C0,

C2212 = C2221 = C1222 = C2122 = D0,

C1212 = C1221 = C2112 = C2121 = E0,

C2222 = F0,(3.9)

and

(3.10) a0 = A0, a1 = 4C0, a2 = 2B0 + 4E0, a3 = 4D0, a4 = F0.

Let S(x) be the following 7× 7 matrix

(3.11) S(x) =




a0 a1 a2 a3 a4 0 0
0 a0 a1 a2 a3 a4 0
0 0 a0 a1 a2 a3 a4

4a0 3a1 2a2 a3 0 0 0
0 4a0 3a1 2a2 a3 0 0
0 0 4a0 3a1 2a2 a3 0
0 0 0 4a0 3a1 2a2 a3




,

and

(3.12) D(x) =
1

a0

| det S(x)|.

Let us introduce the fourth order plate tensor

(3.13) P =
h3

12
C, in R2.

With this notation we may rewrite the plate equation (1.1) in the equivalent compact
form
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(3.14) div(div(P∇2u)) = 0, in Ω,

where the divergence of a second order tensor field T (x) is defined, as usual, by

(div T (x))i = ∂jTij(x).

Our approach to the Cauchy problem leads us to consider the following complete, inho-
mogeneous equation

(3.15) div(div(P∇2u)) = f + divF + div(divF), in BR,

where f ∈ L2(R2), F ∈ L2(R2;R2), F ∈ L2(R2;M2) satisfy the bound

(3.16) ‖f‖L2(R2) +
1

ρ0

‖F‖L2(R2;R2) +
1

ρ2
0

‖F‖L2(R2;M2) ≤ ε

ρ4
0

,

for a given ε > 0.
A weak solution to (3.15) is a function u ∈ H2(BR) satisfying

(3.17)

∫

BR

P∇2u · ∇2ϕ =

∫

BR

fϕ−
∫

BR

F · ∇ϕ +

∫

BR

F · ∇2ϕ, for every ϕ ∈ H2
0 (BR).

In the sequel we shall use the following condition on the elasticity tensor that we have
conventionally labeled dichotomy condition.

Definition 3.1. (Dichotomy condition) Let O be an open set of R2. We shall say
that the tensor P satisfies the dichotomy condition in O if one of the following conditions
holds true

D(x) > 0, for every x ∈ O,(3.18a)

D(x) = 0, for every x ∈ O,(3.18b)

where D(x) is defined by (3.12).

Remark 3.2. Whenever (3.18a) holds we denote

(3.19) δ1 = min
O
D.

We emphasize that, in all the following statements, whenever a constant is said to depend
on δ1 (among other quantities) it is understood that such dependence occurs only when
(3.18a) holds.
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Remark 3.3. Let us briefly comment the dichotomy condition in the special class of or-
thotropic materials, frequently used in practical applications. In particular, let us assume
that through each point of the plate there pass three mutually orthogonal planes of elastic
symmetry and that these planes are parallel at all points. In this case

(3.20) C0 = 0, D0 = 0,

so that

(3.21) a0 = A0, a1 = 0, a2 = 2B0 + 4E0, a3 = 0, a4 = F0,

and

(3.22) D(x) = 16a0a4(a
2
2 − 4a0a4)

2.

Since, by the ellipticity condition (3.8), the coefficients a0, a4 are strictly positive, the
dichotomy condition reduces to the vanishing or not vanishing of the factor a2

2 − 4a0a4.
Introducing the engineering constitutive coefficients E1, E2, G12, ν12, ν21, with ν12E2 =

ν21E1 by the symmetry of C, we have

(3.23) a2
2 − 4a0a4 = 4E2

1




(
ν12

k
+

1− ν2
12

k

m + ν12

)2

− 1

k


 ,

where

(3.24) k =
E1

E2

, m =
E1

2G12

− ν12.

The isotropic case corresponds to k = 1 and m = 1, so that, by (3.23), D(x) ≡ 0.
Let us notice that

(3.25) if m =
√

k, then D(x) ≡ 0.

This shows that there exist anisotropic materials such that (3.18b) is satisfied. Roughly
speaking, this simple example makes clear that the value of D(x) cannot be interpreted
as a “measure of anisotropy”.

Moreover, a case of practical interest corresponds to the vanishing of the Poisson’s
coefficient ν12, which gives

(3.26) a2
2 − 4a0a4 = 4E2

1

(
1

m2
− 1

k

)
,

so that

(3.27) if m 6=
√

k, then D(x) > 0.

This gives an explicit class of examples in which (3.18a) holds.
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Theorem 3.4 (Three sphere inequality - complete equation). Let u ∈ H4(BR) be a
solution to the equation (3.15), where P, defined by (3.13), satisfies (3.2), (3.7), (3.8) and
the dichotomy condition in BR. There exist positive constants k and s, k ∈ (0, 1) only
depending on γ and M , s ∈ (0, 1) only depending on γ, M and on δ1 = minBR

D, such
that for every r1, r2, r3, 0 < r1 < r2 < kr3 < sR, the following inequality holds

(3.28) ‖u‖L2(Br2) ≤ C
(‖u‖L2(Br1 ) + ε

)α (‖u‖H4(Br3 ) + ε
)1−α

where C > 0 and α ∈ (0, 1) only depend on γ, M , δ1,
r2

r1
, r3

r2
and δ1 = minBR

D.

Proof. Let us consider the unique solution u0 to

(3.29)





div(div(P∇2u0)) = f + divF + div(divF), in BR,
u0 = 0, on ∂BR,
∂u0

∂ν
= 0, on ∂BR.

By using the weak formulation (3.17) with ϕ = u0, by the strong convexity condition
(3.8), by using the bound (3.16) on the inhomogeneous term and by Poincaré inequality
in H2

0 (BR), we have

(3.30) ‖u0‖L2(BR) ≤ ‖u0‖H2
0 (BR) ≤ Cε,

with C only depending on γ.
Noticing that u− u0 satisfies the hypotheses of Theorem 6.6, we have that the thesis

immediately follows.

Let Σ be an open connected portion of ∂Ω such that Σ is of class C1,1 with constants
ρ0, M0, and there exists a point P0 ∈ Σ such that

(3.31) R ρ0
M0

,ρ0
(P0) ∩ ∂Ω ⊂ Σ.

We shall consider as test function space the space H2
co(Ω ∪ Σ) consisting of the functions

ϕ ∈ H2(Ω) having support compactly contained in Ω∪Σ. We denote by H
3
2
co(Σ) the class

of H
3
2 (Σ) traces of functions ϕ ∈ H2

co(Ω ∪ Σ), and by H
1
2
co(Σ) the class of H

1
2 (Σ) traces

of the normal derivative ∂ϕ
∂n

of functions ϕ ∈ H2
co(Ω ∪ Σ). Moreover, for every positive

integer number m, we define H−m
2 (Σ) as the dual space to H

m
2 (Σ) based on the L2(Σ)

dual pairing. Let g1 ∈ H
3
2 (Σ), g2 ∈ H

1
2 (Σ) and M̂ ∈ H− 1

2 (Σ;R2) be such that

(3.32) ‖g1‖H
3
2 (Σ)

+ ρ0‖g2‖H
1
2 (Σ)

+ ρ2
0‖M̂‖

H− 1
2 (Σ;R2)

≤ η,

for some positive constant η.
We consider the following Cauchy problem




div (div (P∇2u)) = 0, in Ω,

u = g1, on Σ,
∂u
∂n

= g2, on Σ,

(P∇2u)n · n = −M̂n, on Σ,

div (P∇2u) · n + ((P∇2u)n · τ),s = M̂τ,s, on Σ,

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)
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where M̂τ = M̂ ·n, M̂n = M̂ · τ denote respectively the twisting moment and the bending
moment applied at the boundary.

A weak solution to (3.33)–(3.37) is a function u ∈ H2(Ω) such that

(3.38)

∫

Ω

P∇2u · ∇2ϕ = −
∫

Σ

(
M̂τ,sϕ + M̂nϕn

)
, for every ϕ ∈ H2

co(Ω ∪ Σ),

with

(3.39) u|Σ = g1,
∂u

∂n
|Σ = g2.

We denote

(3.40) R−
ρ0
M0

,ρ0
(P0) = {(x1, x2) ∈ R ρ0

M0
,ρ0

(P0)| x2 < ψ(x1)},

that is

(3.41) R−
ρ0
M0

,ρ0
(P0) = R ρ0

M0
,ρ0

(P0) \ Ω.

Lemma 3.5. Let g1 ∈ H
3
2 (Σ), g2 ∈ H

1
2 (Σ). Then there exists v ∈ H2(R−

ρ0
M0

,ρ0
(P0)) such

that

(3.42) v|Σ∩R ρ0
M0

,ρ0
(P0) = g1,

(3.43)
∂v

∂n
|Σ∩R ρ0

M0
,ρ0

(P0) = g2

and

(3.44) ‖v‖H2(R−ρ0
M0

,ρ0
(P0)) ≤ C

(
‖g1‖H

3
2 (Σ)

+ ρ0‖g2‖H
1
2 (Σ)

)
,

where C, C > 0, only depends on M0.

Proof. The proof follows the lines of the proof of Lemma 6.1 of [Al-R-Ro-Ve].

Let us define

(3.45) ũ =





u, in Ω,

v in R−
ρ0
M0

,ρ0
(P0),

(3.46) Ω1 = Ω ∪
(
Σ ∩R ρ0

M0
,ρ0

(P0)
)
∪R−

ρ0
M0

,ρ0
(P0).

Since u and v share the same Dirichlet data (g1, g2) on Σ, we have that

(3.47) ũ ∈ H2(Ω1).
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Theorem 3.6. There exist f̃ ∈ L2(Ω1), F̃ ∈ L2(Ω1;R2), F ∈ L2(Ω1;M2) such that

(3.48) ‖f̃‖L2(Ω1) +
1

ρ0

‖F̃‖L2(Ω1;R2) +
1

ρ2
0

‖F‖L2(Ω1;M2) ≤ Cη

ρ4
0

and ũ satisfies in the weak sense the equation

(3.49) div(div(P∇2ũ)) = f̃ + divF̃ + div(divF̃), in Ω1.

Here, the constant C, C > 0, only depends on M0 and γ.

Proof. Let ϕ be an arbitrary test function in H2
0 (Ω1). It is clear that ϕ|Ω ∈ H2

co(Ω ∪ Σ).
Denoting for simplicity R− = R−

ρ0
M0

,ρ0
(P0), by (3.38) we have

(3.50)

∫

Ω1

P∇2ũ · ∇2ϕ = −
∫

Σ

(M̂τ,sϕ + M̂nϕ,n) +

∫

R−
P∇2v · ∇2ϕ.

Let us define the functional Ψ : H2
0 (Ω1) → R as

(3.51) Ψ(ϕ) =

∫

Σ

(M̂τ,sϕ + M̂nϕ,n) = ρ0

(
1

ρ0

∫

Σ

(M̂τ,sϕ + M̂nϕ,n)

)
.

By standard trace embedding and by (3.32), we have

(3.52) |Ψ(ϕ)| ≤ ρ0

(
‖M̂τ,s‖H− 3

2 (Σ)
‖ϕ‖

H
3
2 (Σ)

+ ‖M̂n‖H− 1
2 (Σ)

‖ϕ,n‖H
1
2 (Σ)

)
≤

≤ C‖M̂‖
H− 1

2 (Σ)
‖ϕ‖H2

0 (Ω1) ≤
Cη

ρ2
0

‖ϕ‖H2
0 (Ω1),

where C, C > 0, only depends on M0. Therefore, Ψ ∈ H−2(Ω1) and

(3.53) ‖Ψ‖H−2(Ω1) ≤ Cη

ρ2
0

.

By the well-known Riesz Representation Theorem in Hilbert spaces, we can find f ∈
H2

0 (Ω1) such that Ψ(ϕ) =< ϕ, f >H2
0 (Ω1) for every ϕ ∈ H2

0 (Ω1) and

(3.54) ‖Ψ‖H−2(Ω1) = ‖f‖H2
0 (Ω1).

Let us set

(3.55) f1 =
f

ρ2
0

, F1 = −∇f, F1 = ρ2
0∇2f.

Then

(3.56) ρ0‖f1‖L2(Ω1) + ‖F1‖L2(Ω1;R2) + ρ−1
0 ‖F1‖L2(Ω1;M2) ≤ Cη

ρ3
0

.
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By (3.50)

(3.57)

∫

Ω1

P∇2ũ · ∇2ϕ =

∫

R−
P∇2v · ∇2ϕ−

∫

Ω1

f1ϕ +

∫

Ω1

F1 · ∇ϕ−
∫

Ω1

F1 · ∇2ϕ,

for every ϕ ∈ H2
0 (Ω1). Denoting

(3.58) f̃ = −f1, F̃ = −F1, F̃ =

{ −F1, in Ω1,
P∇2v −F1, in R−,

we obtain (3.49). By (3.58), (3.55), (3.7), (3.53), (3.54), (3.44), (3.32) we obtain (3.48).

Theorem 3.7 (Propagation of smallness in the interior). Let Ω be a bounded domain in
R2 satisfying (3.1) and let Br0(x0) ⊂ Ω be a fixed disc. Let r, 0 < r ≤ r0

2
be fixed and

let G ⊂ Ω be a connected open set such that dist(G, ∂Ω) ≥ r and B r0
2
(x0) ⊂ G. Let

u ∈ H2
loc(Ω) be a weak solution to the equation

(3.59) div(div(P∇2u0)) = f + divF + div(divF), in Ω

where P, defined by (3.13), satisfies (3.2), (3.7), (3.8) and the dichotomy condition in G.
Let f , F , F satisfy (3.16). Let us assume that

(3.60) ‖u‖L2(Br0 (x0)) ≤ η,

(3.61) ‖u‖L2(Ω) ≤ E0,

for given η > 0, E0 > 0. We have

(3.62) ‖u‖L2(G) ≤ C(ε + η)δ(E0 + ε + η)1−δ,

where

(3.63) C = C1

( |Ω|
r2

) 1
2

,

(3.64) δ ≥ α
C2|Ω|

r2 ,

with C1 > 0 and α, 0 < α < 1, only depending on γ, M and δ1, and with C2 only
depending on γ and δ1, where δ1 = minGD.

Proof. The proof is essentially based on an iterated application of the three sphere in-
equality, see [Al-R-Ro-Ve, Proof of Theorem 5.1] for details.
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Theorem 3.8 (Local stability for the Cauchy problem). Let u ∈ H2(Ω) be a weak solution
to the Cauchy problem (3.33)–(3.37), where P, defined by (3.13), satisfies (3.2), (3.7),
(3.8) and the dichotomy condition in the rectangle R ρ0

M0
,ρ0

(P0), Σ satisfies (3.31), f , F ,

F satisfy (3.16), and g1, g2, M̂ satisfy (3.32). Assuming the a priori bound

(3.65) ‖u‖L2(Ω) ≤ E0,

then

(3.66) ‖u‖
L2

(
R ρ0

2M0
,
ρ0
2

(P0)∩Ω

) ≤ C(ε + η)δ(E0 + ε + η)1−δ,

where C > 0 and δ, 0 < δ < 1, only depend on γ, M , M0, M1 and on δ1 = minOD, where
O = R ρ0

M0
,ρ0

(P0).

Proof. Representing locally Ω in a neighborhood of P0 as

Ω ∩R ρ0
M0

,ρ0
(P0) = {(x1, x2) ∈ R ρ0

M0
,ρ0
| x2 > ψ(x1)},

let
r0 =

ρ0

2(
√

1 + M2
0 + 1)

,

x0 =
(
0, r0 − ρ0

2

)
.

We have that
Br0(x0) ⊂ R−

ρ0
2M0

,
ρ0
2

(P0),

so that
‖u‖L2(Br0 (x0)) ≤ Cη.

The thesis easily follows by applying Theorem 3.7 with Ω = R ρ0
M0

,ρ0
(P0), G = R ρ0

2M0
,
ρ0
2
(P0),

h = r0

2
.

4 Carleman estimate for second order elliptic opera-

tors

In this and in the next section we consider n ≥ 2, where n is the space dimension.
Moreover, in this section we use a notation for euclidean norm and scalar product which
differs from the standard one used in the other sections.

Let

(4.1) Pu = ∂i(g
ij(x)∂iu)

where {gij(x)}n
i,j=1 is a symmetric matrix valued function which satisfies a uniform ellip-

ticity condition and whose entries are Lipschitz continuous functions. In order to simplify
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the calculations, in the sequel we shall use some standard notations in Riemannian ge-
ometry, but always dropping the corresponding volume element in the definition of the
Laplace-Beltrami metric. More precisely, denoting by g(x) = {gij(x)}n

i,j=1 the inverse of
the matrix {gij(x)}n

i,j=1 we have g−1(x) = {gij(x)}n
i,j=1 and we use the following notation

when considering either a smooth function v or two vector fields ξ and η

i. ξ · η =
n∑

i,j=1

gij(x)ξiηj, |ξ|2 =
n∑

i,j=1

gij(x)ξiξj,

ii. ∇v = (∂1v, ...∂nv), ∇gv(x) = g−1(x)∇v(x),

div (ξ) =
n∑

i=1

∂iξi, ∆gv = div (∇gv),

iii. (ξ, η)n =
n∑

i=1

ξiηi, |ξ|2n =
n∑

i=1

ξ2
i .

With this notation the following formulae hold true when u, v and w are smooth
functions

(4.2) Pu = ∆gu, ∆g

(
v2

)
= 2v∆gv + 2 |∇gv|2

and

(4.3)

∫

Rn

v∆gwdx =

∫

Rn

w∆gvdx = −
∫

Rn

∇gv · ∇gwdx.

We shall also use the following Rellich identity

2(B · ∇gv)∆gv = div
(
2(B · ∇gv)∇gv −B|∇gv|2

)
+(4.4)

+(div B)|∇gv|2 − 2∂iB
kgij∂jv∂kv + Bk∂kg

ij∂iv∂jv ,

where B = (B1, ..., Bn) is a smooth vector field.
We denote by w ∈ C2(Rn \ {0}) a function that we shall choose later on such that

w(x) > 0 and |∇gw| > 0 in Rn \ {0}.
Given f ∈ C∞(Rn \ {0}), let us set

(4.5) Pτ (f) = w−τP (wτf),

(4.6) Aw(f) =
w

|∇gw|∂Y f +
1

2
F g

wf,

where

(4.7) F g
w =

w∆gw − |∇gw|2
|∇gw|2 ,

(4.8) Y =
∇gw

|∇gw| ,

17



(4.9) ∂Y f = ∇gf · Y.

With the notation introduced above we have

(4.10) Pτ (f) = P (s)
τ (f) + P (a)

τ (f),

where P
(s)
τ and P

(a)
τ are the symmetric and the antisymmetric part of the operator Pτ

with respect to the L2 scalar product, respectively.
More precisely we have

(4.11) P (s)
τ (f) = ∆gf + τ 2 |∇gw|2

w2
f

and

(4.12) P (a)
τ (f) = 2τ

|∇gw|2
w2

Aw(f).

Moreover, let us denote by Sg
w the symmetric matrix Sg

w = {Sg,ij
w }n

i,j=1, where

(4.13) Sg,ij
w =

1

2

(
(div B)− F g

w)gij − ∂kB
jgki − ∂kB

igkj + Bk∂kg
ij
)
,

with

(4.14) B =
w

|∇gw|Y =
w∇gw

|∇gw|2
.

We also denote

(4.15) Mg
w = Sg

wg.

Notice that

(4.16) Mg
wξ · η = ξ · Mg

wη, for every ξ, η ∈ Rn

and, letting ξg = g−1ξ, ηg = g−1η,

(4.17) Mg
wξg · ηg = (Sg

wξ, η)n, for every ξ, η ∈ Rn.

The proof of the following lemma is straightforward.
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Lemma 4.1. Let v ∈ C2(Rn \ {0}) be a function that satisfies the conditions v(x) > 0,
|∇gv(x)| > 0 for every x ∈ Rn \ {0}. Let Sg

v , Mg
v, F g

v and B be obtained substituting w
with v in the (4.13), (4.15), (4.7) and (4.14), respectively.

Let ϕ ∈ C2(0, +∞) be such that ϕ(s) > 0, ϕ′(s) > 0, for every s ∈ (0, +∞). Let us
denote

(4.18) Φ(s) =
ϕ(s)

sϕ′(s)
.

We have

(4.19) Mg
v∇gv = Sg

v∇v = 0,

(4.20) F g
ϕ(v) = Φ(v)F g

v − Φ′(v)v,

(4.21) Mg
ϕ(v)ξ · η = vΦ′(v)

(
ξ · η − (∇gv · ξ)(∇gv · η)

|∇gv|2
)

+ Φ(v)Mg
vξ · η.

In the sequel we shall use the following notation

(4.22) ∇N
g f = (∇gv · ∇gf)

∇gv

|∇gv|2 = (∂Y f · Y )Y,

(4.23) ∇T
g f = ∇gf −∇N

g f,

Notice that ∇N
g f and ∇T

g f are the normal component and the tangential component (with
respect to the Riemannian metric {gij}n

i,j=1) of ∇gf to the level surface of w respectively.
In particular ∇N

g f and ∇T
g f are invariant with respect to transformations of the type

w̃ = ϕ(w), where ϕ satisfies the hypotheses of Lemma 4.1. We have

(4.24) ∇T
g f · Y = 0, ∇gf = ∇N

g f +∇T
g f,

(4.25) |∇gf |2 = |∇N
g f |2 + |∇T

g f |2 = (∂Y f)2 + |∇T
g f |2,

(4.26) ∇N
g f · ∇T

g f = 0.

In addition, observe that by (4.16) and (4.19) we have

(4.27) Mg
w∇gf · ∇gf = Mg

w∇T
g f · ∇T

g f.
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Lemma 4.2. Let w ∈ C2(Rn \ {0}) be such that w(x) > 0, |∇gw(x)| > 0 for every
x ∈ Rn \ {0}. For every τ 6= 0 we have

(4.28)
w2

|∇gw|2 (Pτ (f))2 =
w2

|∇gw|2
(
P (s)

τ (f)
)2

+ 4τ 2 (∂Y f)2 (
1 + (2τ)−1F g

w

)
+

+ 4τ

(
Mg

w∇T
g f · ∇T

g f +
1

2
F g

w|∇T
g f |2

)
−

− 2τ 3 |∇gw|2
w2

F g
w

(
1 + (2τ)−1F g

w

)
f 2 + 2τF g

wfPτ (f) + div (q),

where

q =
2τw

|∇gw|
(

2(∂Y f)∇gf − |∇gf |2Y + τ 2f 2 |∇gw|2
w2

Y

)
.(4.29)

Proof. By (4.10) we have

(4.30)
w2

|∇gw|2 (Pτ (f))2 =
w2

|∇gw|2
(
P (s)

τ (f)
)2

+

+ 2
w2

|∇gw|2P (s)
τ (f)P (a)

τ (f) +
w2

|∇gw|2
(
P (a)

τ (f)
)2

.

Let us consider the second term at the right-hand side of (4.30). We have

(4.31) 2
w2

|∇gw|2P (s)
τ (f)P (a)

τ (f) = 4τ

(
∆gf + τ 2 |∇gw|2

w2
f

)
Aw(f) =

= 4τ

(
w∇gw · ∇gf

|∇gw|2
)

∆gf + 2τF g
wf∆gf + 4τ 3 |∇gw|2

w2
Aw(f)f =

= 4τ

(
w∇gw · ∇gf

|∇gw|2
)

∆gf + 2τF g
wf∆gf + 2τ 3div

(∇gw

w
f 2

)
.

Now we transform the term 4τ
(

w∇gw·∇gf

|∇gw|2
)

∆gf by applying the Rellich identity (4.4) with

B = w∇gw

|∇gw|2 and v = f . We obtain

(4.32) 2
w2

|∇gw|2P (s)
τ (f)P (a)

τ (f) =

= 4τMg
w∇gf · ∇gf + 2τF g

w|∇gf |2 + 2τF g
wf∆gf + div (q),

where q is given by (4.29).
Now we transform the third term at the right-hand side of (4.32) by using the following

trivial consequence of (4.10)

(4.33) ∆gf = Pτ (f)− τ 2 |∇gw|2
w2

f − 2τ
|∇gw|2

w2
Aw(f)
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and we obtain

(4.34) 2τF g
wf∆gf = 2τF g

wfPτ (f)−

− 2τ 3 |∇gw|2
w2

F g
w

(
1 +

1

τ
F g

w

)
f 2 − 4τ 2 |∇gw|

w
F g

wf∂Y f.

Now, just spreading the square in the third term at the right-hand side of (4.30), we have

(4.35)
w2

|∇gw|2
(
P (a)

τ (f)
)2

=

= 4τ 2(∂Y f)2 + τ 2 |∇gw|2
w2

(F g
w)2 f 2 + 4τ 2 |∇gw|

w
F g

wf∂Y f,

so that, by (4.25), (4.27), (4.30), (4.32), (4.34) and (4.35) we obtain identity (4.28).

In the sequel of this section we assume that the matrix {gij(x)}n
i,j=1 satisfies the

following conditions

(4.36) λ|ξ|2n ≤
n∑

i,j=1

gij(x)ξiξj ≤ λ−1|ξ|2n, for every x ∈ Rn, ξ ∈ Rn

and

(4.37)
n∑

i,j=1

|gij(x)− gij(y)| ≤ Λ|x− y|n, for every x ∈ Rn, y ∈ Rn,

where λ ∈ (0, 1] and Λ > 0. Now we introduce some additional notation that we shall use

in the sequel. Let Γ = {γij}n
i,j=1 be a matrix that we shall choose later on. We assume

that

(4.38) m∗|x|2n ≤ (Γx, x)n ≤ m∗|x|2n, for every x ∈ Rn,

where m∗ and m∗ are the minimum and the maximum eigenvalue of Γ respectively, and
m∗ > 0. Let us denote

(4.39) σ(x) = ((Γx, x)n)1/2

and we denote

(4.40) S(0) = Sg(0)
σ ,

where we recall that

(4.41) Sg(0),ij
σ =

1

2

(
(div B0)− F g(0)

σ )gij(0)− ∂kB
j
0g

ki(0)− ∂kB
i
0g

kj(0)
)
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and

(4.42) B0 = {Bi
0}n

i=1 =

{
σ(x)gij(0)∂jσ(x)

glm(0)∂lσ(x)∂mσ(x)

}n

i=1

,

(4.43) F g(0)
σ =

σ(x)gij(0)∂2
ijσ(x)− gij(0)∂iσ(x)∂jσ(x)

gij(0)∂iσ(x)∂jσ(x)
.

Moreover, for any fixed ξ ∈ Rn, (S(0)ξ, ξ)n is an homogeneous function with respect to

the x variable of degree 0, hence the following number is well defined

(4.44) ω0 = sup
{−(S(0)ξ, ξ)n | gij(0)ξiξj = 1, gij(0)∂iσ(x)ξj = 0, x ∈ Rn \ 0

}
.

We observe that ω0 is a nonnegative number. More precisely we have the following
proposition.

Proposition 4.3. Let Q =
√

g(0)Γ−1
√

g(0), where
√

g(0) is the positive square root of
the matrix g(0). Let %∗ and %∗ be the minimum and the maximum eigenvalues of the
matrix Q respectively. Then the following equality holds true

(4.45) ω0 =
%∗

%∗
− 1.

Proof. In order to prove (4.45), let us denote

(4.46) K = Γg−1(0)Γ

and let us notice that, with the conditions

(4.47) (g−1(0)ξ, ξ)n = 1 (g−1(0)∇σ(x), ξ)n = 0

and with the normalization condition

(4.48) (Kx, x)n = 1,

we have

(4.49) −(S(0)ξ, ξ)n = (Γx, x)n

(
(KΓ−1Kx, x)n + (g−1(0)Γg−1(0)ξ, ξ)n

)− 2.

Moreover, by introducing the new variables

(4.50) η =
(√

g(0)
)−1

ξ, y =
(√

g(0)
)−1

Γx,
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conditions (4.47) and (4.48) become respectively

(4.51) |η|2n = 1, (y, η)n = 0,

and

(4.52) |y|2n = 1

so that expression (4.49) is equal to

(4.53) H(y, η) := (Qy, y)n

(
(Q−1y, y)n + (Q−1η, η)n

)− 2.

Thus we have

(4.54) ω0 = sup {H(y, η) | |y|n = 1, |η|n = 1, (y, η)n = 0} .

Now let z∗ and z∗ be two linearly independent unit eigenvectors of Q such that Qz∗ =
%∗z∗ and Qz∗ = %∗z∗. We have

(4.55) H(z∗, z∗) =
%∗

%∗
− 1,

hence

(4.56) ω0 ≥ %∗

%∗
− 1.

In order to complete the proof of (4.45) we need to prove that

(4.57) ω0 ≤ %∗

%∗
− 1.

To this aim we recall the following Kantorovich inequality [Ka], [Mi]. Let A be a m×m
positive definite symmetric real matrix and let α∗, α∗ be the minimum and the maximum
eigenvalues of A respectively, then for every X ∈ Rm we have

(4.58) (AX, X)m(A−1X,X)m ≤ 1

4

(√
α∗

α∗
+

√
α∗
α∗

)2

|X|4m.

Now let m = 2n, X = (y, η)t and

(4.59) A =

(
Q 0
0 Q

)
,
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we have, for every y, η ∈ Rn such that |y|n = |η|n = 1, (y, η) = 0

(4.60) H(y, η) = (AX, X)2n(A−1X, X)2n − (Qη, η)n(A−1X,X)2n − 2.

By Schwarz inequality we have

(4.61) (Qη, η)n(A−1X, X)2n = (Qη, η)n(Q−1y, y)n+

+ (Qη, η)n(Q−1η, η)n ≥ %∗
%∗

+ |η|2n =
%∗
%∗

+ 1.

On the other hand, the first term on the right-hand side of (4.60) can be estimated from
above by inequality (4.58). By the obtained inequality and by (4.61) we get (4.57), that
completes the proof of (4.45).

In the next Lemma and in the sequel we shall use the following notation when dealing
with a matrix A = {aij}n

i,j=1

(4.62) |A| =
(

n∑
i,j=1

a2
ij

)1/2

.

Lemma 4.4. There exists a constant C,C ≥ 1, depending only on λ, Λ,m∗ and m∗ such
that for every x ∈ Rn \ {0}, 0 < σ(x) ≤ 1, the following inequalities hold true

(4.63) C−1 ≤ |∇gσ| ≤ C, |F g
σ | ≤ C,

∣∣S(0)
∣∣ ≤ C,

(4.64)
∣∣F g

σ − F g(0)
σ

∣∣ ≤ Cσ,
∣∣Sg

σ − S(0)
∣∣ ≤ Cσ,

(4.65) Mg
w∇T

g f · ∇T
g f ≥ −(ω0 + Cσ)

∣∣∇T
g f

∣∣2 .

Proof. The proof of (4.63) and (4.64) is straightforward. We prove inequality (4.65).
Denote by

(4.66) ζ = g∇T
g f.

We have by (4.36), (4.37), (4.64) and (4.66)

(4.67) Mg
w∇T

g f · ∇T
g f = (Sg

σζ, ζ)n ≥
≥ (S(0)ζ, ζ)n −

∣∣((Sg
σ − S(0)))ζ, ζ)n

∣∣ ≥ (S(0)ζ, ζ)n − Cσ
∣∣∇T

g f
∣∣2 ,

where C depends only on λ, Λ, m∗ and m∗.
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Now, let us consider the term (Sg
σζ, ζ)n on the right-hand side of (4.67). Denoting by

(4.68) ζ̃ = ζ + g(0)
(
g−1(x)− g−1(0)

)
ζ,

we have g−1(0)ζ̃ = g−1(x)ζ = ∇T
g f , hence

(4.69) gij(0)ζ̃j∂iσ = ∇T
g f · ∇gσ = 0.

In addition we have

(4.70) |ζ − ζ̃|n ≤ C|∇T
g f |σ

and

(4.71) gij(0)ζ̃j ζ̃i ≤ (1 + Cσ) |∇T
g f |2,

where C depends only on λ, Λ,m∗ and m∗. By (4.44), (4.63), (4.69) and (4.70), we obtain,

for every x ∈ Rn \ {0} such that 0 < σ(x) ≤ 1,

(4.72) (S(0)ζ, ζ)n ≥ (S(0)ζ̃ , ζ̃)n−
−

∣∣∣(S(0)(ζ − ζ̃), ζ − ζ̃)n

∣∣∣ − 2
∣∣∣(S(0)(ζ − ζ̃), ζ̃)n

∣∣∣ ≥
≥ −ω0(g

−1(0)ζ̃ , ζ̃)n − C|ζ − ζ̃|2n − 2C|ζ − ζ̃|n|ζ̃|n ≥
≥ −(ω0 + Cσ)|∇T

g f |2,

where C depends only on λ, Λ, m∗ and m∗. By the just obtained inequality and by (4.67)
we obtain (4.65).

Let r be a given positive number, in the sequel we shall denote by Bσ
r the set

{x ∈ Rn|σ(x) < r}. In addition, in order to simplify the notation, we shall denote
∫
Rn(.)dx

simply by
∫

and, instead to write “f is a function that belongs to C∞
0 (Rn \ {0}) and f

is such that supp(f) ⊂ Bσ
r \ {0}”, we shall write simply “f ∈ C∞

0 (Bσ
r \ {0})”.

Theorem 4.5. Let β be a number such that β > ω0, let

(4.73) ϕ(s) = e−s−β

and let w(x) = ϕ (σ(x)). There exist constants C, τ1 and r0, (C ≥ 1, τ1 ≥ 1, 0 < r0 ≤ 1)
depending only on λ, Λ, m∗, m∗ and β such that for every u ∈ C∞

0

(
Bσ

r0
\ {0}) and for

every τ ≥ τ1 the following inequality holds true

(4.74) τ

∫
σβw−2τ |∇gu|2 + τ 3

∫
σ−β−2w−2τu2 ≤ C

∫
σ2β+2w−2τ (∆gu)2 .
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Proof. Let w(x) = ϕ (σ(x)), where σ(x) = ((Γx, x)n)1/2. Let us notice that ϕ satisfies the
hypotheses of Lemma 4.1 and that

(4.75) Φ(s) =
sβ

β
.

Let u ∈ C∞
0 (Bσ

1 \ {0}) and f = w−τu. By (4.21) and by (4.65) we have

(4.76) Mg
w∇T

g f · ∇T
g f ≥ σβ

(
1− ω0

β
− Cσ

) ∣∣∇T
g f

∣∣2 ,

where C depends only on λ, Λ, m∗, m∗ and β.
Now, denoting

(4.77) ψ0 = σβ

(
−1 +

1

β
F g(0)

σ

)
,

by (4.20) we have

(4.78) F g
w = ψ0 +

σβ

β

(
F g

σ − F g(0)
σ

)
,

hence by (4.63) and (4.64) of Lemma 4.4 we have, for every x ∈ Bσ
1 \ {0},

(4.79) |F g
w| ≤ Cσβ, |F g

w − ψ0| ≤ Cσβ+1,

where C, C ≥ 1, depends only on λ, Λ,m∗,m∗ and β.

Let ψ1 be a function that we shall choose later on, by (4.11) we have

(4.80)
w2

|∇gw|2
(
P (s)

τ (f)
)2

=

=
w2

|∇gw|2
(

P (s)
τ (f)− τ

|∇gw|2
w2

ψ1f + τ
|∇gw|2

w2
ψ1f

)2

≥

≥ 2τψ1f

(
P (s)

τ (f)− τ
|∇gw|2

w2
ψ1f

)
=

= 2τ 3

((
1− ψ1

τ

)
ψ1
|∇gw|2

w2
+

1

2τ 2
∆gψ1

)
f 2 − 2τψ1|∇gf |2 + div (q1),

where

(4.81) q1 = τ
(
2ψ1f∇gf − f 2∇gψ1

)
.

By inequalities (4.76) and (4.80), by (4.25) and by Lemma 4.2 we obtain

(4.82)
w2

|∇gw|2 (Pτ (f))2 ≥ 2τ 3a1f
2+

+ 4τa2|∇T
g f |2 + 4τ 2a3 (∂Y f)2 + 2τF g

wfPτ (f) + div (q2),
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where

(4.83) a1 =
|∇gw|2

w2

(
(ψ1 − F g

w)− 1

τ

(
1

2
(F g

w)2 + ψ2
1

))
+

1

2τ 2
∆gψ1,

(4.84) a2 = σβ

(
1− ω0

β
− Cσ

)
+

1

2
(F g

w − ψ1)

(4.85) a3 = 1 +
1

2τ
(F g

w − ψ1),

(4.86) q2 = q + q1.

Now we choose

(4.87) ψ1 = ψ0 +
εσβ

β
,

where 0 < ε ≤ min{1, β − ω0}.
Let us notice that for every x ∈ Bσ

1 \ {0},

(4.88) C−1σ−2β−2 ≤ |∇gw|2
w2

≤ Cσ−2β−2,

(4.89) F g
w − ψ1 ≥ −σβ

β
(ε + Cσ) ,

(4.90) ψ1 − F g
w ≥

σβ

β
(ε− Cσ) ,

(4.91) |ψ1| ≤ Cσβ, |∆gψ1| ≤ Cσβ−2,

where C, C ≥ 1, depends only on λ, Λ,m∗,m∗ and β, with (4.89)–(4.91) following from
(4.77)–(4.79) and (4.87). From (4.88)–(4.91) we have that, for every x ∈ Bσ

1 \ {0} and for
every τ ≥ 1

(4.92) a1 ≥ C−1
∗ σ−β−2

(
ε− C0σ − C1

τ
σβ

)
,
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where C∗, C0, C1 (C∗ ≥ 1, C0 ≥ 1, C1 ≥ 1) depend only on λ, Λ,m∗,m∗ and β. Therefore,
if 0 < σ(x) ≤ ε

2C0
and τ ≥ 4C1

ε
, then we have

(4.93) a1 ≥ ε

4
C−1
∗ σ−β−2,

where C, C ≥ 1, depends only on λ, Λ,m∗,m∗ and β.
Concerning a2, we have by (4.89)

(4.94) a2 ≥ σβ

(
1

2

(
1− ω0

β

)
− C2σ

)
,

where C2, C2 ≥ 1, depends only on λ, Λ,m∗,m∗ and β. Therefore, if 0 < σ(x) ≤ β − ω0

4βC2

,

then we have

(4.95) a2 ≥ 1

4
σβ

(
1− ω0

β

)
,

Concerning a3, by (4.91) and (4.79) we have that there exists C3, C3 ≥ 1, depending only
on λ, Λ,m∗,m∗ and β such that if τ ≥ C3 and 0 < σ(x) ≤ 1 then

(4.96) a3 ≥ 1

2
.

Now, denote by τ0 = max{4C1

ε
, C3} and r0 = min{ ε

2C0
, β−ω0

4βC2
}, by (4.25), (4.82), (4.93),

(4.95) and (4.96) we have

(4.97)
w2

|∇gw|2 (Pτ (f))2 ≥ τ 3σ−β−2 ε

2
C−1
∗ f 2+

+ τσβ

(
1− ω0

β

)
|∇gf |2 + 2τF g

wfPτ (f) + div (q2),

for every x ∈ Bσ
r0
\ {0} and τ ≥ τ0.

By Young’s inequality, by the first of (4.79) and by (4.89) we have

(4.98) |2τF g
wfPτ (f)| ≤ 1

2

w2

|∇gw|2 (Pτ (f))2 + C4τ
2σ−2f 2,

where C4, C4 ≥ 1, depends only on λ, Λ,m∗,m∗ and β.
By (4.97) and (4.98) we have

28



(4.99)
1

2

w2

|∇gw|2 (Pτ (f))2 ≥ τ 3σ−β−2 ε

4
C−1
∗ f 2+

+ τσβ

(
1− ω0

β

)
|∇gf |2 + div (q2),

for every x ∈ Bσ
r0
\ {0} and every τ ≥ τ1 := max{τ0,

4C∗C4

ε
}.

Finally, we choose ε = min{1, β−ω0}. Recalling that f = w−τu, and integrating both
sides of (4.99) over Bσ

r0
\ {0}, we obtain (4.74).

Remark 4.6. It is straightforward that estimate (4.74) remains valid for operators in non-
divergence form Pu = gij∂

2
iju. Of course, the values of the constants, and in particular of

τ1, might be different.

5 Carleman estimate for product of two second order

elliptic operators

In this section and in the sequel we return to the standard notation, that is we denote by
| · | and by · the euclidian norm and scalar product respectively.

Let {gij
1 (x)}n

i,j=1 and {gij
2 (x)}n

i,j=1 be two symmetric matrix real valued functions which
satisfy conditions (4.36), (4.37) and let us assume that

(5.1)
n∑

i,j=1

‖∇2gij
1 ‖L∞(Rn) ≤ Λ1,

n∑
i,j=1

‖∇2gij
2 ‖L∞(Rn) ≤ Λ1,

with Λ1 > 0. Let us denote by L1, L2 and L the operators

(5.2) L1(u) =
n∑

i,j=1

gij
1 (x)∂2

iju, L2(u) =
n∑

i,j=1

gij
2 (x)∂2

iju,

(5.3) L(u) = L2(L1u).

In the sequel we shall need the following standard proposition which we prove for the
reader’s convenience.

Proposition 5.1. Let L1, L2 and L be the operators defined above. Given a ∈ C1(Rn\{0})
and u ∈ C∞

0 (Rn \ {0}), the following inequalities hold true:

(5.4)

∫
a2|∇2u|2 ≤ C

(∫
a2|Lku|2 +

∫
(a2 + |∇a|2)|∇u|2

)
, k = 1, 2,

(5.5)

∫
a2|∇3u|2 ≤ C

(∫
a2|Lu||∇2u|+

∫
(a2 + |∇a|2)|∇2u|2

)
,

where C only depends on λ and Λ.
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Proof. To simplify the notation, let us omit the index k in Lk. For a fixed l ∈ {1, ..., n}
we have

(5.6)

∫
Lu∂2

llua2 = −
∫

∂l(a
2gij∂2

iju)∂lu =

= −
∫

a2gij∂3
ijlu∂lu− 2

∫
a∂lagij∂2

iju∂lu−
∫

(∂lg
ij)∂2

iju∂lua2 =

=

∫
a2gij∂2

ilu∂2
jlu +

∫
∂j(a

2gij)∂2
ilu∂lu− 2

∫
a∂lagij∂2

iju∂lu−
∫

(∂lg
ij)∂2

iju∂lua2 ≥

≥ λ

∫
a2|∇∂lu|2 − C

∫
(|a|+ |∇a|)|a||∇u||∇2u|,

where C only depends on λ and Λ.
Now, summing up with respect to l the above inequalities and applying the inequality

2xy ≤ x2 + y2, we get (5.4).
Now we prove (5.5). First we observe that, [G-T], multiplying both sides of the second

equality (5.2) by a2v and integrating by parts we easily obtain

(5.7)

∫
a2|∇v|2 ≤ C

(∫
a2|L2v||v|+

∫
(a2 + |∇a|2)v2

)
,

where C only depends on λ and Λ.
Let us apply (5.7) to v = L1u. Noticing that, for a fixed l ∈ {1, ..., n}, we have

(5.8) |L1(∂lu)| ≤ |∂l(L1u)|+ C|∇2u|,

where C only depends on Λ, we obtain

(5.9)

∫
a2|L1(∂lu)|2 ≤ C

(∫
a2|Lu||∇2u|+

∫
(a2 + |∇a|2)|∇2u|2

)
,

where C only depends on λ and Λ.
Finally, by applying inequality (5.4) to estimate from below the integral on the left

hand side of (5.9), and summing up with respect to l, we get (5.5).

In order to prove the next theorem we need to use some transformation formulae for
the operator L which we recall now. Let Ψ : Rn → Rn be a C4 diffeomorphism. We have

(5.10) (Lu)(Ψ−1(y)) = (L̃U)(y) + (QU)(y),

where U(y) = u(Ψ−1(y)), Q is a third order operator, L̃ = L̃2L̃1, L̃k =
∑n

i,j=1 g̃ij
k (y)∂2

ij,

k = 1, 2, and g̃−1
k (Ψ(x)) = ∂Ψ

∂x
(x)g−1

k (x)
(

∂Ψ
∂x

(x)
)t

, namely

(5.11) g̃ij
k (Ψ(x)) =

n∑
r,s=1

grs
k (x)

∂Ψi

∂xr

(x)
∂Ψj

∂xs

(x), i, j = 1, ..., n.
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We can find a linear map Ψ such that g̃−1
1 (0) is the identity matrix and g̃−1

2 (0) is a diagonal
matrix. More precisely, let R1 be the matrix of a rotation such that R1g

−1
1 (0)Rt

1 =
diag{ν1, ....νn}, where νi, i = 1, ..., n, are the eigenvalues of g−1

1 (0), and let us set H =
diag{ 1√

ν1
, ..., 1√

νn
}. We have that HR1g

−1
1 (0)Rt

1H
t is equal to the identity matrix. Now let

R2 be the matrix of a rotation such that g̃−1
2 (0) = R2HR1g

−1
2 (0)Rt

1H
tRt

2 has a diagonal
form. We have that the desired map is Ψ(x) = R2HR1x. In addition, notice that if ν∗,
ν∗ are the minimum and maximum eigenvalues of g−1

1 (0) respectively and µ∗, µ∗ are the
minimum and maximum eigenvalues of g−1

2 (0) respectively, then

(5.12)
µ∗
ν∗
|x|2 ≤ g̃−1

2 (0)x · x ≤ µ∗

ν∗
|x|2, for every x ∈ Rn.

Theorem 5.2. Let L be the operator defined by (5.3). Let ν∗ and ν∗ (µ∗ and µ∗) be the
minimum and the maximum eigenvalues of g−1

1 (0) (g−1
2 (0)). Then there exists a symmetric

matrix Γ0 satisfying

(5.13) λ2|x|2 ≤ σ2
0(x) := Γ0x · x ≤ λ−2|x|2,

and such that if β >
√

µ∗ν∗
µ∗ν∗

− 1 and

(5.14) w0(x) = e−(σ0(x))−β

the following inequality holds true:

(5.15)
3∑

k=0

τ 6−2k

∫
σ
−β−2+k(2β+2)
0 w−2τ

0 |∇ku|2dx ≤ C

∫
σ5β+6

0 w−2τ
0 |Lu|2dx,

for every u ∈ C∞
0 (Bσ0

r1
\ {0}) and for every τ ≥ τ , where r1, 0 < r1 < 1, C and τ only

depend on λ, Λ and Λ1.

Proof. By the comments preceding the statement of the theorem, without loosing of
generality we can assume that gij

1 (0) = δij and g−1
2 (0) is of diagonal form, say g−1

2 (0) =
diag{µ1, µ2, ..., µn}, where 0 < µ1 ≤ µ2 ≤ ... ≤ µn. We denote by Γ = {γij}n

i,j=1 a
symmetric matrix that we shall choose later on, and by m∗ and m∗ the minimum and
the maximum eigenvalues of Γ respectively, with m∗ > 0. Let us set σ(x) = (Γx · x)1/2.

We denote by S
(0)
k , k = 1, 2, the matrix S

gk(0)
σ introduced in (4.40). We denote by ωk

0 the
numbers (compare with (4.44))

(5.16) ωk
0 = sup

{
−(S

(0)
k ξ) · ξ | gij

k (0)ξiξj = 1, gij
k (0)∂iσ(x)ξj = 0, x ∈ Rn \ {0}

}
.

Let β be a positive number such that β > max{ω1
0, ω

2
0} and let V ∈ C∞

0 (Bσ
r0
\{0}), where

r0 has been defined in Theorem 4.5. Since

(5.17) |∆gk
V | ≤ |LkV |+ C|∇V |, k = 1, 2,
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where C only depends on Λ, by (4.74) we have that there exists τ2, only depending on λ,
Λ, m∗, m∗ and β such that for k = 1, 2, and for every τ ≥ τ2

(5.18) τ

∫
σβw−2τ |∇V |2 + τ 3

∫
σ−β−2w−2τV 2 ≤ C

∫
σ2β+2w−2τ |LkV |2.

Now we iterate inequality (5.18). First we notice that, by a standard density property,
inequality (5.18) is valid for every V ∈ H2

0 (Bσ
r0
\ {0}). Let u be an arbitrary function

belonging to C∞
0 (Bσ

r0
\ {0}) and let us set v = L1u. By applying inequality (5.18) to the

function V = σ
3
2
β+2v, we get

(5.19) τ 3

∫
σ2β+2w−2τv2 = τ 3

∫
σ−β−2w−2τ (σ

3
2
β+2v)2 ≤

≤ C

∫
σ2β+2w−2τ |L2(σ

3
2
β+2v)|2,

for every τ ≥ τ2.
Now observe that

(5.20) |L2(σ
3
2
β+2v)| ≤ σ

3
2
β+2|L2v|+ Cσ

3
2
β+1|∇v|+ Cσ

3
2
β|v|,

where C only depends on λ, Λ, m∗, m∗ and β. By using (5.20) to estimate from above
the right hand side of (5.19), we have that there exists τ3 ≥ τ2 such that, for every τ ≥ τ3,

(5.21) τ 3

∫
σ2β+2w−2τv2 ≤ C

∫
σ5β+6w−2τ |L2v|2 + C

∫
σ5β+4w−2τ |∇v|2,

where C and τ3 only depend on λ, Λ, m∗, m∗ and β.
Now we estimate from above the second term in the right hand side of (5.21). To this

aim we apply inequality (5.18) to the function V = σ2β+2v and we have

(5.22) τ

∫
σβw−2τ |∇(σ2β+2v)|2 ≤ C

∫
σ2β+2w−2τ |L2(σ

2β+2v)|2,

for every τ ≥ τ2.
Taking into account that

(5.23) |L2(σ
2β+2v)| ≤ σ2β+2|L2v|+ Cσ2β+1|∇v|+ Cσ2β|v|,

and

(5.24) |∇(σ2β+2v)|2 ≥ 1

2
σ4β+4|∇v|2 − Cσ4β+2v2,

where C only depends on λ, Λ, m∗, m∗ and β, we have, by (5.22),

(5.25) τ

∫
σ5β+4w−2τ |∇v|2 ≤ C

∫
σ6β+6w−2τ |L2v|2 + Cτ

∫
σ5β+2w−2τv2,
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for every τ ≥ τ2, where C only depends on λ, Λ, m∗, m∗ and β.
Now we use (5.25) to estimate from above the second term on the right hand side of

(5.21) and we have that there exists τ4 ≥ τ3 such that

(5.26)

∫
σ2β+2w−2τv2 ≤ C

τ 3

∫
σ5β+6w−2τ |L2v|2,

for every τ ≥ τ4, where C and τ4 only depend on λ, Λ, m∗, m∗ and β. Recalling that
v = L1u and by using (5.18) for V = u and k = 1, (5.26) yields

(5.27) τ 6

∫
σ−β−2w−2τu2 + τ 4

∫
σβw−2τ |∇u|2 ≤ C

∫
σ5β+6w−2τ |L2L1u|2,

for every τ ≥ τ4, where C only depends on λ, Λ, m∗, m∗ and β.
Now we prove that

(5.28) τ 2

∫
σ3β+2w−2τ |∇2u|2 +

∫
σ5β+4w−2τ |∇3u|2 ≤ C

∫
σ5β+6w−2τ |L2L1u|2,

for every τ ≥ τ4, where C only depends on λ, Λ, m∗, m∗ and β.
Concerning the term with the second order derivatives on the left hand side of (5.28),

we can estimate it by using (5.4) with a = (σ3β+2w−2τ )
1
2 and k = 1, obtaining

(5.29)

∫
σ3β+2w−2τ |∇2u|2 ≤ C

∫
σ3β+2w−2τ |L1u|2 + Cτ 2

∫
σβw−2τ |∇u|2,

where C only depends on λ, Λ, m∗, m∗ and β.
By using (5.18) for V = u and k = 1 to estimate from above the second integral on

the right hand side of (5.29) we get

(5.30)

∫
σ3β+2w−2τ |∇2u|2 ≤ Cτ

∫
σ2β+2w−2τ |L1u|2,

for every τ ≥ τ2, where C and τ2 only depend on λ, Λ, m∗, m∗ and β.
Now, by (5.26) with v = L1u and by (5.30), we have, for every τ ≥ τ4,

(5.31) τ 2

∫
σ3β+2w−2τ |∇2u|2 ≤ C

∫
σ5β+6w−2τ |L2L1u|2,

where C only depends on λ, Λ, m∗, m∗ and β.
Now we estimate from above the term with the third order derivatives on the left hand

side of (5.28). By applying (5.5) with a = (σ5β+4w−2τ )
1
2 , we have

(5.32)

∫
σ5β+4w−2τ |∇3u|2 ≤ C

∫
σ5β+4w−2τ |L2L1u||∇2u|+ Cτ 2

∫
σ3β+2w−2τ |∇2u|2,

where C only depends on λ, Λ, m∗, m∗ and β.
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Noticing that

(5.33) σ5β+4|L2L1u||∇2u| =
(
σ

3
2
β+1|∇2u|

)(
σ

7
2
β+3|L2L1u|

)
≤

≤ 1

2

(
σ3β+2|∇2u|2 + σ7β+6|L2L1u|2

)
,

by (5.31) and (5.32) we obtain the desired inequality (5.28).
By (5.27) and (5.28) we have

(5.34)
3∑

k=0

τ 6−2k

∫
σ−β−2+k(2β+2)w−2τ |∇ku|2 ≤ C

∫
σ5β+6w−2τ |L2L1u|2,

for every τ ≥ τ4, where τ4 and C only depend on λ, Λ, m∗, m∗ and β, for every u ∈
C∞

0 (Bσ
r0
\ {0}).

Now we choose Γ = Γ0 := diag{ 1√
µ

1
, ..., 1√

µ
n
}, σ(x) = σ0(x) := (Γ0x · x)1/2, w(x) =

w0(x), where w0(x) is defined by (5.14). By Proposition 4.3 we have ω1
0 = ω2

0 =
√

µn

µ1
− 1,

hence estimate (5.34) holds for β >
√

µn

µ1
−1. Coming back to the old variables we obtain

(5.15).

Theorem 5.3. Let L be the operator defined by (5.3). Let ν∗, ν∗, µ∗, µ∗ be as defined in
Theorem 5.2. Let us assume that u ∈ H4(BR) satisfies the inequality

(5.35) |Lu| ≤ N

3∑

k=0

R−4+k|∇ku|, in BR,

where N and R are positive numbers. Let β >
√

µ∗ν∗
µ∗ν∗

− 1. There exist positive constants

s1 ∈ (0, 1) and C ≥ 1, C and s1 only depending on λ, Λ, Λ1 and N such that, for every

ρ1 ∈ (0, s1R) and for every r, ρ satisfying r < ρ < ρ1λ2

2
,

(5.36)
3∑

k=0

ρ2k

∫

Bρ

|∇ku|2 ≤ C max

{
1,

( ρ

R

)−(5β−2)
}

e
C

(
(λ−1ρ)−β−( ρ1λ

2 )
−β

)
Rβ

·

·
(( r

R

)5β−2
3∑

k=0

r2k

∫

Br

|∇ku|2
)ϑ0

·
((ρ1

R

)5β−2
3∑

k=0

ρ2k
1

∫

Bρ1

|∇ku|2
)1−ϑ0

,

where

(5.37) ϑ0 =
(λ−1ρ)−β − (

λρ1

2

)−β

(
λr
2

)−β − (
λρ1

2

)−β
.
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Proof. First we observe that, denoting g̃−1
k (x) = g−1

k (Rx), L̃k = g̃ij
k (x)∂2

ij, k = 1, 2,

L̃ = L̃2L̃1, ũ(x) = u(Rx), x ∈ B1, inequality (5.35) implies

(5.38) |L̃ũ| ≤ N

3∑

k=0

|∇kũ|, in B1.

For simplicity of notation we shall omit the symbol ˜ . Let us introduce the following
notation

(5.39) J(ρ) =
3∑

k=0

ρ2k

∫

B
σ0
ρ

|∇ku|2,

where, we recall, Bσ0
ρ = {x ∈ Rn | σ0(x) < ρ} and σ0 has been defined in Theorem 5.2.

Notice that (5.13) gives Bλr ⊂ Bσ0
r ⊂ B r

λ
, for every r > 0. In particular inequality (5.38)

is satisfied in Bσ0
λ . Denote by R1 = min{r1, λ}, where r1 has been introduced in Theorem

5.2. Let ρ1 ∈ (0, R1] and r ∈ (
0, ρ1

2

)
. Let η ∈ C4

0(R) such that 0 ≤ η ≤ 1, η ≡ 1 in
(
r, ρ1

2

)
,

η ≡ 0 in
(
0, r

2

) ∪ (ρ1, R1),
∣∣∣ dk

dtk
η
∣∣∣ ≤ C

rk in [ r
2
, r],

∣∣∣ dk

dtk
η
∣∣∣ ≤ C

ρk
1

in
[

ρ1

2
, ρ1

]
for k = 0, 1, ..., 4,

where C is an absolute constant. In addition, let ξ(x) = η(σ0(x)). By a standard density
theorem, inequality (5.15) holds for the function ξ(x)u(x).

Denote

(5.40) hτ (t) = t5β−2e
2τ

tβ , t ∈ (0, 1).

By standard calculations, it is simple to derive that there exist τ 1 ≥ τ , C, s0 ∈ (0, R1),
only depending on λ, Λ, Λ1, β and N , such that if ρ1 ≤ s0, r < ρ < ρ1

2
and τ ≥ τ 1 then

(5.41) hτ (ρ)J(ρ) ≤ Chτ

(r

2

)
J(r) + Chτ

(ρ1

2

)
J(ρ1).

Hence
(5.42)

J(ρ) ≤ C

((
r/2

ρ

)5β−2

e
2τ

(
− 1

ρβ + 1

(r/2)β

)

J(r) +

(
ρ1/2

ρ

)5β−2

e
2τ

(
− 1

ρβ + 1

(ρ1/2)β

)

J(ρ1)

)
,

for every τ ≥ τ 1.
Let us denote

(5.43) ϑ̃0 =
ρ−β − (

ρ1

2

)−β

(
r
2

)−β − (
ρ1

2

)−β
,

(5.44) α0 =
1

2

log
((

ρ1

r

)5β−2 J(ρ1)
J(r)

)

(
r
2

)−β − (
ρ1

2

)−β
.
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If α0 ≥ τ 1 then we choose τ = α0 in (5.42) obtaining

(5.45) J(ρ) ≤ C

ρ5β−2

(
r5β−2J(r)

)ϑ0
(
ρ5β−2

1 J(ρ1)
)1−ϑ0

,

where C only depends on λ, Λ, Λ1, N and β.
If α0 < τ 1 then we have trivially

(5.46) J(ρ) ≤ J(ρ1) = (J(ρ1))
ϑ0 (J(ρ1))

1−ϑ0 ≤

≤ e
2τ1

(
ρ−β−( ρ1

2 )
−β

)

ρ5β−2
1

(
r5β−2J(r)

)ϑ0
(
ρ5β−2

1 J(ρ1)
)1−ϑ0

.

By (5.45) and (5.46) and scaling the variables we get (5.36).

Corollary 5.4 (Unique continuation property). Let L be the same operator of Theorem
5.3 and let ν∗, ν∗, µ∗, µ∗ be as defined in Theorem 5.2. Let us assume that u ∈ H4(BR)
satisfies the inequality

(5.47) |Lu| ≤ N

3∑

k=0

R−4+k|∇ku|, in BR,

where N and R are positive numbers.
Assume that

(5.48)

∫

Br

u2 = O
(
e−

C0
rκ

)
, as r → 0,

where C0 > 0 and κ >
√

µ∗ν∗
µ∗ν∗

− 1.

Then we have

(5.49) u ≡ 0 in BR.

Proof. Let us fix ρ1 ∈ (0, s1R) and ρ ∈
(
r, λ2

2
ρ1

)
, where s1 has been defined in Theorem

5.3. Let

(5.50)

√
µ∗ν∗

µ∗ν∗
− 1 < β < κ.

By (5.36) and by the interpolation inequality

(5.51) ‖u‖H3(Br) ≤ C‖u‖
1
4

L2(Br)‖u‖
3
4

H4(Br),

where C > 0 is an absolute constant, we have

(5.52) ‖u‖2
H3(Bρ) ≤ C

(( r

R

)5β−2

‖u‖
1
2

L2(Br)

)ϑ0

,

where ϑ0 is given by (5.37) and C > 0 only depends on λ, Λ, Λ1, N , β, ρ, ρ1, R and
‖u‖H4(BR). By (5.48) and (5.50), passing to the limit as r → 0 in (5.52), we obtain u ≡ 0
in Bρ. By iteration the thesis follows.
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6 Three sphere inequalities for the plate operator

In this section we specialize the results of Section 5, in particular we specialize the three
sphere inequality proved in Theorem 5.3, for the plate equation

(6.1) Lu := ∂2
ij(Cijkl∂

2
klu) = 0, in BR,

where {Cijkl(x)}2
i,j,k,l=1 is a fourth order tensor that satisfies the hypotheses (3.2), (3.7),

(3.8) for Ω = BR and the dichotomy condition in BR.
In the following, without loss of generality, we assume R = 1.
In order to apply Theorem 5.2 we need to write the operator L in the following form

(6.2) L = L2L1 + Q̃,

where L1 and L2 are second order operators which satisfy a uniform ellipticity condition
and whose coefficients belong to C1,1(B1) and Q̃ is a third order operator with bounded
coefficients. In the sequel (Lemma 6.1) we shall prove that (6.2) holds true under some
additional assumptions on the tensor {Cijkl(x)}2

i,j,k,l=1.
Let us denote

(6.3) p(x; ∂)u =
4∑

h=0

a4−h(x)∂h
1 ∂4−h

2 u, for every u ∈ H4(B1),

where the coefficients ai(x), i = 0, ..., 4, have been defined in (3.9), (3.10).
By (3.9) we have

(6.4) Lu = p(x; ∂)u + Qu, for every u ∈ H4(B1),

where Q is a third order operator with bounded coefficients which satisfies the inequality

(6.5) |Qu| ≤ cM
(|∇3u|+ |∇2u|) , for every u ∈ H4(B1),

and c is an absolute constant. In addition we denote

(6.6) p(x; ξ) =
4∑

h=0

a4−h(x)ξh
1 ξ4−h

2 , x ∈ B1, ξ ∈ R2,

(6.7) p̃(x; t) := p(x; (t, 1)) =
4∑

h=0

a4−h(x)th, x ∈ B1, t ∈ R.

Notice that by (3.7) we have

(6.8) p(x; ξ) ≥ γ|ξ|4, x ∈ B1, ξ ∈ R2,

(6.9) p̃(x; t) ≥ γ(t2 + 1)2, x ∈ B1, t ∈ R.

37



Now, for any fixed x ∈ B1, let zk(x) = αk(x) + iβk(x), zk(x) = αk(x)− iβk(x) (k = 1, 2)
be the complex solutions to the algebraic equation p̃(x; z) = 0. Here, αk and βk are
real-valued functions and βk(x) > 0, k = 1, 2, for every x ∈ B1.

We have

(6.10) p(x; ξ) = p2(x; ξ)p1(x; ξ), for every x ∈ B1, ξ ∈ R2,

where

(6.11) pk(x; ξ) = gij
k (x)ξiξj, k = 1, 2, x ∈ B1, ξ ∈ R2,

(6.12) g11
k (x) =

√
a0(x), g12

k (x) = g21
k (x) = −αk(x)

√
a0(x),

g22
k (x) =

√
a0(x)(α2

k(x) + β2
k(x)), k = 1, 2, x ∈ B1.

Since in the sequel we have to deal with some basic properties of polynomials, we recall
such properties for what concerns the polynomial p̃(x; z) and we refer the reader to [Wa,
Chapter 5] for an extended treatment of the issue. For any fixed x ∈ B1 we denote by
D(x) the absolute value of the discriminant of the polynomial p̃(x; z), that is

(6.13) D(x) = a6
0 ((z1 − z2)(z1 − z1)(z1 − z2)(z2 − z1)(z2 − z2)(z1 − z2))

2 ,

where a0 = a0(x) and zk = zk(x) = αk(x) + iβk(x), k = 1, 2. An elementary calculation
yields

(6.14) D(x) = 16a6
0β

2
1β

2
2

[
(α1 − α2)

2 + (β1 + β2)
2
]2 [

(α1 − α2)
2 + (β1 − β2)

2
]2

.

In terms of the coefficients ah = ah(x), h = 0, 1, ..., 4, it is also known that

(6.15) D(x) =
1

a0

| det S(x)|,

where S(x) is the 7× 7 matrix defined by (3.11).
Furthermore, let us denote by Ψ the map of R4 into R4 defined by Ψ(t1, t2, w1, w2) =

{Ψk(t1, t2, w1, w2)}4
k=1, where




Ψ1(t1, t2, w1, w2) = t1 + t2,

Ψ1(t1, t2, w1, w2) = t21 + t22 + 4t1t2 + w1 + w2,

Ψ1(t1, t2, w1, w2) = t1(t
2
2 + w2) + t2(t

2
1 + w1),

Ψ1(t1, t2, w1, w2) = (t21 + w1)(t
2
2 + w2).(6.16)

Notice that

(6.17) a1 = −2a0Ψ1(α1, α2, β
2
1 , β

2
2),

(6.18) a2 = a0Ψ2(α1, α2, β
2
1 , β

2
2),
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(6.19) a3 = −2a0Ψ3(α1, α2, β
2
1 , β

2
2),

(6.20) a4 = a0Ψ4(α1, α2, β
2
1 , β

2
2).

Let us denote by ∂Ψ(t1,t2,w1,w2)
∂(t1,t2,w1,w2)

the jacobian matrix of Ψ and let J(t1, t2, w1, w2) be its
determinant. An elementary calculation shows that

(6.21) J(t1, t2, w1, w2) = − [
(t1 − t2)

4 + 2(w1 + w2)(t1 − t2)
2 + (w1 − w2)

2
]
.

Let us denote

(6.22) γ1 = min

{
γ,

1

16M
, 1

}
.

The following lemma holds.

Lemma 6.1. Let pk(x; ξ), k = 1, 2, be defined by (6.11). The following facts hold:
(a) If (3.2) and (3.7) are satisfied, then

(6.23) γ2|ξ|22 ≤ pk(x; ξ) ≤ γ−1
2 |ξ|22, for every x ∈ B1, ξ ∈ R2, k = 1, 2,

where γ2 = 5−6γ15
1 .

(b) If the dichotomy condition introduced in Definition 3.1 holds true in B1, then gij
k ∈

C1,1(B1), for i, j, k = 1, 2.
More precisely, if (3.18a) holds true, then

(6.24)
2∑

i,j,k=1

(
‖∇gij

k ‖L∞(B1)δ
1/2
1 + ‖∇2gij

k ‖L∞(B1)δ1

)
≤ C1,

where δ1 = minB1
D(x) and C1 only depends on M and γ, whereas if (3.18b) holds true,

then

(6.25)
2∑

i,j,k=1

(‖∇gij
k ‖L∞(B1) + ‖∇2gij

k ‖L∞(B1)

) ≤ C2,

where C2 only depends on M and γ.

Proof. First we prove (a). Let x, x ∈ B1, be fixed. In the rest of the proof of (a) we shall
omit, for brevity, the dependence on x.

By (6.8), (3.7), (6.22), we have

(6.26) γ1|ξ|4 ≤ p(ξ) ≤ γ−1
1 |ξ|4, for every ξ ∈ R2.

Now we observe that the following inequalities hold true

(6.27) |α1 + α2| ≤ γ−2
1 ,
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(6.28) |α2
1 + β2

1 + α2
2 + β2

2 + 4α1α2| ≤ γ−2
1 ,

(6.29) |α1(α
2
2 + β2

2) + α2(α
2
1 + β2

1)| ≤ γ−2
1 ,

(6.30) γ2
1 ≤ (α2

1 + β2
1)(α

2
2 + β2

2) ≤ γ−2
1 ,

(6.31) γ2
1(1 + α2

1)
2 ≤ β2

1

[
(α1 − α2)

2 + β2
2

] ≤ γ−2
1 (1 + α2

1)
2,

(6.32) γ2
1(1 + α2

2)
2 ≤ β2

2

[
(α1 − α2)

2 + β2
1

] ≤ γ−2
1 (1 + α2

2)
2.

Indeed, by (6.26) we have

(6.33) γ1 ≤ a0 ≤ γ−1
1 , γ1 ≤ a4 ≤ γ−1

1 .

On the other hand, by (6.33) and using (6.17), (6.18), (6.19), (6.20) we obtain the in-
equalities (6.27), (6.28), (6.29), (6.30), respectively. Concerning (6.31), by using (6.26)
for ξ = (α1, 1) and taking into account (6.10), we have

(6.34) γ1(1 + α2
1)

2 ≤ a0β
2
1

[
(α1 − α2)

2 + β2
2

] ≤ γ−1
1 (1 + α2

1)
2.

Inequality (6.31) follows from the first of (6.33) and (6.34). Proceeding similarly for
ξ = (α2, 1) we obtain (6.32).

Now, denoting

(6.35) ε0 =
γ3

1√
50

,

we are going to prove that the following inequalities hold

(6.36) βk > ε0, k = 1, 2,

(6.37) βk ≤ 1

γ1ε0

, k = 1, 2,

(6.38) |αk| ≤ 1

γ1ε0

, k = 1, 2.

In order to prove (6.36), it is enough to consider the case k = 1, as the case k = 2 can be
proved by the same arguments. We proceed by contradiction and we assume that

(6.39) β2
1 ≤ ε2

0.
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By (6.39) and (6.31) we get

(6.40)
γ2

1

ε2
0

≤ (α1 − α2)
2 + β2

2 ,

hence at least one of the following inequalities must hold

(6.41)
γ2

1

2ε2
0

≤ β2
2 ,

(6.42)
γ2

1

2ε2
0

≤ (α1 − α2)
2.

If the inequality (6.41) holds, then by (6.30) we have

(6.43) α2
1 ≤ α2

1 + β2
1 ≤

γ−2
1

α2
2 + β2

2

≤ γ−2
1

β2
2

≤ 2γ−4
1 ε2

0,

hence

(6.44) |α1| ≤
√

2γ−2
1 ε0,

and in turn inequalities (6.44), (6.27) imply

(6.45) |α2| ≤ (1 +
√

2ε0)γ
−2
1 .

Therefore, by (6.28), (6.41), (6.44), (6.45), and recalling that γ1 ∈ (0, 1), we have

(6.46)
γ2

1

2ε2
0

≤ β2
2 ≤ α2

2 + β2
2 + α2

1 + β2
1 < 25γ−4

1 ,

hence we have ε0 >
γ3
1√
50

, a contradiction. Hence, (6.41) cannot be true.

If (6.42) holds, then we have |α1|+ |α2| ≥ |α1− α2| ≥ γ1√
2ε0

. Therefore, at least one of

the following inequalities holds

(6.47) |α1| ≥ γ1

2
√

2ε0

, |α2| ≥ γ1

2
√

2ε0

.

If the first of (6.47) holds, then by (6.27) we have |α2| ≥ |α1|− γ−2
1 ≥ γ1

2
√

2ε0
− γ−2

1 ≥ γ1

4
√

2ε0
and, analogously, if the second of (6.47) holds, then we have |α1| ≥ γ1

4
√

2ε0
. Hence, if (6.42)

holds, then we have

(6.48) |α1| ≥ γ1

4
√

2ε0

, |α2| ≥ γ1

4
√

2ε0

.

Inequalities (6.48) and (6.30) give

(6.49)
γ2

1

32ε2
0

≤ α2
1 ≤ α2

1 + β2
1 ≤

γ−2
1

α2
2 + β2

2

≤ γ−2
1

α2
2

≤ 32γ−4
1 ε2

0.
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As a consequence of the above inequality we have
γ3
1

32
≤ ε2

0, that contradicts (6.35). There-
fore, (6.39) cannot be true and (6.36) is proved.

By (6.30) and (6.36) we easily obtain (6.37) and (6.38). Finally, by (6.36)–(6.38), we
obtain easily an estimate from above and from below of the eigenvalues of the matrices
{gij

k (x)}2
i,j=1 from which the estimate (6.23) follows.

Now we prove the statement (b) of the lemma. By (6.21), (6.33), (6.36)–(6.38) we
have

(6.50) γ3

√
D(x) ≤ J(x) ≤ γ−1

3

√
D(x), for every x ∈ B1,

where

(6.51) J(x) = |J(α1(x), α2(x), β2
1(x), β2

2(x))|

and γ3 = 10−6γ25
1 γ−3

0 .
Assume that (3.18a) holds in B1. In order to prove that gij

k ∈ C1,1(B1) and to
derive estimate (6.24), it is enough to apply the Inverse Mapping Theorem to the map Ψ.
Indeed, by (6.16), the vector-valued function ω(x) = (α1(x), α2(x), β2

1(x), β2
2(x)) satisfies

the following equality

(6.52) Ψ(ω(x)) = d(x), x ∈ B1,

where d(x) =
(
− a1(x)

2a0(x)
, a2(x)

a0(x)
,− a3(x)

2a0(x)
, a4(x)

a0(x)

)
, hence by (3.8), (3.9), (3.10), (6.50), (6.51),

(6.52) we obtain (6.24).
If (3.18b) holds true, then by (6.14) we have α1(x) = α2(x) and β1(x) = β2(x) for

every x ∈ B1. Therefore, by (6.16)–(6.18) we have

(6.53) α1(x) = α2(x) = − a1(x)

4a0(x)

and

(6.54) β2
1(x) = β2

2(x) =
a2(x)

2a0(x)
− 3a2

1(x)

16a2
0(x)

.

By (3.8), (3.9), (3.10), (6.33), (6.36), (6.53) and (6.54) we get (6.25).

Theorem 6.2 (Three sphere inequality - first version). Let us assume that u ∈ H4(BR)
is a solution to the equation

(6.55) ∂2
ij(Cijkl(x)∂2

klu) = 0, in BR,

where {Cijkl(x)}2
i,j,k,l=1 is a fourth order tensor whose entries belong to C1,1(BR). Assume

that (3.2), (3.7), (3.8) and the dichotomy condition are satisfied in BR. Let γ2 = 5−6γ15
1

and β = 1
γ2
2
− 1. There exist positive constants s2, 0 < s2 < 1, and C, C > 1, s2 and
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C only depending on γ, M and on δ1 = minBR
D, such that, for every ρ1 ∈ (0, s2R) and

every r, ρ satisfying r < ρ <
ρ1γ2

2

2
, the following inequality holds

(6.56)
3∑

k=0

ρ2k

∫

Bρ

|∇ku|2 ≤ C exp
(
C

(
(γ−1

2 ρ)−β − (γ2
ρ1

2
)−β

)
Rβ

)
·

·
(

3∑

k=0

r2k

∫

Br

|∇ku|2
)θ1

(
3∑

k=0

ρ2k
1

∫

Bρ1

|∇ku|2
)1−θ1

,

where

(6.57) θ1 =
(γ−1

2 ρ)−β − (γ2
ρ1

2
)−β

(γ2
r
2
)−β − (γ2

ρ1

2
)−β

.

Proof. Let us define

(6.58) ũ(y) = u(Ry), C̃ijkl(y) = Cijkl(Ry), y ∈ B1, i, j, k, l = 1, 2.

Then, ũ ∈ H4(B1) is a solution to the equation

(6.59) ∂2
ij(C̃ijkl(y)∂2

klũ) = 0, in B1.

Now, by Lemma 6.1 we have that

(6.60) L = L2L1ũ + Qũ,

where Lk = pk(y; ∂), k = 1, 2, and

(6.61) pk(y; ∂) = gij
k ∂2

ij, k = 1, 2.

Here, {gij
k }2

i,j=1, k = 1, 2, satisfy (6.24) or (6.25) (the former whenever (3.18a) holds, the
latter whenever (3.18b) holds),

(6.62) γ2|ξ|2 ≤ gij
k (y)ξiξj ≤ γ−1

2 |ξ|2, x ∈ B1, ξ ∈ R2,

and Q is a third order operator with bounded coefficients satisfying

(6.63) |Qũ| ≤ cM
(|∇3ũ|+ |∇2ũ|) ,

where c is an absolute constant. Therefore, from (6.60)–(6.63) and Theorem 5.3, and
coming back to the old variables, we obtain the three sphere inequality (6.56).

The following Poincaré-type inequality holds.
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Proposition 6.3 (Poincaré inequality). There exists a positive constant C only depending
on n such that for every u ∈ H2(BR,Rn) and for every r ∈ (0, R]

(6.64)

∫

BR

|ũr|2 + R2

∫

BR

|∇ũr|2 ≤ CR4

(
R

r

)n ∫

BR

|∇2u|2,

where

(6.65) ũr(x) = u(x)− (u)r − (∇u)r · x,

(6.66) (u)r =
1

|Br|
∫

Br

u, (∇u)r =
1

|Br|
∫

Br

∇u.

Proof. For a proof we refer to [A-M-Ro4, Example 4.3].

Proposition 6.4 (Caccioppoli-type inequality). Let us assume that u ∈ H4(BR) is a
solution to the equation

(6.67) ∂2
ij(Cijkl(x)∂2

klu) = 0, in BR,

where {Cijkl(x)}2
i,j,k,l=1 is a fourth order tensor whose entries belong to C1,1(BR). Assume

that (3.2)–(3.8) are satisfied. We have

(6.68)

∫

B t
2

|∇3u|2 ≤ C

∫

Bt

2∑

k=0

(
tk−3|∇ku|)2

, for every t ≤ R,

where C is a positive constant only depending on γ and M .

Proof. The proof of (6.68) is essentially the same of the proof of [M-Ro-Ve1, Proposition
6.2]. Here, for the reader convenience, we give a sketch of the proof.

For every t ∈ (0, R], let η ∈ C∞
0 (Bt) be such that 0 ≤ η ≤ 1 in Bt, η ≡ 1 in B t

2
and

(6.69)
3∑

k=1

tk|∇kη| ≤ C, in Bt,

where C is an absolute constant. Multiplying equation (6.67) by ∆(η6u) and integrating
over Bt, we have

(6.70)

∫

Bt

Cijkl∂
2
klu∂2

ij∆(η6u) = 0

and, integrating by parts,

(6.71)

∫

Bt

{
Cijkl∂

2
kl∂su∂2

ij∂s(η
6u) + ∂s(Cijkl)∂

2
klu∂2

ij∂s(η
6u)

}
= 0.

44



By (3.8), (6.69), (6.71) and taking into account that t ≤ R we have

(6.72)

∫

Bt

η6Cijkl∂
2
kl∂su∂2

ij∂su = F [u],

where F satisfies the inequality

(6.73) |F [u]| ≤ CM

∫

Bt

(
2∑

k=0

tk−3|∇ku|
)2

+ CM

∫

Bt

|∇3u|η3

(
2∑

k=0

tk−3|∇ku|
)

,

where C is an absolute constant. By (6.72), (6.73), (3.7) and Cauchy inequality (2ab ≤
εa2 + 1

ε
b2, for ε > 0) we have

(6.74) γ

∫

Bt

η6|∇3u|2 ≤ CM2

∫

Bt

(
2∑

k=0

tk−3|∇ku|
)2

.

Inequality (6.68) follows immediately by (6.74).

Theorem 6.5 (Three sphere inequality - second version). Let u ∈ H4(BR) be a solution
to the equation

(6.75) ∂2
ij(Cijkl(x)∂2

klu) = 0, in BR,

where {Cijkl(x)}2
i,j,k,l=1 is a fourth order tensor whose entries belong to C1,1(BR). Assume

that (3.2), (3.7), (3.8) and the dichotomy condition are satisfied in BR. Let γ2 = 5−6γ15
1

and β = 1
γ2
2
− 1. There exist positive constants s, 0 < s < 1, and C, C ≥ 1, s and C only

depending on γ, M and on δ1 = minBR
D, such that, for every ρ1 ∈ (0, sR) and every r,

ρ satisfying r < ρ <
ρ1γ2

2

2
, the following inequality holds

(6.76) ρ4

∫

Bρ

|∇2u|2 ≤ C exp
(
C

(
(γ−1

2 ρ)−β − (γ2
ρ1

2
)−β

)
Rβ

)
·

·
(

r4

∫

B2r

|∇2u|2
)θ1

(
ρ6

1

r2

∫

B2ρ1

|∇2u|2
)1−θ1

,

where

(6.77) θ1 =
(γ−1

2 ρ)−β − (γ2
ρ1

2
)−β

(γ2
r
2
)−β − (γ2

ρ1

2
)−β

.

Proof. Let a ∈ R, ω ∈ R2 to be chosen later on. Since u is a solution to (6.75), also
v = u− a− ω · x is a solution to (6.75). By (6.56) we have

(6.78) ρ4

∫

Bρ

|∇2v|2 ≤ K (Hv(r))
θ1 (Hv(ρ1))

1−θ1 ,
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where

(6.79) K = C exp
(
C

(
(γ−1

2 ρ)−β − (γ2
ρ1

2
)−β

)
Rβ

)

and

(6.80) Hv(t) =
3∑

k=0

t2k

∫

Bt

|∇kv|2, t ∈ (0, R).

By Proposition 6.4 we have

(6.81) Hv(r) = C

2∑

k=0

r2k

∫

B2r

|∇kv|2,

where C only depends on M and γ. Now, we choose

(6.82) a =
1

|B2r|
∫

B2r

u, ω =
1

|B2r|
∫

B2r

∇u.

By Proposition 6.3 and from (6.81) we have

(6.83) Hv(r) ≤ Cr4

∫

B2r

|∇2u|2,

where C only depends on M and γ.
Similarly, by applying Propositions 6.3 and 6.4 we obtain

(6.84) Hv(ρ1) ≤ Cρ4
1

(ρ1

r

)2
∫

B2ρ1

|∇2u|2,

where C only depends on γ and M . From (6.78), (6.81), (6.83), inequality (6.76) follows.

Theorem 6.6 (Three sphere inequality - third version). Let u ∈ H4(BR) be a solution to
the equation

(6.85) ∂2
ij(Cijkl(x)∂2

klu) = 0, in BR,

where {Cijkl(x)}2
i,j,k,l=1 is a fourth order tensor whose entries belong to C1,1(BR). Assume

that (3.2), (3.7), (3.8) and the dichotomy condition are satisfied in BR. Let γ2 = 5−6γ15
1

and β = 1
γ2
2
− 1. There exist positive constants s, 0 < s < 1, and C, C ≥ 1, s and C only

depending on γ, M and on δ1 = minBR
D, such that, for every ρ1 ∈ (0, sR) and every r,

ρ satisfying r < ρ <
ρ1γ2

2

2
, the following inequality holds

(6.86)

∫

Bρ

u2 ≤ C exp
(
C((γ−1

2 ρ)−β − (γ2
ρ1

2
)−β)Rβ

)
·

·
(∫

Br

u2

)θ
(

4∑

k=0

ρ2k
1

∫

Bρ1

|∇ku|2
)1−θ

,

where θ = θ1

4
, with θ1 given by (6.57)
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Proof. It follows immediately from (6.56) and by the interpolation inequality

‖u‖H3(Br) ≤ C‖u‖
1
4

L2(Br)‖u‖
3
4

H4(Br),

where C is an absolute constant and the norms are normalized according to the convention
made in Section 3.
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