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Abstract

In this article we propose a simple mechanism aimed at implementing
and supporting environmental protection policies in urban areas based
on innovative �nancial instruments issued by a policy maker, which can
be buyed by two categories of involved agents, city users and agencies
providing the city services.

According to this mechanism, virtuous service providers choosing to
o¤er high quality services can obtain cost abatement. City users, recip-
rocally, have to pay for entering into the city, but can protect themselves
against a city low quality of life by a self-insurance device.

The interaction of these two categories of economic agents is modelled
by a two-population evolutionary game, where the population of city users
strategically interacts with that of service providers. From the analysis
of the model it emerges that such a dynamics may lead to a welfare-
improving attracting Nash equilibrium at which all city users choose to use
environmental-friendly means of transportation and all service providers
choose to o¤er high quality services. However, the basin of attraction of
that equilibrium may have a rather complex morphology. In particular
more attractors and/or limit cycles can be present. In such a context
we indicate su¢ cient conditions making the virtuous equilibrium a global
attractor for all trajectories starting at a mixed-strategy point.

1 Introduction

Air pollution and the dangers for pedestrians and cyclists deriving from the
widespread use of private cars in urban centres may incentive the use of pri-
vate cars by city users. The choice of using the car in these areas instead of
going by bicycle or on foot has a self-enforcing nature: the higher the urban
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air pollution and tra¢ c congestion levels, the higher the incentive to go by car
to reduce one�s exposure to these problems. An increase in the use of private
cars further increases air pollution and the dangers of urban tra¢ c in its turn,
thus reinforcing the decision to go by car. As showed by the literature on en-
vironmental self-protection choices (see, e.g., Hueting 1980, Antoci et al. 2008,
Bonatti and Campiglio 2009), this mechanism may lead the urban community
towards suboptimal Nash equilibria characterized by an excessive use of cars,
unbearable levels of air pollution and tra¢ c congestion.
Therefore, such a context calls for the de�nition of a system of sustainable

mobility based on road pricing schemes (see e.g. Gwilliam 2008), according
to which the policy maker increases the costs to enter into urban areas by
car (parking taxes, congestion charges and so on) and collects revenues which
can be used to �nance private or public �rms providing services aimed at the
abatement of the negative e¤ects of urban tra¢ c and at the improvement of the
quality of life in urban agglomerates (e.g. the management of public transport
networks, of cycle and pedestrian lanes, of small-scale urban green areas etc.).
Those services can reduce the relative convenience of entering into urban areas
by private cars and consequently can stop the undesirable self-enforcing process
described above.
Road pricing instruments have been used to control tra¢ c in several urban

centres (e.g. Bergen, London, Milan, Singapore, Shanghai, Stockholm). The
e¤ectiveness of such policy instruments highly depends on the amount of the
revenues raised via road pricing and on the quality of services provided to defend
individuals from the e¤ects due to tra¢ c congestion. Service providers that
furnish high quality services bear extra-costs and policy makers have to give
monetary incentives which reduce unitary costs. In this context, an increase in
the proportion of individuals using private cars generates an increase in tra¢ c
congestion but at the same time leads to an increase in the raised funds, which
can be used to incentive the provision of high quality services.
All the proposals set forth to reduce tra¢ c congestion are based on �xed

taxes that individuals have to pay when entering into urban areas by private
cars. In our paper we propose a simple mechanism aimed at implementing and
supporting environmental protection policies in urban areas based on innovative
�nancial instruments issued by a policy maker (PM), which can be bought by
two categories of involved agents, city users (CU) and agencies providing the
city services (SP), which can be public or private. In particular, we consider
the case of a city whose citizens and visitors (the city users) face the risk of a
reduction in quality of life, caused by urban tra¢ c, on one hand, and by a poor
quality standard of urban services, on the other.
According to the proposed mechanism, each city user has to choose (ex-ante)

whether to use a private car (choice A) or to use a more environment-preserving
transport mode - foots, cycles, buses, trolleybuses, trams (choice B). The PM
requires them to buy two di¤erent tickets, including cash-or-nothing call options,
called A (at a price pa) and B (at a price pb < pa), according to their choices.
Each SP has to choose (ex-ante) whether to improve (option C) or not (option
D) the services it furnishes. The PM requires them to subscribe two di¤erent
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contracts, similar to cash-or-nothing put options, called C and D, according to
their choices. The ticket prices, pa and pb, are �xed by the PM.
The tickets A and B imply a cost for CU if the value of a properly de�ned

index Q of the city quality of life, measured by an independent agency at the
end of any �xed period, is above a �xed threshold value Q � Q�, but o¤er a
reimbursement in the case Q < Q�. When Q < Q�, the CU owning the ticket A
receive a reimbursement equal to �pa, while the CU owning the ticket B receive
a reimbursement equal to �pb, where � and � are two parameters satisfying the
condition 0 < � � � � 1 (� = � = 1 means that both amounts pa and pb are
totally reimbursed). If Q � Q� the CU do not receive any refund.
On the side of the SP, those choosing option C, i.e. improving the services

they furnish, will bear a unitary extra-cost but, if the quality target Q� is
achieved, will get a reward.
The contract C is very similar to the contract on which the �environmental

policy bonds� regime, introduced by Horesh (2000a, 2000b, 2002a, 2002b), is
based. Environmental policy bonds are auctioned by the Public Administration
on the open market, but, unlike ordinary bonds, can be redeemed at the face
value only if a speci�ed environmental objective has been achieved. They do
not bear any interest, and the yield investors can gain depends on the di¤erence
between the auctioned price and the face value in the case of redemption. Eco-
nomic agents involved in the environmental objective, either polluters or not,
once in possession of the bonds, have a strong interest to operate in such a way
that the objective itself is quickly achieved, so to cash in the expected gains as
soon as possible. Di¤erently from the environmental policy bonds regime, the
option C considered in our model can be only bought by SP which intend to
provide high quality services (the quality of services is assumed to be observ-
able).
The tickets A and B, bought by the CU, can be regarded as the joint imple-

mentation of a �xed environmental tax and a potential refund. The prospective
of a refund, in case Q < Q�, makes these policy instruments more acceptable to
public opinion; in fact, they can be considered as self-insurance products whose
purchase can o¤er protection (or mitigation) from some environmental risk.
By relying on the citizens aversion to environmental risks, these self-insurance
instruments can be a partial alternative to new taxes or forms of public indebt-
edness
According to the mechanism we propose, virtuous service providers choos-

ing to o¤er high quality services can obtain cost abatement by subscribing the
environmental contracts C. City users have to pay to enter into the city, but can
protect themselves against a low city quality of life by a self-insurance device.
The policy maker can achieve the goal of improving the city quality of life at a
low cost, since the costs born by city users compensate, at least partially, the
�nancial aids to virtuous services providers and so do not imply any worsening
of the public budget. In such a context, an increase in the number of city users
choosing to enter into the city by private cars has a negative e¤ect on the value
of the quality index Q; however, since they have to pay a higher ticket (pa > pb),
they contribute to increase the funds used to incentive virtuous behavior by ser-
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vice providers, which, in turn, contributes to increase the value of Q. Therefore,
as a consequence of the mechanism described above, a strong interdependency
between city users and services providers�behavior occurs. The aim of this pa-
per is to study the dynamics that may arise in such a context. To this purpose,
the choice processes of city users and service providers are modelled via a two-
population evolutionary game, where the population of city users strategically
interacts with that of service providers. Speci�cally these processes are modelled
by the so-called replicator dynamics (e.g., see Weibull 1995), according to which
a given choice spreads among the population as long as its expected payo¤ is
greater than the average one. As it emerges from the model, such a dynamics
may lead to a welfare-improving attracting Nash equilibrium, in which all city
users choose to use environmental-friendly means of transportation and all ser-
vice providers choose to o¤er high quality services. The basin of attraction of
this equilibrium expands as the reimbursement due to the visitors increases.
The model presented in this paper is a generalization of the model analyzed

in Antoci et al. (2009a). In Antoci et al. (2007, 2009b, 2009c) a similar fund
rising mechanism has been analyzed in a context in which �rms have to decide
about the adoption of an environment preserving tecnology.
The structure of the remainder of the paper is as follows. Section 2 develops

the game theoretic model; in sections 3 and 4 the model is analyzed; section 5
concludes.

2 The model

We assume that, at each time t, city users (CU) and agencies providing the city
services (SP) play a one shot population game (i.e. all CU and all SP play the
game simultaneously). Each city user has to choose (ex-ante) whether to use a
private car (choice A) or not (choice B). The policy-maker requires them to buy
two di¤erent tickets, including cash-or-nothing call options, called A (at a price
pa) and B (at a price pb), according to their choices. Each SP has to choose
(ex-ante) between option C and option D, i.e. whether to improve or not the
services it furnishes. The policy-maker requires them to subscribe two di¤erent
contracts, similar to cash-or-nothing put options, called C and D, according to
their choices.
We assume the two populations to be constant over the time and normalize

to 1 the number of both CU and SP. Let the variable x(t) denote the proportion
of CU adopting choice A at time t (0 � x(t) � 1) and 1 � x(t) the proportion
of CU adopting choice B. Analogously, let y(t) denote the proportion of SP
choosing option C at the time t (0 � y (t) � 1), and 1� y(t) the proportion of
SP choosing option D.
The ticket prices, pa > pb, are �xed by the Policy Maker (PM).
The index Q is a measure of the city quality of life, whose target is �xed by

the PM at a su¢ ciently high value Q�. We imagine that, at the end of any �xed
period, an independent agency measures Q.
At the end of a period in which Q < Q�, the CU owning the ticket A receive
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a reimbursement equal to �pa, while the CU owning the ticket B receive a
reimbursement equal to �pb, where � and � are two parameters satisfying the
condition 0 < � � � � 1 (� = � = 1 means that both amounts, pa and pb, are
totally reimbursed). If Q � Q� the CU do not receive any refund (this means
that the value of the call options is zero). Hence the option values depend on
the index Q, which is their underlying.
It is also reasonable to assume that each CU�s payo¤ is a¤ected not only by

the price of the tickets and the amount of the reimbursements, but by the city
quality of life, depending negatively on the use of private cars and positively on
better urban services.
Consequently we assume the payo¤ of a CU choosing option A to be given

by:

� �1a = 1y � �x� �pa if Q � Q�

� �2a = 2y � �x� � (1� �) pa if Q < Q�

while the payo¤ of a CU choosing option B will be given by:

� �1b = "1y � �x� �pb if Q � Q�

� �2b = "2y � �x� � (1� �) pb if Q < Q�

All the parameters are positive. Moreover, 1 > 2, "1 > "2, "i > i,
"1 � "2 > 1 � 2, implying, in particular, that the citizens not using private
cars derive more advantage from increases in service quality. All the citizen
payo¤s are negatively correlated to the number of citizens using private cars by
the two parameters � and � (we assume � � �). Notice that both pa and pb
are multiplied by �. This parameter can be thought as a measure of the citizen
willingness to pay for urban services. For the sake of simplicity, we assume that
all the citizens have the same willingness.
On the side of the SP, those choosing option C, i.e. improving the services

they furnish, will bear a unitary extra-cost �, � > 0, but, if the quality target
is achieved, will get a reward � + �x � �y, where � � � > �, �; � > 0. The
parameter � represents the cost of increasing the level of services, while � is a
�xed amount of money; � > 0 means that the reward is positively related to
the number of CU (x) who decide to use a private car. The reason is obvious:
if we �x pa > pb, the more are the citizens choosing option A, the larger are
the �nancial resources available to pay the SP reward. On the other hand, an
increase in y implies that more SP will be entitled to the �nancial aid, thus
reducing the reimbursement available to each one. Therefore, the payo¤ of a SP
choosing option C is given by:

� �1c = �+ �x� �y � � if Q � Q�

� �2c = �� if Q < Q�
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Without loss of generality, we can normalize to zero the payo¤ of a SP
choosing D (i.e. who decide not to provide high quality services).
Finally we assume:

P (Q � Q�) = � (1� x) + (1� �) y; 0 < � < 1

where P denotes a probability. This is equivalent to saying that, if all SP
improve the services they provide and all CU renounce to private cars, then
Q will be almost surely above the threshold level Q� (P (Q � Q�) = 1). The
parameter � represents the weight of CU renouncing to private cars on the
probability that Q � Q�.
Finally we obtain the expected payo¤s:

� E�a = (1y � �x� �pa)P (Q � Q�)+[2y � �x� � (1� �) pa]P (Q < Q�)

� E�b = ("1y � �x� �pb)P (Q � Q�)+["2y � �x� � (1� �) pb]P (Q < Q�)

� E�c = (�+ �x� �y � �)P (Q � Q�)� �P (Q < Q�)

� E�d = 0

The process of adopting strategies is modelled by the so called replicator
dynamics (see, e.g., Weibull, 1995), according to which the strategies whose ex-
pected payo¤s are greater than the average payo¤ spread within the populations
at the expense of the others. In our case:

�
x = x

�
E�a � E�CU

�
(1)

�
y = y

�
E�c � E�SP

�
where

E�CU = x � E�a � (1� x) � E�b
E�SP = y � E�c � (1� y) � E�d

are the average payo¤s, respectively, of the two populations of CU and SP.
We assume that, in our context, replicator dynamics is generated by the

following "expectation forming" mechanism. At the end of each period t (whose
length, in a continuous time framework, is reduced to zero), the values of x
and y become common knowledge to the agents (e.g. one can immagine that
these values are frequently reported and updated on the webpage of the Public
Administration and on the local media). On the basis of such values, agents
form their expectations about the relative performance of the available strategies
in the next period (in other words, the current values of x an y are used as a
proxy for the values of these variables in the close future).
The replicator system (1) in the square [0; 1]2 can be written as:

�
x = x (1� x) (E�a � E�b) = x (1� x)F (x; y) (2)
�
y = y (1� y) (E�c � E�d) = y (1� y)G (x; y)
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Setting

' = ("1 � 1)� ("2 � 2)
 = "2 � 2
� = � � �
� = � (�pb � �pa)
! = � [(1� �) pa � (1� �) pb]

we obtain:

F (x; y) = (�'y + �) [� (1� x) + (1� �) y] + �x�  y � !
G (x; y) = (�+ �x� �y) [� (1� x) + (1� �) y]� �

where:

'; > 0; � � 0; ! > max(0; �); 0 < � < 1; �; �; �; � > 0; �� � > � (3)

3 Fixed points and stability

The analysis of �xed points of (2) and their stability is summarized by the
following Propositions.

Proposition 1 The boundary �xed points are at least four (the vertices of
[0; 1]

2) and at most nine (the maximum can be attained). At least one and
at most four of them are attractors: in particular, the vertex (0; 1) is always
attracting and the four vertices are all attracting if and only if the boundary
�xed points are eight.

Proof. The conditions (3) imply, as it is easily checked, that the vertex (0; 1) is
attracting. Moreover the hyperbola F (x; y) = 0, having asymptotes y = ����

�'

and ��x + (1� �) y = c, for a suitable c, has at most one intersection with
each horizontal edge of the square [0; 1]2. On the other hand G(x; y) = 0 has
one intersection with x = 0 at some point (0; y) with y > 1. It follows that
G(x; y) = 0 has at most one intersection with the vertical edge x = 0 of the
square and at most two intersections with the vertical edge x = 1. Hence the
boundary �xed points are at most nine. Moreover, as in (0; 0) and (0; 1)

�
x < 0,

the possible �xed points on the open horizontal edges cannot be attracting.
Analogously, since

�
y > 0 in (0; 1) and

�
y < 0 in (1; 1), the possible �xed point on

the open vertical edge x = 0 and one of the possible �xed points on the open
vertical edge x = 1 cannot be attracting either. In fact, it follows that, when
the boundary �xed points are eight, the four vertices are all attracting. In case
of nine boundary �xed points, instead, the vertices (0; 0), (0; 1) and (1; 0) are
still attracting, while (1; 1) is a saddle and there exists a fourth attractor on the
open edge x = 1. In all the other cases the attractors are less than four.
Figure 1 illustrates the case when the boundary �xed points are eight and

thus all the four vertices are attractors.
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Proposition 2 The minimum number of interior �xed points (i.e. belonging to
(0; 1)

2) is zero and the maximum (which can be attained) is three. At most one
of them is an attractor and at most one of them is a saddle. When the interior
�xed points are three, two of them are repellors and one is a saddle.

Proof. The two hyperbolas F (x; y) = 0 and G(x; y) = 0 have a common asymp-
totic direction (that of the line ��x+ (1� �) y = 0). Hence their intersections
in the euclidean plane are at most three. It is easily seen that only one branch
of G(x; y) = 0 intersects (0; 1)2. On the other hand it can be checked that
F (x; y) = 0 does not intersect the vertical edge x = 0 of the square and, in case
���� � 0 (i.e. @F@x < 0 in (0; 1)

2), it does not intersect the horizontal edge y = 0
either. It follows that the possible intersection of F (x; y) = 0 with (0; 1)2 is the
graph of a function x = f(y) de�ned in an interval (y0; y00) � (0; 1). Therefore
the intersections between the two hyperbolas in (0; 1)2 are the solutions of the
equation G(f(y); y) = 0 with y 2 (y0; y00), hence the possible zeros in (y0; y00)
of a third degree polynomial P (y). By possibly exchanging P (y) with �P (y),
it is easily observed that, if (x; y) is a �xed point of the system in (0; 1)2, then
sign det J (x; y) = signP 0(y), where J denotes the Jacobian matrix. As a con-
sequence, if two consecutive simple zeros of P (y) correspond to interior �xed
points of system (2), one of them is a saddle and the other one is generically
either an attractor or a repellor. Vice-versa a double zero of P (y), giving rise
to an intersection between F = 0 and G = 0 in (0; 1)2, corresponds to a saddle-
node of the system, while, as we will see, a triple zero of P (y), if it corresponds
to an interior �xed point of the system, gives rise to an improper repellor. Let
us consider now the case of three interior �xed points (see Figure 2). From
the previous considerations, through a careful investigation, one can check that
in this case @F

@x > 0 and @F
@y < 0 along fF = 0g \ (0; 1)2 while @G

@y > 0 along

fG = 0g \ (0; 1)2. Hence the function x = f (y), above de�ned, is increasing,
with 0 < y < y � 1, and no one of the interior �xed points, say Pi = (xi; yi),
i = 1; 2; 3, is attracting (since traceJ (Pi) > 0). Next we want to show that
P3, the one with the highest coordinates, is a repellor. In fact, it is easily seen
that the arc x = f (y), y3 < y < y, lies in the region fG > 0g \ (0; 1)2. Con-
sider then a curvilinear triangle having two edges on F = 0 and G = 0 and
vertices P3 = (x3; y3), Q0 = (f (y�) ; y�), Q00 = (g (y�) ; y�), where y3 < y� < y,
G (g (y�) ; y�) = 0 and (g (y�) ; y�) 2 (0; 1)2. Then the backward (i.e. negative)
trajectory of Q0 cannot leave the triangle and thus converges to P3. It follows
that P3, being a non-degenerate �xed point with a parabolic repelling sector
(see footnote 1), is a repellor. From what precedes, we conclude that P1 is also
a repellor and P2 is a saddle.

4 Limit cycles and bifurcations

The main result of this Section is the proof that system (2), de�ned in the square
[0; 1]

2, can possess two limit cycles, an attracting one surrounded by a repelling
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one. This number may not be the maximum. However the result already shows
the complexity of con�gurations that our apparently simple system can exhibit.
Moreover we show how the two limit cycles can reduce to one, either repelling
or attracting, through, respectively, a Hopf or a saddle-connection bifurcation,
or can disappear through a collision (then the bifurcating cycle is interiorly
attracting and externally repelling). In the latter case the vertex (0; 1) becomes
the only attracting set of the system. Finally we provide necessary and su¢ cient
conditions for (0; 1) to attract all the trajectories lying in (0; 1)2.
We start with the following

Proposition 3 If system (2) exhibits some limit cycles in (0; 1)2, they all sur-
round the same interior �xed point.

Proof. It is well-known that the sum of the indexes of the �xed points sur-
rounded by a limit cycle must be +11 . As we have shown, if there are two
non-degenerate interior �xed points, one of them is a saddle. Vice-versa, in the
case the interior �xed points are three, accounting for multiplicity, the proof of
Proposition 2 shows that the one of them with the highest coordinates cannot
lie in the interior of a cycle. This proves the present Proposition.

Theorem 4 System (2) exhibits, for suitable values of the parameters, two limit
cycles in (0; 1)2, an attracting one surrounded by a repelling one.

Proof. Let us �rst consider a system �0 satisfying, besides (3), the following
conditions:

1. G0 (0; 0) > 0 > G0 (1; 1)

2. F0 (1; 1) > 0 > F0 (1; 0)

3. There exists a �xed point P0 = (x�; 1), 0 < x� < 1, such that F0 (x�; 1) =
0 < G0 (x

�; 1)

4. There exists a �xed point Q0 = (1; y�), 0 < y� < 1, such that F0 (1; y�) =
G0 (1; y

�) = @G0

@y (1; y
�) = 0

Conditions (1)-(4), in addition to the previous ones, are easily seen to imply:

� @F0
@x > 0 for y 2 [y�; 1]

� @G0

@x < 0 along fG0 (x; y) = 0g \ [0; 1]2

� @G0

@y > 0 along fG0 (x; y) = 0g \ [0; 1]� [0; y�)

� @G0

@y < 0 along fG0 (x; y) = 0g \ [0; 1]� (y�; 1]

1For a non-degenerate �xed point the index is +1 if it is not a saddle, �1 if it is a saddle,
while a saddle-node has index 0 etc. (see, e.g., Lefschetz 1977)
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It follows that �0 has exactly six �xed points in [0; 1]
2, all lying on the

boundary: the attractor (0; 1), the saddles (0; 0), (1; 0), (1; 1), (x�; 1) and the
degenerate �xed point Q0 = (1; y�), whose Jacobian matrix has the form J =�
0 0
�c 0

�
with c > 0. Actually it can be checked that Q0 possesses an elliptic

sector and a parabolic sector lying in (0; 1)2, plus a hyperbolic sector lying
outside the square2 . More precisely, the elliptic sector is bounded by a curve (a
polycycle) constituted by the stable manifold, in (0; 1)2, of P0 = (x�; 1) and by
the segments fx� � x � 1, y = 1g and fx = 1, y� � y � 1g; while the parabolic
sector is constituted by trajectories having �-limit in Q0 and !-limit in (0; 1).
Let us now perturb �0 into �, by replacing F0 and G0 with:

F (x; y) = F0(x; y) + �"
2 (4)

G(x; y) = G0(x; y)� "

where " > 0 is arbitrarily small and � is suitably chosen. As a consequence,
the �xed points of � are the four vertices of [0; 1]2 and a point P on x = 1 near
P0 with the above characteristics, plus, in the place of Q0, a point Q in (0; 1)2,
which, generically, is either an attractor or a repellor.
In order to better understand the situation, let us consider the coordinates

u = 1� x and z = y � y�. In such coordinates F and G can be written as:

F (u; z) = �u(a+ bz) + cz � dz2 + �"2 (5)

G(u; z) = u(k � lz)�mu2 � nz2 � "

where a; b; c; d; k; l;m; n > 0, while the coordinates of Q = (eu; ez) satisfy:eu = "
k + o("), ez = a"

ck + o("). It follows that, by multiplying F by a suitable
h > 0, we can set:

a =
�
l + 2n

a

c

�
y�(1� y�)

which implies

traceJ(Q) = �"2 + o
�
"2
�

(6)

Suppose, now, Q is an attractor for �. Hence, since � has no repelling �xed
point in [0; 1]2, it follows from Poincaré-Bendixson Theorem (see Hirsch and
Smale 1974) that there must exist a repelling limit cycle surrounding Q.

2Let P be an isolated �xed point of a smooth planar system. Consider an open neighbor-
hood D of P (e.g. a disc). A region U � D � P is said (see,e.g., Andronov 1973):

� an elliptic sector of P if it is constituted by trajectories having P both as � and !
limit-set;

� a parabolic sector of P if it is constituted by trajectories having P either as � or as !
limit-set;

� a hyperbolic sector of P if it is constituted by trajectories having P neither as � nor
as ! limit-set.

10



We want to show that this cycle is not originated by a Hopf bifurcation. In
fact, in such a case, its diameter should be, because of (6), of the order "2. But
we can show the existence of a winding inward trajectory starting at a point
whose distance from Q is �", with � > 0 independent of ". Hence this trajectory
is contained in the region bounded by the repelling cycle and, consequently, the
latter cannot be originated by a Hopf bifurcation. Therefore the Hopf bifurca-
tion at Q, which generically takes place when � crosses a suitable value �, is
supercritical, i.e. an attracting limit cycle arises around the �xed point Q when
it becomes a repellor. Thus, in this case, two (at least) limit cycles exist, an
attracting one surrounded by a repelling one.
So, we have to show the existence of a winding inward trajectory starting

at a distance from Q of the order ". We will utilize the coordinates (u; z), but

referring to the system � =
� �
x;

�
y
�
. Let us �rst consider the line r)@G@z =

@G
@y = 0.

Then r) lu+2nz = 0 intersects G = 0 at a point (bu; bz), where bu = "
k +o("), bz =

� lbu
2n . By straightforward computations one can check that the backward (i.e.

negative) trajectory starting at H0 = (u0; z0), with z0 = � l"
4nk , G (u0; z0) = 0,

intersects F (u; z) = 0 at a point H1 = (u1; z1) without intersecting r. Moreover
one can see that G (u1; z1) = o(").3 Consider now the backward trajectory of
H1 and its intersection H2 = (u0; z2) with u = u0. Let z satisfy F (u0; z) = 0.
Then, from the above considerations and recalling y� > 1

2 , one can show that
z2 � z � (z � z0) = z2 + z0 � 2z > ", where  > 0 is independent of " for "
su¢ ciently small. Take now the �rst intersections with F = 0 of the forward
(i.e. positive) trajectory of H0 and the backward trajectory of H2, and denote
them, respectively, as H3 = (u3; z3) and H4 = (u4; z4). If were u3 � u4 (and
thus x3 � x4), then there should be a value u, u0 < u < u4, where, denoting
by (u; z0), (u; z), (u; z00) the intersections of u = u with, respectively, the arc
(H0;H3), the curve F = 0 and the arc (H2;H4), z00 � z = z � z0 = � > 0.
Moreover one can show that the above intersections should lie in the region
G > 0. However, since �2 << � (� being of order at most "), it is easily seen
that, in absolute value, the speed at (u; z0) would be higher than the speed at
(u; z00), i.e.

(z0 + y�) (1� z0 � y�)G (u; z0)
u(1� u) jF (u; z0)j >

(z00 + y�) (1� z00 � y�)G (u; z00)
u(1� u)F (u; z00) (7)

which implies u3 < u4, leading to a contradiction. Therefore it is u3 < u4,
i.e. x3 < x4, which means that the trajectory through H0 winds inward. This
concludes the proof.
Figure 3 shows the case illustrated in the Theorem: there is only one interior

�xed point, a repellor, surrounded by two limit cycles, respectively attracting

3Suppose, by contradiction, jG(u1; z1)j � p", with p independent of ". Hence there would
exist (u0; z0) 2 (H1; H0) such that jG (u0; z0)j = p"

2
. But then, as it is easily calculated,

p"
2
�

z1Z
z0

djG(u(z);z)j
dz

dz =

z1Z
z0

h
(k�lz�2mu)u(1�u)jF (u;z)j

y(1�y)jG(u;z)j + lu+ 2nz
i
dz < q"2 for a suitable q

independent of ", which produces a contradiction when " is su¢ ciently small.
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and repelling.
Now we want to show how the phase picture of system (2) can evolve, through

bifurcations, starting from the one described in the above Theorem: that is, from
two limit cycles to one (repelling or attracting) to no one. In the latter case we
will see that (0; 1) becomes an attractor for all the trajectories lying in (0; 1)2

(except the one at the repelling �xed point), which can be considered a desirable
outcome of the model.
Let us summarize the situation described in the Theorem, when two limit

cycles appear. The following conditions hold:

� @F
@x > 0 along fF = 0g \ [0; 1]

2 and @G
@x < 0 along fG = 0g \ [0; 1]

2.

� F = 0 intersects the boundary of [0; 1]2 at the two (open) edges x = 1 and
y = 1, while G = 0 intersects the boundary of [0; 1]2 at the two (open)
edges y = 0 and y = 1.

� At the point P = (x; 1), where F (x; 1) = 0, G (x; 1) > 0.

� Consequently there is only one interior �xed point Q = (ex; ey) and we
assume @G

@y (ex; ey) < 0.
It follows that the �xed points of the system in [0; 1]2 are six: the attractor

(0; 1), the saddles (0; 0), (1; 0), (1; 1), (x; 1) and the interior �xed point Q =
(ex; ey) which can be either an attractor or a repellor (observe that x < ex). In
fact, multiplying F by a suitable h > 0, we can make traceJ(Q) > 0, so that
Q is a repellor. In such a case there may exist, as we have seen, two limit
cycles surrounding Q. Suppose we have precisely this phase picture. Now, if
we multiply F by a positive h < 1, the attracting limit cycle shrinks, until it
disappears when, at h = h, traceJ(Q) = 0. For smaller values of h the system
exhibits only one repelling limit cycle, surrounding Q (see Figure 4). This is
the e¤ect of a supercritical Hopf bifurcation. Let us see, instead, how only the
attracting limit cycle can remain. By the usual notations, let us modify the
coe¢ cients �and ! of F , leaving all the others unvaried. Precisely, we replace
� and ! by � 0 = � + � and !0 = ! + �ex, � > 0. At the same time we multiply
G by some k > 1 in such a way that traceJ(Q) remains positive but does not
increase (or suitably decreases). Then, when �, starting from 0, increases, the
�xed point P = (x; 1) moves rightward, while the repelling limit cycle expands
vertically, until, for a suitable pair

�
�; k

�
, F (x; 1) = G (x; 1) = 0. At this stage

P is a saddle-node and the repelling limit cycle has become a loop through P
(i.e. a saddle-connection). For higher values of � there is only one attracting
limit cycle surrounding Q, while P has become a repellor and there exists a new
interior �xed point, a saddle S = (bx; by), with bx < ex and by > ey. The basin of the
attracting cycle is bounded, precisely, by the stable manifold of S, whose arcs
originate in P (see Figure 5). We observe, however, that, by just letting the
curve F = 0 approach the curve G = 0 on the edge y = 1 of the square, without
adjusting at the same time traceJ(Q), the resulting phase picture might have
been di¤erent: that is, when the boundary �xed point, say eP , becomes a repellor
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and an interior saddle S appears, the two limit cycles may persist (see Figure
6).
Finally we show that both limit cycles can disappear through a collision.

In fact, let us start again from the two limit cycles con�guration. Then, by
multiplying F by some h > 1, traceJ(Q) increases, while the attracting limit
cycle around Q expands and the repelling one shrinks, until, at a suitable value
h, they coincide (i.e. collide). The resulting compound limit cycle is interiorly

attracting and externally repelling (see Figure 7). Then, for h > h, no cycle
exists and all the trajectories starting in (0; 1)2 (except, of course, the one at
Q) converge to the virtuous point (0; 1).
Actually we can give necessary and su¢ cient conditions for the global attrac-

tiveness of (0; 1) relatively to the open square (0; 1)2, namely:

Proposition 5 The vertex (0; 1) attracts all the trajectories lying in the open
square (0; 1)2 if and only if the following conditions hold:

1. �� � �;

2. ! � �;

3. there exists h > 0 such that hF (1; 1) +G1; 1) � 0;

4. F (x; y) < 0 along fG(x; y) = 0g \ (0; 1)2

We omit the proof of the above Proposition, which can be drawn through
straightforward steps.
Let us observe that the �rst three conditions guarantee that the vertices, in

the order, (0; 0), (0; 1) and (1; 1) are not attractors, while the fourth condition,
together with the other three, guarantees that no interior �xed point exists and
no other boundary �xed point, except (0; 1), attracts trajectories lying in (0; 1)2.
We can also give a su¢ cient condition, which allows an easier economical

interpretation, for the vertex (0; 1) to attract all the trajectories lying in (0; 1)2.
This condition is obtained observing that

�
x < 0 holds for every values of x and

y in the open square (0; 1)2 if:

min f(1� �) pa � (1� �) pb, pa � pb + � (�pb � �pa)g �
� � �
�

(8)

Under condition (8) all the trajectories in (0; 1)2 approach the edge x = 0 of
the square. If both (8) and �� � � are satis�ed, then the vertex (0; 1) attracts
all the trajectories lying in the open square (0; 1)2.

5 Conclusions

In this paper we have analyzed the e¤ects on economic agents�behavior gen-
erated by the introduction of a simple mechanism aimed at implementing and
supporting environmental protection policies in urban areas. According to the
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proposed mechanism, service providers choosing to o¤er high quality services
can obtain cost abatement; while city users have to pay for entering into urban
areas, but can protect themselves against a low quality of life in these areas
by a self-insurance device. The policy maker can achieve the goal of improving
the city users�quality of life at a low cost, since the costs born by city users
compensate, at least partially, the �nancial aids to virtuous services providers
and so do not imply any worsening of the public budget. The dynamics arising
from the interaction between these categories of economic agents are modelled
by a two-population evolutionary game according to which the population of
city users strategically interacts with that of service providers.

From the analysis of the model it emerges that the welfare-improving equi-
librium (x; y) = (0; 1), where all city users choose an environment-preserving
transport mode and all services agencies provide high quality services, is always
a local attractor under evolutionary dynamics. However, the basin of attraction
of such an equilibrium may have a rather complex morphology. In fact, in sec-
tions 3 and 4 we show that other attracting �xed points can coexist with (0; 1)
and, furthermore, that two limit cycles may arise, an attracting one surrounded
by a repelling one. In our construction the latter separates the basin of at-
traction of the former from the basin of attraction of the virtuous vertex (0; 1).
Therefore, evolutionary dynamics is strongly path-dependent. This feature of
dynamics may be viewed as a shortcoming of the proposed mechanism. Never-
theless we have seen a su¢ cient condition assuring the global attractiveness of
the equilibrium (0; 1) relatively to the open square (0; 1)2:

�� � � and min f(1� �) pa � (1� �) pb, pa � pb + � (�pb � �pa)g �
� � �
�
(9)

which requires (coeteris paribus):
(1) a su¢ ciently large di¤erence pa � pb between the prices of the tickets A

and B bought by the city users;
(2) a su¢ ciently large di¤erence � � � between the reimbursement rates of

the tickets B and A, respectively;
(3) a su¢ ciently large �xed amount of money � (i.e. the component of the

reward �+�x��y not depending on the shares x and y) received, when Q � Q�,
by each service provider deciding to provide high quality services;
(4) a su¢ ciently high negative impact (measured by �) generated by the use

of private cars on the probability that Q � Q�.
Notice that in (8) the threshold value ���

� increases (coeteris paribus) if
the di¤erence between the negative impacts of city users choosing option A,
respectively, on those choosing option B (measured by �) and on those choosing
option A (measured by �) increases. In fact, in a context characterized by a
high value of � � �, the decision to use a private car has a strong self-enforcing
nature that favours the emergence of undesirable outcomes characterized by a
widespread use of private cars.
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Furthermore, the numerical simulation showed in Figure 8 suggests the possi-
bility to expand the basin of attraction of (0; 1) by increasing the reimbursement
rate � due to city users renouncing to private cars (option B). This implies that
if the policy maker levies a simple entrance ticket on the city users with no
chance of being reimbursed, this could minimize the basin of attraction of the
virtuous equilibrium (0; 1), increasing the initial critical mass of 1 � x and y
that are needed to approach it. Increasing the reimbursement share, therefore,
might paradoxically lower the costs of the �nancial mechanism for the policy
maker: if the system converges to (0; 1), no reimbursement will be paid by the
policy maker to city users and the extra entries obtained from the call option
component of the tickets can be used by the policy maker to �nance service
providers for their virtuous behavior.
In our opinion, the present analysis could be extended in several directions.

In particular, in an optimal control framework in which the policy maker aims
at maximizing its own objective function by choosing the values of the control
variables pa, pb, � and �, it would be interesting to compare the costs for the
policy maker of the two alternative regimes described above (with and without
reimbursement), taking the budget constraint explicitly into account.
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Figure 1: All the four vertices of the square are attractors. Parameters: � = 460;
� = 120; � = 40;  = 48; ' = 25; ! = 320; � = 240; � = 315; � = 0:5; � = 350:

Figure 2: Three interior �xed points. Parameters: � = 11:45; � = 36; � = 0:25;
 = 0:25; ' = 210; ! = 10:0833; � = 8; � = 10; � = 0:5; � = 20:50:
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Figure 3: Two limit cycles surrounding the only interior (repelling) �xed point
Q. Parameters: � = 520; � = 20; � = 340;  = 0:9; ' = 7:5; ! = 96; � = 140;
� = 94:5; � = 0:7; � = 93:

Figure 4: One repelling limit cycle. Parameters: � = 520; � = 20; � = 340;
 = 0:663; ' = 5:5252; ! = 70:7232; � = 140; � = 69:6182; � = 0:7; � = 68:5131:
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Figure 5: One attracting limit cycle. Parameters: � = 676; � = 26; � = 442;
 = 0:9; ' = 7:5; ! = 101:9827; � = 182; � = 94:5; � = 0:7; � = 102:

Figure 6: Two limit cycles with two interior �xed points. Parameters: � =
508:0347; � = 38; � = 340;  = 0:9; ' = 7:5; ! = 98:3266; � = 140; � = 94:5;
� = 0:7; � = 96:5:
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Figure 7: One compound limit cycle (internally attracting and externally re-
pelling). Parameters: � = 520; � = 20; � = 340;  = 0:9483; ' = 7:9024; !
= 101:1504; � = 140; � = 99:5699; � = 0:7; � = 97:9894:

Figure 8: Attractors (0; 1) and (1; 0). Increasing the reimbursement rate �
(hence increasing ! and �) the basin of (0; 1) expands. Parameters: � = 8;
� = 6; � = 0:5;  = 1; ' = 4; ! = 0:2 (!0 = 1:8) ; � = 5; � = 1:2 (� 0 = 3) ;
� = 0:8; � = 2:
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