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Abstract. We study controllability of 2D defocusing cubic Schroedin-
ger equation under periodic boundary conditions and control applied
via source term (additively). The source term is a linear combination of
few complex exponentials (modes) with time-variant coe�cients - con-
trols. We manage to prove that controlling just 4 modes one can achieve
controllability of this equation in any �nite-dimensional projection of
its evolution space H1+σ(T2), as well as approximate controllability in
H1+σ(T2), σ > 0. We also present negative result regarding exact con-
trollability of cubic Schroedinger equation via a �nite-dimensional source
term.
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1. Introduction

Lie algebraic approach of geometric control theory to nonlinear distributed
systems has been initiated recently. An example of its implementation is
study of 2D Navier-Stokes/Euler equations of �uid motion controlled by low-
dimensional forcing in [1, 2], where for the mentioned equations one arranged
su�cient criteria for approximate controllability and for controllability in
�nite-dimensional projections of evolution space.

Here we wish to develop similar approach to another class of distributed
system - cubic defocusing Schroedinger equation (cubic NLS):

(1) −i∂tu(t, x) + ∆u(t, x) = |u(t, x)|2u(t, x) + F (t, x), u|t=0 = u0,

controlled via source term F (t, x).
We restrict ourselves to 2-dimensional periodic case: space variable x

belongs to torus T2.
Our problem setting is distinguished by two features. First, control is

introduced via source term, i.e. in additive form, on the contrast to bilinear
form, characteristic for quantum control. More particular feature is �nite-
dimensionality of the range of the controlled source term:

(2) F (t, x) =
∑
k∈K̂

vk(t)e
ik·x, K̂ ⊂ Z2 - �nite,

1AMS Subject Classi�cation: 35Q55, 93C20, 93B05, 93B29

1



2 ANDREY SARYCHEV

which means that for each t the value F (t) belongs to a �nite-dimensional

subspace FK̂ = Span{eik·x, k ∈ K̂} of the evolution space for NLS.

The control functions vk(t), t ∈ [0, T ], k ∈ K̂, which enter the source
term, can be chosen freely in L∞[0, T ], or in any functional space, which is
dense in L1[0, T ].

By this choice of 'small-dimensional' control our problem setting di�ers
from the studies of controllability of NLS (see end of Section 3 for few
references to alternative settings and approaches), in which controls have
in�nite-dimensional range. In some of the studies controls are supported on
a subdomain and one is interested in tracing propagation of the controlled
energy to other parts of domain. On the contrast, in our case controls a�ect
few directions - modes - in functional evolution space for NLS and we are
interested in the way this controlled action spreads to other (higher) modes.

One could opt for more general �nitely generated control
∑

k∈K̂ vk(t)F
k(x),

but then representation of the NLS equation and in particular of its nonlin-
ear term on T2 becomes much more intricate. Similar di�culties arise, when
one studies NLS equation under general boundary conditions.

We will treat NLS equation (1) as an evolution equation inH1+σ(T2), σ >
0. The 'high regularity' helps us to avoid certain analytic di�culties which
are unrelated to the controllability issue.

Imposing the initial condition u(0) = u0 ∈ H1+σ(T2), we set problems of:

(1) controllability in �nite-dimensional projections, meaning that one
can steer in time T > 0 the trajectory of the equation (1) from u0 to
a state û ∈ H1+σ with any preassigned orthogonal projection ΠLû
onto any given �nite-dimensional subspace L ⊂ H1+σ;

(2) approximate controllability meaning that attainable set of (1) from
each u0 is dense in H1+σ;

(3) exact controllability in H1+σ.

De�nitions of some types of controllability and exact problem setting are
provided in the next Section together with the main results. First of the
results asserts that controllability in projection on each �nite-dimensional
subspace of H1+σ and approximate controllability in H1+σ can be achieved
by (universal family of) 4-dimensional controls (]K̂ = 4). Corollary 6.5 de-
scribes a class of sets of controlled modes which su�ce for achieving these
types of controllability. The second main result asserts lack of exact control-
lability in H1+σ by controlling any �nite number of modes.

2. Cubic Schroedinger equation on T2; problem setting and
main results

2.1. Controllability: de�nitions.

2.1.1. Global controllability. As we said evolution space of NLS equation will
be Sobolev space H = H1+σ(T2).



CONTROLLABILITY OF NLS VIA LOW-DIMENSIONAL SOURCE TERM 3

We say that control (2) steers the system (1) from u0 ∈ H to û ∈ H
in time T > 0, if solution of (1) with initial condition u|t=0 = u0 exists,
is unique, belongs to C([0, T ], H) and satis�es u(T ) = û. The equation is
globally time-T (exactly) controllable from u0, if it can be steered in time T
from u0 to any point of H; it is globally (exactly) controllable from u0, if for
each û the equation can be steered from u0 to û in some time T > 0.

2.1.2. Controllability in �nite-dimensional projections and in �nite-dimensio-
nal component. Let L be a closed linear subspace of H, ΠL be orthogonal
projection of H onto L.

Equation (1)-(2) is (time-T ) globally controllable from u0 in projection
onto L, if for each q̂ ∈ L the system can be steered (in time T ) from u0 to
some point û with ΠL(û) = q̂.

The NLS equation (1)-(2) is (time-T ) globally controllable from u0 in
�nite-dimensional projections if for each �nite-dimensional subspace L it is
(time-T ) globally controllable from u0 in projection onto L; note that the

set K̂ of controlled modes is assumed to be the same for all L.
Whenever L is a 'coordinate subspace' L = span{eik·x| k ∈ Ko}, withKo ⊂

Z2 being a �nite set of observed modes, then controllability in projection on
L is called controllability in observed Ko-component.

Remark 2.1. It is convenient to characterize time-T controllability in terms
of surjectiveness of the end-point map ET : v(·) 7→ F (v(·)) 7→ u(T ) of the
controlled NLS equation (1)-(2), which maps a control v(·) = (vk(t)), k ∈
K̂, into the '�nal' point u(T ) of the trajectory u(t) of this equation, driven
by source term F =

∑
k∈K̂ vk(t)e

ik·x and starting at u(0) = u0. Similarly
controllability in projection on L means that the composition ΠL ◦ET is onto
(covers) L. �

2.1.3. Approximate controllability. The NLS equation (1)-(2) is time-T ap-
proximately controllable from u0 in H, if it can be steered from u0 to each
point of a dense subset of H. �

2.1.4. Solid controllability (cf. [2]). On the contrast to previous de�nitions
the word 'solid' does not refer to a new type of controllability but means
property of stability of controllability with respect to certain class of pertur-
bations.

Let Φ :M1 7→ M2 be a continuous map between two metric spaces, and
S ⊆ M2 be any subset. We say that Φ covers S solidly, if S ⊆ Φ(M1)
and the inclusion is stable with respect to C0-small perturbations of Φ, i.e.
for some C0-neighborhood Ω of Φ and for each map Ψ ∈ Ω, there holds:
S ⊆ Ψ(M1).

Controllability in projection on �nite-dimensional subspace L for the NLS
equation (1)-(2) is solid, if for any bounded set S ⊆ L there exists a family
of controls VS = {v(t, b)| b ∈ B - compact in Rd}, such that projected end-
point map

(
ΠL ◦ ET

)
|VS (see Remark 2.1) covers S solidly. We will say that

S is solidly attained by the controlled NLS equation.
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2.2. Problem setting and main results. Our �rst goal is establishing
su�cient criteria for controllability of cubic defocusing NLS in all �nite-
dimensional projections and approximate controllability in H1+σ, σ > 0.
Common criterion is formulated in terms of a set of controlled modes K̂,
which is �xed and the same for all projections and for approximate control-
lability.

Second objective is negative result regarding exact controllability of cubic
NLS via �nite-dimensional source term.

Main result 1 (criterion for controllability in �nite-dimensional projections
and approximate controllability). Given 2D periodic defocusing cubic Schroe-
dinger equation (1), controlled via source term (2), one can �nd a 4-element

set K̂ ⊂ Z2 of controlled modes such that for any initial data u0 ∈ H1+σ(T2)
and any T > 0: i) for each �nite-dimensional subspace L of H1+σ(T2) the
equation (1)-(2) is time-T controllable from u0 in projection on L; ii) the
equation is approximately controllable from u0 in H1+σ(T2). �

Remark 2.2. An example of a set K̂ able to guarantee the controllability
properties is K̂ = {(0, 0), (1, 0), (0, 1), (1, 1)}. Corollary 6.5 introduces a class

of sets K̂ of controlled modes, which su�ce for the two types of controllability.
�

Main result 2 (negative result on exact controllability). For 2D periodic
defocusing cubic Schroedinger equation (1), controlled via source term (2)

with arbitrary �nite set K̂ ⊂ Z2 of controlled modes, for each T > 0 and
each initial data u0 ∈ H1+σ(T2), the time-T attainable set AT,u0 of (1)-(2)

from u0 is contained in a countable union of compact subsets of H1+σ(T2)
and therefore the complement H1+σ(T2) \ AT,u0 is dense in H1+σ(T2). �

3. Outline of the approach: Lie extensions, fast-oscillating
controls, resonances. Other approaches

Study of controllability of NLS equation is based (as well as our earlier
joint work with A.Agrachev on Navier-Stokes/Euler equation) on method of
iterated Lie extensions. Lie extension of control system ẋ = f(x, u), u ∈ U
is a way to add vector �elds to the right-hand side of the system guaran-
teeing (almost) invariance of its controllability properties. The additional
vector �elds are expressed via Lie brackets of f(·, u) for various u ∈ U . If
after a series of extensions one arrives to a controllable system, then the
controllability of the original system will follow.

This approach can not be extended automatically onto in�nite-dimensional
setting due to the lack of adequate Lie algebraic tools. So far in the in�nite-
dimensional context Lie algebraic formulae are rather used as guiding tools,
whose implementation has to be justi�ed by analytic means. In the rest of
this Section we provide geometric control sketch for the proof of main result.
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When studying controllability we look at cubic NLS equation as at par-
ticular type of in�nite-dimensional control-a�ne system:

−i∂tu = c(u, t) +
∑
k∈K̂

ekvk(t), ek = eik·x,

where c(u, t) is cubic drift vector �eld, ek are constant controlled vector �eld
in H1+σ(T2) with values eik·x ∈ H1+σ(T2).

Lie extensions, we use, are implemented iteratively. At each iteration they
involve two controlled vector �elds em, en and outcome is fourth-order Lie
bracket [en, [em, [em, c]]], which appears as extending controlled vector �eld.
The vector �eld is constant (as far as the vector �eld c is cubic) and is seen
as direction of action of an extended control.

Di�erent type of Lie brackets which makes its appearance for each Lie ex-
tension is third-order Lie bracket [em, [em, c]], which can be seen as obstruc-
tion to controllability, along the vector �eld 'unilateral drift' of the system
takes place. This drift can not be locally compensated but for NLS equation
one can nullify average drift by imposing integral (isoperimetric) relations
onto the controls involved.

To design needed motion in the extending direction [en, [em, [em, c]]] and
to oppress motion in the directions, not needed, we employ fast-oscillating
controls. Use of such controls is traditional for geometric control theory and
although a 'general theory' is hardly available, the approach can be e�ectively
applied in particular cases (see, for example treatment of 'single-bracket case'
in [16]).

In our study we feed fast-oscillating controls

vm(t)eiamt/εeim·x, vn(t)eiant/εein·x

into the right-hand side of the NLS equation at looks at interaction of the
two controls via the cubic term. The idea is to design needed resonance
in the course of such interaction, that is to choose oscillation frequences
and magnitudes in such a way that the interaction 'in average' in�uences
dynamics of (few) certain modes. In our treatment we manage to limit

the in�uence to unique basis mode ei(2m−n)·x; the resonance term is seen as
additional (extending) control along this mode. The procedure is interpreted

as elementary extension of the set of controlled modes: for any m,n ∈ K̂:
K̂ 7→ K̂

⋃
{2m− n}.

Final controllability result is obtained by (�nite) iteration of the elemen-
tary extensions. If one seeks controllability in observed Ko-component with
Ko ⊃ K̂, then one should look (when possible) for a series of elementary

extensions K̂ = K1 ⊂ K2 ⊂ · · · ⊂ KN = Ko. Getting extended controls
available for each observed mode k ∈ Ko we conclude controllability of the
extended system in Ko-component by an easy Lemma 5.2. On the contrast
controllability of the original system in Ko-component will follow by virtue of
rather technical Approximative Lemma 5.1, which formalizes the resonance
design.
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From controllability for each �nite-dimensional component one derives
controllability in projection on each �nite-dimensional subspace as well as
approximate controllability; this is proved in Section 7.

Note that the analysis of interaction of di�erent terms via cubic nonlinear-
ity in the case of periodic NLS equation is substantially simpli�ed by choice
of special basis of exponential modes.

Besides the design of proper resonances there are two analytic problems to
be �xed. First problem consists of studying NLS with fast-oscillating right-
hand side and of establishing the continuity, approximating properties and
the limits of corresponding trajectories, as the frequency of oscillation tends
to +∞. Second problem is to cope with the fact that at each iteration we
are only able to approximate the desired motion, therefore the controllability
criteria need to be stable with respect to the approximation errors.

The second problem is �xed with the help of the notion of solid control-
lability (see previous Section), which guarantees stability of controllability
property with respect to approximation error.

The solution to the �rst problem in �nite-dimensional setting is provided
by theory of relaxed controls. For general nonlinear PDE such theory is
unavailable; although for semilinear in�nite-dimensional control systems re-
laxation results have been obtained in [9, 8]. We provide formulations and
proofs needed for our analysis in Subsection 5.5.

What regards negative result on exact controllability stated in Main re-
sult 2, then the key point for its proof is continuity of input-trajectory map in
some weaker topology of the (functional) space of inputs (controls) in which
the space is countable union of compacts and as a consequence attainable
sets are meager. This kind of argument has been used in [3] for establishing
noncontrollability of some bilinear distributed systems. Finer method, based
on estimates of Kolmogorov's entropy has been invoked in [15] for proving
lack of exact controllability by �nite-dimensional forcing for Euler equation
of �uid motion.

At the end of the Section we wish to mention just few references to other
approaches to controllability of linear and semilinear Schroedinger equation
controlled via bilinear or additive control, this latter being "internal" or
boundary.

First we address the readers to [18, 11] which provide nice surveys of the
results on:

• exact controllability for linear Schroedinger equation with additive
control in relation to observability of adjoint system and to geometric
control condition ([13] and references in [18] on other results up to
2003);
• controllability of linear Schroedinger equation with control entering
bilinearly; besides references in the above cited surveys there are no-
table results [4, 5] on local (exact) controllability in H7 of 1-D equa-
tion; another interesting result is (obtained by geometric methods)
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criterion [6] of approximate controllability for the case in which 'drift
Hamiltonian' has discrete non-resonant spectrum (see bibliographic
references in [4, 5, 6] to preceding work);
• exact controllability of semilinear Schroedinger equation by means
of internal additive control; in addition to references in [18, 11] we
mention more recent publications [7, 14] where the property has been
established for 2D and 1D cases. The key tool in the study of the
semilinear case is 'linearization principle', going back to [12]. In
contrast our approach makes direct and exclusive use of the nonlinear
term.

4. Preliminaries on existence, uniqueness and continuous
dependence of trajectories

Notions of controllability, introduced above, involve trajectories of cubic
NLS equation with source term. The trajectories are sought in the space
C([0, T ];H), H being Hilbert space of functions u(x) de�ned on T2. We opt
for H = H1+σ(T2).

In this Section we collect results on existence/uniqueness and on continuity
in the right-hand side for solutions of semilinear equations

(3) (−i∂t + ∆)ũ = G(t, ũ), ũ(0) = ũ0

and of its 'perturbation':

(4) (−i∂t + ∆)u = G(t, u) + φ(t, u), u(0) = u0.

Below we identify the equations (3),(4) with their integral forms (10),(11)
obtained via applications of Duhamel formula.

We assume the nonlinear terms G(t, ·), φ(t, ·) : H 7→ H to be continuous,
and to satisfy the conditions

G(t, 0) = 0,(5)

∀b > 0, ∃βb(t) ∈ L1([0, T ],R+), such that ∀t ∈ [0, T ], ∀‖u‖ ≤ b,
‖G(t, u)‖H ≤ βb(t), ‖G(t, u′)−G(t, u)‖H ≤ βb(t)‖u′ − u‖H ,(6)

‖φ(t, u)‖H ≤ βb(t), ‖φ(t, u′)− φ(t, u)‖H ≤ βb(t)‖u′ − u‖H .(7)

Local existence of solutions under the assumptions could be established
via �xed point argument for contracting map in C([0, T ];H).

Proposition 4.1 (local existence and uniqueness of solutions). Let G satisfy
conditions (6). Then for each B > 0, ∃TB > 0 such that for ‖ũ0‖H ≤ B
there exists unique strong solution u(·) ∈ C([0, TB], H) of Cauchy problem
(3). �

We choose H = H1+σ(T2), so that the cubic term of the NLS equation
(1) would satisfy conditions (6),(7). One can invoke the following technical
result for veri�cation.
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Lemma 4.2 ('Product Lemma'; [17]). For Sobolev spaces Hs(Td) of func-
tions on d-dimensional torus there holds:

for s ≥ 0 : ‖fg‖Hs ≤ C(s, d) (‖f‖Hs‖g‖L∞ + ‖f‖L∞‖g‖Hs) ;
for s > d/2 : ‖fg‖Hs ≤ (C ′(s, d)‖f‖Hs‖g‖Hs . �

This Lemma allows veri�cation of the conditions (6),(7) for more general
Nemytskii-type operators u 7→ G(t, u), u 7→ φ(t, u) of the form

u(t, x) 7→ F0(t, x) +

p∑
j=1

Pj(u(t, x), ū(t, x); t),

where Pj : C × C → C are polynomials of degree j in u, ū with coe�-
cients pjα(t) ∈ L1([0, T ],C), while F0(t, x) belongs to L1([0, T ],C). Recall
that the source term (2) is trigonometric polynomial in x and F (t, x) ∈
L∞

(
[0, T ], H1+σ

)
.

Global existence and uniqueness results for cubic defocusing NLS equa-
tion (1) are classical under assumptions we made; see, for example, [7] for
respective global formulation for cubic defocusing NLS with source term.

Proposition 4.3 (global existence and uniqueness). Let time-variant source
term t 7→ F (t, ·) belong to L1([0, T ], H1+σ). Then for each initial condition
u(0) = u0 ∈ H1+σ the Cauchy problem for the equation (1) has unique strong
solution u(·) ∈ C([0, T ], H1+σ). �

No we provide few results on continuity of trajectories in the right-hand
side of the NLS equation.

Proposition 4.4 (continuity in the right-hand side). Let assumptions of the
Proposition 4.1 hold and let ũ(t) ∈ C([0, T ], H) be solution of (3); assume
supt∈[0,T ] ‖u(t)‖ < b. Then ∃δ > 0, c > 0 such that whenever

(8) ‖u0 − ũ0‖+

∫ T

0
sup
‖u‖≤b

‖φ(t, u)‖Hdt < δ,

then solution u(t) of the perturbed equation (4) exists on the interval [0, T ],
is unique and admits an upper bound

(9) sup
t∈[0,T ]

‖u(t)− ũ(t)‖ < c

(
‖u0 − ũ0‖+

∫ T

0
sup
‖u‖≤b

‖φ(t, u)‖Hdt

)
. �

Proof. As it is known the solution of equation (4) can be continued in time
as long as H1+σ-norm remains bounded. Therefore from the estimate (9) for
su�ciently small δ > 0 one gets extendibility of solution of (4) onto [0, T ].

To prove (9) we rewrite the di�erential equations (3),(4) in the integral
form

ũ(t) = eit∆
(
ũ0 + i

∫ t

0
e−iτ∆G(τ, ũ(τ))dτ

)
,(10)

u(t) = eit∆
(
u0 + i

∫ t

0
e−iτ∆ (G(τ, u(τ)) + φ(τ, u(τ))) dτ

)
.(11)
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Then

u(t)− ũ(t) = eit∆
(

(u0 − ũ0) + i

∫ t

0
e−iτ∆φ(τ, ũ(τ))dτ

)
+

+eit∆i

∫ t

0
e−iτ∆ ((G(τ, u(τ))−G(τ, ũ(τ))) + (φ(τ, u(τ))− φ(τ, ũ(τ)))) dτ.

Given that eit∆ is an isometry of H1+σ, we get

‖u(t)− ũ(t)‖H ≤ ‖u0 − ũ0‖H +

∥∥∥∥∫ t

0
e−iτ∆φ(τ, ũ(τ))dτ

∥∥∥∥
H

+(12)

+

∫ t

0
‖e−iτ∆ (G(τ, u(τ))−G(τ, ũ(τ)) + φ(τ, u(τ))− φ(τ, ũ(τ))) ‖Hdτ ≤

≤ ‖u0 − ũ0‖H +

∥∥∥∥∫ t

0
e−iτ∆φ(τ, ũ(τ))dτ

∥∥∥∥
H

+ 2

∫ t

0
βb(τ)‖u(τ)− ũ(τ)‖Hdτ.

By Gronwall inequality

‖u(t)− ũ(t)‖H ≤(13)

≤
(
‖u0 − ũ0‖H +

∥∥∥∥∫ t

0
e−iτ∆φ(τ, ũ(τ))dτ

∥∥∥∥
H

)
C ′eC

∫ t
0 βb(τ)dτ ,

for some C,C ′ > 0 and whenever (8) is satis�ed, we get

(14) ‖u(t)− ũ(t)‖H ≤ C ′′
(
‖u0 − ũ0‖+

∫ t

0
‖φ(τ, ũ(τ))‖ dτ

)
≤ C ′′δ.

�

Below we derive more general continuity result (Proposition 5.7) which
incorporates perturbations φ(t, x), fast-oscillating in time, and relaxation
metric for the right-hand sides.

Similarly to the previous Proposition one gets

Lemma 4.5. Consider family of equations

(15) (−i∂t + ε∆)uε = εG(t, uε) + φ(t, uε), uε(0) = u0, ε > 0,

depending on parameter ε > 0, with G,φ satisfying (6),(7). Consider 'limit
equation' for ε = 0:

(16) −i∂tũ = φ(t, ũ), ũ|t=0 = u0.

For solution ũ(·) ∈ C([0, T], H) of (16) there exists ε0 (depending on T ),
such that for ε ∈ [0, ε0) solutions uε(t) of (15) exist on [0, T ] and

sup
t∈[0,T ]

‖uε(t)− ũ(t)‖H = o(1), as ε→ 0. �
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Proof. By Duhamel formula we get as in (12)

‖uε(t)− ũ(t)‖H ≤
∥∥eiεt∆u0 − u0

∥∥+

∥∥∥∥∫ t

0
e−iετ∆εG(τ, u(τ))dτ

∥∥∥∥+

+

∥∥∥∥∫ t

0
e−iετ∆φ(τ, uε(τ))− φ(τ, ũ(τ))dτ

∥∥∥∥
H

≤

≤ ε
∥∥∥∥∫ t

0
e−iετ∆G(τ, u(τ))dτ

∥∥∥∥+
∥∥(eiεt∆ − I)u0

∥∥
H

+

+

∥∥∥∥∫ t

0
(e−iετ∆ − I)φ(τ, ũ(τ))dτ

∥∥∥∥
H

+

∫ t

0
‖φ(τ, uε(τ))− φ(τ, ũ(τ))‖H dτ.

The last addend at the right-hand side is bounded by
∫ t

0 β(τ)‖uε(τ)−ũ(τ)‖Hdτ .
We will arrive to the needed conclusion by virtue of Gronwall inequality,
when proving that the other three addends are o(1) as ε→ +0.

We comment on the addend
∥∥∥∫ t0 (e−iετ∆ − I)φ(τ, ũ(τ))dτ

∥∥∥
H
, the other

two assertions being obvious. For each δ > 0 one can approximate the
function τ 7→ φ(τ, ũ(τ)), τ ∈ [0, T ] by a piecewise constant function ψδ(τ) :
‖φ(τ, ũ(τ)) − ψδ(τ)‖L1([0,T ],H) ≤ δ. Then given that ‖e−iετ∆ − I‖ ≤ 2 one
gets∥∥∥∥∫ t

0
(e−iετ∆ − I)φ(τ, ũ(τ))dτ

∥∥∥∥
H

≤
∥∥∥∥∫ t

0
(e−iετ∆ − I)ψδ(τ)dτ

∥∥∥∥
H

+ 2δ.

For a piecewise constant function ψδ the �rst addend tends to 0, as ε→ 0. �

5. Extension of control

Here we introduce our main tool - extension of control. The outcome of
the Section, to be employed later, is Proposition 5.3 which establishes su�-
cient criterion for controllability in �nite-dimensional component, wherefrom
one will derive in Section 7 controllability in projections and approximate
controllability (Main Result 1). Proposition 5.3 is in its turn derived from
rather technical Approximative Lemma 5.1 for extensions, accompanied by
elementary Lemma 5.2 on controllability by full-dimensional control.

In what follows the metrics L1
(
[t0, t1], H1+σ

)
,L1 ([t0, t1],Cκ), [t0, t1] ⊂ R

will be denoted both by L1
t by abuse of notation.

5.1. Extensions: approximative lemma. Consider NLS equation (1)-(2)

with controls applied to the modes, indexed by a set K̂ ⊂ Z2, or the same
with the controlled source term

∑
k∈K̂ vk(t)e

ik·x.

Pick two vectors r, s from the set K̂ and call K = K̂
⋃
{2r − s} an ele-

mentary extension of K̂. Call K proper extension of K̂ if there exits a �nite
sequence of sets K̂ = K1 ⊂ K2 ⊂ · · · ⊂ KN = K, such that each Kj is
elementary extension of Kj−1, j ≥ 2.
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The following Lemma states that controls (energy) fed into the modes,

indexed by K̂, can be cascaded to and moreover can approximately control
larger set K of modes, whenever K is proper extension of K̂.

Lemma 5.1 (approximative lemma). Let K be a proper extension of K̂.
Given a family of controls

(17) b 7→W (t; b) =
∑
k∈K

wk(t, b)e
ik·x, b ∈ B - compact in Rd,

parameterized by b ∈ B continuously in Lt1-metric, one can construct for
each δ > 0 another family of controls

(18) b 7→ V δ(·, b) =
∑
k∈K̂

vk(t, b)e
ik·x, b ∈ B,

continuous in L1
t -metric, such that for the respective end-point maps (see

Remark 2.1) of the NLS equations,

−i∂tu(t, x) + ∆u(t, x) = |u(t, x)|2u(t, x) +W (t, b),(19)

−i∂tu(t, x) + ∆u(t, x) = |u(t, x)|2u(t, x) + V δ(t, b),(20)

controlled via source terms F = W and F = V δ, there holds

(21) ‖ET (V δ(b))− ET (W (b))‖ ≤ δ, ∀b ∈ B. �

Remark 5.1. Note that controls (18) take their values in 'low-dimensional'
space FK̂ in comparison with the 'high-dimensional' space FK - the range of
controls (17). �

Remark 5.2. It su�ces to prove the Lemma for K being an elementary
extension of K̂, the rest being accomplished by induction. �

5.2. Full-dimensional control. Before proving that controllability can be
achieved by means of low-dimensional controls we formulate general result
for the case, where control is full-dimensional.

Lemma 5.2 (full-dimensional control lemma). Controlled semi-linear equa-
tion

(22) −i∂tu(t, x) + ∆u(t, x) = G(t, u) +
∑

k∈K̂=Ko
wk(t)e

ik·x, u(0) = u0,

with coinciding sets of controlled and observed modes K1 = Ko, is time-T
solidly controllable for each T > 0 in observed Ko-component. �

Proof of Lemma 5.2. Without lack of generality assume the initial condi-
tion to be u(0) = 0H . Take a ball B in FKo = span{eik·x| k ∈ Ko}. We will
prove that B is solidly attainable for the controlled equation (22).

Restrict (22) to an interval [0, ε], where small ε > 0 will be speci�ed later
on. Proceed with time substitution t = ετ, τ ∈ [0, 1] under which (22) takes
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form:

(23) −i∂τu+ ε∆u = εG(t, u) + ε
∑
k∈Ko

wk(t)e
ik·x, u(0) = 0, τ ∈ [0, 1].

Fix γ > 1. For each b ∈ γB, b = (b1, . . . , bN ) consider control w(·; b) =
−iε−1

∑
k∈Ko bke

ik·x. Substituting the control into (23) we get

−i∂τu+ ε∆u = εG(t, u)− i
∑
k∈Ko

bke
ik·x, u(0) = 0, ξ ∈ [0, 1].

For ε = 0 we get the 'limit equation'

(24) ∂τu =
∑
k∈Ko

bke
ik·x, u(0) = 0, , τ ∈ [0, 1].

Let E0
1 be the time-1 end-point map of (24). In the basis eik·x of H1+σ it

has form (b1, . . . , bN ) 7→
∑

k∈Ko bke
ik·x.

Obviously the map b 7→ Φ(b) = Πo ◦ E0
1(w(t; b)), where Πo is orthogonal

projection onto Lo, coincides on γB ⊃ B. with the identity map IdγB and
(I −Πo)E0

1(w(t; b)) = 0.
According to Lemma 4.5 for the continuous maps Φε : b 7→ Eε1(w(·, b)),

where Eε1 are end-point maps of the control systems (23), there holds ‖Φε−
Φ0‖C0(B) → 0 as ε→ 0.

By degree theory argument there exists ε0 such that ∀ε ≤ ε0 the image of(
Π0 ◦ Φε

)
(γB) covers B solidly. �

Remark 5.3. In fact we only established controllability for small times T >
0. Still controllability in any time can be concluded by a standard trick of
guiding the system from u0 to the origin of H1+σ in small time δ > 0 ,
maintaining it at the origin under zero control for time length T − 2δ and
then guiding it to preassigned û in time δ > 0. �

Remark 5.4. From the proof of the Lemma it follows, that in addition to
controllability one can arrange for each δ > 0 a proper choice of controls,
so that the estimate ‖(I − Πo)

(
u(T )− u0

)
‖ ≤ δ will hold for the projection

I −Πo = Π⊥ onto orthogonal complement to FKo . �

Remark 5.5. Without lack of generality we may assume, that w(t, b) are

smooth with respect to t and that any �nite number of derivatives ∂jw
∂tj

(·, b)
depend continuously in L1

t -metric on b ∈ B. Indeed smoothing w(t, b) by
convolution with a smooth ε-approximation hε(t) of Dirac function δ(t), one
gets a family of smooth controls wε(t, b), which provides solid controllability,

for small ε > 0. The continuous dependence in L1
t -metric of ∂wε

∂t (·, b) on b
is veri�ed directly. �

5.3. Controllability in �nite-dimensional component via extensions.
The following result regarding controllability in observed component is a
corollary of Lemmae 5.1,5.2.



CONTROLLABILITY OF NLS VIA LOW-DIMENSIONAL SOURCE TERM 13

Proposition 5.3. If a set of observed modes Ko is proper extension of a set
of controlled modes K1, then NLS equation

−i∂tu+ ∆u = |u|2u+ V (·, b),

is solidly controllable in the observed Ko-component. �

Proof. Let S be a compact subset of FKo = span{fk| k ∈ Ko}. According
to Lemma 5.2 we can choose a family of FKo-valued controls W (·, b) which
provides solid controllability. If δ > 0 is small enough and family V (t; b)
satis�es conclusion of the Approximative Lemma 5.1, then Πo ◦ ET (V (t; b))
covers S solidly. �

5.4. Proof of Approximative Lemma 5.1. According to the Remark 5.2
it su�ces to treat the case where K is elementary extension of K̂:

K = K̂
⋃
{2r − s}, r, s ∈ K̂.

It is convenient to proceed with time-variant change of basis in H1+σ,
passing from the exponentials eik·x to the exponentials

fk = ei(k·x+|k|2t), k = (k1, k2) ∈ Z2.

Therefore from now on we consider FK-valued family of controls

(25) b 7→W (t, b) =
∑
k∈K

wk(t; b)fk,

parameterized by b ∈ B - compact in Euclidean space. We wish to construct
family of controls V (t; b) =

∑
k∈K̂ vk(t; b)fk, whose range has one dimension

less and which satisfy (21).

5.4.1. Substitution of variables. We will seek the family b 7→ V (t, b) in the
form

(26) V (t, b) = W̃ (t, b) + ∂tvr(t, b)fr + ∂tvs(t, b)fs,

where W̃ (t, b), whose range is FK, and families of Lipschitzian functions
t 7→ vr(t, b), vs(t, b) will be speci�ed in the course of the proof. For some
time we will omit dependence on b in notation.

Feeding the controls (26) into the right-hand side of equation (1) we get

(27) (−i∂t + ∆)u = |u|2u+ W̃ (t) + v̇r(t)fr + v̇s(t)fs.

This equation can be given form

(28) (−i∂t + ∆) (u− iVrs(t)) = |u|2u+ W̃ (t),

where Vrs(t) = vr(t)fr + vs(t)fs. We used the fact that (−i∂t + ∆)fk =
0, ∀k ∈ Z2.

By time-variant substitution

(29) u∗ = u− iVrs(t),
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we transform(28) into equation:

(−i∂t + ∆)u∗ = |u∗ + iVrs(t)|2(u∗ + iVrs(t)) + W̃ (t) =(30)

= |u∗|2u∗ − i(u∗)2V̄rs + 2i|u∗|2Vrs − V 2
rsū
∗ + 2u∗|Vrs|2 + i|Vrs|2Vrs + W̃ (t).

Imposing constraints

(31) vr(0) = vs(0) = 0, vr(T ) = vs(T ) = 0,

we keep end-points unchanged under the substitution (29): u(0) = u∗(0),
u(T ) = u∗(T ). Hence the end-point maps ET for the controlled equations
(27) and (30) coincide for those Lipschitzian controls vr(t), vs(t), which meet
(31) .

5.4.2. Fast oscillations and resonances. Now we put into game fast-oscil-
lations, by choosing Vrs(t) in (29),(30) of the form

(32) Vrs(t) = vr(t)fr + vs(t)fs = ei(t/ε+ρ(t))v̌r(t)fr + ei2t/εv̌s(t)fs,

where v̌r(t), v̌s(t), ρ(t) are Lipschitzian real-valued functions, which together
with small ε > 0, will be speci�ed in the course of the proof.

The terms at the right-hand side of (30), which contain Vrs, V̄rs, are to be
classi�ed as non-resonant and resonant with respect to the substitution (32).
We call a term non-resonant if, after the substitution it results in a sum of
fast-oscillating factors of the form p(u, Vrs, t)e

iβt/ε, β 6= 0, where p(u, Vrs, t)
is polynomial in u, ū, Vrs, V̄rs, with coe�cients Lipschitzian in t, independent
of ε. Otherwise, when no factor eiβt/ε is present, the term is resonance. Cru-
cial fact, which will be established below, is that in�uence of non-resonant
(fast-oscillating) terms to the end-point map can be made arbitrarily small,

when the frequency of the oscillating factor eiβt/ε is su�ciently large.
Direct veri�cation shows that the terms

i(u∗)2V̄rs, 2i|u∗|2Vrs, V 2
rsū
∗

at the right-hand side of (30) are all non-resonant with respect to (32).

5.4.3. Resonance monomials in the quadratic term 2u∗|Vrs|2: an obstruction.
Consider the quadratic term 2u∗|Vrs|2, which after the substitution (32) takes
form

2u∗|vrs|2 = 2u∗
(
|v̌r(t)|2 + |v̌s(t)|2

)
+ 4u∗v̌r(t)v̌s(t)Re

(
e−it/εeiρ(t)frf̄s

)
.

The last addend in the parenthesis is non-resonant, while the resonant term
2u∗(|v̌r(t)|2 + |v̌s(t)|2) is an example of so-called obstruction to controllability
in terminology of geometric control.

We can not annihilate or compensate this term but, as far as the group
eit∆ corresponding to linear Schroedinger equation is quasiperiodic, one can
impose conditions on controls in such a way, that for a chosen T > 0 the
in�uence of the obstructing term onto time-T end-point map ET will be
nulli�ed.
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Indeed, proceeding with time-variant substitution:

(33) u? = u∗e−2iΥ(t), Υ(t) =

∫ t

0
(|v̌r(t)|2 + |v̌s(t)|2)dτ,

one gets for u? the equality:

(−i∂t + ∆)u?e2iΥ(t) = (−i∂t + ∆)u∗ − 2u∗(|v̌r(t)|2 + |v̌s(t)|2).

The equation (30) rewritten for u? gets form

(−i∂t + ∆)u? = |u?|2u? − i(u?)2V̄rse
2iΥ(t) + 2i|u?|2Vrse−2iΥ(t) −

−V 2
rsū

?e−4iΥ(t) + 4u∗2Re
(
ei(t/ε+ρ(t))vr(t)v̄s(t)

)
e−2iΥ(t) +(34)

+W̃ (t)e−2iΥ(t) + i|Vrs|2Vrse−2iΥ(t).

For the sake of maintaining (for a given T > 0) the time-T end-point map
ET unchanged, additional isoperimetric conditions on v̌r(t), v̌s(t)

(35)

∫ T

0
(|v̌r(t)|2 + |v̌s(t)|2)dt = Υ(T ) = πN, N ∈ Z,

could be imposed. The equality would imply u?(0) = u∗(0), u?(T ) = u∗(T ).

Remark 5.6. Although right-hand side of (34) gained 'oscillating factors' of

the form e−biΥ(t), the notion of resonant and resonant terms will not su�er
changes, as long as e−2iΥ(t) is not 'fast oscillating'; in further construction
Υ(t) will be chosen bounded uniformly in t and b with bounds independent of
ε > 0. �

We introduce the notation Ñ ε(u, t) for the sum of non-resonant terms at
the right-hand side of (34) getting

(36) (−i∂t + ∆)u? = |u?|2u? + W̃ (t)e−2iΥ(t) + i|Vrs|2Vrse−2iΥ(t) + Ñ ε(u, t).

5.4.4. Extending control via cubic resonance monomial. Now we work with
the cubic term

(37) i|Vrs|2Vrse−2iΥ(t) = i(vr(t)fr + vs(t)fs)
2(v̄r(t)f̄r + v̄s(t)f̄s)e

−2iΥ(t),

where vr(t), vs(t),Υ(t) are de�ned by (32).
Rewriting (37) as polynomial in v̌r(t), v̌s(t) with time-variant coe�cients

we extract the only resonant monomial

(38) e2i(ρ(t)−Υ(t))v̌2
r (t)v̌s(t)f

2
r f̄s,

and join all the non-resonant monomials to the term Ñ ε(u, t) in (36).

Recalling that fm = ei(m·x+|m|2)t, m ∈ Z2, we compute

f2
r f̄s = ei((2r−s)·x+(2|r|2−|s|2)t) = f2r−se

i((2|r|2−|s|2−|2r−s|2)t) = f2r−se
−2i|r−s|2t,

and rewrite (38) in the form

v̌2
r (t)¯̌vs(t)e

2i(ρ(t)−|r−s|2t−Υ(t))f2r−s,

which we will see as extending control for the mode f2r−s.
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The equation (36) can be represented as

(−i∂t + ∆)u? = |u?|2u? + W̃ (t)e−2iΥ(t) +

+v̌2
r (t)¯̌vs(t)e

2i(ρ(t)−|r−s|2t−Υ(t))f2r−s + Ñ ε(u, t).(39)

In Subsection 5.5 we will show that the in�uence of the fast-oscillating
term Ñ ε(u, t) onto the end-point map can be made arbitrarily small by choice
of small ε > 0. By now we will take care of other addends at the right-hand
side of (39). We wish to choose families of functions W̃ (t; b), v̌r(t; b), v̌s(t; b)
in such a way that

W̃ (t)e−2iΥ(t) + v̌2
r (t)¯̌vs(t)e

2i(ρ(t)−|r−s|2t−Υ(t))f2r−s

approximates W (t; b) in L1
t -metric uniformly in b ∈ B.

Get family of controls Ŵ (t; b) =
∑

k∈K̂ wk(t; b)fk, by truncating the sum-

mand w2r−sf2r−s from W (t; b) (see (25)). We put W̃ (t; b) = Ŵ (t; b)e2iΥ(t;b).
The controls v̌r(t; b), v̌s(t; b) will be constructed according to the

Lemma 5.4. For a continuous in Lt1-metric family of controls b 7→ w(t; b) ∈
L∞[0, T ], and each ε′ > 0 one can construct continuous in Lt1-metric families
of real-valued functions

(40) b 7→ v̌r(t; b, ε
′), b 7→ v̌s(t; b, ε

′),

such that: i) they are Lipschitzian in t; ii) their partial derivatives in t depend
on b continuously in Lt1-metric; iii) for each b, ε′ the conditions (31),(35) hold
for them; iv) their Lt2-norms are equibounded for all ε′ > 0, b ∈ B; and v)

(41) ‖Dε′
rs‖Lt1 =

∫ T

0

∣∣v̌2
r (t; b, ε

′)v̌s(t; b, ε
′)− |w2r−s(t, b)|

∣∣ dt ≤ ε′.
uniformly in b ∈ B. �

The Lemma is proved in Appendix. Now we formulate a corollary, which
de�nes the family b 7→ ρ(t; b, ).

Corollary 5.5. Given family (40), constructed in the Lemma, there exists
a continuous in L1

t -metric family of Lipschitzian functions b 7→ ρ(·; b) for
which

(42)

∫ T

0

∣∣∣v̌2
r (t; b, ε

′)¯̌vs(t; b, ε
′)e2i(ρ(t)−|r−s|2t−Υ(t)) − w2r−s(t, b)

∣∣∣ dt ≤ ε′. �
Recall that Υ(t) is de�ned by (33).
To prove the Corollary we choose

(43) ρ(t; b) =
1

2
Arg (w2r−s(t, b)) + |r − s|2t+ Υ(t; b).

According to Remark 5.5 we may think that w2r−s(t, b) are smooth in t
and hence ρ(t; b) is Lipschitzian in t. Its dependence on b is continuous in
L1
t -metric. By (41),(43) we conclude (42). �



CONTROLLABILITY OF NLS VIA LOW-DIMENSIONAL SOURCE TERM 17

Taking ε′ = ε and substituting the constructed controls vr, vs, W̃ into (36)
we get the equation

(44) (−i∂t + ∆)u? = |u?|2u? +W (t) +Dε
rs(t) + Ñ ε(u?, t, b).

By construction the end-point maps ẼT and ET of the systems (44) and
(27) coincide on the set of controls, satisfying (31),(32),(35).

Lemma 5.6. The end-point map EεT (b) of the system (44) calculated for the
family of controls, de�ned by Proposition 5.4, tends to the end-point map
ElimT of the 'limit system' (19) uniformly in b as ε→ 0. �

Would the term Ñ ε(u?, t, b) be missing in (44) we could derive Lemma 5.6
from Proposition 4.4. The passage to limit, as ε → 0, in the presence of
fast-oscillating Ñ ε(t, u) tends to 0, will be established in Proposition 5.7.

The proof of Approximative Lemma 5.1 is complete modulo proof of Lem-
mae 5.4,5.6 .

5.5. On continuity of solutions in the right-hand side with respect

to relaxation metric. The results, we are going to present brie�y in this
Section, regard continuous dependence of solutions of NLS equation on the
perturbations of its right-hand side, which are small in so-called relaxation
norm. This norm is suitable for treating fast oscillating terms. In �nite-
dimensional context the continuity results are part of theory of relaxed con-
trols. A number of relaxation results for semilinear systems in Banach spaces
can be found in [8, 9]. Below we provide version adapted for our goal - proof
of Lemma 5.6.

Consider semilinear equation (3) and its perturbation (4).
We assume the perturbations φ : [0, T ] × H → H to belong to a family

Φ. Elements of Φ are continuous; the family Φ is equibounded and equi-
Lipschitzian meaning that each φ ∈ Φ together with G : [0, T ] × H → H
satisfy properties (5),(6), (7) with the same function βb(t).

Besides we admit complete boundedness assumption, which would guaran-
tee the complete boundedness (precompactness ) inH of the set {φ(t, u(t))| t ∈
[0, T ], φ ∈ Φ} for each choice of u(·) ∈ C([0, T ], H). To get the prop-
erty it su�ces, for example, to assume complete boundedness of the sets
Φ(t, u) = {φ(t, u)| φ ∈ Φ} for each �xed couple (t, u) together with upper
semicontinuity of the set valued map (t, u) 7→ Φ(t, u).

We introduce relaxation seminorm ‖ · ‖rxb for the elements of Φ by the
formula:

‖φ‖rxb = sup
t,t′∈[0,T ],‖u‖≤b

∥∥∥∥∥∥
t′∫
t

φ(τ, u)dτ

∥∥∥∥∥∥
H

.

The seminorm is well adapted to the functions oscillating in time. The
relaxation seminorms of fast-oscillating functions are small. For example
‖f(t)eit/ε‖rx → 0, as ε → 0 for each function f ∈ L1[0, T ] (Lebesgue-
Riemann lemma).
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Now we formulate needed continuity result from which Lemma 5.6 will
follow.

Proposition 5.7. Let solution ũ(t) of the NLS equation (3) exist on [0, T ],
belong to C([0, T ], H) and satisfy supt∈[0,T ] ‖u(t)‖H < b. Let family Φ of
perturbations satisfy the continuity, equiboundedness, equi-Lipschitzianness
and complete boundedness assumption, introduced above. Then ∀ε > 0∃δ > 0
such that whenever φ ∈ Φ, ‖φ‖rxb +‖u0− ũ0‖H < δ , then the solution u(t) of
the perturbed equation (4) exists on the interval [0, T ], is unique and satis�es
the bound supt∈[0,T ] ‖u(t)− ũ(t)‖H < ε. �

Sketch of the proof. Under the assumptions of the Proposition solutions
of the equations (3),(4) exist locally and are unique (see Proposition 4.1).
Global existence will follow from the bound on theH1+σ-norm of the solution
on [0, T ].

We start with the estimate (13) obtained in the course of the proof of
Proposition 4.4:

‖u(t)− ũ(t)‖ ≤
(
‖u0 − ũ0‖+

∥∥∥∥∫ t

0
e−iτ∆φ(τ, ũ(τ))dτ

∥∥∥∥)C ′eC ∫ t
0 βb(τ)dτ .

The conclusion of Proposition 5.7 will follow from

Lemma 5.8. Let family Φ satisfy assumptions of the Proposition 5.7, and
let ũ(t) be solution of (3). Then ∀ε > 0, ∃δ > 0 such that ∀φ ∈ Φ:

‖φ‖rx < δ ⇒
∥∥∥∥∫ t

0
e−iτ∆φ(τ, ũ(τ))dτ

∥∥∥∥ < ε. �

Proof of this Lemma can be found in Appendix. We �nish by remark on
validity of conditions of Proposition 5.7 for NLS.

Remark 5.7. The nonlinear terms N ε(u, t) at the right-hand side of (44)
is Nemytskii-type operator of the form

N ε(u, t) = W 0(t, x)+uW 11(t, x)+ ūW 12(t, x)+u2W 21(t, x)+ |u|2W 22(t, x),

where W ij(t, x) have form w(t)eik·xeiρ(t)eiat/ε, where w(t), ρ(t) are Lips-
chitzian, a > 0. The Lipschitzian and boundedness properties are concluded
by application of 'Product Lemma' cited in Section 4. Substituting the fac-
tors eiat/ε by eiθ we see that for any continuous ũ(t) the range of the function
N ε(u, t) is contained for all ε > 0 in the compact range of a continuous func-
tion of the variables t ∈ [0, T ], θ ∈ T1.

6. Saturating sets of controlled modes and controllability

Starting with a set K̂ ⊂ Z2 and appealing to de�nition of elementary
extension we de�ne sequence of sets Kj ⊂ Z2, K1 = K̂:

(45) Kj =
{

2m− n| m,n ∈ Kj−1,
}

; j = 2, . . . , K∞ =

∞⋃
j=1

Kj .

Taking m = n in (45) we conclude that K1 ⊆ · · · ⊆ Kj ⊆ · · · K∞.
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De�nition 6.1. A �nite set K̂ ⊂ Z2 of modes is called saturating if K∞ =
Z2. �

From Proposition 5.3 we conclude

Proposition 6.2. Let set K̂ of controlled modes, involved in the source term
(2), be saturating. Then for each T > 0 the controlled NLS equation (1)-(2)
on T2 is time-T solidly controllable in each �nite-dimensional component. �

As we will see in the next section controllability in each �nite-dimensional
component (in projection on each coordinate subspace) implies controllabil-
ity in projection on each �nite-dimensional subspace and also approximate
controllability.

Corollary 6.3. Let the set K̂ of controlled modes be saturating. Then for any
T > 0 the controlled defocusing NLS equation (1)-(2) on T2 is time-T solidly
controllable in each �nite-dimensional projection and H1+σ-approximately
controllable. �

Now we introduce a class of saturating sets.

Proposition 6.4. Let vectors k, ` ∈ Z2 be such that k ∧ ` = ±1. Then the
set {0, k, `, k + `} ⊂ Z2 is saturating. �

Proof. i) First note that if z ∈ K∞, then −z = 2 · 0− z ∈ K∞.
We prove that K∞ coincides with the set of all integer combinations C =

{αk + β`| α, β ∈ Z}.
ii) The set C is obviously invariant with respect to the operation (v, w) 7→

v − 2w. We will prove that K∞ ⊃ C.
If ±z ∈ K∞, then by induction z + 2αk + 2β` ∈ K∞, ∀α, β ∈ Z. In

particular

2αk + 2β` ∈ K∞, ∀α, β ∈ Z and k + 2αk + 2β`, `+ 2αk + 2β` ∈ K∞.
Thus K∞ contains all the combinations mv + nw with at least one of the

coe�cients m,n even. Note that the set of such combinations is invariant
with respect to the operation (x, y) 7→ 2x− y involved in (45) and 0, k, ` all
are "combinations" of this type.

iii) "Invoking" k + ` ∈ K̂ we conclude by ii) that ∀α, β ∈ Z:
(2α+ 1)k + (2β + 1)` = (k + `) + 2αk + 2β` ∈ K∞.

2) Now we prove that whenever k∧` = ±1, then the set {αk+β`| α, β ∈ Z}
coincides with Z2.

Assume k ∧ ` = 1. Take any vector y ∈ Z2. Set α = y ∧ `, −β = y ∧ k;
obviously α, β are integer. We claim that αk + β` = y.

By direct computation

(αk + β`) ∧ ` = α(k ∧ `) = α, (αk + β`) ∧ k = β(` ∧ k) = −β.
Then (y − (αk + β`)) ∧ ` = 0, (y − (αk + β`)) ∧ k = 0. As far as k, ` are
linearly independent, we conclude y − (αk + β`) = 0. �
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Corollary 6.5. Let vectors k, ` ∈ Z2 be such that k ∧ ` = ±1 and the
controlled source term (2) of the NLS equation (1) be of the form

v0(t) + vk(t)e
ik·x + v`(t)e

i`·x + vk+`(t)e
i(k+`)·x

Then for any T > 0 the NLS equation (1) is time-T controllable in each
�nite-dimensional projection and H1+σ-approximately controllable. �

The space of controlled modes, introduced in Remark 2.2, satis�es hy-
pothesi of the Corollary for k = (1, 0), ` = (0, 1).

7. Controllability proofs (Main result 1)

7.1. Approximate controllability. We have established that whenever set
of controlled modes is saturating, then NLS is solidly controllable in pro-
jection on any �nite-dimensional coordinate subspace. Using this fact we
will now prove H1+σ-approximate controllability and controllability in each
�nite-dimensional projection.

Let us �x ϕ̃, ϕ̂ ∈ H2 and ε > 0 and assume that we want to steer the NLS
equation from ϕ̃ to the ε-neighborhood of ϕ̂ in H2-metric.

Consider the Fourier expansions for ϕ̃, ϕ̂ with respect to eik·x, k ∈ Z2. De-
note by ΠN the projection of ϕ ∈ H1+σ onto the space of modes eik·x, |k| ≤
N . Obviously ΠN (ϕ̃)→ ϕ̃,ΠN (ϕ̂)→ ϕ̂ in H0 as N →∞.

Choose such N that the H1+σ-norms of Π⊥N (ϕ̃) = −ΠN (ϕ̃) + ϕ̃,Π⊥N (ϕ̂) =
−ΠN (ϕ̂) + ϕ̂ are ≤ ε/4.

By Lemma 5.2 there exists family of controls W (b) =
∑
‖k‖≤N wk(t; b)fk

such that ΠN (W (b)) covers ΠN (ϕ̂) solidly and besides ‖Π⊥NET (W (b)) −
Π⊥N (ϕ̃)‖ ≤ ε/4. Then ‖Π⊥NET (W (b))‖ ≤ ε/2.

If a set K̂ of controlled modes is saturating, then {k| |k| ≤ N} is proper
extension of K̂. By Approximative Lemma 5.1 there exists family of controls
V (b) =

∑
k∈K̂ vk(t; b)fk such that

‖ET (V (b))− ET (W (b))‖ ≤ ε/4, ∀b ∈ B,

and ΠNET (V (b)) covers the point ΠN (ϕ̂). Then ∀b : ‖Π⊥NET (V (b))‖ ≤ 3ε/4

and for some b̂: ΠNET (V (b̂)) = ΠN ϕ̂. Then ‖ET (V (b̂))− ϕ̂‖ ≤ ε. �

7.2. Controllability in �nite-dimensional projections. Let L be `-dimen-
sional subspace of H1+σ and ΠL be orthogonal projection of H1+σ onto L.

First we construct a �nite-dimensional coordinate subspace which is pro-
jected by ΠL onto L. Moreover for each ε > 0 one can �nd a �nite-
dimensional coordinate subspace LS with its `-dimensional (non-coordinate)
subsubspace Lε, which is ε-close to L. The latter means that not only
ΠLLε = L but also the isomorphism Πε = ΠL|Lε is ε-close to the identity
operator. It is an easy linear-algebraic computation; which can be found in
[1, Section 7].

Without lack of generality we may assume that ‖ΠS(ϕ̃)− ϕ̃‖0 ≤ ε.
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As far as the set K̂ of controlled modes is saturating, S is proper extension
of K̂ and the system is solidly controllable in the observed component qS .

Let B be a ball in L. Consider Bε = (Πε)
−1B; obviously Bε ⊂ Lε ⊂ LS .

We take a ball BS in LS , which contains Bε and hence ΠL(BS) ⊃ B.
Reasoning as in the previous Subsection one establishes existence of a

family of controls V (b) =
∑

k∈K̂ vk(t; b)fk such that ΠSET (V (b)) covers BS
solidly and ∀b : ‖Π⊥SET (V (b))‖ ≤ 2ε.

Then choosing ε > 0 su�ciently small we achieve that

ΠLET (V (b)) = ΠL
(

ΠS + Π⊥S

)
ET (V̂(b))

covers B.

8. Lack of exact controllability proof (Main result 2)

Let us write cubic defocusing NLS equation (1)-(2) in the form

(46) (−i∂t + ∆)u = |u|2u+
∑
k∈K̂

ẇk(t)fk, u|t=0 = u0 ∈ H1+σ,

where fk = ei(k·x+|k|2t), K̂ ⊂ Z2 is a �nite set, ]K̂ = κ. Controls ẇk(t) are
taken from L1 ([0, T ],C) and therefore are derivatives of absolutely contin-
uous functions wk(t), wk(0) = 0. In this Section W1,1([0, T ],Cκ) stays for
the space of Cκ-valued absolutely continuous functions, vanishing at t = 0.

Global existence and uniqueness results for solution of this equation in
C([0, T ], H1+σ) is classical (Section 4).

Consider the end-point map ET : (ẇk(t)) 7→ u|t=T which maps the space
of inputs (ẇk(t)) ∈ L1([0, T ],Cκ) into the state space H1+σ. The image of
ET is time-T attainable set of the controlled equation (46). We wish to prove
that this set is contained in a countable union of compacts and in particular
has a dense complement in H1+σ.

Introducing W (t, x) =
∑

k∈K̂ wk(t)fk, we rewrite (see Subsection 5.4) the

equation (46) as (−i∂t + ∆)(u − iW (t, x)) = |u|2u, and after time-variant
substitution u− iW (t, x) = u∗(t) in the form

(47) (−i∂t + ∆)u∗ = |u∗ + iW (t, x)|2(u∗ + iW (t, x)), u|t=0 = u0,

which we look at as semilinear control system with the inputW (t). Obviously

for each absolutely continuous W (t) = (wk(t)), k ∈ K̂ solution of (47) exists
and is unique on [0, T ].

Introduce input-trajectory map E∗ : W (·) 7→ u∗(·) of (47). The following
result is essentially a corollary of Proposition 4.4.

Lemma 8.1. Input-trajectory map E∗ is Lipschitzian on any ball BR =
{W (·) ∈ W1,1([0, T ],Cκ)| ‖W (·)‖W1,1 ≤ R}, endowed with L1([0, T ],Cκ)-
metric, while the space of trajectories u∗(·) is endowed with C([0, T ], H1+σ)-
metric. In other words

∃LR > 0 : ‖u∗2(t)− u∗1(t)‖H ≤ LR
∫ T

0
‖W2(t)−W1(t)‖Cκdt, ∀t ∈ [0, T ],
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∀W1(·),W2(·) ∈ BR and corresponding trajectories u∗1(t), u∗2(t) of (47). �

From Lemma 8.1, proved in Appendix, Main Result 2 can be deduced
easily.

Consider composition of maps

(ẇk)k∈K̂ 7→W (·) = (wk)k∈K̂ 7→ E∗T (W ) = E∗(W )|t=T ;

E∗T is the end-point map W (·) 7→ u|t=T for the equation (47).
The relation between the end-point maps of the controlled equations (46)

and (47) results ET ((ẇ) = E∗T (W ) + iW (T, x) and therefore the image of
ET (the attainable set) is contained in the image of the map

Θ : (W (·), ϑ) 7→ E∗T (W (·)) + ϑ, (W (·), ϑ) ∈W1,1([0, T ],Cκ)× Cκ.

Represent L1([0, T ],Cκ) as a union of balls
⋃
n≥1Bn of radii n ∈ N. The

image of each Bn under the map I : ẇ(·) 7→ (w(·), w(T )) is bounded in
W1,1([0, T ],Cκ)× Cκ. If one endows W1,1([0, T ],Cκ)× Cκ with the metric
of L1([0, T ],Cκ)×Cκ then I(Bn) is pre-compact (and completely bounded)
in this metric.

By Lemma 8.1 the map E∗T is Lipschitzian in the metric of L1([0, T ],Cκ);
hence Θ is also Lipschitzian in the metric of L1([0, T ],Cκ)×Cκ and therefore
ET (Bn) is contained in completely bounded image Θ(I(Bn)) ⊂ H1+σ. Hence
the attainable set of (46) is contained in a countable union of pre-compacts⋃
n≥1 Θ(I(Bn)) and by Baire category theorem has a dense complement in

H1+σ. �

9. Appendix: proofs of Lemmae 5.4, 5.8, 8.1

9.1. Proof of Lemma 5.4. First we choose v̌2
r (t) coinciding with real-valued

nonnegative continuous piecewise-linear function, which vanishes at {0, T},
is constant and equal π(T − ε2)−1 on [ε2, T − ε2] and is linear on [0, ε2] and

[T − ε2, T ]. Evidently
∫ T

0 v̌2
r (t)dt = π.

According to Remark 5.5 we may assume w2r−s(t, b), ∂tw2r−s(t, b) to be
smooth in t and depend on b continuously in L1

t -metric. This implies that
‖w2r−s(t, b)‖L∞ are equibounded by Cw > 0.

Denote Iε = [0, ε2]
⋃

[T − ε2, T ] and wε(t, b) the restrictions of w2r−s(t, b)
onto the interval [0, T ] \ Iε . Let∫ T−ε2

ε2
|wε(t, b)|2dt = A(b), A = max

b∈B
A(b);

the maximum is achieved. Put N = [A/π] + 1 and extend |wε(t, b)| to a
Lipschitzian function v̌s(t, b) on [0, T ] in such a way that v̌s(0, b) = v̌s(T, b) =
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0 and
∫ T

0 |v̌s(t, b)|
2dt = πN.2 Then∫ T

0
|v̌r(t)|2 + |v̌s(t, b)|2dt = π(N + 1).

Obviously v̌2
r (t; b)v̌s(t; b) = |w2r−s(t, b)| on [ε2, T − ε2]. Also∫

Iε
|v̌s(t)|2dt ≤ πN,

and by Cauchy-Schwarz inequality∫
Iε
|v̌s(t; b)|dt ≤ ε

√
2πN.

Then ∫ T

0

∣∣v̌2
r (t)v̌s(t, b)− |w2r−s(t)|

∣∣ dt =

=

∫
Iε

(∣∣v̌2
r (t)v̌s(t, b)

∣∣+ |w2r−s(t; b)|
)
dt ≤ ‖v̌2

r (t)‖L∞ε
√

2πN + 2Cwε
2. �

9.2. Proof of Lemma 5.8. . Given that ũ(t) is continuous and φ possesses
Lipschitzian property, we can conclude that ∀δ > 0 ∃δ′ > 0 such that ∀φ ∈ Φ:

(48) sup
t,t′∈[0,T ],‖u‖≤b

∥∥∥∥∥∥
t′∫
t

φ(τ, u)dτ

∥∥∥∥∥∥ < δ′ ⇒ sup
t,t′∈[0,T ]

∥∥∥∥∥∥
t′∫
t

φ(τ, ũ(τ))dτ

∥∥∥∥∥∥ < δ.

Indeed (compare with [10, Chap.4]) if ω(τ) is modulus of continuity for
ũ(t) and supt∈[0,T ] ‖ũ(t)‖ ≤ b, then

sup
t,t′∈[0,T ]

∥∥∥∥∥∥
t′∫
t

φ(τ, ũ(τ))dτ

∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
t′∫
t

φ(τ, ũ(τ))dτ

∥∥∥∥∥∥∥ ≤
N−1∑
j=0

∥∥∥∥∥∥∥
tj+1∫
tj

φ(τ, ũ(τ))dτ

∥∥∥∥∥∥∥ ,
where t = t0 < t1 < · · · < tN = t′ is a partition of [t, t′] ⊂ [0, T ] into
N ≤ T/η subintervals of length η. Then

sup
t,t′∈[0,T ]

∥∥∥∥∥∥
t′∫
t

φ(τ, ũ(τ))dτ

∥∥∥∥∥∥ ≤
N−1∑
j=0

∥∥∥∥∥∥∥
tj+1∫
tj

(φ(τ, ũ(τ))− φ(τ, ũ(tj))) dτ

∥∥∥∥∥∥∥+

+

N−1∑
j=0

∥∥∥∥∥∥∥
tj+1∫
tj

φ(τ, ũ(tj))dτ

∥∥∥∥∥∥∥ ≤
N−1∑
j=0

tj+1∫
tj

βb(τ)‖ũ(τ))− ũ(tj)‖dτ +N‖φ‖rx ≤

≤ Cω(η) +
T

η
‖φ‖rx.

2One can take for example v̌s(t, b) = ε−2
√
a1(b)t+ a2(b)ε−2t2 on [0, ε2]. Parameters

a1(b), a2(b) can be chosen continuously depending on b. Similar construction can be ar-
ranged for the interval [T − ε2, T ].
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Choosing η = ‖φ‖1/2rx we get

sup
t,t′∈[0,T ]

∥∥∥∥∥∥
t′∫
t

φ(τ, ũ(τ))dτ

∥∥∥∥∥∥ ≤ Cω(‖φ‖1/2rx ) + T‖φ‖1/2rx

and conclude (48).
Introduce

Φ̃ = {φ(τ, ũ(τ)), φ ∈ Φ}.

According to the aforesaid it su�ces to prove the assertion

(49) ϕ ∈ Φ̃
∧
‖ϕ‖rx < δ ⇒

∥∥∥∥∫ t

0
e−iτ∆ϕ(τ)dτ

∥∥∥∥ < ε.

The set R = {ϕ(τ)| τ ∈ [0, T ], ϕ ∈ Φ̃} is completely bounded by assump-
tion.

Taking an orthonormal basis h1, h2, . . . , hn, . . . in H and denoting by Πn

the orthogonal projection onto Span{h1, . . . , hn}, we conclude by standard
compactness criterion that supx∈P ‖x−Πnx‖ → 0, as n→∞.

Take a partition 0 = τ0 < τ1 < · · · < τN = T of the interval [0, T ] into
subintervals of lengths η = T/N . We represent the integral in (49) as a sum∫ t

0
e−iτ∆ϕ(τ)dτ =

∫ t

0
e−iτ∆ (ϕ(τ)−Πnϕ(τ)) dτ +

+

ω∑
j=1

e−iτj∆
∫ τj

τj−1

Πnϕ(τ)dτ +

N−1∑
j=0

∫ τj

τj−1

e−iτj∆
(
e−i(τ−τj)∆ − I

)
Πnϕ(τ)dτ.

Recalling that:

i: e−iτ∆ is an isometry of H;

ii:
∥∥∥∫ τjτj−1

Πnϕ(τ)dτ
∥∥∥ ≤ ‖ϕ‖rx;

iii: ‖ (ϕ(τ)−Πnϕ(τ)) ‖ ≤ ρn, ρn
n→∞−→ 0 uniformly for ϕ ∈ Φ̃, τ ∈

[0, T ];
iv: sup0≤ξ≤τ ‖

(
e−iξ∆ − I

)
◦Πn‖ = γn(τ), ∀n : limτ→0 γn(τ) = 0,

we conclude

(50)

∥∥∥∥∫ t

0
e−iτ∆ϕ(τ)dτ

∥∥∥∥ ≤ Tρn + Tη−1‖ϕ‖rx + γn(η)

∫ T

0
‖ϕ(τ)‖dτ.

Recall that
∫ T

0 ‖ϕ(τ)‖dτ are bounded by a constant c1 for all ϕ ∈ Φ̃.
Taking n large enough so that Tρn < ε/3, we then choose η > 0 small

enough so that c1γn(η) < ε/3. If we impose ‖ϕ‖rx < εη/3T , then (50) will

imply
∥∥∥∫ t0 e−iτ∆ϕ(τ)dτ

∥∥∥ < ε. �
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9.3. Proof of Lemma 8.1. By the inequalities (13)-(14) we get

‖u∗2(t)− u∗1(t)‖H ≤ C
∫ T

0
‖Φ12(τ, u∗1(τ))‖HdτeC

′ ∫ T
0 βb(τ)dτ ,

where Φ12(τ, u) and βb(t) are de�ned by

Φ12(τ, u) = |u+ iW1(t, x)|2(u+ iW1(t, x))− |u+ iW2(t, x)|2(u+ iW2(t, x)),

‖|u′ + iW (t, x)|2(u′ + iW (t, x))− |u+ iW (t, x)|2(u+ iW (t, x))‖H ≤(51)

≤ βb(t)‖u′ − u‖H , ∀W (·) ∈ BR, ‖u‖H ≤ b.
What regards βb(t), then by Product Lemma 4.2 the left-hand side of

(51) is bounded from above by C(1 + b2 + ‖W (t)‖2H). Hence βb can be
chosen constant, equal to C ′(1+b2 +R2), as far asW (t, x) are trigonometric
polynomials in x with t-variant coe�cients equibounded in W1,1[0, T ].

Similarly

‖Φ12(τ, u∗1(τ))‖H ≤ C1(1 + b2 +R2)‖W2(τ)−W1(τ)‖Cκ .

Then for LR = CC1(1 + b2 +R2)eC
′(1+b2+R2)T :

‖u∗2(t)− u∗1(t)‖H ≤ LR
∫ T

0
‖W2(τ)−W1(τ)‖dτ. �
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