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Abstract

In this paper we review some well-known simple models for portfolio selection under

Knightian uncertainty, also known as ambiguity, and we compute a number of explicit

optimal portfolio rules using elementary mathematical tools. In the case of a single period

�nancial market, new results arise for an agent who is risk neutral and smoothly ambiguity

averse, for a loss averse and smoothly ambiguity averse agent, for a Mean-Variance and α-
Maxmin Expected Utility agent. In a continuous time setting, we are able to recover some

existing results on optimal investment strategies employing trivial stochastic analysis and

avoiding the complicated BSDE machinery.
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1 Introduction

Since the early works of F. Knight in the 1920s and the subsequent analysis of D. Ellsberg in
1961, [7], the role of ambiguity in economic modeling has become more and more important.
While risk and attitude toward uncertainty1 constitute two well-known and studied phenomena,
both from a theoretical and an empirical point of view, ambiguity seems to be somewhat �eeting.
In fact, everyone is able to recognize uncertainty in everyday economic decisions and any human
being is naturally endowed with and/or develops a personal �strategy� to face risky problems.
On the contrary, it is more subtle to think of a plurality of possible ways of risk disclosure, which
amounts to to so-called Knightian uncertainty.

As a matter of fact, the introduction of ambiguity in �nancial modeling is in favour of a more
realistic description of the actual market conditions. It is hard to think of a decision maker who
is perfectly aware of the risks she is going to bear, as it was supposed in the classical Markowitz
and Merton's portfolio problems and in their close successors. However, introducing a set of
plausible measures governing risk also increases the computational complexity and it often leads
to the lack of closed form solutions. Our work simply consists in removing this complexity as
much as possible.

There exists a variety of di�erent ways to model ambiguity and ambiguity aversion. A �rst
axiomatic approach was proposed in 1989 by Gilboa and Schmeidler [12] and it is widely known

∗Université Paris-Dauphine & Università degli Studi di Pisa, matteo.delvigna@for.unipi.it.
1In our language, risk and uncertainty are the same thing and they denote the randomness linked to a particular

phenomenon; on the contrary, ambiguity and Knightian uncertainty are synonyms and they refer to the ignorance
of the probability law which governs that phenomenon.

1



as Maxmin Expected Utility (MEU for short). This naming is easily explained because the
decision maker's objective function (to be maximized) is the minimum of a set of expected
utilities computed with respect to several priors (probability distributions). Loosely speaking,
the investor chooses her optimal investment strategy only once the extreme pessimistic point of
view has been taken. Not only, this approach does not allow a distinction between ambiguity
and ambiguity attitude.

To circumvent this �aw, a slight modi�cation of the MEU has been implemented in 2004
by Ghirardato, Maccheroni and Marinacci. Their α-MEU paradigm states that the objective
function is a convex combination of the minimum (pessimistic) and the maximum (optimistic)
of a set of expected utilities, with weights α and 1 − α respectively. In this way, ambiguity is
modeled only by the speci�cation of the set of priors, whereas the magnitude of the parameter α
re�ects the attitude towards ambiguity. The cases α = 1 and α = 0 reduce to extreme pessimism
and extreme optimism respectively; the midway α = 1/2 stands for ambiguity neutrality.

An even more sophisticated approach is the one developed by Klibano�, Marinacci and Muk-
erji in 2005, [17], and it is introduced as a smooth model for ambiguity. This paradigm too
allows a separation between Knightian uncertain and the attitude toward it. While the �rst one
is still identi�ed by a particular set of priors, the second one is speci�ed by a su�ciently regular
(smooth) distortion function Φ of the expected utilities. By considering a distribution q over the
set of priors, we can summarize the goal of our decision maker as the maximization of

Eq
[
Φ
(
EP[U(W̃ )]

)]
,

where W̃ is the random terminal wealth and U is her utility function; see equation (2.2) for a
more detailed explanation. In particular, it is not di�cult to recognize a nested von Neumann-
Morgestern expected utility in a mathematical expected ambiguity, where Φ acts similarly to U .
Hence, it is natural to interpret a concave (convex) Φ as aversion (desire) toward ambiguity,
where the linear case reduces to the standard expected utility paradigm. Not only, a concave Φ
re�ects aversion to mean-preserving spread in expected utility values.

There is an extensive literature on ambiguity in �nancial market models and investment
problems which employs empirical research and/or numerical methods to compute the optimal
solution; see [1], [21], [10], [16] and [5] only to mention a few. Early research on a stylized portfolio
selection problem is [6]; theoretical developments can be found in [9] for a discrete time framework
and in [4] for a continuous time setting. Moreover, Taboga [19] provides a mathematically elegant
version of portfolio optimization under the smooth ambiguity model and Gollier [13] investigates
the comparative statics of ambiguity aversion under the same model. The MEU model with a
�nite set of priors is analyzed in [18]. In [8], Epstein and Miao study a dynamical equilibrium
model involving heterogeneous agents in a complete and ambiguous market; �nally, in the recent
years ambiguity and asset pricing has also been study experimentally in a laboratory environment;
see [3].

The paper is organized as follows. In Section 2 we study a single period investment prob-
lem under smooth ambiguity aversion. Section 3 is devoted to an analogous problem with
Mean-Variance risk averse agent who follows the α-MEU paradigm. In Section 4 we analyze a
continuous time market with a MEU investor. Finally, Section 5 concludes.

2 Smooth ambiguity in a single period market

We consider the classical portfolio selection model in a stylized, frictionless, single period �nancial
market, where the investment opportunity set is made up by a risk-free asset (bond) which yields
a constant exogenous return rf and a risky asset (stock) with stochastic return described by the
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random variable2 r̃. To be more precise, one can think of the risky asset as of an index-linked
derivative or some other representative contingent claim.

Let W0 ≥ 0 be the initial wealth at disposal of our agent. Then, if she decides to invest w
units of currency in the risky asset, she would get the random terminal wealth

W̃ := W0rf + w(r̃ − rf ). (2.1)

As is usual in decision making models under uncertainty, the preferences of the agent are rep-
resented by a utility function U : R → R, which is supposed to be su�ciently regular and
increasing. Applying the standard von Neumann-Morgenstern expected utility theory, if the
investor believes that P is the prior that correctly describes the stock returns, then she evaluates
her �nal position as EP[U(W̃ )], where EP denotes the expectation w.r.t. P.

Now, we model the ambiguity concerning the �nancial market by allowing for a non-unique
prior (probability measure) governing the risky asset's return. A mathematically sound but
sophisticated approach for such a framework can be found in [19]; in our case, it is su�cient to
assume the existence of a set Q of probability measures, each describing a particular distribution
for r̃. Economically speaking, the investor does not know the e�ective underlying measure which
describes the uncertainty linked to the risky asset. Therefore, she has to consider the whole set
Q when selecting her optimal portfolio. Note that Q can be a �nite, a countable or even an
uncountable set. For instance, Gollier [13] assumes a continuum set of probability measures in Q
which follow a Gaussian distribution; this ad hoc hypothesis allows to obtain an explicit solution
to a single period investment problem.

On the other hand, we separately model the ambiguity attitude of our representative trader
assuming that she behaves as predicted by the smooth ambiguity paradigm, as axiomatized in
[17]. Mathematically speaking, we suppose that our agent is endowed with a su�ciently regular,
increasing and strictly concave function Φ : R → R which describes her ambiguity aversion by
distorting expected utilities. Now, we assume a �nite set of priors Q = {Qj , j = 1, . . . , J} and a
measure q over Q identi�ed by a vector (q1, . . . , qJ) of weights, where qj represents the likelihood
assigned to the j-th prior by our agent, qj > 0, q1 + . . . + qJ = 1. If we denote by Ej the
expectation w.r.t. the probability Qj , then the objective function of the investor is given by

max
w∈R

F (w) ≡ Eq[Φ(E[U(W̃ )])] ≡
J∑
j=1

qjΦ
(
Ej [U(W̃ )]

)
. (2.2)

Using equation (2.2) and assuming U , Φ being twice continuously di�erentiable, it is not di�cult
to derive necessary and su�cient optimality conditions on w. Due to the complexity of the �rst
order conditions, the literature has concentrated on numerical simulations and there is still a lack
of clear explicit results. In order to �ll this gap, we are going to impose additional (and sometimes
strong) hypotheses that allow us to obtain explicit formula for the optimal risky position, also
getting simple and intuitive economic explanations.

To begin, we set U = id unless otherwise stated; this will reduce our agent to a risk neutral one
and will highlight the implications of di�erent ambiguity attitudes. Obviously, such an investor
only cares about the expected return of the risky asset, thus ignoring any other relevant feature
about the shape of the distribution function of r̃ under Qj . We set µ = (µ1, . . . , µJ), where we
de�ne µj := Ej [r̃] − rf ; moreover, without loss of generality we assume µ1 < . . . < µJ ; that is,
µj is the expected excess return if Qj is the relevant prior.

Proposition 2.1. A necessary condition to have a unique optimal solution for (2.2) is µj < 0 <
µj+1 for some j; otherwise, Problem (2.2) is ill-posed.

2We do not specify here the underlying probability space as we want to keep our presentation as simple as
possible; for our purposes, the only relevant feature about r̃ is its distribution function.
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Proof. Using (2.1), it is immediate to see that the optimization problem reduces to

max
w∈R

F (w) =

J∑
j=1

qjΦ(W0rf + wµj).

First and second order optimality conditions for w = w∗ become

F ′(w∗) =

J∑
j=1

qjΦ
′(W0rf + w∗µj)µj = 0,

F ′′(w∗) =

J∑
j=1

qjΦ
′′(W0rf + w∗µj)µ

2
j < 0.

Thanks to the concavity of Φ, F is a strictly concave function on R, hence it possesses at most
a strict unique maximum. However, if µj < 0 ∀ j = 1, . . . , J , then F ′(w) < 0 ∀ w ∈ R and
the optimal strategy would be an in�nite short selling. A similar analysis goes for µj > 0 ∀ j,
leading to an in�nite risky investment.

Example 2.1 (Quadratic smooth ambiguity). Let Φ(x) = x− b
2x

2, b > 0; obviously, we have to
restrict our attention to the subset 0 ≤ x ≤ 1

b . In such a case, it is easy to compute

w∗ =
1− bW0rf

b

Eq[µ]

Eq[µ2]
, (2.3)

where we set µ2 = (µ2
1, . . . , µ

2
J) with an abuse of notation. From (2.3), it is immediate to recognize

a kind of Sharpe ratio which depends on the distribution over the set of priors Q. This similarity
led Chen and Epstein [4] to the naming market price of ambiguity3 for the ratio Eq[µ]/Eq[µ2];
for more details, see Section 4. We also remark that this example can be easily generalized to
the case of a continuum set of priors.

Example 2.2 (Constant Absolute Ambiguity Aversion). Let Φ(x) = −e−γx, γ > 0; similarly to
the Constant Absolute Risk Aversion (CARA) utility function, Gollier [13] de�nes such a smooth
ambiguity function as a CAAA function. Unfortunately, explicit computations are available only
with additional assumptions over the set of priors Q. In particular, we suppose that our investor
is only aware of two di�erent possible measures Q1 and Q2 with positive probabilities q1 and 1−q1

respectively. An economic interpretation for this setting is to think about a decision maker who
receives investment advices from two distinct �nancial experts; these two experts' suggestions
are clearly di�erent and our agent assigns them particular likelihoods. Moreover, we recall that
we must have µ1 < 0 < µ2 to obtain a sensible solution; this in turn can be interpreted as a
bearish (bullish) market forecast by the �rst (second) advisor. First order conditions lead to

w∗ =
1

γ(µ2 − µ1)
log

(
−1− q1

q1

µ2

µ1

)
, (2.4)

from which we deduce w∗ R 0 if and only if Eq[µ] R 0, i.e. it only depends on the sign of the
market price of ambiguity.

Example 2.3 (Constant Relative Ambiguity Aversion). Let Φ(x) = xγ

γ , 0 < γ < 1; analogously
to the previous terminology, we now have a CRAA function. Note that Φ is correctly de�ned

3In the language of Chen and Epstein [4], uncertainty is a synonym to ambiguity.
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only over [0,+∞); hence, we arbitrarily set Φ(x) := −∞ for x < 0. Once again we assume the
existence of two priors with positive probabilities q1 and 1−q1 respectively. Performing standard
computations, we obtain

w∗ = W0rf
1−

(
− 1−q1

q1

µ2

µ1

)1/(γ−1)

µ2

(
− 1−q1

q1

µ2

µ1

)1/(γ−1)

− µ1

, (2.5)

and we see that w∗ R 0 if and only if Eq[µ] R 0. Not only, one can easily check that we obtained

a non negative terminal wealth W̃ under both priors.

Example 2.4 (Ambiguity and loss aversion). We now remove the assumption of a risk neutral
investor and we suppose to model a loss averse decision maker. There is strong empirical evidence
that supports loss aversion among �nancial investors; see for example [15]. Loosely speaking,
our agent reacts di�erently towards gains and losses which are de�ned w.r.t. a reference wealth
level B ∈ R. In particular, once such a benchmark B is �xed, any �nal reward greater than B
is considered as a gain by our agent; on the contrary, getting less than B would mean a loss.
Not only, to her a loss is more painful than a gain with the same magnitude. An easy way to
mathematically frame loss aversion is to consider the piecewise linear utility (or value) function

U(x) =

{
x−B if x ≥ B,
λ(x−B) if x < B,

(2.6)

with λ > 1. After that, a critical step consists in choosing the proper reference level B. In our
simple scenario, B = W0rf seems to be a correct choice; in fact, this would correspond to a
situation where a full safe investment represents the benchmark. At this point, it is easy to see
that the objective function of our trader becomes

F (w) =

J∑
j=1

qjΦ
(
w[µ+

j + λµ−j ]
)
, (2.7)

where µ+
j and µ−j are the upper and the lower partial �rst moments of the random variable r̃−rf

respectively, that is to say

µ+
j := Ej [(r̃ − rf )Ir̃−rf≥0], µ−j := Ej [(r̃ − rf )Ir̃−rf<0].

Setting νj := µ+
j + λµ−j , it is straightforward to obtain the �rst order condition

J∑
j=1

qjΦ
′ (w∗νj) νj = 0, (2.8)

from which we see the close analogy with the previously models and we deduce an optimality
result similar to Proposition 2.1. However, it is important to stress that now νj also depends
on the preferences of the investor via the loss aversion coe�cient λ; hence, the ill posedness can
have an additional source.

Before concluding this section, we note that adding constraints that model the risk aversion to
our optimization problem does not in�uence the attitude toward ambiguity. Just as an example,
employing the standard Roy's Safety First Principle as in [14] or a VAR constraint as in [2] only
restricts the set of admissible portfolios and keeps our analysis una�ected.
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3 α-Maxmin Expected Utility in a single period market

We now change the way to model the ambiguity of our �nancial market and the ambiguity aver-
sion of our representative investor. We take the α-MEU model as starting point; this paradigm
has been �rst axiomatized in [11] and it is a generalization of the classical MEU model by Gilboa
and Schmeidler [12]. Assuming the existence of a set of priors Q, the MEU paradigm represents
ambiguity aversion via a pessimistic choice principle, that is to say that our agent solves the
problem

max
w∈R

min
Q∈Q

EQ[U(W̃ )]. (3.1)

On the contrary, the α-MEU model assumes that the decision maker weights with a constant
α ∈ [0, 1] a pessimistic and an optimistic scenario; in other words, her goal becomes

max
w∈R

{
αmin

Q∈Q
EQ[U(W̃ )] + (1− α) max

Q∈Q
EQ[U(W̃ )]

}
, (3.2)

where α = 1 reduces the previous equation to the MEU case. It is also easy to see that if
α = 0, then the investor is taking into consideration only an optimistic point of view, whereas
for α = 1/2 we recover an ambiguity neutral case. Finally, for α > 1/2 we observe ambiguity
aversion, while α < 1/2 stands for ambiguity loving.

We now assume the presence of a mean-variance expected utility maximizer in a single period
portfolio optimization problem. Moreover, we suppose that the investor receives advices from
two experts as in Example 2.2. In particular, expert j suggests an expected excess return µj and
a standard deviation σj > 0 attached to the risky asset return. To �x ideas, we set 0 < µ1 < µ2

and 0 < σ1 < σ2. Note that a reversion in the standard volatility parameters implies mean-
variance dominance and makes our problem a trivial one. Therefore, the α-MEU optimization
problem is

max
w∈R

f(w) ≡ {α(f1 ∧ f2)(w) + (1− α)(f1 ∨ f2)(w)} , (3.3)

where we de�ne
f1(w) := µ1w −

γ

2
σ2

1w
2, f2(w) := µ2w −

γ

2
σ2

2w
2 (3.4)

for γ > 0. Note that Problem (3.3) has already been solved in [18] in the case of J di�erent
multiple priors but with α = 1, i.e. in the MEU paradigm. Nonetheless, Problem (3.3) has a
trivial solution for α = 0 with J priors, as it is su�cient to select the w∗ which attains the
maximum among the vertex of J distinct parabolas. Finally, for α = 1/2 and two priors it is
immediate to see that we have f ≡ 1

2 (f1 + f2) and we just have to maximize a concave parabola.

Speci�cally, one would obtain w∗ = 1
γ
µ1+µ2

σ2
1+σ2

2
as expected. Hence, it remains to analyze the open

set α ∈ (0, 1), α 6= 1/2.
To begin we observe that f1(0) = f2(0) = 0 and 0 < f ′1(0) < f ′2(0). Hence, choosing a

w < 0 will never be optimal for our decision maker. Moreover, f1 and f2 cross twice in 0 and
wC := 2

γ
µ2−µ1

σ2
2−σ2

1
> 0 respectively. Thus, the maximum of f can be found analyzing it over the

open intervals (0, wC) and (wC ,+∞) and �nally comparing the respective maximal values with
f(wC). In particular, we see that

- on (0, wC) we have f2 > f1 and the maximum of f is attained at wL := 1
γ
αµ1+(1−α)µ2

ασ2
1+(1−α)σ2

2
if

and only if α < αL :=
µ2(σ2

1+σ2
2)−2µ1σ

2
2

(µ2−µ1)(σ2
2−σ2

1)
; moreover, in such a case we have f(wL) > f(wC);

- on (wC ,+∞) we have f1 > f2 and the maximum of f is attained at wR := 1
γ
αµ2+(1−α)µ1

ασ2
2+(1−α)σ2

1

if and only if α < αR :=
µ1(σ2

1+σ2
2)−2µ2σ

2
1

(µ2−µ1)(σ2
2−σ2

1)
; moreover, this time we have f(wR) > f(wC).
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We summarize the overall analysis in the following result.

Proposition 3.1. In the α-MEU model, with the previous assumptions and using the previous
notations, we have

- if α ≥ (αL ∨ αR), then w∗ = wC ;

- if α ∈ (αL, αR), then w∗ = wR;

- if α ∈ (αR, αL), then w∗ = wL;

- if α ≤ (αL ∧ αR), then w∗ is obtained from the comparison of f(wL) and f(wR).

Before concluding, we note that αL+αR ≡ 1 and they can assume both positive and negative
values; thus there are �ve possible distinct cases depending on the sign and the magnitude of
αL and αR. Quite interestingly, we see that if αL < 0 (αR < 0), then wL (wR) is always the
optimal portfolio, independently on α. On the contrary, if αL ∈ (0, 1), then wC is the solution of
our problem for su�ciently high ambiguity aversion and in the extreme case αL = αR = 1/2 we
have that wC is optimal for all levels of ambiguity aversion. Obviously, the role of γ is con�ned
to a scale parameter.

4 Maxmin Expected Utility in a continuous time market

In this section, we consider a continuous time portfolio/consumption optimization problem for
a risk averse and ambiguity averse decision maker. In particular, her attitude toward Knightian
uncertainty is described by the MEU model, as previously introduced in equation (3.1). This
problem has been widely analyzed by Chen and Epstein in [4] using quite involved BSDE meth-
ods. On one hand, they were able to provide existence results of a recursively de�ned utility func-
tion; on the other hand, explicit representation formula for the optimal portfolio/consumption
process could only be obtained in very special and simple cases. Our aim is to derive their closed
form results using easier computation techniques.

To begin, we �x a probability space (Ω,F ,P), a terminal time T > 0 and a standard scalar
Brownian motion W P over [0, T ] de�ned on (Ω,F ,P). Moreover, the Brownian �ltration is
F := {Ft}t∈[0,T ], where Ft is generated by σ(Ws, s ≤ t) and the P-null sets of F . Note that
for the sake of clarity we are working with a scalar Brownian motion but this framework can be
generalized to a multi-dimensional setting.

Next, we model the ambiguity surrounding the investment problem. To �x ideas, one can
think of P as the historical probability governing market prices. At the same time, our agent
is not completely sure of P being the �right� measure; hence, she considers a non trivial set of
alternative priors. Following [4], we de�ne a density generator as a scalar process θ over [0, T ]
such that

zθt := exp

{
−1

2

∫ t

0

θ2
s ds−

∫ t

0

θs dW P
s

}
, (4.1)

is an (F,P)-martingale over [0, T ]. A su�cient condition for this to happen is the classical Novikov
estimate

EP

[
exp

(
1

2

∫ T

0

θ2
s ds

)]
< +∞.

By the Girsanov theorem, it follows that θ induces a measure Qθ on (Ω,FT ), Qθ ∼ P, de�ned
by

dQθ

dP
= zθT , (4.2)
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and the process

W θ
t := W P

t +

∫ t

0

θs ds, (4.3)

is an (F,Qθ)-Brownian motion over [0, T ]. Henceforth, to form a set of priors one can describe
a set Θ of density generators and the corresponding set of induced probabilities will be

QΘ =
{
Qθ : θ ∈ Θ and Qθ is de�ned by (4.2)

}
. (4.4)

We now suppose that the �nancial market contains a risk-free asset (bond) and a risky asset
(stock) whose prices at time t are denoted by Bt and St respectively. Their dynamics are given
by

dBt = Btrtdt, B0 = 1;

dSt = St(btdt+ σtdW
P
t ), S0 = s0 > 0,

where r, b, σ are deterministic functions that satisfy the usual integrability assumptions with
inft∈[0,T ] σt > 0. Hence, we can compute ηt := bt−rt

σt
, which Chen and Epstein in [4] call the

market price of uncertainty as it re�ects both risk and ambiguity. To see this, note that by using
equation (4.3) it is immediate to compute the Qθ-dynamics of the process S. Hence, ambiguity
works through the drift coe�cient of the stock prices, whereas the volatility is una�ected. The
strong assumptions on the market coe�cient to be deterministic is necessary to obtain closed
form solutions for our portfolio choice problem. Nonetheless, in [4] r and η are supposed to be
deterministic constants in order to obtain explicit formula; moreover, their assumption implies b
being an a�ne transformation of σ.

Then, suppose that our decision maker is endowed with an initial wealth x0 > 0 and her
risk attitude is represented by a strictly increasing, strictly concave utility function U . If we
denote by X the wealth process and by ψ a self-�nancing portfolio4, assuming a continuous time
frictionless trading with no consumption we can compute the wealth dynamics as

dXt = [rt + ψt(bt − rt)]Xtdt+ ψtσtXtdW
P
t , t ∈ [0, T ]; X0 = x0. (4.5)

In this setting, admissible portfolios ψ are supposed to be deterministic functions of time t such
that ∫ T

0

|btψt|dt < +∞,
∫ T

0

(σtψt)
2 dt < +∞.

The reason for ψ being deterministic is easily explained if one thinks to the ambiguity concerning
our problem. In fact, if the investor is not sure about the measure P being the historical one, it
seems by no doubt economically inappropriate to select a stochastic portfolio which is somehow
linked to P or any other measure in QΘ as this will engender a wealth process which does not
re�ect the true underlying probability.

Let A be the set of admissible portfolios. In such a case, the wealth process X is geometric
and the optimization problem for a MEU, risk averse investor who cares about her terminal
wealth XT can be summarized as

max
ψ∈A

min
θ∈Θ

Eθ [U(XT )] , (4.6)

where Eθ denotes the expectation w.r.t. Qθ.
4In the scalar case, ψ is the proportion of wealth invested in the risky asset; in the multi-dimensional case, ψ

will be a vector of portfolio weights with 1−
∑

i ψi the proportion invested in the risk-less asset.
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Before proceeding further, it remains to specify a suitable set Θ to describe Knightian un-
certainty. An ad hoc assumption which simpli�es computations is to suppose κ-Ignorance (see
Section 3.3, [4]). Loosely speaking, ambiguity is symmetrical around P in the sense that

Θ =
{
θ : supt∈[0,T ] θt ≤ κ

}
, (4.7)

for some κ > 0. Moreover, we will assume κ < supt∈[0,T ] |ηt| as in [4], equation (5.16), i.e.

ambiguity aversion is �small�5.
Now, let's consider the logarithmic utility case, U(x) = log x; in [4] the power utility case is

considered, U(x) = α−1xα, α ∈ (0, 1); the logarithm can be retrieved as the limit for α→ 0+ and
computations are very similar. Thus, using the Qθ-dynamics of the wealth process X, equation
(4.6) becomes

max
ψ∈A

min
θ∈Θ

Eθ [log(XT )]

= max
ψ∈A

min
θ∈Θ

Eθ

[
log x0 +

∫ T

0

[rt + ψt(bt − rt)−
1

2
ψ2
t σ

2
t ] dt+

∫ T

0

ψtσt dW P
t

]

= log x0 +

∫ T

0

rt dt+ max
ψ∈A

{∫ T

0

[ψt(bt − rt)−
1

2
ψ2
t σ

2
t ] dt+ min

θ∈Θ
Eθ

[∫ T

0

−ψtσtθt dt

]}
. (4.8)

It is now easy to deduce the solution of the inner minimization problem in (4.8). In fact, thanks
to the κ-Ignorance assumption, we have

θ∗t =

{
κ if ψt ≥ 0,

−κ if ψt < 0.
(4.9)

Therefore, our problem reduces to

max
ψ∈A

∫ T

0

[ψt(bt − rt − κσt sgn(ψt))−
1

2
ψ2
t σ

2
t ] dt,

where sgn denotes the sign function. By the de�nition of the market price of uncertainty η and
the assumption of �small� ambiguity, we obtain

ψ∗t =
1

σt
(ηt − κ sgn(ηt)), (4.10)

which is exactly the same as in [4], Section 5.3, in the scalar case with α→ 0+.6 We �nally remark
that even without the restriction on deterministic portfolios, in [4] it is found a deterministic ψ∗,
thus con�rming the preceding economic intuition.

5 Conclusions

We have studied portfolio selection problems in an ambiguous setting under di�erent market
frameworks and a variety of attitudes toward Knightian uncertainty. We focused on the research

5A di�erent way to model ambiguity would be uncertainty about the true market coe�cients with pre-speci�ed
con�dence intervals. For a treatment in a single-period market, see [10].

6In the power utility case, the only extra computation concerns the variance of a centered lognormal random
variable.
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of closed form solutions for the optimal portfolio in order to get useful insights on the economic
meaning of our models. We have seen that explicit formula are easy to obtain if we impose ad
hoc but still sensible assumptions; at the same time, the required mathematical machinery is
extremely reduced.

In a number of examples, we provided the solution for a smooth ambiguity averse agent as
axiomatized in [17]. In a single period market model, the aversion of our investor was supposed to
be quadratic, exponential (Constant Absolute Ambiguity Aversion) or of the power law (Constant
Relative Ambiguity Aversion) in the case of risk neutrality. Otherwise, one can even suppose
linear loss aversion to generalize the previous results.

In the case of a Mean-Variance risk averse investor, we were able to �nd an explicit solution
if ambiguity aversion is modeled through the α-MEU paradigm, as presented in [11]. While this
problem was already solved for the classical MEU version in a single period setting in [18], our
analysis is new to the literature.

Finally, in a continuous time �nancial market, we recover the optimal solution proposed in
[4] using a much more simple scheme.
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