
Market equilibrium with heterogeneous behavioral and

classical investors' preferences

Matteo Del Vigna∗

April 1, 2011

Abstract

Starting from the theory of portfolio selection under Cumulative Prospect Theory (CPT) in a one
period model, we �rstly present some remarks connected with the violation of the so-called loss
aversion in the case of power utility functions.

The main contribution of this paper comes from the analysis of two equilibrium models. In the
�rst one, an Expected Utility (EU) maximizer, a CPT agent and an accommodating market maker
are allowed to interact. We show that there can be equilibria with null, positive or total risky
investment by the CPT trader. Our results are then compared to an analogous model with two
EU maximizers. On the contrary, the second �nancial market is populated by a su�ciently large
number of EU agents and CPT agents, each of them being price maker and endowed with possibly
heterogeneous preferences, these two facts being new to the literature. This time EU traders fully
invest in stocks whereas CPT traders stay out of the risky market. For both models, equilibrium
existence and robustness is shown using analytical and numerical methods.
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1 Introduction

After the Nobel Prize winning work of Kahneman and Tversky, a lot of research has been done over
the Cumulative Prospect Theory �eld (CPT in what follows). While the �rst steps primarily concerned
laboratory experiments and empirical estimates with the aim of assessing the existence of loss-averse
and myopic economic agents, in the past few years theoretical results became predominant, as undoubt-
edly real world economy is made up of behavioral agents too.
On one hand, the early works of Markowitz on portfolio choice theory and Sharpe about CAPM repre-
sent two corner-stones in one-period mathematical �nance models, as long as we take for granted that
EU investors are the only ones who can enter a �nancial market. On the other hand, if we restrict our
attention solely to CPT agents, then the recent work of He and Zhou [12] provides a deep theoretical
insight over portfolio choice theory. Obviously, that is not the �rst paper on the subject (for example,
see the work by Barberis and Huang, [2]); however, it seems to us that it is the most complete and it
retains the less restrictive set of assumptions. This is why we decided to take [12] as a starting point.
Nonetheless, if the CPT agent is endowed with power utility function, optimization results can some-
times be controversial. In particular, it easily happens that a so called loss-averse investor violates
her own loss aversion, in a sense to be made precise later. Moreover, He and Zhou where primarily
interested on a general formulation of a portfolio selection problem, partially leaving aside a sensitivity
analysis over the model's parameters.

Turning back to general equilibrium models, theoretical results are few and a full generality is far
from being obtained. As a matter of fact, most the existing literature on this subject has restricted
its attention to the case of an economy exclusively populated by homogeneous CPT agents. More
speci�cally, De Giorgi, Hens and Rieger [10] shed light over the existence of market equilibria; however,
their results are negative in the sense that CPT preferences are compatible with the absence of equilibria.
Furthermore, they were able to show the existence of an equilibrium with non-negative constraints on
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�nal wealth and a continuum of agents in the market. We point out that in [10], the market can have
only a �nite number of states and all CPT agents share the same preference parameters.
Another positive result come from the work of Barberis and Huang, where in [2] they analytically proved
under quite restrictive hypothesis the existence of an equilibrium which satis�es the well-known CAPM
conditions. In particular, their assumptions concerned homogeneous investors' preferences with power
utility functions and joint normally distributed stock returns. The interesting fact is that they don't
have to rely on numerical analysis and the equilibrium is derived very similarly with respect to the
classical case, where only EU maximizers are able to invest.
Furthermore, in [7] the authors analyzed a two agents economy and proved the existence of equilibrium
based on e�cient risk-sharing rules.
Other controversial results on this �eld come from the paper by De Giorgi, Hens and Levy [9], where it
is stressed that in a multi-asset market with joint normally distributed returns and heterogeneous CPT
preferences an equilibrium does not exist. However, in [12] a critical �aw in their argument has been
highlighted and an equilibrium is shown to be attainable. Not only, in [1] non-existence of equilibrium
is assessed in a variety of di�erent market contexts, e.g. in a risk neutral monopoly, in an imperfect
information monopoly and in a pure Bertrand competition setting.

The question we address now is: are there equilibria in an economy where both EU and CPT
agent are present? This problem arises naturally as the real world �nancial markets are nothing but
a merging of the decisions of di�erent types of investors. Experimental evidence by List [18] con�rms
that experienced traders behave more likely as in the EU paradigm, whereas unexperienced traders are
more subject to behavioral distortions when taking economic decisions; just as an example, they are
much more a�ected by the so-called endowment e�ect and they are more reluctant to bargain. This is
why we will look for equilibria where CPT agents do not invest in risky assets at all.
Another reason to reject the hypothesis of solely EU investors in �nancial markets comes from the recent
survey conducted by Eriksen and Kvaløy [11] over a pool of �nancial advisors. As a surprising fact, they
exhibited myopic loss aversion; nonetheless, when compared to a sample of students, those specialized
workers exhibited a greater myopic loss aversion! Finally, the empirical work coming from Hwang and
Satchell, [13], not only con�rms a widespread loss aversion in UK and US �nancial markets but even
�nds higher loss aversion than previously expected and/or estimated. Besides this, �investors become
far more loss averse during bull markets than during bear markets, indicating their more profound
disutility for losses when others enjoy gains�, [13].

Coming back to our question, our answer is fortunately positive. We were able to prove the exis-
tence (and the robustness) of several types of equilibria in di�erent market models. We remark that
we substantially use a game theoretical construction; for a survey on game theory issues with CPT
participants, see [20].

The paper proceeds as follows. In Section 2 we recover the setting of the CPT portfolio choice by He
and Zhou [12]; Section 3 explains their solution with a particular attention over the power utility case
and the violation of loss aversion. Section 4 develops a model with one EU investor, one CPT investor
and an accommodating market maker, whereas in Section 5 the market is made up of many EU and
CPT agents. Finally, Section 6 concludes. Involved proofs are presented in the Appendix.

2 The uniperiodal model

Consider the problem of an investor who has to decide at time 0 how to allocate her wealth in a given
�nancial market, supposing that the investment horizon is time T �xed once for all. Speci�cally, let's
suppose that the agent owns an initial wealth W0 and she is able to invest in a risk-free bond which
yields r (i.e., one unit of currency eventually returns r units of currency at time T ) and in a risky asset
which yields a random return R. We further assume that the market is frictionless, short-selling is
allowed and the investor has no bounds on the level of debts that she can bear.
A fundamental (random) variable for such an agent is the stock total excess return, namely R̃ := R− r;
we suppose that the investor is aware of its cumulative distribution function (c.d.f.) F (·). From the
no-arbitrage rule (and in order to avoid a trivial model), we assume

0 < F (0) ≡ P{R ≤ r} < 1. (2.1)

Our investor is supposed to be a behavioral one, in the sense that she follows CPT theory à la Kahneman
and Tversky (see [24]) when distorting probabilities (through w±(·)) and when evaluating her �nal
utility (through u±(·)), derived by the selected terminal wealth X (it will be de�ned in a moment).
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Mathematically speaking, we will make the following assumptions, which will be in force throughout
this paper.

Assumption 2.1. u±(·) : R+ → R+ are continuous, strictly increasing, strictly concave and twice
di�erentiable, with u±(0) = 0.

Assumption 2.2. w±(·) : [0, 1]→ [0, 1] are non-decreasing and di�erentiable, with w±(0) = 0, w±(1) =
1.

Turning back to the model, we assume that the reference wealth of our agent is �xed at a given
level B ∈ R, hence a terminal position X greater than B has to be considered as a gain, while it will
be a loss in the opposite case. To better understand the underlying meaning of this setting, we de�ne
x0 := rW0 − B; that is, if the agent invest all her wealth in the risk-free bond, then she will obtain
rW0, therefore x0 represents the spread of the reference point w.r.t. the riskless payo�. In this way,
x0 = 0 should be a parameter commonly observed among householders; on the other hand, x0 � 0 will
be related to ambitious (or overcon�dent) investors.

If the agent decides to invest θ units of currency in the risky asset, then her �nal wealth will be the
random variable

X(x0, θ) = x0 +B + θ[R− r]. (2.2)

According to the CPT theory, the �nal value attached to this random variable is de�ned as

V (X) =

∫ +∞

B

u+(x−B)d[−w+(1− FX(x))]−
∫ B

−∞
u−(B − x)d[w−(FX(x))], (2.3)

where FX(·) is the c.d.f of X and the integral is in the Lebesgue-Stieltjes sense. By straightforward
computation, one can easily check that (2.3) is reduced to a value function U(·) which depends on θ; in
particular, when θ = 0, we have

U(0) =

{
u+(x0), if x0 ≥ 0

−u−(−x0) if x0 < 0.
(2.4)

Moreover, by changing variables, we obtain for θ > 0

U(θ) =

∫ +∞

−x0/θ

u+(θt+ x0)d[−w+(1− F (t))]−
∫ −x0/θ

−∞
u−(−θt− x0)d[w−(F (t))], (2.5)

while for θ < 0 we have

U(θ) =

∫ −x0/θ

−∞
u+(θt+ x0)d[w+(F (t))]−

∫ +∞

−x0/θ

u−(−θt− x0)d[−w−(1− F (t))]. (2.6)

The problem of our agent will be:
max
θ∈R

U(θ). (P)

Before ending this section, we note that when there is no distortion, i.e. w±(·) = id(·), then the value
function U(·) is nothing but the common S-shaped utility function, concave on gains and convex on
losses.

3 The solution of the problem

In this section we simply report the results obtained in [12] in order to solve problem (P). In general
it is not possible to obtain explicit expressions; however, some re�nements are available in the power
utility case and in the linear utility case.

As a �rst issue, well-posedness of the model needs to be proved. For this, we make the following
technical assumption.

Assumption 3.1. F (·) has a probability density function f(·). Moreover, there exists ε0 > 0 such
that w′±(1 − F (x))f(x) = O(|x|−2−ε0), w′±(F (x))f(x) = O(|x|−2−ε0) for |x| su�ciently large and
0 < F (x) < 1.
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Proposition 3.1 (Proposition 1, [12]). Under Assumption 3.1, U(θ) has a �nite value for any θ ∈ R,
and U(·) is continuous on R.

We note that Assumption 3.1 is quite natural, albeit its technicality. Roughly speaking, it expresses
a link between the probability distortions of the agent and the underlying market. To show that this
hypothesis is generally unrestrictive, He and Zhou prove the following

Proposition 3.2 (Proposition 2, [12]). If the stock return R follows a lognormal or normal distribution,
and w′±(x) = O(x−α), w′±(1 − x) = O(x−α) for su�ciently small x > 0 with some α < 1, then
Assumption 3.1 holds for any ε0 > 0.

As already checked in [12], the empirical estimates about w±(·) satisfy the assumption of the previous
proposition for a wide range of parameters' values. On the other hand, the opposite case can easily
occur for ad hoc choices of the same parameters.

The next step is trying to avoid the ill-posedness of the model; unfortunately, this is a quite hard
issue and a full characterization of the well-posedness has not been obtained. However, a lot can be
said about Problem (P) if we rely on the quantity

k := lim
x→+∞

u−(x)

u+(x)
≥ 0, (3.1)

assuming that the limit exists. This quantity k is also called large-loss aversion degree (LLAD for short)
and it serves as a measure of the willingness of the agent to bear huge losses against huge gains. It is
straightforward to see that k = 0 indicates a pleasure for a substantial gain greater than the pain for a
loss of the same magnitude, whereas k = +∞ stands for the opposite case. One of the main �ndings in
[12] is

Theorem 3.1 (Theorem 1, [12]). We have the following conclusions:

(i) If k = +∞, then lim|θ|→+∞ U(θ) = −∞, and consequently Problem (P) is well-posed.

(ii) If k = 0, then Problem (P) is ill-posed.

The remaining case, i.e. when k ∈ (0,+∞) is more intriguing and involving. Moreover, many of
the commonly used utility functions u±(·) satisfy this conditions, which amounts to say that the two
utilities increase at the same speed. Therefore this case needs a special attention and new statistics
need to be computed. In particular, we have

Lemma 3.1 (see Lemma 3, [12]). Assume limx→+∞
u+(tx)
u+(x) = g+(t) ∀ t ≥ 0 and limx→+∞

u−(tx)
u−(x) =

g−(t) ∀ t ≥ 0, then the following statistics

a1 :=

∫ +∞

0

g+(t)d[−w+(1− F (t))], (3.2)

a2 :=

∫ 0

−∞
g−(−t)d[w−(F (t))], (3.3)

b1 :=

∫ 0

−∞
g+(−t)d[w+(F (t))], (3.4)

b2 :=

∫ +∞

0

g−(t)d[−w−(1− F (t))], (3.5)

are well-de�ned and strictly positive. If, in addition, 0 < k < +∞, then g+(t) ≡ g−(t).

Now de�ne the critical value

k0 := max

(
a1
a2
,
b1
b2

)
. (3.6)

Thanks to the previous Lemma, He and Zhou are able to prove the following well-posedness result.

Theorem 3.2. Assume that 0 < k < +∞, limx→+∞ u+(x) = +∞, and limx→+∞
u+(tx)
u+(x) = g(t) ∀ t ≥ 0.

We have the following conclusions:

(i) If k > k0, then lim|θ|→+∞ U(θ) = −∞, and consequently Problem (P) is well-posed.
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(ii) If k < k0, then either limθ→+∞ U(θ) = +∞ or limθ→−∞ U(θ) = +∞, and consequently Problem
(P) is ill-posed.

We observe that the statistics a1, a2, b1, b2 are generalized Choquet expectations of some functional
of the random variable R. Their economical interpretation is quite clear in the power utility case as well
in the exponential utility case, in that they represent distorted preference criteria of the agent w.r.t.
huge investment or short-selling in the risky asset. The comparison among the values of k and k0 thus
explains if the investor is relatively more attracted by the risk-free asset (and therefore she will choose
null stock investment) or by the risky asset (which in turn leads to ill-posedness). The case k = k0
is mathematically more subtle but at the same time it is economically quite unrealistic, so it is not
investigated further in [12].

To conclude this section concerning the solution in the general case, we remark that a detailed anal-
ysis can be carried on the sensitivity of the value function U(·) near θ = 0 and its asymptotic properties
as θ → ±∞. In particular, one can show that the value function U(·) has a diminishing marginal value
if the utility functions u±(·) do. Moreover, if lim|θ|→+∞ U(θ) = −∞ and limx→+∞ u′±(x) = 0, then U(·)
is globally non-concave and non-convex. This results implies that duality theory or global optimization
can not be exploited here.

3.1 The power utility case when the reference wealth coincides with the

risk-free return

Let's suppose that our behavioral investor possesses power utility functions, i.e. u+(x) = xα, u−(x) =
k−x

β with k− > 0 and 0 < α, β ≤ 1. We recall that in [24] an empirical study showed α = β = 0.88.
Moreover we assume that the adjusted reference wealth x0 is null; as already observed, this may be
common among ordinary householders. In such a case, we can explicitly solve problem (P).

Theorem 3.3 (Theorem 3, [12]). Assume x0 = 0 and that the utility functions are of the power type.
We have the following conclusions:

(i) If α > β, or α = β and k− < k0, then (P) is ill-posed.

(ii) If α = β and k− > k0, then the only optimal solution to (P) is θ∗ = 0.

(iii) If α = β and k− = k0 = a1/a2, then any θ∗ ≥ 0 is optimal to (P).

(iv) If α = β and k− = k0 = b1/b2, then any θ∗ ≤ 0 is optimal to (P).

(v) If α < β, then the only optimal solution to (P) is

θ∗ =


[

1
k−

α
β
a1
a2

] 1
β−α

if aβ1/a
α
2 ≥ b

β
1/b

α
2 ,

−
[

1
k−

α
β
b1
b2

] 1
β−α

if aβ1/a
α
2 < bβ1/b

α
2 .

(3.7)

We end by noting that from the proof of the previous theorem it is immediate to show that in cases
(ii), (iii) and (iv), the optimal value of problem (P) is U(0) = 0, whereas in case (v) it is given by

U(θ∗) =


k
− α
β−α
−

[(
α
β

) α
β−α −

(
α
β

) β
β−α

] [
aβ1
aα2

] 1
β−α

if aβ1/a
α
2 ≥ b

β
1/b

α
2 ,

k
− α
β−α
−

[(
α
β

) α
β−α −

(
α
β

) β
β−α

] [
bβ1
bα2

] 1
β−α

if aβ1/a
α
2 < bβ1/b

α
2 .

(3.8)

3.2 Loss averse investors violating loss aversion...

The parameter k− which appears in Section 3.1 in the particular choice of u−(·), the loss part of the
S-shaped utility function of our CPT agent, is usually referred to as �loss aversion coe�cient�. The
original idea which underlies this de�nition is that �losses loom larger than gains�, [15]. Unfortunately,
this concept is systematically violated for every choice of k− ≥ 1 whenever we assume an S-shaped
utility function of the power type with α < β. To see this, let x represent the deviation from the
reference point of our investor. Now we can note that

V (x) = u+(x) = xα, V (−x) = u−(x) = k−x
β , ∀ x ≥ 0.
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Thus, a loss is more unpleasant than a gain of the same magnitude if and only if V (−x) ≥ V (x) for

x > 0. Now, assuming α < β and setting ζ := k
1

α−β
− , by reversing the previous inequality we �nd that

Loss aversion violated ⇐⇒ 0 < x < ζ. (3.9)

Besides this, it is not clear at all which exact value can be represented by ζ. For example, if k− = 1,
then we have ζ = 1 independently of α and β. But �1� can represent 1 unit of currency, or 1 billion
units of currency! 1

As a consequence, the naming �loss aversion coe�cient� is by no doubt misleading. As Bernard and
Ghossoub point out in [5], Section 2.1, loss aversion should be a behavioral concept in the sense that the
comparison between the pain associated with a loss and the pleasure connected to a gain should take
into account behavioral quantities, e.g. probability distortions. Therefore, the choice of a speci�c value,
namely k−, attached to the utility function for losses u−(·) is unable to fully explain the loss aversion
of an agent and hence it is clearly a simplifying assumption.
Secondly, we do not have to forget that a generic utility function u(·) (in our case both u+(·) and u−(·))
has an ordinal nature and not a cardinal nature, as it re�ects a speci�c preference ordering. As it is
important to stress the independence of u(·) on the magnitude of the terminal wealth, the same should
be true if we consider u+(·) and the magnitude of a gain or u−(·) and the magnitude of a loss. On the
contrary, power utilities constrain loss aversion only over the interval [ζ,+∞), thus leaving our agent
the possibility to cheat on his own loss aversion. A con�rm of this unpleasant fact comes from the
analysis of the results in our Theorem 3.3, i.e. Theorem 3 in [12]:

(i) being (P) ill-posed, loss aversion is violated �by de�nition�. More precisely, in the case α > β
equation (3.9) says that violation occurs if our agent selects θ∗ > ζ; but this is indeed true
as limθ→+∞ U(θ) = +∞. A similar phenomenon happens if α = β and k− < k0. Just as an
example, if w+(·) ≡ w−(·) and F (·) is the symmetric c.d.f. of a centered random variable, i.e.
F (t) = 1− F (−t) ∀ t ≥ 0, then we have k0 = 1. Thus, k− < 1 ensures violation;2

(iii) by the relation (3.9), we have violation whenever a1
a2

< 1 and θ∗ > 0 is chosen; case (iv) is
analogous;

(v) using (3.7) in the case aβ1/a
α
2 ≥ b

β
1/b

α
2 , and (3.9), we see that

Loss aversion violated ⇐⇒ θ∗ < ζ ⇐⇒ a1
a2

<
β

α
. (3.10)

It is important to stress that the previous condition does not depend on k−, to so-called loss
aversion coe�cient! In particular, whenever a1 ≤ a2 we have violation, as β is supposed to be
greater than α. Not only, we can note that the greater is β/α, the more probably a violation
happens. Even the following easy example shows how frequent a violation can be.

Example 3.1. Assume 0 < α < β ≤ 1, a null risk-free rate of return, i.e. r = 1, and a stock excess
return normally distributed, namely R ∼ N (µ, σ2). It is easy to see that we have

F (t) = N
(
t− µ+ 1

σ

)
,

where N (·) is the c.d.f. of a standard Gaussian random variable. Let's now �x the expected stock
return, µ = 1.02, and its standard deviation, σ = 0.5. Furthermore, we suppose that our behavioral
investor possesses probability distortions of the Kahneman-Tversky type, i.e.

w+(p) =
pγ

[pγ + (1− p)γ ]
1/γ

, w−(p) =
pδ

[pδ + (1− p)δ]1/δ
, (3.11)

with γ = δ = 0.65 as obtained in laboratory experiments.
Thanks to the hypothesis w+(·) ≡ w−(·) and the skewness of F (·), it is immediate to see that

the condition aβ1/a
α
2 ≥ bβ1/b

α
2 is indeed ful�lled. At this point, it remains to numerically compute the

statistics a1 and a2 in order to verify when (3.10) is assured. For a better graphical representation,

1We can even show that loss aversion is violated whenever α = β and k− < 1 or α > β and x > ζ.
2Things can get even worse if F (·) has a positive skewness; see Section 3.3 and equation (3.2) in particular.

6



Figure 1: violation regions of loss aversion in the case 0 < α < β ≤ 1.

we computed the quantity z := α
β
a1
a2
; it is straightforward to check that loss aversion violation is now

equivalent to z < 1. Results are shown in Figure 1. In particular, in the left plot we depicted a surface
representing the value of z; for the sake of clarity, we also reported the vertical plane α = β. Restricting
our attention to the half part with α < β, it is immediate to see that z < 1 is the most common
situation, unless the discrepancy β − α is e�ectively small. More evidently, the right plot of Figure 1
shows the curve given by the intersection between the 3D-surface of z and the plane z = 1. Ignoring
the half-plane with α > β, we can see that only the shaded area corresponds to a CPT agent who does
not �violate�. Hence, our supposed loss averse agent can (and often do) violate her own so-called loss
aversion in order to reach her maximal prospect value.

To conclude, if we wish to retain the power utility assumption, we inevitably have to abandon the
belief of being modeling a loss averse agent. Alternatively, we can modify our concept of loss aversion
using a di�erent measure for this phenomenon which undoubtedly a�ects real economic decisions; see
e.g. [16]. As we are not discussing the best way to model loss aversion, neither if power utility is able
to capture actual investors' behavior, we continue to use this particular paradigm, paying particular
attention when selecting the parameters α, β and k−, which we will continue to denote as the �loss
aversion coe�cient�.

3.3 CPT preferences and stochastic dominance

As Kahneman and Tversky pointed out in [24], one of the main advantages of Cumulative Prospect
Theory w.r.t. to the earlier Prospect Theory is the fact that this preference structure is compatible with
First Order Stochastic Dominance. In other words, if a portfolio/�nancial position (strictly) �rst-order
stochastically dominates another portfolio, then the CPT value of the �rst one is (strictly) greater than
that of the second one. Using our notation, this fact can be easily seen from equation (2.3) using
integration by parts. Nonetheless, within their restricted settings, a similar result is also proved in [2],
Proposition A1, and in [5], Proposition 4.4.
Concerning Second Order Stochastic Dominance, we recall that loosely speaking, an investor whose
preferences �satisfy� second order stochastic dominance always selects the lowest variance portfolio
among a class of admissible ones, as long as their mean value remains the same3. A fundamental result
which links CPT and second order stochastic dominance is Proposition A2 in [2]. We now frame it
adapting their notation to ours.

Proposition 3.3 (Proposition A2, [2]). Let the �nal wealths X1 and X2 be given and assume the
following:

- the utility functions are of the power type with α = β, α ∈ (0, 1], k− > 1 and x0 = 0;

3It is well-known that this is only a consequence (and not a characterization) of second order stochastic dominance;
see Proposition 4.1.2 in [3].
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- the probability weightings are of the Kahneman-Tversky type (as in equation (3.11)) with γ = δ,
δ ∈ (0.28, 1) and α < 2δ;

- E[X1] = E[X2] ≥ 0;

- X1 and X2 are symmetrically distributed;

- X1 and X2 satisfy the single-crossing property, so that if P1 and P2 are their respective CDF,
there exists z such that P1(x) ≤ P2(x) for x < z and P1(x) ≥ P2(x) for x > z.

Then V (X1) ≥ V (X2) and the inequality holds strictly whenever the single-crossing property is strictly
satis�ed for some x.

Brie�y, the proof of this result strongly depends on most of the hypothesis and it is based on the
fact that the value of a generic prospect X can be written as

V (X) = c(a1 − k−a2),

for a suitable constant c, which in turn can be shown to be negatively dependent w.r.t. a mean-
preserving spread. In particular, if we remove the hypothesis α = β then the second order stochastic
dominance is de�nitely lost, as Bernard and Ghossoub note in their Remark 4.2, [5]. Finally, we recall
that the bound δ ∈ (0.28, 1) is necessary to have strictly increasing probability distortions over [0, 1].

4 An equilibrium model with one EU and one CPT agent

In this section we are going to build, in a game theoretical fashion, a one period equilibrium model
of a single risky asset market where one classical (or EU) agent and one behavioral (or CPT) agent
interact. More precisely, we have in mind an hypothetical situation where a non-strategic market maker
is willing to buy (or sell) any desired amount of shares from these two investors; at the same time, the
demand level for the stock will a�ect its equilibrium yield which in turn will in�uence the equilibrium
price. We denote with θB and θC the proportions of wealth invested in shares by the behavioral and the
classical investors respectively; moreover, we suppose that the initial endowments of these agents are
normalized with WB

0 = WC
0 = 1, therefore θB and θC also represent absolute levels of wealth. As it will

be clear by the subsequent analysis, this can be done without loss of generality for the classical agent
in that her maximization problem which has to be solved later is independent of her initial wealth.
On the contrary, the behavioral investor's policy can be seriously a�ected by her initial endowment, as
her strategy depends on the adjusted reference wealth level x0; however our opinion is that it seems
reasonable to suppose a common starting wealth equal to 1 (see also the following assumptions and the
subsequent observations).

It is now important to stress that, if not otherwise stated, we impose leverage as well as short-selling
constraints on strategies, i.e. θB ∈ [0, 1] and θC ∈ [0, 1]. On one hand, this will allow us to make easier
computations; on the other hand, in some cases the equilibrium itself will avoid such a kind of behavior.
To be more precise, we will return on this issue later, when analyzing the strategies of our investors.

Now let's specify the market structure and the preferences of our agents.

Assumption 4.1 (Market structure).

- There is a risk-free asset (bond) with null return, i.e. r = 1;

- There is single risky asset (stock) with a normally distributed return R ∼ N (µ̂, σ̂2), where

µ̂ = µ(θB , θC) = µ+ ε(θB + θC), (4.1)

σ̂2 = σ2(θB , θC) = σ2 + η(|θB |+ |θC |). (4.2)

The parameters' ranges are as follows:

µ ∈ [1,+∞), ε ∈ [0,+∞), σ ∈ (0,+∞), η ∈ [0,+∞). (4.3)

We used the symbol µ (σ) to denote both the drift (volatility) impact function and the constant
which appears in that expression; however, we hope that this will cause no notation problems in what
follows.
Some remarks about the previous assumptions are now in order. First of all, r = 1 can be imposed
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without loss of generality as the only important variable is the excess of return of the stock, namely µ̂−r.
As µ ≥ 1 and ε ≥ 0, it turns out by (4.1) that this return spread is always positive as long as we admit
only non negative demand levels. Note that this fact is also empirically observed in long-term analysis,
as the equity premium puzzle con�rms; see for example [19] or [4]. Secondly, a Gaussian distribution
of the stock return implicitly makes some simpli�cation when solving maximization problems (just
recall the close connection between normally distributed asset returns and the mean-variance portfolio
selection criterion).
Obviously, the absolute values which appear in the volatility impact function (4.2) are not necessary if
short-selling is not allowed. Moreover, the parameters ε and η should not be too �big� w.r.t. µ and σ2

respectively. In fact, a higher value of ε would naturally lead to a higher investment level in the stock
caused by the FOSD property shared by both agents; without imposing short-selling, this could lead to
an ill-posed model in the sense that traders have convenience to invest more and more in the risky asset
to self-boost its expected return. On the other hand, a higher risky investment also raises volatility
which negatively a�ects the demand levels for risk-averse agents. In conclusion, the interaction of these
impact functions should generate a natural trade-o� between risky and non-risky investment.

We stress the fact that the choice of such impact functions, which are obviously unrealistic, is for
computational convenience. However, a linear impact function on the drift has also been used in an
insider trading in�uenced market in [17] and in an optimal liquidation problem in [22], only to mention a
few. From a theoretical point of view, volatility impact has sometimes been avoided, as it causes severe
problems when analyzing equilibrium models or optimal trading/liquidation strategies with the presence
of large traders; see for example [8] or [17]. On the contrary, some authors allow for an endogenous
volatility ([6] and [21]) and the excess volatility puzzle documented by Shiller in [23] induced us to add
the impact function (4.2), where the exogenous constant σ2 represents the volatility induced by noise
trading. Summarizing, the two agents are partially price taker, as µ̂ and σ̂2 have an exogenous and
an endogenous component too. This feature should give to our model the �avor of a �nancial market
where the interaction of many small traders is summed up by the presence of a market maker who
provides exogenous parameters, plus two large traders who are able to in�uence the terminal return or
the terminal price of the shares.

Assumption 4.2 (CARA classical agent). The classical agent's utility function is

uC(x) = 1− exp(−x), (4.4)

where the constant absolute risk aversion coe�cient is 1.

Note that we could even choose a more general form like uC(x) = 1 − exp(−λx), where λ is the
CARA coe�cient. In this case, a higher λ implies a more risk-averse agent; for the moment we shall
set λ = 1 as a normalization assumption.

Assumption 4.3 (CRRA behavioral agent). The behavioral agent has the following utility functions:

u+(x) = xα, u−(x) = k−x
β , (4.5)

with α, β ∈ (0, 1] and k− > 0. Moreover, her adjusted reference wealth level is x0 = 0 and her probability
weighting functions are of the Kahneman-Tversy type (see equation (3.11)) with γ, δ ∈ (0.28, 1).

We do not make further assumptions on the values of α, β, k−, γ and δ. Their values will be speci�ed
later, depending on the type of equilibrium we wish to select. The previous hypothesis allows us to use
the results of He and Zhou [12] recalled in Section 3.1 concerning the optimal policy of a behavioral
agent. Furthermore, it is easily seen that thanks to our assumptions, the terminal wealths of our agents
can be expressed as

Xi = θi + (W i
0 − θi)r = θiR+ (1− θi) = 1 + θi(R− 1), (4.6)

where i ∈ {B,C} and we recall that the distribution of the random variable R depends on both θB and
θC . These last two variables are those which need to be endogenously determined by the maximizing
behavior of our agents; their values will in turn give us the equilibrium stock return mean and variance
as long as we consider the market parameters µ, ε, σ2 and η be exogenously given.
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4.1 Equilibria with no behavioral agent's demand

As a �rst (and simpler) case, we would like to �nd some equilibria in which the optimal policy for the
CPT agent is not to invest in the risky stock. Such a type of anomalous situation is interesting in that
it should be a signal of extremely high loss aversion (if not violated . . . ) and/or risk aversion, which in
turn would induce our behavioral agent to a completely safe investment in bonds; also recall that in [13]
it was estimated a loss aversion coe�cient, namely k−, much greater than usually expected. This could
lead some investors to exit the stock market during speci�c periods. A null risky investment could also
be the optimal strategy for a CPT agent who experiences a predominant endowment e�ect, leading her
to avoid any potential loss.
In order to reach this kind of equilibria, we are going to exploit Theorem 3.3; in particular, cases (ii),
(iii) and (iv) are those which admit such an optimal strategy. We immediately see that a necessary
condition is to set α = β; moreover, we will suppose that our behavioral investor's parameters are those
empirically obtained in [24], i.e. α = β = 0.88, k− = 2.25, and the weighting functions are of the
Kahneman and Tversky type (see (3.11)), which are assumed to be identical with a common exponent
γ = 0.65. We remark that our choice of k− is just to �x ideas, as all the subsequent analytic results
of this section will be proved for every k− > 0. Let's also note that these values ful�ll the conditions
imposed by Assumption 3.1, therefore we can use all the results of Section 3.

In what follows, the equilibrium values will be denoted with a ∗; thus our goal is to �nd equilibria
with θ∗B = 0. It is easily seen that in equilibrium, the impact functions (4.1) and (4.2) are only in�uenced
by the classical agent's policy and they will be

µ̂∗ = µ+ εθ∗C , σ̂2∗ = σ2 + ηθ∗C . (4.7)

As our model is a game theoretical one, we remark the fact that, with our assumptions, an equilibrium
with θ∗B = 0 exists if and only if we are able to �nd an optimal strategy θ∗C which maximizes the expected
utility for the classical agent given θ∗B = 0 and at the same time the policy θB = 0 is the optimal one for
the behavioral agent. But this is indeed the case if for every θB ∈ [0, 1] we have k− > k0 ≡ k0(θB , θ

∗
C)

(see Theorem 3.3, (ii)) or k− = k0(θB , θ
∗
C) =

a1(θB ,θ
∗
C)

a2(θB ,θ∗C) and we select θ∗B = 0 (see Theorem 3.3, (iii)

and similarly for case (iv), replacing a1 and a2 with b1 and b2 respectively). Unfortunately, this is not
an easy task as the critical statistic k0 has not an explicit representation; moreover, it depends on the
market parameters µ, ε, σ2, η and on the optimal strategy θ∗C too (which in turn depends on the market
parameters . . . ). Therefore, we are going to follow these steps:

Step 1 Solve the maximization problem for the classical agent with θB = 0, namely

max
θC∈[0,1]

UC(θC) ≡ max
θC∈[0,1]

E[uC(XC)] (4.8)

in order to �nd the candidate optimal strategies (if one exists) θ∗C(µ, ε, σ2, η).

Step 2 Fix some or all parameters' values (possibly within reasonable ranges) and check the optimality
conditions of Theorem 3.3 to have θ∗B = 0.

If we succeed in solving the two steps, then we can try to enlarge as much as possible the previous
ranges in order to retain the selected equilibrium (θ∗B , θ

∗
C) = (0, θ∗C). Now, the �rst step can be easily

implemented; we start by writing equation (4.8) explicitly, substituting for UC and XC and exploiting
the normality of the return R:

max
θC∈[0,1]

∫
R

(1− exp (−(θCz + 1− θC)))
1√
2πσ̂

exp

{
− (z − µ̂)2

2σ̂2

}
dz.

Now, replacing µ̂ = µ+ εθC and σ̂2 = σ2 + ηθC and performing the Lebesgue integration we obtain4

max
θC∈[0,1]

UC(θC) = max
θC∈[0,1]

1− exp

{
η

2
θ3C +

(
σ2

2
− ε
)
θ2C + (1− µ)θC − 1

}
. (4.9)

Now, the structure of solution strongly depends on the choice η = 0 or not. The �rst case correspond
to a null volatility impact, i.e. σ̂2 ≡ σ2 and computations are obviously easier.

4It can be easily shown that similar formula can be obtained if we allow W 0
C and λ to take values di�erent from 1;

however, the initial wealth adds only a multiplicative factor and this has no in�uence over the extreme points of (4.9),
whereas λ 6= 1 involves the calculations as it a�ects the risk-aversion of the classical agent.
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4.1.1 The case with null volatility impact

Let's start by considering the case η = 0. We recall that the constant part of the drift is µ ≥ 1 and
we suppose a positive drift impact, i.e. ε > 0 in order to avoid a trivial model. Now, equation (4.9) is
obviously simpli�ed and the �rst order conditions lead to

dUC
dθC

= 0 ⇐⇒ θC =
µ− 1

σ2 − 2ε
.

Obviously, we have to suppose σ2 > 2ε; moreover, this solution is admissible if and only if θC ∈ [0, 1].
By the fact µ ≥ 1, we have to assume the further condition σ2 ≥ 2ε + (µ − 1). This inequality has a
clear economical explanation, in that the exogenous volatility parameter on the left-hand-side should
be greater than an adjusted excess drift e�ect on the right-hand-side in order to discourage heavy risky
investment. Moreover, in the special case µ = 1 we have a null risk premium, which in turn leads to
a null risky investment for the EU agent. We also note that ε = 0 reduces the model to a standard
portfolio selection and the optimal θC is nothing but the Sharpe ratio of the risky asset divided by its
standard deviation; recalling the classical Merton portfolio choice problem, µ−1σ2 represent an index of
the performance of the risky investment.
With these hypothesis on the market parameters, we can set θ∗C = µ−1

σ2−2ε and this is indeed a maximum
as implied by the second order conditions. Note that θ∗C is increasing in both µ and ε whereas it is
decreasing in σ2, as expected.

Now it's turn to �nish Step 2, trying to show that θB = 0 can be optimal for the behavioral agent.
Fortunately, we obtained the following positive result.

Proposition 4.1. Assume η = 0. If (µ∗, ε∗, σ2∗) are such that
σ2∗ > 2ε∗ ,

σ2∗ ≥ 2ε∗ + (µ∗ − 1) ,

k0

(
1, µ∗−1

σ2∗−2ε∗

)
≤ k− ,

(4.10)

then there exists an equilibrium for every choice of (µ, ε, σ2) ∈ [1, µ∗]× (0, ε∗]× [σ2∗,+∞).

Proof. See the Appendix.

The intuition behind this result is the following: if we are able to �nd a particular triple (µ∗, ε∗, σ2∗)
such that it ful�lls all the conditions of (4.10), then we can even obtain a non-zero Lebesgue measure set
of parameters' values for which the equilibrium exists, and this (mathematical) robustness property is
very pleasant from the point of view of an economist. In particular, we see that the �rst two conditions
in (4.10) are necessary for the admissibility of the optimal θC , whereas the third inequality is the key
to exploit Theorem 3.3.

If the last inequality holds strictly, then we are selecting an equilibrium which is con�rmed by
Theorem 3.3, (ii); otherwise, if we have an equality, then we can apply case (iii) of Theorem 3.3
imposing to the behavioral agent the choice θB = 0. However, we remark that the second type of
equilibrium is in fact an unrealistic one, as a very slight change in market parameters would destroy it.
Mathematically speaking, they are unstable equilibria; in particular, for them there is lack of robustness
as we are lying on the boundary of a subset of the 3-dimensional space (µ,ε,σ2). In both cases, we can
compute the equilibrium stock return R∗; this will be a random variable with Gaussian distribution
N (µ̂∗, σ̂2∗), where

µ̂∗ = µ∗ + ε∗
(

µ∗ − 1

σ2∗ − 2ε∗

)
, σ̂2∗ = σ2∗,

and it is easily seen that µ̂∗ is increasing in both µ∗ and ε∗ and decreasing in σ2∗.
We have now to rely on numerical analysis in order to �nd our starting equilibrium triple (µ∗,ε∗,σ2∗).

We can �x some of these three parameters and see what happens when letting the other(s) vary. Before
starting, we note that a value of ε = 0.01 implies that if both agents invest the totality of their respective
wealths in the risky asset, then the equilibrium expected return (if the equilibrium exists) increases by
2%; moreover, µ = 1.10 means that investing in stocks provides an expected additional yield by 10%
w.r.t. the risk-free bond. Therefore, we choose to sensibly �x the values µ∗ = 1.10 and ε∗ = 0.01;
from the no-leverage condition for the EU agent, namely the second inequality of (4.10), we obtain the
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Figure 2: existence and σ-stability of the equilibrium with µ = 1.10, ε = 0.01, η = 0.

constraint σ2∗ ≥ 0.12. A standard quadrature formula5 gave us k0(1, 1) = 1.7506 < 2.25. Therefore,
Proposition 4.1 suggests the following ranges:

µ ∈ [1, 1.10], ε ∈ (0, 0.01], σ2 ∈ [0.12,+∞).

It is interesting to compute k0 as a function of σ 6; results are shown in Figure 2. First of all we
see that the right-most point corresponds to σ2 = 0.12; moreover k0(σ) ≥ 1 and it is decreasing in the
exogenous volatility, as we already saw in the proof of Proposition 4.1. Obviously, σ ≥

√
0.12 guarantees

the existence of the equilibrium; not only, we see that an equilibrium would exist even for lower values
(σ2 ≥ 0.068, which is identi�ed by the left-most point in the plot)7. An explanation of this fact is that
allowing the classical agent to exploit leverage, thus raising the expected return of the stock, is not
su�cient to induce a non-zero risky investment for the behavioral agent. 8

4.1.2 The case with volatility impact

In this section we are going to see what are the main changes on the results previously obtained if
we allow for a positive impact on the volatility to be endogenously determined, i.e. this time we have
η > 0. The analysis for the classical agent in Step 1 can be carried quite similarly, whereas di�culties
arise in Step 2. First order conditions deduced from equation (4.9) imply

dUC
dθC

= 0 ⇐⇒ θC =
−(σ2 − 2ε)±

√
(σ2 − 2ε)2 + 6η(µ− 1)

3η
,

where we implicitly suppose σ2 ≥ 2ε. As we do not allow short-selling, we have to immediately discard
the negative solution, thus the only candidate remains

θ∗C =
−(σ2 − 2ε) +

√
(σ2 − 2ε)2 + 6η(µ− 1)

3η
. (4.11)

Second order conditions con�rm once again that (4.11) is a maximum point. Note that µ = 1 again
produces a null risk premium, which implies an admissible θ∗C = 0; otherwise, we have to impose further
assumptions on the market parameters in order to have θ∗C ≤ 1. Straightforward calculations show that
the correct condition is

3η + 2
(
σ2 − 2ε− (µ− 1)

)
≥ 0,

which is equivalent to impose upper bounds on the drift parameters µ and ε or lower bounds on the
volatility parameters σ2 and η; this con�rms once again economic intuition, as the classical agent will
avoid leverage when the market behaves �normally�. It is important to stress the fact that we do

5If not otherwise stated, we used the Simpson quadrature for the numerical approximation of our integrals, as it
revealed faster convergence w.r.t. adaptive method, such as the Lobatto quadrature method.

6We use σ and not σ2 in our graphics; therefore, its lower bound becomes
√
0.12 ≈ 0.346.

7Low values of σ2 seem to be more realistic; just as an example, with µ = 1.05, σ2 = 0.09 implies a 20% probability
of observing a maximal ±7% excess return and a 90% probability of a maximal ±50%. On the contrary, σ2 = 1 implies
a 20% probability of a maximal ±25% excess return and a 90% probability of a maximal ±165%!

8If we �x just one parameter and let the other two vary, graphical analysis shows existence and stability of the
equilibrium for non negligible ranges. 3D-plots are available on request
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not have to set any a priori condition over the parameters; the previous inequality simply speci�es a
�coordination� that our market must have to possibly admit an equilibrium without leverage by the EU
investor. We also note that this condition is just a generalized version of the second inequality in (4.10);
this time the additional parameter η is taken into account. Finally, from (4.11) one can compute the
derivatives of θ∗C w.r.t. market parameters and it is easily seen that θ∗C is still increasing in both µ and
ε, whereas it is decreasing in both σ2 and η.

It remains to show that θB = 0 can be optimal for the behavioral agent. Proceeding similarly to the
previous case, we state the following result in the particular case of null drift impact.

Proposition 4.2. Assume η > 0 and ε = 0. If (µ∗, σ2∗, η∗) are such that3η∗ + 2
(
σ2∗ − (µ∗ − 1)

)
≥ 0 ,

k0

(
0,
−σ2∗+

√
(σ2∗)2+6η∗(µ∗−1)

3η∗

)
≤ k− ,

(4.12)

then there exists an equilibrium for µ = µ∗ and every choice of (σ2, η) ∈ (σ2∗,+∞)× [η∗,+∞).

Proof. See the Appendix

Apart the presence of η > 0, which obviously makes computations more di�cult, the interpretation
of Proposition 4.2 is similar to that of case η = 0. There are two main di�erences which worth a deeper
explanation. Firstly, the second inequality in (4.12) contains k0 (0, θ∗C) instead of k0 (1, θ∗C); the reason
is that now low investment values by the CPT investor can destroy the existence condition k0 ≤ k−.
Secondly, once a particular triple (µ∗, σ2∗, η∗) is found, then µ can not be arbitrarily lowered, as a
variation of this parameter increases the drift as well as the volatility(and this is also why we need
ε = 0).

Finally, the way to select the equilibrium is the same as explained in the case with null volatility
impact and the equilibrium stock return can be computed similarly. In particular, we have

µ̂∗ = µ∗, σ̂2∗ =
2

3
σ2∗ +

1

3

√
(σ2∗)2 + 6η∗(µ∗ − 1),

and it is easily seen that the equilibrium volatility is increasing in µ∗, σ2∗ and η∗.
Graphical analysis available on request shows that, while keeping µ = 1.2 �xed, the equilibrium

existence condition (4.12) is ful�lled unless volatility parameters σ and/or η are su�ciently close to 0.
Note that in this case the value of µ is exceptionally high; even if we were not able to prove that k0 is
increasing in µ, numerical simulations suggests that with lower µ there would still be an equilibrium,
even for lower σ and/or η. Similar surfaces can be obtained if we �x one of these two parameters;
moreover, non-zero Lebesgue measure sets of parameters which support the equilibrium can be easily
computed.

At least, we turn back to the general case with ε > 0 and η > 0. The technical problem that
arises now is the fact that there is no more a monotonic dependence of k0 in θB ; to see this, note that
an increase in the behavioral agent's demand produces at the same time greater endogenous drift and
volatility. The resulting combined e�ect is hard to estimate with analytical techniques; therefore, we
will limit ourselves to numerical and graphical analysis. First of all, let's set the market values as

µ = 1.05, ε = 0.01, σ2 = 0.09, η = 0.3.

In such a case it is easy to represent k0 as a function of θB (recall that we are looking for equilibria with
θ∗B = 0; therefore, using game-theory jargon, the classical agent's optimal strategy must be based on
this conjecture). In particular we obtain Figure 3, from which we see that the behavioral investor will
indeed select θ∗B = 0 as long as she can not get an approximate leverage of 740 times her initial wealth!
Finally, a magni�cation of Figure 3 with θB ∈ [0, 1] shows that k0 is decreasing, thus con�rming the
absence of global monotonicity. With the previous parameters, it is easy to compute the equilibrium
values as

θ∗B = 0, θ∗C ≈ 0.265, µ̂∗ ≈ 1.05265, σ̂2∗ ≈ 0.1695. (4.13)

The classical agent will thus invest about a quarter of her wealth in stocks, whereas the remaining
amount is used to buy risk-less bonds.

At this point one can wonder if the parameters we selected are ad hoc; fortunately, the answer seems
to be: No. A possible way to show this is to �x from time to time three of the four parameters to
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Figure 3: existence and stability of the equilibrium depending on the behavioral agent's demand.

the values which appear in (4.13) and see how k0 behaves depending on the remaining free parameter
and θB . Numerical analysis (3D plots available on request) show that the existence regions are still
�wide� in the sense that the equilibrium can be sustained for not-negligible ranges. At this point we
should make a step back. From the beginning of Section 4, we assumed as given the preferences of
our investors, letting the market �adjust� in order to have equilibria. A natural question now is: what
happens if those preferences change? Or, which is equivalent, what if we wrongly estimated utility
function parameters or probability distortions? Just to give an idea, we performed calculations slightly
changing some preference parameters and it is not surprising at all that results are qualitatively the
same and they quantitatively only changed a few. To convince yourself, it would be su�cient to see
what happens to the critical statistics k0 if we make some perturbations.

First of all, changing α (or β, they must be equal) only a�ects the magnitude of a1(θB , θ
∗
C), a2(θB , θ

∗
C)

and their ratio k0, not its shape. Secondly, we modi�ed probability distortions by choosing γ = 0.61 and
δ = 0.69 in (3.11), as estimated in [24]. This time we had an additional di�culty in that a1(θB , θ

∗
C) 6=

b2(θB , θ
∗
C), a2(θB , θ

∗
C) 6= b1(θB , θ

∗
C) and a1(θB , θ

∗
C) ≥ a2(θB , θ

∗
C) does not always hold. However, this

was not very problematic as the values of γ and δ were quite similar and they are not su�cient to
heavily distort our analysis.

Finally, we recall that one assumption was λ = 1 for the CARA utility function of the classical
agent; that was necessary in order to simplify calculations and comparisons. As this coe�cient is a
measure of risk-aversion, we expect it to have a role similar to those of σ2 or η; therefore, we now let it
vary over (0,+∞). At �rst, we have to solve Step 1 in a more general version and this time the optimal
strategy will depend on λ too. Choosing ε, η > 0 and discarding the negative solution, we �nd

θ∗C(λ, µ, ε, σ2, η) =
−(λσ2 − 2ε) +

√
(λσ2 − 2ε)2 + 6λη(µ− 1)

3λη
.

Comparing the previous equation with (4.11), it is immediate to see that

θ∗C(λ, µ, ε, σ2, η) = θ∗C(1, µ, ε, λσ2, λη), ∀ λ ∈ (0,+∞).

Therefore, adding the parameter λ amounts to perform a positive homogeneous transformation over the
volatility parameters. Obviously, second order conditions are still ful�lled and the no-leverage constraint
becomes

3λη + 2
(
λσ2 − 2ε− (µ− 1)

)
≥ 0,

thus incorporating the same transformation. Fianlly, straightforward calculations show that θ∗C is
decreasing in λ as expected.

Remark 4.1. Our analysis has been conducted under a no-leverage and a no-short selling constraint.
Removing the �rst one, i.e. allowing θ∗B , θ

∗
C > 1, has no dramatic consequences. In fact, by the side

of the EU agent we just have to properly modify the �rst inequality in (4.12), whereas her optimal
strategy remains unchanged. Therefore, in the case ε = 0 the argument that prove Proposition 4.2 is
still valid; on the other hand, in the case ε > 0 we can rely on Figure 3 which shows that the behavioral
agent should be able to borrow huge amounts of money9 in order to deviate from θ∗B = 0. Furthermore,

9She would gamble using the wealth of someone else trying to manipulate the market . . .
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some graphics we provided also contain parameters' values that do not satisfy the no-leverage condition
for the classical agent and we observed that an equilibrium is still attainable.

We also note that the no-short selling constraint is substantially unbinding as long as our investors
are of the mean-variance type; loosely speaking, θB < 0 or θC < 0 would decrease the drift and increase
the volatility at the same time thanks to Assumption 4.1. More speci�cally, a rapid look at equation
(4.9) shows that allowing for negative θC would simply add a modulus in the third degree term. By the
second order conditions, this implies a unique maximum point θ∗C > 0 for suitable choices of the market
parameters satisfying the �rst inequality of (4.12) (or a di�erent inequality if we allow taking leverage).
Given this, the CPT agent would behave in the same way for θB ≥ 0; furthermore, she will never choose
a moderate θB < 0 under normal market conditions as she is substantially a mean-variance maximizer;
in fact, θB < 0 would produce lower expected return and higher volatility. Finally, graphical analysis
shows that for negative θB the shape of k0 is qualitatively specular to that of Figure 3, thus she would
short sell (if possible) only huge amounts of the risky asset in order to manipulate the market.

4.2 Other equilibria

The remaining equilibria which are sustainable within our framework are those with θ∗B 6= 0. With
Assumption 4.3 and recalling Theorem 3.3, for the existence of such equilibria it is necessary that the
behavioral agent has preferences ful�lling cases (iii), (iv) or (v)10. However, we already observed that
the �rst two cases possess undesirable features; in particular, they are unstable and not realistic at
all. Moreover, if we are looking for a non-zero demand of the behavioral agent, there is an additional
�internal� problem concerning this kind of equilibrium. In fact, θB 6= 0 implies that θC depends on θB
too; therefore, the statistics a1, a2, b1 and b2 are di�cult to control in the sense that a little variation
of one's demand will surely destroy the equilibrium as k− = k0(θ∗B , θ

∗
C) is a necessary condition in cases

(iii) and (iv).
The same problem arises even in case (v), but it has di�erent consequences. Apart from being

computationally more di�cult, we see that if we assume α < β, then there can be another source of
ill-posedness; the explanation relies on the fact that we can not use (3.7) to compute θ∗B . Actually,
equation (3.7) can be exploited only if we have a1 and a2 which do not depend on θB ! In our case,
those statistics are indeed in�uenced by the demand level of the behavioral investor, therefore we have
to use a di�erent argument in order to �nd the optimal θB . Moreover, we will show later that in many
circumstances the CPT agent has an incentive to invest as much as possible in the risky asset, i.e. θ∗B
tends to explode, thus leading to an ill-posed problem if we do not impose some restrictions on her
leverage.

After this introductory discussion, let's specify well the hypothesis under which we will work. We
retain Assumption 4.1 with the same parameters' ranges if not otherwise stated and Assumption 4.2
with λ = 1 as a normalization. Concerning our behavioral agent, there are some important issues which
deserve an explanation. We choose for her a typical S-shaped power utility function, this time with
0 < α < β ≤ 1, a loss aversion coe�cient k− = 1 and probability distortion w+(·) and w−(·) of the
Kahneman-Tversky type in (3.11), with γ = δ = 0.65 as empirically estimated in [24].

Remark 4.2. As is known, in [24] the laboratory observations gave α = β = 0.88; however, we must
distort them in order to ful�ll our assumptions. We also note that those values were obtained analyzing
a sample of students and not a pool of professional �nancial investors. Nonetheless, this values are
prone to errors, as every estimation is; thus it is plausible to observe di�erent CRRA coe�cients for
gains and losses, expecially in real world �nancial markets. A con�rm comes from the paper by Hwang
and Satchell [13], where the di�erence β−α is estimated using US and UK market data. In particular,
they �nd the values 0.2 and 0.25 respectively; moreover, they suggest α = 0.7, β = 0.9 for the US
investors and α = 0.7, β = 0.95 for the UK investors.11 To begin, we will arbitrarily set α = 0.80
and β = 0.95, as we expect them to be quite close each other and not so di�erent w.r.t. the original
estimates. Obviously, in what follows we shall also analyze the e�ects that di�erent values of those
parameters have on the market equilibria.

10Imposing the no-short selling constraint, case (iv) is excluded and case (v) is allowed only with
a
β
1

aα2
≥ b

β
1

bα2
; see equation

(3.7). However, we will show that with our assumptions on the market structure, this inequality is automatically satis�ed.
11In the light of Figure 1, we can not conclude that in real �nancial markets we have a violation of loss aversion. This

is because we do not know what are the real probability distortions w+(·) and w−(·) and, more importantly, stock excess
return is not normally distributed.
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Remark 4.3. Our arbitrary choice of k− = 1 serves as a normalization and it can be convincingly
motivated recalling our analysis contained in Section 3.2. In fact, with α < β we saw that loss aversion
violation can be a feature of this kind of models. Speci�cally, this time we have ζ = 1, so that the
violation range is given by (0, 1) for any choice of 0 < α < β ≤ 1. Within our setting, we note that
a �xed amount of money x represents a deviation from the reference point which in our model was
set as the risk-free return on the initial wealth, namely WB

0 r = 1. Therefore, any optimal terminal
wealth XB ∈ (1, 2) is the result of a violation happened during the maximization procedure of our
CPT agent. As expected, this condition will be veri�ed with high probability and this phenomenon is
retained even if we change the value of k−. To explain this fact, let's choose a k− > 1 to �x ideas;
consequently, ζ is reduced and the violation range shrinks but at the same time the optimal demand
level θ∗B is drastically reduced, as k− negatively a�ects the prospect value V (·) (see equation (2.3)).
Hence, the �nal wealth XB will be lower too and the probability of a violation will still be elevated. In
conclusion, letting k− vary only has quantitative and not qualitative e�ects on our equilibrium model.
Nonetheless, analytical results of this section have been proved for every choice of k− > 0, thus ensuring
mathematical correctness.

Another important issue concerns the constraints that we are going to impose on the strategies of
our agents. We will always admit only θB > 0 as we want to avoid market manipulation with heavy
short selling which could be exploited in order to reach equilibrium return and volatility favorable to
the CPT agent. At the same time, the no-leverage constraint θB ≤ 1 is not imposed because one of
our goals is to see what happens if she is able to (moderately) borrow money from the bond market.
However, an upper bound will be �xed to make the model sensible and it is sometimes necessary to
have an equilibrium; see Lemma 4.2 in the next section. On the contrary, we are not imposing any
restriction to the classical agent, as they will be speci�ed in time to time.

The equilibrium values (if they exist) will be denoted with a ∗, as usual. In particular, if the investors
select the pair (θ∗B , θ

∗
C), then we will have

µ̂∗ = µ+ εθ∗B + εθ∗C , σ̂2∗ = σ2 + ηθ∗B + η|θ∗C |. (4.14)

Recalling the game theoretical nature of our model, to discover equilibria we shall implement the
following procedure:

Step 1 Solve the maximization problem for the classical agent given any strategy θB of the behavioral
investor, namely

max
θC∈D

UC(θB , θC), (4.15)

where D ⊆ R is a suitable set of admissible strategies.
Let θ∗C(θB) := θ∗C(θB , µ, ε, σ

2, η) be a maximizer of (4.15), if one exists.

Step 2 Fix the market parameters (µ, ε, σ2, η) and for any θ∗C(θB) previously obtained, solve the opti-
mization problem for the behavioral agent, namely

sup
θB>0

V (XB (θB , θ
∗
C(θB))) , (4.16)

where the value function V (·) is given by (2.5) and the terminal wealth XB is given by (4.6).

Step 3 If (4.16) actually is a maximum, then compute θ∗C(θ∗B), µ̂∗ and σ̂2∗ in order to obtain the equilib-
rium strategies and the equilibrium market parameters; else restrict the set of admissible strategies
for the CPT agent imposing a sensible upper bound and solve (4.16) once more. If the sup in
(4.16) is attained for θB ↓ 0, then there are no equilibria.

Step 1 is not di�cult to implement as it is a generalization of its counterpart in the case θ∗B = 0.
Performing similar calculations, we see that (4.15) is equivalent to

max
θC∈D

1− exp

{
η

2
|θC |3 +

(
σ2

2
− ε+

η

2
θB

)
θ2C + (1− µ− εθB)θC − 1

}
. (4.17)

Therefore, we have the modulus in the third degree term as θC is not necessarily positive; moreover,
there are two additional terms which depends on θB . As our goal is to minimize the exponential
argument, we see that the quadratic term acts negatively and it is more in�uent as η and θ2C become
greater. On the contrary, the linear term positively together with ε and θC . Thus, their overall e�ect
has to be analyzed and we shall again distinguish between the cases of totally exogenous or endogenous
volatility.
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4.2.1 The case with null volatility impact

In the simpler case with given exogenous volatility σ2 > 0, we see that equation (4.17) reduces to

max
θC∈D

1− exp

{(
σ2

2
− ε
)
θ2C + (1− µ− εθB)θC − 1

}
.

Therefore it remains just one additional term depending on θB and there is no more distinction between
a positive or negative θC . First order conditions give

∂UC
∂θC

(θB , θC) = 0 ⇐⇒ θC =
(µ− 1) + εθB

σ2 − 2ε
. (4.18)

With the usual parameters assumptions σ2 − 2ε > 0, ε > 0 and having imposed θB > 0, we see that

θ∗C(θB) = (µ−1)+εθB
σ2−2ε is the unique strictly positive global maximizer as the second order conditions

con�rm. As a consequence, we can even choose D = R as the set of admissible strategies. Clearly, since
ε > 0, θ∗C is increasing in θB ; this positive dependence is no surprising if one thinks to the positive impact
of someone's demand on the equilibrium drift µ̂∗ and the null impact over the volatility. However, for
the moment we can not state how θ∗C varies depending on the market parameters, as we do not know
how θ∗B behaves. We will analyze these facts later.

Before �xing market parameters, we state some general facts about the maximization problem of the
behavioral agent in Step 2. The following two lemmas are indeed valid for every choice of the preference
parameters 0 < α < β ≤ 1 and λ > 0 12; the proofs can be adjusted in a straightforward way.

Lemma 4.1. Assume η = 0 and σ2 > 2ε > 0. Then we have a1(θB)β

a2(θB)α ≥
b1(θB)β

b2(θB)α for every θB > 0.

Proof. Using integration by parts formula, it is immediate to see that we have

a1(θB) =

∫ +∞

0

αtα−1w(1− F (t))dt ≥
∫ 0

−∞
α(−t)α−1w(F (t))dt = b1(θB),

a2(θB) =

∫ 0

−∞
β(−t)β−1w(F (t))dt ≤

∫ +∞

0

βtβ−1w(1− F (t))dt = b2(θB),

which holds for every θB > 0 thanks to the positive skewness of the distribution of the risky asset
return. The fact α < β concludes.

Remark 4.4. We note that even with a positive η, as long as µ ≥ 1, ε > 0 and the agent's demands
are positive, the c.d.f. F (·) which appears in the previous proof maintains its asymmetry.

As we focus on equilibria with θB > 0, by Lemma 4.1 we see that we recover case (v) of Theorem
3.3. However, we can not use (3.7) to �nd the optimal strategy of the behavioral agent, as observed at
the beginning of this section.

Lemma 4.2. With the same assumptions of Lemma 4.1, the optimization problem (4.16) of the behav-
ioral agent is equivalent to

sup
θB>0

θαBa1(θB)− k−θβBa2(θB). (4.19)

Moreover, problem (4.19) is ill-posed and we have

lim
θB↓0

θαBa1(θB)− k−θβBa2(θB) = 0. (4.20)

Proof. See the Appendix.

We immediately observe that the equivalence between the two problems and equation (4.20) holds
true even with η > 0 but the arguments must be changed (for more details, see the proof in the
Appendix). The previous lemma will now be exploited to numerically implement Step 2.

Due to the ill-posedness result, we see that there can not be an equilibrium unless we restrict θB
over a rightward closed interval, e.g. θB ∈ (0, L]. In such a case, we can modify (4.19), obtaining

sup
θB∈(0,L]

θαBa1(θB)− k−θβBa2(θB). (4.21)

Note that we can have two distinct types of equilibria:

12Using a λ 6= 1 amounts to replacing σ2 with λσ2 in (4.18). Thus, the qualitative e�ects on the equilibria can be
simply analyzed.
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Figure 4: prospect value depending on the exogenous constant drift µ.

- (internal equilibrium) in this case, an equilibrium exists if there is at least one local maximizer of
(4.21); obviously, θ∗B will be the �best� maximizer of (4.21) only if the respective prospect value
for the behavioral investor is greater than the value obtained when selecting θB = L .

- (boundary equilibrium) if there are no local maximizers of (4.21), we can choose θ∗B = L.

We observe that this last case will always produce an equilibrium unless the supremum of (4.21) is
zero. Our opinion is that it seems to be somewhat unrealistic that the behavioral agent invest all her
wealth in the risky asset (or she get as much leverage as she can). Typically, householders prefer to
invest all their wealth in bonds instead of risking everything in the stock market. However, if one thinks
to a behavioral fund manager who is trying to beat the benchmark through massive stock investment,
then it would be more plausible to observe such an extreme optimal policy.

For the sake of clarity, let's arbitrarily �x θB ∈ (0, 2], thus the CPT investor is allowed to borrow
as much as her initial wealth. At this point, (4.21) results in a function depending on the market
parameters (µ,ε,σ2) with the constraints µ ≥ 1, σ2 > 2ε > 0. Therefore, we need to �x two of these
three values in order to obtain 3D-pictures and see if there exists a maximum point over θB as long as
the free parameter varies; in such cases, we are also able to depict 2D-graphs representing the �implicit
maximum curve�, i.e. θ∗B(·) where the dot represents one market parameter. Then, we will plot those
curves for scattered values of one remaining parameter.

We discuss the main results, depending on the free parameter. With an abuse of notation, we
will denote with V (θB) the prospect value V (XB(θB , θ

∗
C(θB))), dropping the dependence on (µ,ε,σ2).

Graphics are provided only when µ varies; for the other cases, they are available on request.

- Figure 4: µ ∈ [1, 1.25], ε = 0.005, σ2 = 0.49. From the 3D-surface it is immediate to see that
internal equilibria exist only if µ is su�ciently low; otherwise, we will have boundary equilibria as
V (·) is strictly increasing for every θB ∈ [0, 2].

- Figure 5, left plot : µ ∈ [1, 1.25], ε = 0.005. Graphical analysis suggests

∂θ∗B
∂µ

> 0,
∂θ∗B
∂σ2

< 0.

We also note that σ2 has to be su�ciently high in order to have an internal equilibrium and if
we wish no leverage for the behavioral agent, i.e. θ∗B ≤ 1, then we must choose an even higher
variance. The explanation of these facts is obvious if one thinks that our behavioral investor is
willing to invest more as the volatility decreases or as the expected return increases.

- Figure 5, right plot : µ ∈ [1, 1.2], σ2 = 0.49. This time we have

∂θ∗B
∂µ

> 0,
∂θ∗B
∂ε

> 0.

It is interesting to observe that for su�ciently high values of ε we are able to �nd two distinct
levels of demand which are stationary points, where the lowest one, θB1, is a local maximum and
the higher one, θB2 is a local minimum (in the plot they are denoted with dashed lines). Thus,
the CPT investor has to compare V (2) with V (θB1), i.e. she evaluates if it is more convenient to
totally exploit the leverage and set θ∗B = 2 or to choose the local maximizer and select θ∗B = θB1.
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Figure 5: implicit maximum curves depending on the exogenous constant drift µ.

Figure 6: prospect value depending on the preference parameters of the behavioral agent.

We note that this comparison is unnecessary for lower values of ε as we only �nd one stationary
point θB1 which is a local maximum; hence the prospect value V (·) is strictly decreasing over
(θB1, 2] and the optimal strategy is θ∗B = θB1.

For the sake of completeness, when ε is the free parameter, we observe that while keeping µ �xed, θ∗B
is increasing in ε and decreasing in σ2, whereas if σ2 is �xed, then θ∗B is increasing in both µ and ε.
Finally, when σ2 is the free parameter, we observe θ∗B to be increasing in µ and decreasing in σ2 as long
as ε is kept �xed, whereas θ∗B is increasing in ε and decreasing in σ2 as long as mu is held �xed.

Before concluding Step 3, it remains to see what happens if we change the preference parameters
of our behavioral investor; the motivation comes from [13], where we recall that β − α was highlighted
as an important quantity in real world �nancial markets. Hence, having �xed µ = 1.05, ε = 0.005,
σ2 = 0.49, we performed a graphical and numerical analysis whose main results are shown in Figure 6.

- Figure 6, left plot : α ∈ [0.55, 0.95), β = 0.95. The 3D-surface represents the prospect value for
the CPT agent. It is immediate to see that such an investor has substantially di�erent reactions
depending on the di�erence between β and α. Recalling equations (4.20) and (4.21), we observe
that for α ≈ 0.95 (i.e. when the di�erence tends to be null) we do not have a local maximum, thus
it is optimal θ∗B = 2. On the other hand, a greater discrepancy has the notable e�ect to produce
stationary points; in particular, we obtain local maxima for lower θB1 and local minima for higher
θB2.These last type of stationary points has not been represented because with our choice of the
market parameters we have θB2 > 2. Furthermore, if we select a di�erent β and let vary α < β,
then we get qualitatively identical plots.

- Figure 6, right plot : α = 0.8, β ∈ (0.8, 1]. A somewhat similar result can be observed; once
again the important quantity is the di�erence β−α, which can produce the local maxima or not.
Finally, with a lower α, the surfaces we obtained for β ∈ (α, 1] are very similar to the one we
depicted.

To conclude Step 3, we propose a particular equilibrium. Note that if we �x a triple (µ,ε,σ2), then
it is easy to numerically compute θ∗B and then replacing its value in the explicit expression of θ∗C(·).
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After that, one can �nd the equilibrium drift and volatility simply using (4.14). Just as an example,
choosing the triple (1.06, 0.005, 0.64) and approximating with order 10−5 we obtain

(θ∗B , θ
∗
C) = (0.67110, 0.10056), µ̂∗ = 1.0638, σ̂2∗ = 0.64; (4.22)

hence, the behavioral agent will risky invest about two thirds of her wealth, whereas the classical agent
will choose only an approximate 10% of stock buying. Obviously, these optimal strategies does not
re�ect the typical policies observed in the real world. As a matter of fact, we were able to show that it
is easy to provide existence of an equilibrium despite its undesirable properties.

4.2.2 The case with volatility impact

Turning back to equation (4.17) with η 6= 0, the optimal strategy for the classical investor can be
computed distinguishing the cases θC ≥ 0 or θC < 0. Using �rst and second order optimality conditions,
given any positive behavioral agent's demand level θB > 0, it is straightforward to obtain

θ∗C(θB) =
−(σ2 − 2ε+ ηθB) +

√
(σ2 − 2ε+ ηθB)2 + 6η(µ− 1 + εθB)

3η
. (4.23)

Recalling Assumption 4.1 on the ranges of our market parameters and the no-short selling constraint
that binds the CPT investor, we see that θ∗C ≥ 0 and the equality holds if and only if µ = 1 and ε = 0,
i.e. when the stock expected excess return is null and there is no drift impact. Hence, we can choose
once again D = R as there is only one global maximizer for (4.17).

Just like we did in the case η = 0, we now analyze the dependence of θ∗C(·) on θB . It is interesting
to observe that for every θB > 0 we have

∂θ∗C
∂θB

(θB) R 0 ⇐⇒ ε2 − 2εσ2 + 2η(µ− 1) Q 0. (4.24)

Therefore, we can have positive, negative or null derivative and this will only depend on an exogenous
condition over market parameters. Moreover, as ε reasonably assumes small values, we can ignore the
term ε2 and (4.24) reduces to

∂θ∗C
∂θB

(θB) R 0 ⇐⇒ (µ− 1)

ε
Q
σ2

η
,

where we can see a comparison between the ratios of the �constant� parts of the market drift and
volatility, and the impact parameters. In conclusion, a positive dependence takes place whenever the
relative impact e�ect on the variance is greater than the relative impact e�ect on the drift and vice
versa. An economical interpretation is immediate if one thinks to the consequences of a greater volatility
impact coe�cient η; in fact, the more η is elevated, the more risky investment �hurts� and it is more
probable to have a negative derivative. On the other hand, a greater drift impact coe�cient ε implies
higher expected utility, thus probably leading to a positive dependence. These results are quite obvious
if we think to the FOSD and the SOSD which stands behind this model; however, we can not conclude
anything about what may happen in equilibrium because for the moment we do not know how θ∗B
changes when we vary market parameters. We refer the reader to the end of this section for a more
detailed analysis, when we will depict some equilibrium curves just like we did in the case with null
volatility impact.

Now we shift our attention to Step 2, namely the behavioral investor's problem. We recall that in
the previous case with η = 0, we were able to prove Lemma 4.1 and Lemma 4.2. In particular, we
remarked that even if we assumed η > 0 all their conclusions were still valid, but the ill-posedness of
(4.19) could not be proved in the same way. Analyzing the proof of Lemma 4.2, we see that a crucial

role was played by the relation
∂θ∗C
∂θB

(θB) > 0 for every θB > 0. Unfortunately, we have just seen that this
fact does not hold true anymore! However, we can prove the following result which strongly separates
the cases ε = 0 and ε > 0, i.e. when there is or not a positive drift impact.

Lemma 4.3. Under Assumption 4.1 with η > 0,

- if ε = 0, then for every θB > 0 we have

∂µ̂

∂θB
(θB , θ

∗
C(θB)) = 0,

∂σ̂2

∂θB
(θB , θ

∗
C(θB)) > 0. (4.25)
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Moreover,
lim

θB→+∞
V (θB) = −∞, (4.26)

therefore Problem (4.19) is well-posed;

- if ε > 0, then for every θB > 0 we have

∂µ̂

∂θB
(θB , θ

∗
C(θB)) > 0,

∂σ̂2

∂θB
(θB , θ

∗
C(θB)) > 0. (4.27)

Moreover,
lim

θB→+∞
V (θB) = +∞, (4.28)

therefore Problem (4.19) is ill-posed.

The proof is relegated to the Appendix, as it is quite technical and cumbersome; now we give an
interpretation of the previous results and their consequences. First of all, recall that µ̂ and σ̂2 are the
overall market drift and volatility; in the case ε = 0 we have no drift impact, which obviously implies
the �rst equality of (4.25) and even produces well-posedness thanks to the SOSD which a�ects the
preferences of our behavioral agent. In fact, we have already seen that a higher θB only produces an
increase in the overall volatility and its main consequence is the disadvantage caused by huge investment
in the stock.
The case ε > 0 is sharply di�erent and equation (4.27) means that a higher demand of the behavioral
agent will lead to an increase in the global drift and volatility of the market, independently on the depen-
dence of θ∗C(·) on θB . This was quite obvious in the case η = 0 but it was not in the present situation, as
a growth of θB leads to greater drift and variance, which partly encourages and partly discourages risky
investment. Fortunately, this combined e�ect can be shown to be favorable to our behavioral investor,
as the ill-posedness of (4.19) states. This is equivalent to say that limθB→+∞ V (θB) = +∞; on the
other hand, numerical simulations show that even for very high levels of θB we can have V (θB) < 0,
thus massive risky investment can be necessary before V (·) undertakes a monotone increasing phase.
These results motivate our choice of allowing θB ∈ (0, 2] as we did before and we will subsequently look
for internal and boundary equilibria, which always exist unless supθB∈(0,2] V (θB) = 0.

At this point nothing more can be said from an analytical point of view and we have to rely on
numerical simulations. As a �rst step, we provide 3D-plots which represent the prospect value V (·) of
our behavioral agent, depending on θB ∈ (0, 2] and one market parameter, where the other three are
kept �xed. As our aim is to show the in�uence of η 6= 0 on the existence and on the properties of
equilibria that we could obtain, we decided to maintain the same drift parameters as in Section 4.1,
namely µ = 1.05 and ε = 0.005; on the other hand, we chose σ2 = 0.09 and η = 0.2. Note that in the
previous analysis we selected σ2 = 0.49, i.e. a higher exogenous volatility arising from noise trading,
simply because the equilibrium results were more interesting. Nonetheless, in this new setting a lower
σ2 is su�cient, as the e�ect of a positive volatility impact is to raise the overall variance thanks to the
fact that θ∗C(θB) ≥ 0 and θ∗B > 013. Moreover, recall that lower values of σ correspond to more realistic
scenarios, as we noted in Section 4.1.1.

- Figure 7, top-left plot : µ ∈ [1, 1.25], ε = 0.005, σ2 = 0.09, η = 0.2. At a �rst glance we note the
similarity with the 3D-surface in Figure 4, hence the additional parameter η > 0 seems to have
no qualitative e�ect on the exogenous drift µ.

- Figure 7, top-right plot : µ = 1.05, ε ∈ [0, 0.02], σ2 = 0.09, η = 0.2. We note that we have an
internal equilibrium for the represented values of ε. On the contrary, increasing ε would produces
boundary equilibria.

- Figure 7, down-left plot : µ = 1.05, ε = 0.005, σ2 ∈ [0, 1.44], η = 0.2. If we let σ vary with η > 0,
even for σ ≈ 0 we can observe a positive (and su�ciently elevated) global volatility; this in turn
produces the �tunnel� shape of the down-left surface of Figure 7.
From a theoretical point of view, we could even suppose σ = 0; economically speaking, this would
mean absence of noise trading, or equivalently no other agent is in�uencing the market price
except for our classical and behavioral investors. This setting is by no doubt interesting as it
could represent an hypothetical competitive bargaining model between our two agents; we note

13Recall that θ∗C = 0 if and only if µ = 1 and ε = 0; see equation (4.23).
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Figure 7: prospect value depending on θB and one market parameter.

that the exogenous drift constant µ is not forced to assume a particular value, as it arises from the
fundamentals of the �rm whose stocks are priced (or the fundamentals of the underlying economy,

if our risky asset replicates some �nancial index). From (4.24) we see that
∂θ∗C
∂θB
≥ 0, i.e. we always

have a higher θ∗C whenever the behavioral agent invests more.

- Figure 7, down-right plot : µ = 1.05, ε = 0.005, σ2 = 0.09, η ∈ (0, 0.4]. The right-down plot of
Figure 7 shows that for low values of η we �nd once again a monotone growth of the prospect
value, whereas su�ciently high η provides a unique local maximum as expected. Therefore, a
parameter which is important in order to determine the optimal strategy of our behavioral agent
and to produce internal or boundary equilibria is the summed e�ect of σ and η, as they both
in�uence the equilibrium volatility.

Performing graphical analysis, we observed a strong similarity of the implicit maximum curves which
can be obtained in the case η > 0 with those in the case of null volatility impact. Moreover, scattering
η with a �xed exogenous volatility is quite the same thing that scattering σ in the case η = 0.

To conclude, an interesting analysis can be made by depicting on the plane (θ∗C , θ
∗
B) some equilibrium

curves, i.e. we can �x two market parameters and compute the equilibrium pair (θ∗C , θ
∗
B) which depends

on the remaining free parameter. We show some equilibrium curves in Figure 8; in particular, the big
rounded dot in the plots represent the equilibrium obtained with the following parameters' values:
µ = 1.02, ε = 0.005, σ = 0.6 and η = 0.1. Hence, approximating with order 10−5, we have

(θ∗B , θ
∗
C) = (0.50097, 0.05511), µ̂∗ = 1.02278, σ̂2∗ = 0.41561.

On each plot we reported the lower and the upper bound of the range of the free parameter, which is
scattered with a constant mesh size. As expected, Figure 8 shows that greater drift parameters imply a
growth in the optimal demand levels of both investors, whereas an increase in the volatility parameters
has an opposed e�ect. Quite interestingly, from the down-left plot we see that as σ varies it seems
that the equilibrium curve is convex. Furthermore, the down-right plot shows that with this choice of
market parameters, the e�ect of η on θ∗C is very weak.
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Figure 8: equilibrium curves depending on one market parameter with positive volatility impact.

In order to avoid misunderstanding of these results, we recall that equation (4.24) speci�es the way θ∗C
reacts on θB (but not the reaction on θ∗B when we vary one or more parameters!). Therefore, we can

observe positive correlation among the optimal demand levels even if
∂θ∗C
∂θB

< 0. Just as an example, we

have
∂θ∗C
∂θB

< 0 if and only if σ < 0.6344 but at the same time a decrease in σ �pushes up� θ∗C(·) thanks to
the SOSD. In our case, it turns out that the overall e�ect of a decrease in σ is to raise θ∗B and θ∗C(θ∗B)
also for σ < 0.6344.

4.3 The model with two EU agents

We now perform a detailed analysis of a model analogous to the previous one, but this time we consider
the case of two interacting classical agents, both characterized by CARA utility functions. The aim of
this section is to highlight similarities and di�erences w.r.t. to the preceding scenario, also clarifying
some aspects of our setting thanks to the greater availability of explicit formulas. However, we will see
that in the general case graphical analysis still remains the best tool; in fact the complexity due to the
presence of many parameters makes it di�cult to obtain friendly expressions.

To begin, we keep the same hypothesis on the market structure, i.e. Assumption 4.1 will be in force
throughout this section. Concerning our traders, we will identify them with the subscripts 1 and 2; we
suppose a common initial endowment W0,1 = W0,2 = 1 and their strategies will be denoted as θ1 and
θ2. Moreover, regarding their preferences we have

Assumption 4.4 (CARA classical agents with no-short selling). The classical agents' utility functions
are

u1(x) = 1− exp(−λ1x), (4.29)

u2(x) = 1− exp(−λ2x), (4.30)

where λ1, λ2 > 0 are the constant absolute risk aversion coe�cients. Moreover, we assume

min {λ1, λ2} >
2ε

σ2
. (4.31)

Finally, short-selling is not allowed, i.e. θ1, θ2 ≥ 0.

Assumptions 4.1 and 4.4 are imposed to retain a framework as much as possible similar to the previ-
ous one; in particular, we will partially recover analogous results. We observe that the constraint (4.31)
is nothing but a second order condition which ensures the well-posedness of our model; in particular,
it is imposed to have a maximum for the objective functions of our investors, similarly to what we did
in the case of one EU and one CPT trader. Nonetheless, the presence of two possibly distinct CARA
coe�cients makes the analysis more involved (and interesting). Finally, w.l.o.g. we restrict our atten-
tion to equilibria with (θ1, θ2) ∈ R2

+. Intuitively, this can be done as our investors are substantially
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of the mean-variance type, thus short-selling would induce a lower mean and a higher variance. In
fact, the reason is similar to that explained at the beginning of Section 4.2.2: under reasonable market
conditions, if one agents selects θ∗i ≥ 0, then for the other trader it is never optimal to choose a negative
risky investment level. However, we are not able to exclude a priori the existence of an equilibrium
with both negative θi; of course, this can be considered a pathological situation as Assumptions 4.1
imposes a non negative exogenous risk premium; hence it will not receive our attention.

We now proceed as usual; at �rst, we write down the objective functions of the two investors. Then,
we look for pure strategy equilibria and this will be done by using �rst and second order optimality
conditions, also providing explicitly the equilibrium strategies in some particular cases. We remark the
importance of the symmetry that underlies our model; this fact allow us to develop the analysis only
for one trader, the other being almost identical as it is su�cient to interchange subscripts. The main
result concerning this model is the following Proposition, whose proof can be found in the Appendix
together with those of the subsequent corollaries.

Proposition 4.3. Under Assumptions 4.1 and 4.4, for every choice of the parameters (µ, ε, σ2, η) and
(λ1, λ2) the model is well-posed and there exist an equilibrium. Moreover, there are only two types of
equilibria, namely:

- boundary equilibria with θ∗1 = θ∗2 = 0;

- internal equilibria with (θ∗1 , θ
∗
2) ∈ R2

++ := (0,+∞)
2
.

To better understand the conclusions of this model, it is necessary to split the cases with (η > 0) or
without (η = 0) volatility impact. We begin with the easier one.

Corollary 4.1. Assume η = 0. Then the equilibrium strategies are

θ∗1 =
(µ− 1)(λ2σ

2 − ε)
(λ1σ2 − 2ε)(λ2σ2 − 2ε)− ε2

, θ∗2 =
(µ− 1)(λ1σ

2 − ε)
(λ1σ2 − 2ε)(λ2σ2 − 2ε)− ε2

. (4.32)

Consequently, we have the following characterizations:

- θ∗1 = θ∗2 = 0 ⇐⇒ µ = 1;

- if µ > 1, then θ∗1 R θ∗2 ⇐⇒ λ1 Q λ2.

Before passing to the case with positive volatility impact, there are some interesting facts to highlight.
First of all, the case ε = 0 usually reduces to the classic results. Secondly, these equilibria can be
represented as straight lines on the plane (θ1, θ2). In fact, it is immediate to see that if µ ≥ 1, then we
have

θ∗1 =

(
λ2σ

2 − ε
λ1σ2 − ε

)
θ∗2 ,

which obviously implies the preceding characterization. Now, a straightforward sensitivity analysis gives
these results:

∂θ∗1
∂µ

> 0,
∂θ∗1
∂ε

> 0,
∂θ∗1
∂σ2

< 0,
∂θ∗1
∂λ1

< 0,
∂θ∗1
∂λ2

< 0.

In particular, the last inequality can be interpreted in this way: the more agent 2 is risk-averse, the less
she will invest in stock; as a consequence, agent 1 will lower her risky exposure too.
Note that we can also explicitly compute a no-leverage condition; speci�cally, agent 1 will not borrow
money if and only if

λ1 ≥ λNL1 :=
(µ− 1)(λ2σ

2 − ε) + ε(2λ2σ
2 − 3ε)

σ2(λ2σ2 − 2ε)
,

and a similar expression can be obtained for agent 2. Standard computations imply

∂λNL1

∂µ
> 0,

∂λNL1

∂ε
> 0,

∂λNL1

∂σ2
> 0,

∂λNL1

∂λ2
< 0.

Therefore, if the return parameters µ and ε increase, then our investor is more favorable to exploit
leverage. Hence, she behaves in this way because she tries to reach a higher terminal wealth by gambling
with the money of someone else. Note that this policy is adopted even if the exogenous volatility grows;
thus, risky investment is more attractive when someone else bears negative results!

To conclude, we make a comparison to the case with one CPT trader and no volatility impact.
We stress that with the presence of a CPT investor, the existence of the equilibrium was not always
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Figure 9: di�erent joint behavior of equilibrium strategies depending on λ2.

ensured and it also depended on µ, whereas in this case (4.31) does not and well-posedness always
con�rms existence. This observation applies to the case η > 0 as well, because Proposition 4.3 imposes
no restrictions on η.

Finally, we note that equilibria with null risky investment by both EU and CPT agents were available
when µ = 1, as it happens now. Nonetheless, we had to impose the additional necessary condition α = β,
which can now be removed. In fact, in this model zero-demand levels can be simply characterized by a
market parameter condition, thus ignoring the preferences of our investors. Passing to the endogenous
volatility case, we obtained the subsequent result.

Corollary 4.2. Assume η > 0. We have the following facts:

(i) if λ1 = λ2 = λ, then

θ∗1 = θ∗2 =
−(λσ2 − 3ε) +

√
(λσ2 − 3ε)2 + 10ηλ(µ− 1)

5ηλ
; (4.33)

in particular, θ∗1 = θ∗2 = 0 ⇐⇒ µ = 1;

(ii) if λ1 6= λ2, then θ
∗
1 = θ∗2 = 0 =⇒ µ = 1 but not viceversa;

(iii) if µ > 1, then θ∗1 R θ∗2 ⇐⇒ λ1 Q λ2.

In the case λ1 = λ2, the equilibria always lie on the bisector of the plane (θ1, θ2). Thanks to the
explicit expression (4.33), we are able to perform a sensitivity analysis over θ∗1 , obtaining the same
results as before. On the contrary, it is interesting to compute the updated no-leverage condition,
which becomes

λ1 ≥ λNL1 :=
2(3ε+ µ− 1)

5η + 2σ2
;

in turn, this gives a negative dependence on σ2.
Remarkably, in the case µ > 1 the characterization of the demand levels is still valid and it only

depends on the comparison between CARA coe�cients. This property is exactly the same which can
be found in a standard portfolio selection problem, i.e. when ε = η = 0, so the model reduces to a
non-impact version. In case (ii) of Corollary 4.2, we do not have the reversed implication; this is simply
due to the possible presence of such an impact, which may induce non-zero risky investment.

A �nal observation concerns the joint behavior of the optimal policies. It is not di�cult to �nd two
numerical examples14 which show that they can reveal di�erent trends. In Figure 9 we can see that the
most-left curve exhibit both decreasing investment levels as λ2 grows, whereas in the right-most curve
we have an increasing θ∗1 .

5 An equilibrium model with many heterogeneous investors

In the previous section we analyzed an hypothetical �nancial market where only two active agents were
allowed to place orders, and those investors could be thought as large traders, in that they a�ected the
equilibrium stock return. Implicitly, we hid a number of small traders behind the action of a single
market maker who was able to absorb every demand or o�er level. Now, we would like to give an
interpretation of what happens �behind the curtains �; in other words, we are going to build a model

14In the left-most curve we selected µ = 1.01, ε = 0.03, σ = 0.2, η = 0.05 and λ1 = 1, whereas in the right-most it is
µ = 1.07, ε = 0.01, σ = 0.02, η = 0.05 and λ1 = 1.
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where many small EU agent and many small CPT agents have access to a �nancial market. Then, we
will try to merge the economic decisions of all these investors and this should engender an equilibrium
with endogenous prices or returns. An interesting feature of our model is that it resembles a pure
competition scenario but at the same time every agent is supposed to be price maker. However, we will
see that in equilibrium only the classical agents play a role in determining the equilibrium quantities,
whereas the behavioral traders stay out of the risky asset market. Consequently, when the number of
EU investors grows we expect to see something similar to a pure competition economy with price taking
agents, and this is indeed the case (see Remark 5.1).

Now, we introduce the main hypothesis regarding the traders and the �nancial market.

Assumption 5.1 (CARA classical agents). There are I classical agents, each of them endowed with
an initial wealth W i > 0, i = 1, . . . , I, and an utility function

uiC(x) = 1− exp(−λix), i = 1, . . . , I , (5.1)

where λi > 0 is the constant absolute risk aversion coe�cient of the i-th agent.

Assumption 5.2 (Risk-neutral loss-averse behavioral agents). There are H behavioral agents, each of
them endowed with an initial wealth Wh > 0, h = 1, . . . ,H and utility functions

uh+(x) = x, uh−(x) = kh−x, h = 1, . . . ,H, (5.2)

with kh− ≥ 1 for h = 1, . . . H. Moreover, the adjusted reference wealth is x0 = 0 for every behavioral
agent and the probability weighting functions wh+(·) and wh−(·) satisfy Assumption 2.2 and the hypothesis
of Proposition 3.2 for h = 1, . . . ,H.

Note that we are going to use absolute wealth and investment levels instead of percentage levels.
Moreover, we suppose risk-neutrality for the CPT agents in order to avoid loss-aversion violation and,
at the same time, to retain some analytic tractability. In fact, as long as kh− ≥ 1, loss aversion is now
a property of these preferences and the unpleasant consequences of CRRA utility functions that we
saw in Section 3.2 are ruled out15. Besides this, we do not assume Kahneman-Tversky type probability
distortions, as we will prove our main results under more general hypothesis. Finally, when maximizing
their respective objective functions, our agents take into consideration that a lot of small traders are
active in their market. To the best of our knowledge, this is the �rst time that many EU and many
CPT investors, both with heterogeneous preferences, are considered in the literature.

Assumption 5.3 (Market structure).

- There is a risk-free asset (bond) in perfectly elastic supply with unit price set equal to 1 and a deter-
ministic return r > 0;

- There is a risky asset (stock) with n > 0 outstanding shares and a per-share dividend normally dis-
tributed, namely D ∼ N (µ, σ2), with µ > 0, σ > 0.

It is clear that normal market conditions require r ≥ 1, i.e. a non negative interest rate. However,
we do not impose any other restriction over these parameters. Moreover, we will allow nor short-selling
neither taking leverage by our agents and we suppose that there are not trading frictions or other
constraints. Importantly, this is a game-theoretical model too. To better understand it, we propose a
speci�c pure strategy equilibrium and we will check that this equilibrium can be sustained by a system
of conjectures where every agent considers as given the strategy of every other agent. Obviously, all
the traders must share the same beliefs about the return of the risky asset in order to avoid as much
as possible computational di�culties. On one hand, we are able to provide su�cient conditions and an
analytic proof for the existence of such equilibrium. Not only, we will see that it is indeed robust, in the
sense that removing some constraints or varying some parameters is substantially innocuous, as well
as a coalition proofness analysis reveals that it is resistant to multiple deviations. On the other hand,
we were not able to prove that our suggested equilibrium is unique and we still rely on numerical and
graphical analysis when doing some comparative statics.

Now, we need some further notations. Firstly, θiC and θhB denote the risky investment level of i-th
EU agent and h-th CPT agent respectively. Hence, the no short-selling and no leverage constraints can
be easily written as

θiC ∈ [0,W i], θhB ∈ [0,Wh], i = 1, . . . , I, h = 1, . . . ,H. (5.3)

15Obviously, we lose the overall S-shaped form of the utility function.
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Other quantities that will result useful are:

WC :=

I∑
i=1

W i, WC−i := WC −W i; (5.4)

in other words, WC is the total wealth at disposal of the pool of classical agents, whereas from the
point of view of the i-th agent, WC−i is the total wealth of the other EU investors joined together.
Given this, market clearing condition imply that the unitary price p of the risky asset is determined by
the following condition:

I∑
i=1

θiC +

H∑
h=1

θhB = np, (5.5)

i.e. the overall demand must equal the total supply. Thus, once every optimal strategy is known, it is
straightforward to compute the equilibrium price. Whatever the price is, we are able to �nd the risky
asset return R, namely

R :=
D

p
, R ∼ N

(
µ

p
,
σ2

p2

)
. (5.6)

Let's specify the suggested equilibrium and the su�cient conditions that ensure its sustainability. As
usual, equilibrium quantity will be denoted with a ∗.

Equilibrium conjecture. There exists an equilibrium with trading strategies

θi∗C = W i, i = 1, . . . , I, (5.7)

θh∗B = 0, h = 1, . . . ,H. (5.8)

A sensible economic interpretation of these strategies is that the representative small CPT trader
behaves like a typical householder who assigns all her savings to bonds, whereas the small EU agent
makes a totally risky investment. 16

Now, if our conjecture leads to an e�ective equilibrium, then we would have

p∗ =
WC

n
, R∗ ∼ N

(
µ

p∗
,
σ2

p∗2

)
. (5.9)

We will prove its existence under the following assumption.

Assumption 5.4 (Su�cient condition for the existence of the equilibrium).

- the equilibrium risk premium is strictly positive, i.e.

µ

p∗
> r; (5.10)

Intuitively, condition (5.10) assures a positive risky investment in equilibrium by the representative
EU agent; next, we look for ranges of the initial wealths of the EU traders and for the loss aversion
coe�cients for which the conjecture reveals true. We can prove the following result.

Proposition 5.1. Under Assumptions 5.1 - 5.4, there exists a threshold

W i =



2
√
3

3

√
nWC−i(µ−λinσ2)

r sin
(
π
3 + 1

3asin
(

3
√
3λiσ2

2

√
rnWC−i

(µ−λinσ2)3

))
−WC−i if λi < µ

nσ2 ,

3

√
µnWC−i2

r −WC−i if λi = µ
nσ2 ,

− 2
√
3

3

√
nWC−i(µ−λinσ2)

r sin
(

1
3asin

(
3
√
3λiσ2

2

√
rnWC−i

(µ−λinσ2)3

))
−WC−i if λi > µ

nσ2 ,

(5.11)

where asin(·) denotes the principal arcsine, such that ∀ W i ∈ (0,W i] the optimal strategy for the i-th
classical agent is the conjectured one, namely θi∗C = W i, i = 1, . . . , I.

16We note that this policy is indeed consistent with the classical theory of portfolio selection if we think to our two
assets as of two mutual funds (e.g. our risky asset can represent some index-linked derivative) and EU agents seeking an
expected return equal to that of the tangency portfolio in an e�cient frontier framework. In fact, this would imply null
investment in the risk-free asset and a mean-variance e�cient frontier portfolio selection, as expected by the EU nature
of those traders.
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Proof. See the Appendix.

The meaning of the bound imposed by W i is that if W i is small enough not to excessively distort
the risky asset return, then it will be optimal for the i-th agent to select θi∗C = W i. Moreover, W i

usually represent a non-negligible fraction of the overall wealth of the economy, thus the representative
EU investor is not necessarily too small. In the particular case of uniformly distributed endowments,
we are able to provide further details.

Remark 5.1. If we further assume the same initial endowment W i for every EU agent, then it is
straightforward to see that WC = IW i and WC−i = (I − 1)W i. In this case, we obtain the upper
bound

W i =
n(I − 1)(Iµ− λinσ2)

rI3
, i = 1, . . . , I. (5.12)

To see this, simply replaceWC−i with (I−1)W i in (A.17) and solve the polynomial equation P (W i) = 0.

For W i to be strictly positive, we have to impose an additional condition over the preferences of our
classical agent; more speci�cally, we have

W i > 0 ∀ i = 1, . . . , I ⇐⇒ max
i=1,...I

λi <
Iµ

nσ2
. (5.13)

Given this, we can select any positive initial wealth level W i ∈ (0,mini=1,...,IW i] and then compute
the equilibrium price p∗ and the corresponding return R∗ as indicated by (5.9).

In particular, we see that W i positively depends on µ, whereas it depends negatively on r, σ2 and
λi. Moreover, as the number of EU agents becomes larger and approaches in�nity, condition (5.13)

is automatically satis�ed. At the same time, we have limI→+∞W i = 0; hence, we recover a setting
very similar to a perfect competition framework, where every trader has a negligible impact over the
equilibrium price due to her vanishing in�uence over the market.

An even more interesting analysis can be made if we restrict our attention to the case with homo-
geneous preferences, i.e. λi = λ for i = 1, . . . , I, and we choose the maximum initial endowment, that
is to say

W i = W :=
n(I − 1)(Iµ− λnσ2)

rI3
.

Hence, we are able to explicitly compute

p∗ ≡ IW

n
=

(I − 1)(Iµ− λnσ2)

rI2
;

by straightforward computations, we can see that

∂p∗

∂I
=

(Iµ− λnσ2) + (I − 1)λnσ2

rI3
> 0.

Besides this, we have

lim
I→+∞

p∗ =
µ

r
,

lim
I→+∞

E [R∗] = r.

Otherwise stated, the equilibrium risk premium of the stock asymptotically tends to vanish in a mono-
tone decreasing way, as the number of EU agents increases. This is just another con�rm of the perfect
competition scenario that appears in the limit, where expected pro�ts are reduced to zero and each
agent simply becomes price taker. Finally, we note that p∗ is increasing in µ and decreasing in σ2, n, r
and λ, as economic intuition suggests.

Turning back to the existence problem, we now have to show that our Equilibrium Conjecture
indeed suggests the best strategies for the CPT agents too. In other words, we must check that
every behavioral investor optimally chooses θhB = 0, given that θiC = W i, i = 1, . . . , I, and θkB = 0,
k = 1, . . . , h− 1, h+ 1, . . . ,H. Formally, we state the following result.
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Proposition 5.2. Under Assumptions 5.1 - 5.4, there exists a threshold

kh− :=

∫ +∞

0

wh+

(
1−N

(
(x+ r)p∗ − µ

σ

))
dx∫ r

0

wh−

(
N
(

(−x+ r)p∗ − µ
σ

))
dx

. (5.14)

such that ∀ kh− ∈ [kh−,+∞) the optimal strategy for the h-th behavioral agent is the conjectured one,
namely θh∗B = 0, h = 1, . . . ,H.

Proof. See the Appendix.

We note the range imposed in (5.14) ensures θh∗B = 0 for the h-th CPT investor. Now, it is clear that
if these bounds are too restrictive, then the existence result will be weak in the sense that reality hardly

matches our requirements. However, we will see later that kh− is near to 1, hence we do not require
strong loss aversion, which intuitively guarantees a null risky investment. Furthermore, the analytically

derived bound kh− reveals very accurate; that is to say that numerical evidence shows that even for kh−
really close but lower than kh−, we no more have the equilibrium. The subsequent graphical analysis
will highlight this fact.

Finally, combining Proposition 5.1 and Proposition 5.2, we can analytically state the existence of
our proposed equilibrium. Once again, we observe that all the su�cient hypotheses are nothing but
Assumption 5.4 and the two bounds given by (5.11) and (5.14).

Remark 5.2. We note that in the Appendix we also prove with equation (A.20) that the stock price
p does not in�uence the policy of the behavioral investor, who is only interested in the terminal return.
This fact completely agrees with economic intuition and it seems a quite natural requirement. However,
we also note that in the CRRA case this is no longer true unless α = β (and this is one reason why we
discarded power utility functions).

Furthermore, Property (iii) in the proof of Proposition 5.2 shows that the value function is strictly
increasing in the dividend µ and strictly decreasing in the risk-free return r. Consequently, if we are
able to �nd a particular set of values which support the equilibrium, then we still have an equilibrium
ceteris paribus but decreasing µ (or increasing r) as long as (5.10) is ful�lled. Once again, this re�ects
economic intuition, as a higher r makes risk-free investment more favorable for a FOSD agent, hence
making our equilibrium with θh∗B = 0 resist. Numerical evidence suggests that this is also true for higher
levels of the volatility σ2; however, we were not able to provide an analytic proof.
Finally, the argument for the existence of the equilibrium admits any positive wealth level Wh for the
h-th behavioral trader; this is because we made our proof taking the supremum over θhB ∈ (0,+∞).
Therefore, the no-leverage constraint for the CPT agents can even be removed as it is not binding at
all.

Now it's time to make some graphical analysis in order to see what happens when we change
preference and/or market parameters. We start by choosing the usual Kahneman-Tversky probability
distortions as in (3.11) and by arbitrarily �xing a particular set of values; then we provide 3D plots where
all but one parameter are kept �xed and the selected one is allowed to vary together with θhB . Results
are shown in Figure 10. We represent on the z-axis the prospect value Uh(·) of the h-th CPT investor
and we can verify the existence of our equilibrium by depicting the plane Uh = 0: if for a parameter's
value the surface lies below that plane for all θhB > 0, then the equilibrium exists; otherwise, our agent
has an incentive to deviate by choosing the maximizing θhB . In particular, market parameters are

n = 103, WC = 103, r = 1.02, µ = 1.06, σ = 0.2,

whereas those of the h-th behavioral trader are

kh− = 1.5, γh = 0.65, δh = 0.65.

- Figure 10, top-left plot : r ∈ [1, 1.06). We sensibly choose r ≥ 1 to have a non negative interest
rate and r < 1.06 to have a positive risk premium in equilibrium. As the prospect value Uh(·) is
strictly decreasing in r for every �xed θhB > 0, we can see that for r > 1.012 the equilibrium can
be substained.
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- Figure 10, top-right plot : µ ∈ [1.02, 1.16]. The lower bound for µ follows from equation (5.10),
as p∗ = 1 in this case. As noted before, lower levels of µ are acceptable, whereas a higher payo�
of the risky asset attracts investment in the stock. The range of the parameter for which we have
the equilibrium is approximately µ < 1.0676;

- Figure 10, center-left plot : σ ∈ [0.02, 0.5]. Economic intuition is con�rmed by the fact that
a higher volatility makes risk-free investment more desirable, thus forcing the surface below the
horizontal plane Uh = 0. We computed a standard deviation σ = 0.1688 as the lowest value which
ensures equilibrium;

- Figure 10, center-right plot : kh− ∈ [1, 2]. We clearly see that for a su�ciently high loss-averse
investor, equilibrium existence can be retained; this perfectly agrees with our analytic result that

a higher kh− are still selectable. In this particular case, we computed kh− = 1.400699015, whereas
graphical experiments show that kh− = 1.40069 is a su�cient lower bound with a 10−30 error.

Hence, our estimation for kh− reveals very accurate;

- Figure 10, down-left plot : γh ∈ (0.28, 1]. Quite surprisingly, the shape of probability weighting
of the Kahneman-Tversky type for the gains that we choose does not a�ect the existence result,
as long as we maintain the same wh−(·) for the losses. We recall that γh > 0.28 is necessary in
order to have wh+(·) strictly increasing over [0, 1]; moreover, for γh = 1 we can not perform the
integration by parts used in the proof of Proposition 5.2. This is because wh+(·) does not ful�ll
the hypothesis of Proposition 3.2. However, the proof can be slightly changed and numerical
computations can still be performed, clearly leading to existence.

- Figure 10, down-right plot : δh ∈ [0.28, 1]. On the contrary, changing δh has remarkable conse-
quences, in that only for δh < 0.7264 the equilibrium is retained. This is due to the fact that
a higher δh amounts to smaller distortions for extreme probabilities, which translates in a more
objective perception of losses. This in turn leads our agent to increase her risky exposure, as she
becomes more risk-neutral.

A �nal observation concerns the so-called coalition proofness of our equilibrium. Loosely speaking, what
happens if two or more agent cooperate in order to deviate from their respective optimal strategies?
We already know that the no-leverage constraint for the behavioral agents can be removed without
a�ecting our results. Thus, even if two or more CPT investors agree to merge their initial endowments,
they will not able to �nd a better policy as long as the market parameters remain the same. Things
become far more complicated if we allow cooperation among EU traders. In fact, once a speci�c pool of
those agents is selected, we could repeat from the beginning the argument which discovers the optimal
strategy θi∗C = W i. The problem now is that the price that each agent of this pool has to consider
depends on every demand level of themselves; moreover, the conjectured invested wealth becomes WC

minus their total initial endowments. Consequently, the analysis become extremely involved and an
easy solution can hardly be found. Similar conclusions are valid if we allow cooperation among the
two types of investor. On a heuristic basis, we can say that if the total endowments of the cooperating
agents is small w.r.t. the conjectured invested wealth, then they are not able to distort the equilibrium
price; as a consequence, every member of this coalition will not have the incentive to deviate.

6 Conclusions

This paper is primarily concerned with the problem of assessing the existence of equilibria in simple
�nancial markets where multiple and possibly heterogeneous agents are allowed to interact. Our main
results give a positive answer to this question; �rstly, in the case of a market-maker driven scenario, if
we model investment decisions by one large classical and one large behavioral agent, then several types
of equilibria are shown to be sustainable. This analysis has been mostly performed through numerical
computations and graphical evidence. Secondly, when many small EU and many small CPT traders
enter the market, then an equilibrium is still attainable, even if the preferences inside each pool are not
the same. To the best of our knowledge, this approach to the problem is completely innovative and this
is the �rst time that the existence of such an equilibrium has been shown. Notably, in our second model,
each agent is supposed to be price maker but in equilibrium she substantially becomes price taker, thus
accurately mimicking actual �nancial markets. Furthermore, economic intuition is con�rmed in both
models and numerical experiments provide robustness results.
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Figure 10: 3D-plots of the prospect value for the h-th CPT agent; the surface below the horizontal
plane represents existence of the equilibrium.

A Proofs

Proof of Proposition 4.1. We start by explicitly writing the relevant statistic a1(θB , θ
∗
C) for our CPT

agent; using the integration by parts formula and the Gaussian distribution of the stock return we have:

a1(θB , θ
∗
C) =

∫ +∞

0

αtα−1w

(
1−

∫ t

−∞

1√
2πσ

exp

{
− (z − µ− εθ∗C − εθB + 1)2

2σ2

}
dz

)
dt, (A.1)

where we recall θ∗C = µ−1
σ2−2ε ; the other statistics can be explicitly similarly written. Thanks to the

assumption α = β and w+(·) ≡ w−(·), it is immediate to see that

a1(θB , θC) ≡ b2(θB , θC), a2(θB , θC) ≡ b1(θB , θC), ∀ θB , θC ∈ R. (A.2)

Moreover, the skewness of our Gaussian distribution implies a1(θB , θ
∗
C) ≥ a2(θB , θ

∗
C) for every θB ∈

[0, 1], with equality if and only if µ = 1, i.e. when there is no skewness. To see this, just note that with
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a change of variable we can write

a2(θB , θ
∗
C) =

∫ 0

−∞
α(−t)α−1w

(∫ t

−∞

1√
2πσ

exp

{
− (z − µ− εθ∗C − εθB + 1)2

2σ2

}
dz

)
dt

=

∫ +∞

0

αtα−1w

(∫ −t
−∞

1√
2πσ

exp

{
− (z − µ− εθ∗C − εθB + 1)2

2σ2

}
dz

)
dt,

and we have the result thanks to the monotonicity of w(·)17. Hence, using (A.2) we have

k0(θB , θ
∗
C) = max

(
a1(θB , θ

∗
C)

a2(θB , θ∗C)
,
b1(θB , θ

∗
C)

b2(θB , θ∗C)

)
=
a1(θB , θ

∗
C)

a2(θB , θ∗C)
≥ 1,

therefore equilibria with θ∗B = 0 in case (iv) of Theorem 3.3 are ruled out.
Now, the only relation that remains to verify in order to have an equilibrium is k− ≥ k0(θB , θ

∗
C) for

every choice of θB ∈ [0, 1]. Fortunately, calculations are somewhat simpli�ed thanks to the �rst order
stochastic dominance which stands behind the portfolio selection criteria in CPT. More speci�cally,
it readily follows from First Order Stochastic Dominance that the higher is the expected stock excess
return, the higher is the statistic a1 (and vice versa for a2, as it is a �measure� of losses). But in our
situation, a higher return can be simply obtained by raising the investment in the risky asset, namely
θB , therefore we have the relations

∂a1
∂θB

(θB , θ
∗
C) > 0,

∂a2
∂θB

(θB , θ
∗
C) < 0, ∀ θB ∈ [0, 1],

which in turn imply
∂k0
∂θB

(θB , θ
∗
C) > 0, ∀ θB ∈ [0, 1]. As a consequence of this monotonicity property, it

su�ces to check the inequality k− ≥ k0(1, θ∗C). Replacing the parameters with their respective values
and substituting the expression of θ∗C , the right-hand side becomes a complicated function of µ, ε and
σ2, involving the c.d.f. of a Gaussian random variable.

A reasoning similar to the previous one shows that k0(1, θ∗C) is increasing even in the second argu-
ment, because a higher θ∗C shifts the c.d.f. to the right. Recalling the dependences of θ∗C on the market
parameters, we immediately see that

∂k0(1, ·)
∂µ

> 0 ∀µ ∈ [1,+∞),
∂k0(1, ·)
∂ε

> 0 ∀ ε ∈ [0,+∞),
∂k0(1, ·)
∂σ

< 0 ∀σ ∈ (0,+∞).

While the �rst and the second relations are obvious, the last one follows by a combined �rst order and
second order stochastic dominance argument (i.e. a mean-variance one). In fact, an increase in σ2

leads to a lower mean and a higher variance in the c.d.f. which appears in the expression of a1 and a2;
therefore we deduce a negative dependence of k0 on the exogenous volatility parameter.
In conclusion, we are done once we have found a triple (µ∗,ε∗,σ2∗) such that

k0

(
1,

µ∗ − 1

σ2∗ − 2ε∗

)
≤ k−,

as this inequality implies existence of the equilibrium for (µ∗,ε∗,σ2∗) and any lower µ or ε is still
compatible, just like any higher σ2.

Proof of Proposition 4.2. We start by explicitly writing the statistic a1(θB , θ
∗
C) for our CPT agent with

the assumption ε = 0:

a1(θB , θ
∗
C) =

∫ +∞
0

αtα−1w

(
1−

∫ t
−∞

1√
2π(σ2+ηθB+ηθ∗C)

exp
{
− (z−µ+1)2

2(σ2+ηθB+ηθ∗C)

}
dz

)
dt, (A.3)

where we recall

θ∗C =
−σ2 +

√
(σ2)2 + 6η(µ− 1)

3η
.

17For more information about the skewness e�ects on this kind of portfolio selection model and the relative equilibria,
see [2] and [5].
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Similar expressions can be found for a2, b1 and b2. Now, the conclusion k0(θB , θ
∗
C) =

a1(θB ,θ
∗
C)

a2(θB ,θ∗C) is still

valid and we can exploit second order stochastic dominance results. Intuitively, a raise in θB will only
produce a volatility increase, thus reducing the prospect value of any selected terminal wealth; this is
why we employ k0 (0, θ∗C). Mathematically speaking, while holding θ∗C �xed we would like to have

∂k0
∂θB

< 0 ⇐⇒ ∂a1
∂θB

a2 − a1
∂a2
∂θB

< 0, (A.4)

where we suppressed the arguments for notational convenience. However, we already know that
a1(θB , θ

∗
C) ≥ a2(θB , θ

∗
C) for every θB ∈ [0, 1] thanks to the skewness of the Gaussian stock return;

furthermore, Proposition 3.3 implies

∂a1
∂θB

(θB , θ
∗
C) ≤ ∂a2

∂θB
(θB , θ

∗
C),

∂a2
∂θB

(θB , θ
∗
C) > 0,

for every θB ∈ [0, 1], as θB positively a�ects the overall variance. Therefore, inequality (A.4) is indeed
ful�lled and the monotonicity of k0 on θB implies that the existence of the equilibrium is �nally reduced
to show that

k− ≥ k0(0, θ∗C) = k0

(
0,
−σ2∗ +

√
(σ2∗)2 + 6η∗(µ∗ − 1)

3η∗

)
(A.5)

holds for some choice of the market parameters (µ∗, σ2∗,η∗) in their respective ranges and satisfying the
simpli�ed no-leverage condition 3η∗ + 2

(
σ2∗ − (µ∗ − 1)

)
≥ 0. Once such a particular triple is found, µ

can not be arbitrarily decreased because it would produce a drop in both the mean and the variance of
the c.d.f. included in a1 and a2. However, σ

2 and η can be arbitrarily increased as they do not a�ect
the mean of the c.d.f. but at the same time they increase the overall volatility. In fact, this last quantity
is given by

σ̂2 = σ2 + ηθB + ηθ∗C =
2

3
σ2 + ηθB +

√
σ4 + 6η(µ− 1)

3
,

and by straightforward computation we obtain

∂σ̂2

∂σ2
=

2

3
+

σ2√
σ4 + 6η(µ− 1)

> 0,

∂σ̂2

∂η
= θB +

2(µ− 1)√
σ4 + 6η(µ− 1)

> 0.

Proof of Lemma 4.2. The equivalence of the problems (4.16) and (4.19) follows from equation (2.5)
replacing the power utility functions and using integration by parts formula as in Lemma 4.1. For

completeness, we recall that a1(θB) is given by (A.1), simply replacing θ∗C(θB) = (µ−1)+εθB
σ2−2ε ; a2(θB) can

be similarly obtained.
To show the ill-posedness, it is su�cient to note that as θB increases we have an upward shift in

the drift of the excess risky asset return, which amounts to a right shift of the CDF that appears in

the expressions of a1 and a2; this fact is a consequence of the relation
∂θ∗C
∂θB

> 0. Therefore, a monotone
convergence argument can be used to prove that a1(θB) ↑ +∞ as θB ↑ +∞, whereas a2(θB) → 0 as
θB ↑ +∞. Moreover, a2 tends to zero faster than a power function of order β, thanks to the explicit
choice of the probability distortion w(·) as in (3.11) and the fact that we are working with Gaussian

random variables. Hence θβBa2(θB) tends to zero as well and this concludes the ill-posedness argument.
To prove (4.20), we observe that a1 and a2 are continuous functions of θB . Therefore, as θB ↓ 0, the

c.d.f. that appears in those statistics converges; note that also θ∗C converges to a constant depending on
the market parameters. To conclude, we use Lemma 3.1 which states that a1 and a2 are well-de�ned
and strictly positive, if considered as functions of the market parameters.
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Proof of Lemma 4.3. We show (4.27) only for µ̂, the other for σ̂2 being similar. Recalling equation (4.1)
and using (4.23) we obtain

∂µ̂

∂θB
(θB , θ

∗
C(θB)) = ε

(
1 +

∂θ∗C
∂θB

(θB)

)
= ε

(
2
√

(σ2 − 2ε+ ηθB)2 + 6η(µ− 1 + εθB) + ηθB + ε+ σ2

3
√

(σ2 − 2ε+ ηθB)2 + 6η(µ− 1 + εθB)

)
,

which is always positive thanks to Assumption 4.1 as long as ε > 0 and it is null when ε = 0.
To prove equations (4.26) and (4.28), we recall that V (θB) = θαBa1(θB)− k−θβBa2(θB) and

a1(θB) =
∫ +∞
0

αtα−1w

(
1−

∫ t
−∞

1√
2πσ̂2(θB ,θ∗C(θB))

exp
{
− (z−µ̂(θB ,θ∗C(θB))+1)2

2σ̂2(θB ,θ∗C(θB))

}
dz

)
dt,

a2(θB) =
∫ 0

−∞ β(−t)β−1w
(∫ t
−∞

1√
2πσ̂2(θB ,θ∗C(θB))

exp
{
− (z−µ̂(θB ,θ∗C(θB))+1)2

2σ̂2(θB ,θ∗C(θB))

}
dz

)
dt.

The case ε = 0 can be proved following a monotone convergence argument similar to the one previously
used for Lemma 4.2. However, we will follow a slightly di�erent approach, analyzing V (·) for any ε ≥ 0
and �nally seeing what happens when we have an equality.
At �rst, we note that the c.d.f. which appears in a1(·) (and similarly for a2(·)) can be written as∫ t−(µ̂(θB,θ

∗
C (θB))−1)√

σ̂2(θB,θ
∗
C

(θB))

−∞

1√
2π
e−

z2

2 dz.

Now, replacing θ∗C(θB) by using (4.23), for any given t ≥ 0 we can explicitly compute the upper extreme
of the previous integral as

ζ(θB) ≡ −
√

3
(
ε∆(θB) + ε(2ηθB + 2ε− σ2) + 3η(µ− 1)− 3tη

)
3η
√

∆(θB) + 2(ηθB + ε+ σ2)
,

where ∆(θB) :=
√

(σ2 − 2ε+ ηθB)2 + 6η(µ− 1 + εθB).
It is easy to see that for any �xed t, limθB→+∞ ζ(θB) = −∞ if ε > 0, whereas limθB→+∞ ζ(θB) = 0

if ε = 0. Intuitively, using a monotone convergence argument, one can argue that a1(θB) → +∞ and

θβBa2(θB)→ 0 as θB → +∞ (the presence of the factor θβB is not relevant thanks to the explicit choice
of the probability distortion w(·) as in (3.11) and the fact that we are working with Gaussian random
variables).

Now, let's �x a diverging sequence {θnB}n∈N and let's compute limn→+∞ a1(θnB , θ
∗
C(θnB)). Note that

this is just a sequence of well-de�ned strictly positive real numbers, as Lemma 3.1 states. Moreover,
the previous limit exists because the sequence {a1(θnB , θ

∗
C(θnB))}n∈N becomes eventually monotone in-

creasing. To prove this fact, one can compute

dζ

dθB
(θB) = −

√
3
(
2∆(θB) + ηθB + ε+ σ2

) [
ε∆(θB) + ε(2ηθB + 2ε+ 5σ2)− 3η(µ− 1) + 3ηt

]
6∆(θB) [∆(θB) + 2(ηθB + ε+ σ2)]

3/2
.

Hence we can choose n̄ ∈ N such that ∀ n > n̄, ∀ t ≥ 0 we have dζ
dθB

(θnB) < 0. Now we can conclude

that a1(θB) → +∞ for any choice of ε ≥ 0, whereas θβBa2(θB) → +∞ if ε = 0 and θβBa2(θB) → 0 if
ε > 0. Therefore, (4.28) follows immediately; on the other hand, (4.26) holds because 0 < α < β ≤ 1
and ζ(θB)→ 0 as θB → +∞ if ε = 0.

Proof of Proposition 4.3. Suppose that the market parameters as well as λ1, λ2 are �xed accordingly to
Assumptions 4.1 and 4.4. Now we restrict our attention to the case η > 0, the case η = 0 being fully
analyzed in the proof of Corollary 4.1.

Let agent 2 select a speci�c θ2 ≥ 0 as her investment level; using (4.6) as the expression of the
terminal wealth of agent 1, standard computations lead to the following optimization problem for our
EU agent 1:

max
θ1∈[0,+∞)

1− exp

{
ηλ21
2
θ31 +

(
λ21(ηθ2 + σ2)

2
− ελ1

)
θ21 + (−λ1 (εθ2 + µ− 1)) θ1 − λ1

}
, (A.6)
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which is obviously equivalent to minimize the third-degree polynomial which appears as the argument of
the exponential. Note that at the same time, agent 2 faces a similar problem and �rst order conditions
for internal equilibria can be easily obtained:{

f1(θ1, θ2) := 3ηλ1θ
2
1 + 2θ1

[
λ1(σ2 + ηθ2)− 2ε

]
− 2(µ− 1 + εθ2) = 0,

f2(θ1, θ2) := 3ηλ2θ
2
2 + 2θ2

[
λ2(σ2 + ηθ1)− 2ε

]
− 2(µ− 1 + εθ1) = 0.

(A.7)

Now, for any �xed θ2 ≥ 0 there exists a unique minimum point θ1 ≥ 0 for the aforementioned third-
degree polynomial; this follows by the fact that f1(θ1, ·) is nothing but a convex parabola with f1(0, ·) ≤
0. Not only, we can also explicitly compute that global minimum point over [0,+∞) as

θ1(θ2) =
−
[
λ1(σ2 + ηθ2)− 2ε

]
+

√
[λ1(σ2 + ηθ2)− 2ε]

2
+ 6ηλ1(µ− 1 + εθ2)

3ηλ1
≥ 0, (A.8)

which represents our candidate equilibrium strategy for θ1. Therefore, we can replace θ1 with θ1(θ2)
in the second equation of (A.7) to obtain the necessary condition f2(θ1(θ2), θ2) = 0. The existence of
a non negative root to this equation is clearly guaranteed if we observe that f2(θ1, ·) is a continuous
function as well as θ1(·); besides this, f2(θ1(0), 0) ≤ 0 and limθ2→+∞ f2(θ1(θ2), θ2) = +∞. Hence,
repeating the same argument reversing the roles of θ1 and θ2, we have proved well-posedness and the
consequent existence of an equilibrium.

Next, we are going to prove that if one agent's risky demand is null, then the only strategy of the
other trader (possibly) compatible with an equilibrium is not to invest too. To �x ideas, suppose θ∗2 = 0.
Then, by (A.8) it is immediate to see that θ∗1 > 0 only if µ > 1. At this point, we have to check if θ∗2 = 0
is the best reply to θ∗1(0). However, this can not be true as f2(θ∗1(0), 0) < 0. Hence, equilibria with
only one null demand are ruled out and the remaining equilibria are just the internal or the boundary
ones.

Proof of Corollary 4.1. For the sake of clarity, we will conduct our analysis by the side of agent 1. From
the �rst order conditions in (A.7) it is easily obtained

θ1(θ2) =
µ− 1 + εθ2
λ1σ2 − 2ε

, (A.9)

which is always non negative thanks to our assumptions. Now, if θ∗2 = 0 then a necessary and su�cient
condition to have an equilibrium with θ∗1 = 0 is µ = 1. In fact, �rst order condition becomes

(µ− 1) + εθ1(0) = 0;

hence, θ∗1 > 0 is not compatible with such an equilibrium and θ∗1 = 0 requires µ = 1. Finally, by the
second order conditions we �nd that (4.31) e�ectively ensures that the objective functions are indeed
maximized for both investors. On the other hand, if θ∗2 > 0 then the equilibrium is the solution of the
following linear system {

θ∗1(λ1σ
2 − 2ε)− (µ− 1 + εθ∗2) = 0,

θ∗2(λ2σ
2 − 2ε)− (µ− 1 + εθ∗1) = 0,

(A.10)

which simply gives the optimal policies of (4.32).

Proof of Corollary 4.2. If λ1 = λ2 = λ, then (A.7) shows that f1(θ1, θ2) = f2(θ2, θ1) for any choice
of θ1, θ2. At the same time, for (θ∗1 , θ

∗
2) to be an internal equilibrium, we must have f1(θ∗1 , θ

∗
2) =

f2(θ∗1 , θ
∗
2) = 0; hence, it follows that a necessary condition is f2(θ∗1 , θ

∗
2) = f2(θ∗2 , θ

∗
1) = 0, which in turn

implies θ∗1 = θ∗2 because f2(·, ·) is not symmetric in its arguments. As a consequence, the equilibrium
strategy for both agents will be the positive root of f1(θ∗1 , θ

∗
1) = 0, which is nothing but (4.33). In

particular, if µ = 1 it reduces to the null-investment solution.
The next step is to show that θ∗1 = θ∗2 = 0 implies µ = 1; but this follows immediately by (A.8),

as µ > 1 would surely induce a positive risky investment. The converse is obviously not true as (A.8)
shows, e.g. in the case of strictly positive ε and η.
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Finally, if µ > 1 we look at the dependence of the demand from the CARA coe�cient. We have
already seen that λ1 = λ2 implies θ∗1 = θ∗2 . Now, suppose λ1 > λ2 and θ∗1 ≥ θ∗2 , the opposite case being
almost identical. As µ > 1, we will have θ∗1 , θ

∗
2 > 0, i.e. internal equilibria; therefore, (A.7) must hold.

Moreover, thanks to (4.31) we can compute

f1(θ1, θ2)− f2(θ1, θ2) = 3η(λ1θ
2
1 − λ2θ22) + 2ηθ1θ2(λ1 − λ2) + 2σ2(λ1θ1 − λ2θ2)− 2ε(θ1 − θ2)

> 2(θ1 − θ2)(σ2λ2 − ε) > 0

which is not compatible with an equilibrium. Hence, it follows θ∗1 < θ∗2 as we wanted.

Proof of Proposition 5.1. To �x ideas, let's choose the i-th agent as our representative EU investor. Her
goal is to maximize the expected utility of her terminal wealth, which as usual is given by

Xi
C = (W i − θiC)r + θiCR = W ir + θiC

(
D

p
− r
)
. (A.11)

Note that the unitary price p that the i-th agent has to take into consideration is determined by the
market clearing condition combined with the Equilibrium Conjecture; more precisely, it must be true
that

WC−i + θiC = np.

Now we can substitute for p in (A.11), use the explicit form of uiC(·) and the Gaussian distribution of
the risky asset dividend to obtain

E
[
uiC
(
Xi
C

)]
= E

[
1− exp

{
−λiW ir − λiθiC

(
Z
σ

p
+
µ

p
− r
)}]

, (A.12)

where Z ∼ N (0, 1). Let's ignore for the moment the constraint on the initial endowment given by
(5.11). Then, the optimization problem of our trader becomes

max
θiC∈[0,W i]

E
[
uiC
(
Xi
C

)]
;

after tedious (but not di�cult) computations, the previous objective function reduces to

1− exp
{
−λ

inWC−i[2θiC(λinσ2−µ)+WC−i(λinσ2−2µ)]
2(θiC+WC−i)2

− λi
(
W ir − θiCr − λin2σ2

2 + nµ
)}
. (A.13)

At this point we have to check that our conjecture leads to a sustainable equilibrium; for this, we have
to show that

∂E
[
uiC
(
Xi
C

)]
∂θiC

> 0, ∀ θiC ∈ (0,W i). (A.14)

Using (A.13), we can explicitly compute

∂E
[
uiC
(
Xi
C

)]
∂θiC

= − exp {· · · }

[
λir +

λinWC−i (θiC(λinσ2 − µ)− µWC−i)
(θiC +WC−i)3

]
, (A.15)

where the dots substitute a cumbersome expression. After some manipulation, we �nd that the condition
which assures the existence of the suggested equilibrium becomes

P (θiC) > 0, ∀ θiC ∈ (0,W i), (A.16)

where P (·) is a third degree polynomial de�ned by

P (x) := −rx3 − 3rWC−ix2 −WC−i(λin2σ2 − nµ+ 3rWC−i)x+WC−i2(nµ− rWC−i). (A.17)

Now, it is immediate to check that P (0) > 0. In fact, we have

P (0) = WC−i2(nµ− rWC−i)

= WC−i2(nµ− rWC + rW i)

> WC−i2rW i > 0,
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thanks to (5.10). Furthermore, we state that P (W i) ≥ 0 is necessary and su�cient in order to verify
(A.16). To see this, we note that limx→+∞ P (x) = −∞; combining this with P (0) > 0, we deduce the

existence of at least one strictly positive real solution to the equation P (x) = 0. Let W i > 0 be that

solution; it is now su�cient to note that W i actually is the unique strictly positive solution. In fact, it
is straightforward to compute the unique in�exion point of P (·) as −WC−i < 0. Hence, the other two
roots of P (·) are real and negative or they are complex conjugate. Consequently, we have P (θiC) > 0

∀ θiC ∈ [0,W i] and repeating all the previous argument adding the constraint W i ∈ [0,W i] concludes.

To obtain the upper bound W i it is su�cient to explicitly compute the positive root of P (·); using the
ad hoc formula for cubic equations, we �nd (5.11).

Proof of Proposition 5.2. Let's �x the h-th behavioral investor as our representative agent. For com-
pleteness, we now write down the analogous to (A.11) for the terminal wealth Xh

B :

Xh
B = (Wh − θhB)r + θhBR = Whr + θhB

(
D

p
− r
)

; (A.18)

however, in this case the price p is given by the condition

WC + θhB = np,

which takes into account the Equilibrium Conjecture. What really cares to our trader is the c.d.f. of
the excess risky return; thanks to the Normal distribution of R it can be written as

F (x) = P {R− r ≤ x} = N
(

(x+ r)p− µ
σ

)
,

where N (·) is the c.d.f. of a standard Gaussian random variable. The next step is to use equation (2.5)
in order to obtain her value function; exploiting the �risk-neutrality� assumption in (5.2) and the usual
integration by parts, we have

Uh(θhB) =

∫ +∞

0

θhBx d[−wh+(1− F (x))]−
∫ 0

−∞
(−kh−θhBx) d[wh−(F (x))]

= θhB

[∫ +∞

0

wh+(1− F (x)) dx− kh−
∫ +∞

0

wh−(F (−x)) dx

]
= θhB f

h
(
r, µ, σ,WC , n, θhB , k

h
−
)
,

where fh(· · · ) is obviously de�ned by the last equality. Therefore, the problem of the h-th behavioral
agent is nothing but

max
θhB≥0

θhB f
h
(
r, µ, σ,WC , n, θhB , k

h
−
)
. (A.19)

Now, the following properties are easy to check:

(i) the value function is null for the choice θhB = 0;

(ii) fh(· · · ) is strictly decreasing in kh−;

(iii) fh(· · · ) is strictly decreasing in r, whereas it is strictly increasing in µ;

(iv) for every choice of c > 0, we have

fh
(
r, cµ, cσ, cWC , cn, cθhB , k

h
−
)

= fh
(
r, µ, σ,WC , n, θhB , k

h
−
)
. (A.20)

Brie�y, (i) and (ii) are straightforward by the de�nition of the value function and fh(· · · ). Then, (iii)
is a direct consequence of the monotone increasing property of the probability weightings w±(·); �nally,
the positive homogeneity property (iv) can be directly veri�ed using the explicit expression of F (·). We
recall that the economic interpretation of (iii) and (iv) can be found in Remark 5.2.

Thanks to (i) and (ii), our result will be proved if we show the existence of a lower threshold kh− > 0
such that

sup
θhB>0

fh
(
r, µ, σ,WC , n, θhB , k

h
−

)
≤ 0. (A.21)
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To better understand the way kh− can be computed, let's �x a particular kh−. Using the explicit form of
fh(· · · ), our requirement becomes

sup
θhB>0

fh+(· · · )− kh−fh−(· · · ) ≤ 0, (A.22)

where we have implicitly de�ned

fh+ =

∫ +∞

0

wh+

(
1−N

(
(x+ r)

WC+θhB
n − µ

σ

))
dx ,

fh− =

∫ +∞

0

wh−

(
N

(
(−x+ r)

WC+θhB
n − µ

σ

))
dx .

Now, one can check that

∂fh+

∂θhB
= −

∫ +∞

0

wh+
′
[1−N (· · · )]φ(· · · )

(
x+ r

nσ

)
dx < 0, (A.23)

where the dots substitute the arguments of N (·), and φ(·) is the probability density function of a
standard Gaussian random variable. Obviously, the previous inequality implies that fh+ as a function
of θhB attains its supremum at θhB = 0. Moreover, for any �xed θhB > 0, we have

∫ r

0

wh−

(
N

(
(−x+ r)W

C

n − µ
σ

))
dx <

∫ r

0

wh−

(
N

(
(−x+ r)

WC+θhB
n − µ

σ

))
dx

<

∫ +∞

0

wh−

(
N

(
(−x+ r)

WC+θhB
n − µ

σ

))
dx = fh−(· · · ). (A.24)

Turning back to the original estimation (A.21), we �nd

sup
θhB>0

fh(· · · ) = sup
θhB>0

[
fh+(· · · )− kh−fh−(· · · )

]
≤ sup
θhB>0

fh+(· · · )− kh− inf
θhB>0

fh−(· · · )

≤ fh+(· · · )
∣∣
θhB=0

− kh− inf
θhB>0

∫ r

0

wh−

(
N

(
(−x+ r)W

C

n − µ
σ

))
dx

=

∫ +∞

0

wh+

(
1−N

(
(x+ r)W

C

n − µ
σ

))
dx− kh−

∫ r

0

wh−

(
N

(
(−x+ r)W

C

n − µ
σ

))
dx,

(A.25)

where we recall that WC

n = p∗. In conclusion, (A.21) will be assured if we choose kh− ≥ kh− as expressed
in (5.14).
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