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Abstract

This paper analyzes the capital structure of a firm in an infinite time hori-
zon following [30] under the more general hypothesis that the firm’s assets
value process belongs to a fairly large class of stochastic volatility models. By
applying singular perturbation theory, we fully describe the (approximate)
capital structure of the firm in closed form as a corrected version of [30]
and analyze the stochastic volatility effect on all financial variables. We pro-
pose a corrected version of the smooth-fit principle under volatility risk useful
to determine the optimal stopping problem solution (i.e. endogenous failure
level) and a corrected version for the Laplace transform of the stopping failure
time. The numerical analysis obtained from exploiting optimal capital struc-
ture shows enhanced spreads and lower leverage ratios w.r.t. [30], improving
results in a robust model-independent way.
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1 Introduction

The capital structure of a firm has been analyzed in terms of derivatives contracts
since Merton’s work [38]. In the corporate model proposed by Leland [30] the
firm realizes its capital from both debt and equity, debt is perpetual and pays
a constant coupon per instant of time, determining tax benefits proportional to
coupon payments. The firm is subject to the risk of default. The default level
is chosen by the firm, resulting from the managerial decision of not injecting new
equity when the firm is no longer able to meet debt service requirements. Despite
the simplicity of this approach, it is widely recognized that Leland’s model fails to
incorporate some stylized facts related to credit spreads and optimal leverage. In fact
the capital structure decision is a complex issue due to many variables entering in the
determinacy of corporate financing policy, i.e. riskiness of the firm, bankruptcy costs,
payout, interest rates and taxes. The aim of this paper is to address the challenge of
improving empirical predictions about spreads and leverage ratios inside a structural
trade-off model with endogenous default by removing the classical assumption of
constant volatility for the firm’s assets value evolution.

Pricing and hedging problems related to equity markets suggest to introduce
stochastic volatility as a fundamental feature when modeling the underlying assets
value dynamics. We consider the stochastic volatility risk component of the firm’s
asset dynamic, in order to better capture extreme returns behavior dealing with a
structural model in which the distribution of assets returns is not symmetric. Fat
tailed distributions of stock returns and volatility asymmetry are among the main
empirical features observed in real markets, with this last feature deeply analyzed
in [6]. Economic explanations of stock market fluctuations support the consistency
of countercyclical stock market volatility with rational assets evaluations, as in [36];
moreover [29] provide an analysis of the asymmetric profitability of momentum trad-
ing strategies on stocks (i.e. buying past winners and selling past losers), showing
that this kind of strategies are very likely to continue when downward trends are
observed in highly volatile and uncertain markets. As stressed in [15], stock prices
naturally exhibit heteroskedasticity: when the price of a stock drops down, the
volatility of its return usually increases, due to the so called asymmetric volatility
phenomenon, related to the observed negative correlation between stock movements
and the volatility of its return. Asymmetric volatility is usually explained by refer-
ring to the leverage effect and/or the feedback effect. Leverage effect means that a
reduction in stock price can cause firm’s leverage to increase, making the stock riskier
and thus increasing its volatility. Feedback effect refers to a reduction in stock price
observed after an increased required rate of its return due to an exogenous shock in
volatility.



Shedding light on the asymmetric volatility phenomenon and its implication on
risk management and corporate financing decisions, we follow a first passage struc-
tural approach to default and study the optimal capital structure of a firm extending
Leland’s setting [30] by assuming firm’s activities value process belonging to a fairly
large class of stochastic volatility models. We introduce a process describing the
dynamic of the diffusion coefficient, negatively correlated with firm’s assets value
evolution. Volatility is driven by a one factor mean-reverting Gaussian diffusion,
that is an Ornstein-Uhlenbeck process, known for its capability of capturing many
stylized features of financial assets returns (i.e. heavy tailed distributions [12], [40]).
In the spirit of Merton’s work [38], each component of the firm’s capital structure can
be expressed as a coupon-paying defaultable claim written on the firm’s activities
value, thus the arbitrage free price of such claims can be computed as the expected
value of its discounted payoff with respect to the risk neutral measure. In order to
obtain explicit expressions for these defaultable claims the key tool is the Laplace
transform of the stopping failure time (e.g. see [5]); but the Laplace transform is
not available in closed form in our stochastic volatility model. We overcome this
lack in two steps: first by considering the boundary value problems associated to
the pricing partial differential equation (henceforth PDE) for these coupon-paying
defaultable claims, then by carrying out a singular perturbation analysis which al-
lows us to obtain an explicit expression of the claims prices by exploiting ideas and
techniques developed in [20], [23]. Boundary conditions naturally arise depending
on the specific contract, while singular perturbation theory and asymptotic expan-
sion are applied to find corrected closed form solutions to the pricing problem. This
enables us to completely describe the capital structure of the firm as a corrected
version of Leland’s results [30], where the correction is induced by volatility risk.
All claims can be written under a common structure: starting from their corre-
sponding value in [30], it is sufficient to correct each price through a correction term
that we derive in closed form. We interpret this correction term, namely h.(-), as a
default-dependent volatility correction: it is a function of all parameters involved in
the stochastic volatility model and also of the firm’s distance to default but does not
depend on the specific contract we are dealing with, i.e. this term is the same for
all contracts. Starting from this last observation, we generalize our result proposing
a corrected value for the Laplace transform of the stopping failure time under our
stochastic volatility model. We then analyze the main stochastic volatility effects
on the endogenous failure level derived by share holders in order to maximize equity
value. Under our approach, the failure level derived from standard smooth pasting
principle is not the solution of the optimal stopping problem, but only represents
a lower bound due to limited liability of equity. Choosing that failure level would
mean an early exercise of the option to default embodied in equity: [9, 10] and [34]



analyze the relationship between standard smooth-fit principle and exercise time of
American-style contracts, showing a failure of the traditional smooth pasting condi-
tion in some cases. Even if we do not have a closed form for the endogenous failure
level, we derive it as implicit solution of a corrected smooth pasting condition ac-
counting for volatility risk. Numerical results concerning optimal capital structure
show spreads and leverage ratios more in line with historical norms, if compared
to [30], thus confirming our intuition about the effects of introducing volatility risk
into the assets dynamic: enhanced spreads and lower leverage ratios are obtained in
a robust model-independent way.

Empirical results in credit risk literature have emphasized a poor job of struc-
tural models in predicting spreads, for instance [18] supposes this empirical weakness
to be related to the geometric Brownian motion assumption made in the papers by
(30, 31]. Thus a possible improvement to these results could ensue from introducing
jumps and/or removing the assumption of constant volatility in the underlying firm
value stochastic evolution. The former extension has been addressed in [26] who
allow firm’s assets value to make downward jumps, by supposing the dynamics of
the firm’s assets be driven by the exponential of a Levy process; the authors find
explicit expression for the bankruptcy level, while firm’s value and debt value do
not have closed forms. Both [11, 14] model the firm’s assets value as a double expo-
nential jump-diffusion process and [27] study Black-Cox credit framework under the
assumption that the log-leverage ratio is a time changed Brownian motion. Further
[19] consider a pure jump process of the Variance-Gamma type. A jump compo-
nent in the evolution of the assets dynamics is also considered in [7], where Levy
processes are introduced inside an endogenous default framework and in [43], which
provides a flexible model in generating various shapes of the term structure of credit
spreads. Other approaches aiming at improving empirical spread predictions include
the assumption of stochastic interest rates [35, 33], the introduction of incomplete
information on firm’s assets value [16, 17] or the assumption of uncertainty on the
default level [25]. To the best of our knowledge, the extension of Leland’s setting
to a general class of stochastic volatility models has not been addressed. This mo-
tivates our analysis of the optimal capital structure of a firm inside a first passage
structural approach to default in the spirit of [30], but assuming a stochastic volatil-
ity model for firm’s assets value dynamics. Highlighting the asymmetric volatility
phenomenon and its implication on risk management and corporate financing deci-
sions, this framework is a robust way to improve empirical findings in the direction
of both enhanced spreads and lower leverage ratios.

The paper is organized as follows. Section 2 describes the stochastic volatility
pricing model. Section 3 provides a detailed analysis of coupon-paying default-



able claims valuation. Section 4 fully exploits each component of the firm’s capital
structure by providing their corrected values under volatility risk. Section 5 gives
numerical results about the stochastic volatility effect on optimal capital structure,
then Section 6 provides some concluding remarks.

2 A Stochastic Volatility Model of Firm’s Assets
Value

Due to recent crisis and turbulences observed in financial markets, a stochastic
volatility pricing model seems to be the natural mathematical framework to study
the credit risk associated to a firm’s capital structure. In reality, the volatility pro-
cess is not observable. What we observe is the stock price, from which we compute
returns. Empirical studies show that stock returns usually tend towards asymmetry,
since the distributions of financial asset in equity market is prone to react differently
to positive or negative returns, thus motivating to move in the direction of a stochas-
tic volatility pricing model. Removing the assumption of stock price returns being
independent and Gaussian and letting the volatility be randomly varying thicken
returns-distribution tails (if compared to the normal distribution), better captur-
ing more extreme returns observed in financial markets. We consider a stochastic
volatility pricing framework by assuming the assets price satisfying a specific SDE
and introducing a process describing the dynamic of the diffusion coefficient, nega-
tively correlated with firm’s assets value evolution. Through simulations, [20] show
that fast mean-reversion can be recognized in the qualitative behavior of returns time
series: this is why we assume the volatility being driven by a fast mean-reverting
one factor process of Orstein-Uhlenbeck type (henceforth OU). It is well known that
mean-reversion refers to the time a process takes to return towards its long-run
mean (if it exists), and is strictly related to the notion of ergodicity. Following [20],
we characterize volatility by means of its time scales of fluctuations considering a
one-parameter family of Markov processes of OU type, namely Y,*. The introduced
parameter € > 0 refers to the time scales of fluctuations of the OU process Y,*. The
mean-reversion can be fast or slow depending on € being respectively small (short
time scale) or large (long time scale). Consider for example a time horizon of one
month: if the mean-reversion time is 35 days, a time scale of order one can be rec-
ognized; if the observed mean-reversion time is 5 days or 100 days, we will have
respectively fast and slow mean-reversion. The volatility process (o) is defined as
a positive function

o= f(Y[) (1)

and e represents the short mean-reversion time scale of the fast OU factor Y} .



We consider a firm whose (unlevered) activities value dynamic is described by
process V5, where V,© is interpreted as the underlying assets price of a derivative
contract; process Y, is the fast mean-reverting factor driving the evolution of the
volatility process. Since Merton’s [38] work, the basic idea of the structural approach
is to express each component of a firm’s capital structure as a derivative contract
written on V), this allowing to use contingent claim valuation in order to fully
describe the capital structure. Thus, in order to find these claim values, the pricing
problem is addressed under a risk neutral probability measure Q, where the asset’s
evolution follows the SDEs (as in [20]):

Ve = rVedt+ F(YS)VEAW,, (2)
1 2 2 —~
ayy = (;m—m—%z\(m) dt+%dwt, (3)

with the Brownian motions having instantaneous correlation d(W, W}t = pdt, where
p < 0 in order to capture the skew (or leverage effect) and A(Y)) defined as

A(Yy) = %ﬂ(m 1= p2 (4)

representing a combined market price of risk. Parameter r is the constant risk free
rate, 1 the expected rate of return of firm’s assets value under the physical measure!.
The quantity A(Y)S) in (4) is a weighted sum of the excess return-to-risk ratio f“(—;:)
and the risk premium factor or market price of volatility risk v(Y), with this last
term allowing to capture the second source of randomness Wt driving the volatility
process. We follow [23, 21] by assuming () being bounded and a function of the
current level Y = y of the fast factor only. Process Y is ergodic: 1/e represents the
speed of convergence of Y;¢ to its unique invariant distribution with density ®(y),
thus the rate of mean reversion of the hidden volatility process. The long-run time
average of any measurable bounded function g(Y}) converges almost surely (a.s.) to

the deterministic average quantity

(9) = /R 9(y)®(y)dy. (7)

Under the physical measure [P the dynamics of the model are described by the following SDEs
2
in R™:

v = pVedt+ f(Y)ViEdWy, (5)
1 W~
ayy = E(n%y,f)dwQth. (6)



The unique invariant distribution of Y;¢ is a Gaussian A (m,v?) independent of
e, with density function ®(y) given by

1 (y=m)?
e mr (8)
V21?2
The generality of the model is captured by the relation between the unobservable
process Y and the volatility o, := f(Y), where f(-) is supposed to be some positive,

non-decreasing function bounded above and away from zero as in [21]. As shown in
[20], under fast mean-reversion the integrated Squared volatility

7 1 T2 2 6
Uzizﬁ dS—— fY
- t

d(y) ==

is governed by the time scales of ﬂuctuations of Y* and converges to a constant a.s.
for € — 0 (limit case of fast mean-reversion)

g% :=limo? = / A (y)®(y)dy, 9)
e—0

when f2(-) is ®—integrable. Volatility randomly varies over the average quantity 52
given in (9), driven by Y fluctuations depending on the large drift coefficient 1/¢ and
the large diffusion coefficient 1/4/e. From now on the aim is to develop a stochastic
volatility pricing model for the capital structure of a firm whose underlying assets
value is V¢, without specifying a particular function f(-) in the definition of the
volatility dynamic. This allows to present model-independent results which hold for
a fairly general class of one-factor fast mean-reverting processes Y,°.

3 Pricing Defaultable Claims under Volatility Risk

This section analyzes the pricing problem arising in the stochastic volatility model
(2)-(3) for defaultable coupon-paying claims, representing the natural generalization
to express corporate securities under a first passage structural approach to default.
We consider any claim which continuously gives to its holder a nonnegative constant
payout ¢ (i.e. coupon stream payments) until the firm is solvent. Let x denote
current assets value z := V7. The claim default arrives when the underlying assets
value V¢ reaches a certain constant level, namely zp. We define the stopping time

Ty :=inf{t >0: VS =g}, (10)
moreover, since process V,° is right continuous, it holds VTC = xp. We assume

0<zp<uw, (11)
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otherwise the default time 7}; would be necessarily 0. Let the price of a general claim
be P<(t; V5, Y)), depending on parameter e. We consider defaultable securities with
bounded and smooth payoff at default b(xg), continuously paying a constant coupon
¢ > 0 unless bankruptcy is declared. Since (V), Y)") are Markovian, the price depends
on current time ¢ < T, on the present value of V,* and on the present value of Y,
as:

Ts
Pe(t; ‘/tswy;te) —E |:€_T(Tf3_t)b(l’3) + C/ 6_T5d8|‘/;€,}/;€:| ’ (12)
t

where the expectation E [-] is taken w.r.t. the risk neutral probability measure Q.
We assume infinite time horizon as in [30] and deal with time-independent securities,
thus we are interested in prices of the form

Ty
P (z,y)=E [e_”TEb(:EB) + c/ e "ds|Vy =z, Yy = y} (13)
0
or in the most general case (i.e. for equity and total firm value) of the form
‘ 5
P(z,y) =ar + E {6_'”TBb(:vB) + C/ e "Cds|Vy = 2, Y[ = y} ;o (14)
0

with a € {0, 1} depending on the contract. In case of constant volatility o, the claim
price P(z) will depend only on the present assets value x and will be solution of an
ordinary differential equation deriving from a boundary value problem of the form

Lps(o)P(x) =0, (15)
P((L’B) = b(ZEB)7
lim, o, P(z) < oo,

with Lpg(-) representing the Black-Scholes operator for time-independent securities:

(Lps(0))g(x) = c —rg(x) + rzg'(x) + %xQUZQ”(x)- (16)
Under constant volatility, the Laplace transform of the stopping failure time is
known in closed form (see [28]), allowing to directly compute claim prices as in
[5]. In our stochastic volatility model the price P¢(z,y) given in (13) depends
on both the present value of assets and the current level y of the fast factor Y,
but our main problem is that the Laplace transform of the stopping failure time
E [e75 |V =z, Yy = y|, with T given in (10) is not available in closed form. And
this is the main problem we face: it is well known that outside Black-Scholes model,
the Laplace transform of a stopping time is available in closed form only in few

8



cases, for example when assets dynamic is described by the exponential of a Lévy
process (see [3], [26]). This is exactly what motivates the application of ideas and
techniques developed in [20, 21] to overcome this difficulty and find defaultable claim
prices under volatility risk. In [20] authors observe that the price P<(t; X;,Y}) of
a contract under (2)-(3) given in (12) requires to fully estimate all parameters and
functions involved in the model, which is a very complicated issue. The perturbation
approach simplifies their problem by approximating the price with a quantity which
depends only on few market parameters; in [23] this technique is applied for the
price of a zero-coupon bond. In [24] a similar idea is applied to study default risk in
a Merton-like structural model. We follow the same idea and use singular pertur-
bation analysis to overcome the lack of a closed form for E [e ™5 |Vy = z, Y = y]
in our stochastic volatility model. Following [20] we expand the price in powers of
Ve and look for an approximation of the form:

P¢ ~ P¢ = Py + eP, (17)

where P, is a Black-Scholes price and P; is the first order fast scale correction
term. Applying ideas in [20] to our time-independent securities, we can state that
Py and P; can be obtained as solutions of boundary value problems involving Black-
Scholes operator given in (16) with, respectively, a terminal condition and a source
term. In line with [20], we obtain in closed form this resulting corrected prices p*
for each defaultable claim: they correspond to some Black-Scholes prices (of the
same contract) corrected by a term capturing the introduced sources of riskiness
(the market price of volatility risk and the leverage effect p). When assuming a
fast volatility time scaling, the first two terms Fp, P; of the price expansion do not
directly depend on the current volatility level f2(y): we refer to [20] for all technical
details. Consequently, corrected prices are approximations? of the form

Pf(z) == Py(z) + VePi(z). (18)

Let Pps(wz;7) be the present Black-Scholes price of a time-independent security
whose underlying assets dynamic has constant diffusion coefficient & satisfying (9).
Following [20] we can state that the leading order term Py(z) := Pgg(x;7). More-
over, we must impose lim, ., Pi(x) =0, Pi(zp) = 0 as boundary conditions for
the first order correction term: when the claim becomes riskless (as = approaches

2Technical details about the accuracy of this approximation are in [20], Chapter 5. When the
payoff function b(-) is smooth and bounded, |P¢ — (Py++/eP;)| < k¢, where k is a constant which
does not depend on the time scale parameter e. We refer to [42] for a detailed analysis about the
accuracy of the approximation in case of singular perturbation method applied to option pricing
under fast and slow volatility time scaling.



o0) and when assets reaches the default barrier 25 no correction must be in force.
In this last case, recalling Equation (14), the terminal condition is

Pf(zp) = Py(zp) = P(zp), (19)

meaning that the corrected price under volatility risk has the same final payoff of
the corresponding Black-Scholes contract with constant volatility . The following
Proposition provides a general formulation for the leading order term Py(x) which
will be useful for further results.

Proposition 3.1 Let V; be the geometric Brownian motion defined by
dVy = rVidt + oV dW, (20)
and
TB = mf{t Z 0: ‘/t = QZB}, (21)

with & given in (9). Under the stochastic volatility model (2)-(3), consider a default-
able claim with price P given in (14). The leading order term Py(x) of its price
approzimation P(x) in (18) has the following probabilistic representation

Py(z) =ax +E {e‘rTBb(mg) + C/OTB e "ds|Vy = x} , (22)
and can be written under the general form:
Pula) = k() + 1) (), (23)
with
k(z) = am+§, (24)
eg) = blam) - . (25)
» = 2 (26)

where k(x) is the riskless part of the Black-Scholes price of the claim under constant
effective volatility ; a € {0,1} depending on the claim, c is the constant continuous
coupon paid by the contract and b(xp) is the payoff of the claim at default.

The following Proposition shows how to determine the first order fast scale cor-
rection terms Pj(x) capturing the stochastic volatility effect on defaultable claim
prices.
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Proposition 3.2 Under the stochastic volatility model (2)-(3), the first-order fast
scale correction terms Py(x) have the following probabilistic representation

Tp
Pi(z) = E {ch@, 25: p,5) / e ds|Vy = x] , (27)
0

with Vi given in (20), Tp given in (21) and

(2)H(p, 5)15 log =

10, 0) = 2
CDP(xaxB7p70-> l’BA—LU)\ ( 8)
The correction term Py(z) can be written under the general form:
B _ r\* x
Pi(a) = Uep)H(p.7) - () log (29)
with l(xp) given in (25) and
dr (v 2r
Hp.5) = — (2 (Ad) 222
<p> 0) a4 (\/5< ¢> + 72 U3) ) (30)
P /
v3 = —=V ) 31
/ 1 Y 2 —~2
= — P 2
N0 = gy | UGF -0 e, (32

where f(-), A(+), (), ®(y), 62 are given in (1), (4), (7)-(9) and p < 0,7,v > 0.

Previous results give us the first two terms for the price expansion of a coupon-
paying defaultable claim written on firm’s activities value under (2)-(3). Looking
at Equation (17), we can think of P;(x) as a claim which pays to its holder a con-
tinuous coupon equal to cpp(x,zp;p,d) given in (28) unless default arrives. We
then interpret the term cpp(x, xp; p,d) as a continuous default-dependent payment
stream accounting for volatility risk in a robust model-independent way. It directly
depends on both the default boundary xp and the distance to default log % It
continuously corrects the price accounting for volatility randomness depending on p
and 7; it is independent on the time scale parameter e.

Proposition 3.3 Consider H(p, &) given in (30) and vs given by (31). Assuming

0< vy < ﬁ (AG) (33)

11



with v > 0, we have

H(p.0) = 2/ (<A¢'> n §p<f¢’>) -0 (34)

As a consequence of Proposition 3.3, the sign of the first order fast scale correction
term P;(x) depends only on the specific boundary conditions of the contract as the
following Proposition shows.

Proposition 3.4 Consider the default-dependent payment stream cpp(x,xpg;p, o)
given in (28) and the first order fast scale correction term Py(x) given in (29). Under
constraint (11), the following holds

cpp(z,xp;p,0) - l(zp) <0, (35)
Pi(z)-l(zp) >0, (36)

with l(xg) given in (25).

Remark 3.5 Following [20], (Chapter 5), we can directly write approximate prices
of our defaultable time-independent securities P*(x) as solution of the following prob-
lem

Lps(5)(Po(z) + vePi(x)) = Var? B (x) + Vaa’ B (), (37)

with

Vo = Veus, (38)
Vs = Veus, (39)

vy = <2v3— %(Aqb')), (40)

and vs given by (31), Lps(-) by (16), where coefficients Va, Vs correspond exactly to
the notation used in [20] (Equations 5.39-5.40, page 95 where parameter o in the
book corresponds to our 1/€). Calibrating Vs, V3 from market data suggests to assume
these small parameters being respectively: Vo < 0, V3 > 0 as shown in [23], which is
equivalent to constraint (33). Typically coefficient Vo < 0, representing a correction
for the price in terms of volatility level, while V3 > 0 captures the skew effect related
to the third moment of stock prices returns (see [20] and [22] for a detailed analysis
about parameters calibration). In case of Vs given in (37) vanishing (as p — 0), the
uncorrelated scenario becomes a pure Black-Scholes setting with constant volatility
equal to the corrected effective volatility

o =+d?-2Vy, >0, (41)

12



meaning that Vy corrects claims values for the market price of volatility risk. As in
[20] we interpret the r.h.s. of Equation (37) as a source term; differently from their
result, this quantity does not directly enter in the probabilistic representation of the
Pi(z) term (27), but the default-dependent payment cpp(x,xp;p,a) in (28) can be
written as function of this source term. Equation (37) is equivalent to

‘CBS<5—>(PU(‘:E) + \/gpl(x)) = _\/ES('TMT;B; P, 5—)7
thus, the default-dependent payment can be written as

25(x, xp; p, )
rpt —aM)(2r+a5%) T ap

CDP(x,LUB;P, 5-) = (

This last formulation underlines that the default-dependent payment represents an
asymptotic correction for the price which may be positive or negative depending on
the specific Py(z) claim we are dealing with, since it involves its derivatives w.r.t.
x, through its dependence on the source term S(x,xg;p, 7).

3.1 Asymptotic Price Correction Under Volatility Risk

This subsection gives a general structure for all coupon-paying defaultable claim
prices under fast volatility scaling, when only the first two terms Py, P; of the expan-
sion are considered, proposing an economic interpretation of the resulting corrected
pricing formula. Under fast volatility time scaling, the general form for defaultable
coupon-paying claim prices accounts for volatility risk through a default-dependent
correction defined below.

Proposition 3.6 Under the stochastic volatility model (2)-(3), corrected prices pe
of coupon-paying defaultable claims given in (18) have the following probabilistic
representation

Tp
P(z) = ar+E |e " 2b(xg) + (c + Ve cpp(r, v5; p, 5))/ e "ds|Vy = x} , (42)
0

with a € {0,1}, and cpp(x,xp;p,d) given in (28). Equivalently, P can be written
under the general form

P(x) = k(x) + (xp) (%B)A he(w, 2: p, 5), (43)
with .
he(x7$B;pa5—) = 1+\/EH(/075)10§§£ (44)

13



being a default-dependent correction for the price due to volatility risk. Coefficient
H(p,a) is given by (30) and b(xp), ¢, k(x),l(xp) are given in Proposition 3.1. Under
constraint (11) we have

he(x,zp;p,a) > 1.

Recalling the structure of Ppg(z; ) given in (23), we interpret ﬁe(x) given by (43) as
a corrected (w.r.t. Black-Scholes) pricing formula under fast volatility time scaling.
We define h.(x,zp;p,0) as a default-dependent correction for the price capturing
the main effects of stochastic volatility for x > zp in a robust model-independent
way: we are not specifying a particular function f(-) for the diffusion coefficient,
thus results hold for a large class of processes and depend on the volatility time
scale parameter €. The term h.(x,zp; p, ) depends on all parameters describing the
introduced randomness in volatility: it is increasing w.r.t. the distance to default
log é and w.r.t. the time scale €; in the limiting case of ¢ — 0 it reaches its lower
bound he(z,zg: p,a) — 1, thus P<(z) — Ppg(x;5). Notice that (23) and (43) have
a common structure, leading to consider h.(x,zp;p,d) as a correction to Black-

Scholes claim price, with this default-dependent term being an increasing function
of H(p,d).

Remark 3.7 An equivalent formulation for Equation (43) is
P(x) := k(2) + (Po(x) — k(2))he(w, 25 p, 5), (45)

with Py(x) = Pgs(x;0) given by (23), k(x) in (24) and h(zx,zp;p,7) given by
(44). We observe that k(x) in (24) represents the riskless part of the Black-Scholes
price of the defaultable claim, evaluated under constant volatility & in (9). Equation
(45) underlines the role of the default-dependent correction in affecting only the
defaultable (risky) part of the contract. We observe that each corrected price P<(x)
of the form (23) satisfies also the condition

]56
lim (m)

T—r00 X

< 00,

required under infinite horizon to avoid bubbles (see [11]). Observe each claim with
price P¢ given in (14). The asymptotic approximation given by the corrected price
P* satisfies (19) as: N

P(zp) = P*(zp) = axp + b(xp),
with a € {0,1} and b(zg) the payoff of the claim at default, meaning the approzi-
mation does not modify the payoff at default.
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Observe that the default-dependent correction h(x,zg; p, ) given in (44) does not
depend on the specific claim we are dealing with, meaning that this correction term
is only related to the stochastic volatility assumption, thus to volatility risk: the
specific boundary conditions of each claim do not appear in (44). This observation
leads us to interpret this default-dependent correction as a tool to approximate
the Laplace transform of the stopping failure time 75 in (10), as shown in the
Proposition below. This idea is similar to the one proposed in [4] for perpetual
real-options, where a closed-form for the Laplace transform of the optimal stopping
time is provided.

Proposition 3.8 Let us consider the stopping (failure) time T§ defined in (10).
Under the stochastic volatility model (2)-(3), the Laplace transform of the stopping
(failure) time T can be approzimate as

. A
E [TV = 2.Y5 =y] ~ LT (Tiwwp) = (“2) helw,amipo),  (46)
x
with he(x,xp;p,a) given in (44).

We consider our result about the approximation of the Laplace transform of the
stopping (failure) time T and propose an alternative interpretation of the corrected

price P¢(x) w.r.t. the one proposed in Proposition 3.6. Equation (46) gives a way
to directly compute corrected prices alternative but equivalent to the approach of
differential equations shown in Propositions 3.1 and 3.2.

Corollary 3.9 Consider a claim with price P¢ given in (14) under the stochastic
volatility model (2)-(3) and T§; defined in (10). This price can directly be written as

P(x,y) = k(z) + U(zp)E [e "B |VE = 2, Y5 = y], (47)
thus its approzimation P<(x) given in (18) directly computed as
~ T\ )
(@) = k(@) + 1(wp) (2) holw,wsip,),

with k() given in (24), l(zp) in (25) and E [e~T5

Vi =ua,Y5 = y} in (46).

Proposition 3.9 gives us a way to directly compute the price of a defaultable claim
in (14) by interpreting its approximation P¢(z) in (47) as a corrected version of the
corresponding Black-Scholes price, where the default-dependent correction directly
affects only the probability of x reaching . The correction does not affect nor the
final payoff b(zp), neither the constant coupon paid by the contract ¢: the corrected
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price P<(z) given in (47) has exactly the same structure of the Black-Scholes price
given in (23). Figure 1 shows a comparison between

2r
g2’

LT (Tg;z,xp) == (x_3>/\7 A=

- (48)

with T given in (21), and LT 6(T§;Z’,$B) given in (46). This comparison under-
lines how the stochastic volatility assumption affects the Laplace tr@gsform of the
stopping (failure) time before the default barrier x5 is touched (i.e. LTE) w.r.t. the
corresponding value under a constant volatility setting with volatility o (i.e. LT).

0.9f : : e
—— LT(Tp; 7, 25) /

0.8+ . 7 il
-=--LT (Tg;z,xzB)
0.7F P 4

0.6 . |

LT (T4 2, 25)
N

0.5t : . 1
0.4t , |
0.3f . 1
0.2t o7 :

LT(Tg;z,zB),
\
\

0.1f - |

Figure 1: Corrected Laplace transform of the stopping failure time. The plot shows
ITTE(TE; z,2p), LT(Tg;x,xp) given by (46)-(48) as functions of the failure level 25 € [0, z]. Base
case parameters values are: A =0, r = 0.06, & = 0.2, z = 100, V5 = 0.003, Vo = 2V5. Recall A(")
is given in (4), coefficients V5, V3 are given by (38), (39) and p < 0.

4 Firm’s Capital Structure under Volatility Risk

Following structural models approach the capital structure of a firm is analyzed in
terms of derivative contracts. As in [30] we consider an infinite time horizon and
a firm issuing both equity and debt. The firm issues debt and debt is perpetual.
Debt holders receive a constant coupon C' per instant of time: from issuing debt the
firm obtains tax deductions proportional to coupon payments. The corporate tax
rate 7,0 < 7 < 1, is assumed to be unique and does not vary in time, thus the firm
can benefit of a constant tax-sheltering value of interest payments 7C'. The firm
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is subject to default risk and the strict priority rule holds, generating the trade-off
between taxes and bankruptcy costs. Default is endogenously triggered by firm’s
activities value crossing a constant level x g, corresponding to firm’s incapability of
covering its debt obligations (due to equity limited liability). We deal with a sta-
tionary and time homogeneous debt structure as proposed by Leland [30], where the
infinite horizon assumption can be interpreted as a continuous rolling-over of debt.
Following [30, 38] contingent claim valuation can be used and each component of the
capital structure is expressed as a defaultable coupon-paying claim on the under-
lying assets represented by firm’s activities value (see also [5]). When bankruptcy
occurs at time T given in (10), a fraction a (0 < a < 1) of firm value is lost
(i.e. due to bankruptcy procedures): debt holders receive the rest and stockholders
nothing, meaning the strict priority rule holds. Equity F€, debt D¢ tax benefits
T B¢, bankruptcy costs BC* can be written as follows

Ty
E(x,y) = z—E [e‘TTfoB + (1 - 7')/ e "Cds|Vy = x,Yy = y] , (49)
0

Ty
D(z,y) = E {(1 —a)e Egp +/ e "Cds|Vy =z, Yy = y} : (50)
0
75
T'B(x,y) = E |:TC/ e ds|Vy =, Yy = y] ; (51)
0
BO(ry) = Ble TharglVy =Y =] (52)

where T is the stopping time given in (10) and E [-] denotes the expectation w.r.t.
the risk neutral probability measure. The total value of the (levered) firm v¢ can be
obtain as the sum of equity and debt E€+ D¢ or, equivalently, as current assets value
x plus tax benefits of debt less bankruptcy costs, x +717' B — BC*. Both formulations
lead to:

Ty
vi(z,y) =z +E |:T/ e " Cds — e Thaxp|VE =2, Y5 =y . (53)
0

The value of each capital-structure claim can be seen as the price of a defaultable
contract having the same structure of (14). Thus, each of them can be approximate
as in (18) where the Py and P; terms have the structure described in Propositions
3.1-3.2. Observe that £ and v are claims having an option embodied contract.
The following Proposition provides the Fy leading order terms for each specific claim
describing the capital structure of the firm, i.e. equity (£), debt (D), tax benefits
(T'B), bankruptcy costs (BC') and total value of the firm (v), corresponding to those
ones computed under a pure Leland [30] setting with constant effective volatility &,
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i.e. a Black-Scholes setting under infinite horizon with constant effective volatility
g given in (9).

Proposition 4.1 Under the stochastic volatility model (2)-(3), the capital structure
of the firm has the following Py terms:

PyE(x) :x—@-l- (M_xB,) (%)A, (54)

P2 =S (-apes - £) (22)', (55)
A =TT () £
PyEC(2) = axp (%B)A (57)
Py(x) = o + ? - (% + owz:3> (%)A . (58)

The first order fast scale correction terms P; accounting for volatility risk are
explicitly given in the Proposition below for each capital structure-claim.

Proposition 4.2 Under the stochastic volatility model (2)-(3), the capital structure
of the firm has the following first order fast scale correction terms Pj:

P (x) = (w = xB) H(p,?)- (%)A log % (59)
P2 = (1= a)en = ) Hipo) - (22) log = (60)
PTB(z) = —?H(p, ) - (%)Alog% (61)
PB(x) = azpH(p, o) - <%>Alogé (62)
P(z) = — <axB + §> H(p,5) - (%Bf log % (63)

where H(p, @) is given in (30). The Py terms can also be written under the following
probabilistic representation

. (@ - xB> H(p,5)rp*log = (Ts
P =E —d = 4
2 (a) - | erav=a| . o
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1—a)rg — &) H(p,6)xp*log = Ts
PlD(ZE):E (( ) B x;i_;A ) B xB/ €_Tsd8|%:$ ,(65)
0
[ZCH(p,5)xp log = (Ts
P"(x) =E | = (xx_)fBA [ e dslVy = (66)
0
p BO E | azpH(p,0)zslog 7 (™ Y 67
() = e [ ey = (67)
arp+€) H(p,o)zp*log £ (Ts
P’(z)=E ( i)‘—:rB’\ B/ e "ds|Vp = x|, (68)
0

with Vi given in (20) and Tg in (21).

Approximate prices P¢(z) := Py(x) + /ePi(z) for each defaultable capital struc-
ture claim can be alternatively (directly) derived by using Proposition 3.9, through
our approximation (46) of the Laplace transform of the stopping (failure) time 7'
given in (10).

Proposition 4.3 Under the stochastic volatility model (2)-(3) approzimate prices
(18) for each capital structure defaultable claims are given by

Ee(:l;) = — 1-7)C + ((1 —7)C _ JJB) <%B)/\h6(a;,x3;p, a), (69)

r r
~ C C\ [zp\* _

De(l’) = ? + ((1 - Oé)l’B - ?> (?B> he(l‘,x&/% 0-)7 (70)
==, T7C  1C rrp\* L

TB (x) = T - 7 (?) he(:v,atg,p, O)a (71)
. A

BC (z) = axp (%) he(z,xp;p,0), (72)
iy 7C 7C rp\* o

) =+ 7= (7 varn) (22) horzni o), (73)

with he(z,zp;p,7) given in (44) and X\ = 2r/5>.

From now on we will denote each corrected price of a capital structure claim as
function of both x, xp, i.e. E(z,xp), which will be useful to stress their dependence
on the failure level, thus their nature of being defaultable-claims. We will do the
same for the P, and P; terms of each contract.
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4.1 Equity

Look at equity claim corrected price E* given in (69): we can recognize equity
structure of being the sum of two different components as

E(z,x5) = k(z) + DF (2, 25), (74)

where k(z) corresponds to (24)

and

/D\Z?’E(:c,a:B) _ (ﬂ — I'B) (x;)k he(z,zp;p,0) (75)

r

being the first order approximation for the option to default embodied in equity

(1-7)C

r

DF¢(z,y) =E [( — a:B> e BV =2, Y = y] , (76)

with he(x,zp;p, ) given in (44). Observe that

DFy(z,25) = <ﬂ - xg) (“”—B)A (77)

T T

is the option to default embodied in equity in Leland [30] setting with constant
volatility . Considering Equation (74) we interpret corrected equity claim price
Ee(x, xp) as the price of a contract whose value derives from two different sources,
a riskless part and a defaultable-risky part, as observed in Remark 3.7. From an
economic point of view k(x) is equity value without risk of default and unless limit
of time, and it is exactly the same value we have in a pure Leland [30] framework,
since k(z) doesn’t depend on the failure level 5. As a consequence, the stochastic
volatility assumption does not produce any effect on it, this term being independent
of the probability of x reaching the barrier xg. Function k(x) is always positive
under

p> =00 (78)

r

The corrected price DF 6(ac,xB) in (75) directly depends on firm’s current assets
value x, on coupon payments C, on the failure level xp and also on all parameters

describing the volatility fast mean reverting process, since ﬁe(x, rp) is exactly the
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defaultable contract embodied in equity. Function l’)\l/fe(x, xp) must have positive
value due to its option-like nature, thus we impose
rp < a=-nc¢ (79)
r
We define DF 6(.27, xp) as the corrected price of the option to default embodied in
equity having positive value Vo > zp, with x5 € [0, @} Notice that constraint
(78) and (79) are the same we have in a pure Leland model [30]. No more constraints
are needed when considering separately the two components k(x), DF 6(31:, xp), since
random volatility fluctuations do not produce any effect when i) there is no risk
of default, i.e. on k(x) value; ii) at default, i.e. when x = xp, thus on the payoff
obtained by equity holders from the option to default.

4.1.1 First Order Fast-Scale Equity Correction

We now focus on the first-order fast scale correction term P;”(x,z3) given in (59)
and its influence on approximate equity-claim behavior. Look at its probabilistic
representation in (64). From Proposition 3.4 we can state that under constraint
(79), P,®(z,x5) > 0,Vx > 25, meaning it always has the effect of increasing equity
claim price, as Figure 2 shows. The present value of one unit of money obtained at
default is greater than in a constant volatility setting with &, i.e.

e <o) > (2

due to an increased likelihood of default, thus holding equity claim requires a higher
compensation. The default dependent payment for equity claim c%,(x,zp;p, )
capturing volatility risk is given by

(_(1—:)0 — xB> H(p,5)xp*log =

ch(x7xB;p’5-) = ZL‘B)‘—JZ/\ : (80)

The following Proposition analyzes this higher compensation required, showing
its dependence on current assets value x.

Proposition 4.4 The first order fast-scale correction term Py*(x, x5) given in (59)
for equity claim increases corrected equity E<(x,xp) in (69) for x > xp. The maxi-
mum correction effect is achieved when the distance to default satisfies the condition
2
x 0

log — = —. 81
ngB 2r ( )
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Figure 2: Corrected Equity. The plot shows Py (z,zp) in (54) and corrected equity E<(z,z )
in (69) as functions of the failure level xp € [0,x]. Base case parameters values are: A = 0,
r=0.06,6 =02, « =0.5, 7 =0.35, C = 6.5, V3 =0.003, Vo = 2V5, © = 100. Recall A(-) is given
in (4), coefficients Vs, V5 are given by (38), (39) and p < 0.

4.1.2 Endogenous Failure Level

Considering a first passage structural approach to default requires an analysis of the
endogenous failure level chosen by equity holders. The economic insight behind this
problem is related to share holders maximization of equity value. As in Leland [30],
equity’s limited liability prevents equity holders from choosing an arbitrary small
failure level, making as natural constraint on zp

OE(z,zp)
ox
which guarantees equity being a non-negative and increasing function of firm’s cur-
rent assets value x for x > xg. The following Proposition analyzes the failure level
satisfying condition (82) under the stochastic volatility model (2)-(3).

|z:xB Z 0 VZL‘ Z B, (82)

Proposition 4.5 Consider E*(x,z5) given in (69). Under A > \/eH(p,7), the en-

dogenous failure level chosen by equity holders in order to mazimize xg — E(x,xp)
belongs to:
1—-1)C
|:EB€7 Q} ) (83)

where
TR = >0, A=— (84)




with Tp® solution of the standard smooth-pasting condition:

OE(z, )

61, |$:$B = 07 (85)

and H(p,a) given in (30).

Notice that this lower bound Zg® > 0 in (84) for the endogenous failure level
is function of all parameters involved in the volatility diffusion process, due to its
dependence on H(p,5) and € but it is also affected by economic variables defining
the capital structure (i.e. coupon payments, risk free, corporate tax rate).

Remark 4.6 As limiting case, when € — 0, the lower bound given in (84) converges
to the lower bound arising from a pure Leland [30] framework, namely xg;, with
constant effective volatility

(1-7)C A )\_2_7“
r 1+ N g2

B, - — (86)
Under (2)-(3), the solution Tp® of the standard smooth pasting condition reduces
as the speed of mean reversion 1/e increases, since the application \/e — Tg¢ is
decreasing, meaning that equity holders can choose an endogenous failure level which
is lower that in Leland [30] setting with constant effective volatility . The lower
bound T in (84) is also decreasing w.r.t. H(p,a) > 0.

Remark 4.6 is useful to formulate the optimal stopping problem faced by equity
holders in this stochastic volatility model as

max E(z,xp), (87)

epelzpe, =1

with T given in (84) and E°(x,z5) in (69). Assuming constant volatility allows
to directly apply the smooth pasting condition to equity value, thus obtaining the
endogenous failure level solution of the optimal stopping problem: equity holders
will always choose the lowest admissible failure level due to limited liability of equity
(see also [37] footnote 60). An example of this is analyzed in [5] and an analogous
relation exists when considering American-style options under Black-Scholes model
(see also [20]). Assuming volatility fluctuations driven by a fast scaling mean revert-
ing process, the standard smooth pasting condition applied to corrected equity claim
price as %\x:m = 0 gives only a lower bound Tg¢ > 0 for the endogenous
failure level, which guarantes equity being an increasing function of firm’s current
assets value x.
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Proposition 4.7 The endogenous failure level solution of the optimal stopping prob-
lem

~ 1—-7)C A—H(p,o
max E(xz,zp), where Tp = (1-7) (o, 0>,\/E ;
CUBG[EBE7(1_;)C] r 14+ A— H(p, O')\/E

is Tg°, solution of

A(1-7)C (1-71)C

r

t(ovnip.0) - 3+ Dz ) - V(. 0) ~2a) =0, (89

with he(x,xp; p, ) given in (44), X = 2r /2.

Even if x5 is given only as implicit solution of (88), it is possible to stress some
of its important features. As in Leland [30] setting, the endogenous failure level
chosen by equity holders 75 does not depend on bankruptcy costs, since the strict
priority rule holds, but instead depends on coupon, risk free rate and corporate tax
rate. Coeteris paribus, it is increasing w.r.t the coupon level C' and decreasing w.r.t.
the corporate tax rate 7. Under volatility risk, equity holders choose the default
barrier maximizing equity value depending on both the market price of volatility
and the leverage effect, through coefficient H(p,) in Equation (88). Differently
from the optimal default boundary in [30], the endogenous failure level x5 derived
inside a structural model framework under volatility risk depends on initial firm’s
assets value, due to the term h.(z,zp; p,7) in (88). We interpret this dependence as
related to the standard smooth-pasting condition %b:% = 0 ’failure’, since
Tp© given in (84) only represents a lower bound for the optimal stopping problem
solution 5. An upper bound for the endogenous failure level 5 is provided by
the following Proposition.

Proposition 4.8 The endogenous failure level x5 solution of (88) satisfies

(1-7)C A )\_2_7"
r 1+ N g2

EEE < Ipr = (89)
Remark 4.9 Consider T, xpr,x5" given in (84), (86), (88). From previous re-
sults we have Tp® < T < wpy, with these three points coinciding only in case
e — 0, 1.e. when volatility risk disappears.

We now propose an equivalent formulation of (88) in order to define a corrected
smooth-pasting condition inside this stochastic volatility pricing model with a fast
scale mean-reverting one factor process driving volatility.
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Proposition 4.10 Corrected Smooth-Pasting Condition.
At point xg° implicit solution of (88), the following ’corrected smooth-pasting con-
dition’ holds:

8P0E(I, ZL‘B)
or

with Po¥ given in (54) and P,¥ in (59).

8P1E(m, £L‘B)

e =0, (90

‘xszhﬁ(% Ip; P, 5) + \/E

Equation (90) presents the endogenous failure level 5 as solution of a corrected
smooth-pasting condition, accounting for the introduced randomness in volatility

fluctuations. Finding the failure level solution of %ﬁ’m = 0, with DF given in
(75), is thus equivalent to find the solution of a corrected smooth-pasting condition
given by (90): the traditional smooth-fit principle must be corrected due to the
introduced default-dependent volatility risk. As observed in Proposition 4.4, the
first order correction P,”(x,x5) for the price given in (59) achieves its maximum
when the distance to default satisfies (81). Figure 2 shows the behavior of both
approximate equity E€<JI,ZEB) and Py¥(z,zp) w.r.t. a constant failure level xg: in
line with Remark 4.9, function E<(z,z5) achieves its maximum before Py” (z,x5),
meaning at a failure level 3 lower than zg; in (86).
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Figure 3: PP, PE and corrected equity claim price. The plot shows corrected equity value
E<(z,xp) in (69), and Py® (2, zp), P,® (2, 2) terms given in (54), (59), as function of current assets
value z. The support of each function is [Z5€, z|, with Tp€ given by (84). Base case parameters
values are: A =0, r =0.06, ¢ = 0.2, « = 0.5, 7 = 0.35, C' = 6.5, V3 = 0.003, V5, = 2V3, p < 0.
Recall A(+) is given in (4), coefficients V5, V3 are given by (38), (39) and p < 0. The endogenous
failure level 25 is determined as implicit solution of (88) for & = 100.
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Remark 4.11 Recall Equation (90). We can interpret its solution x5° as the failure
level satisfying

h€(x7‘%\é€;p7 6) — _APOE(QEEE) (91)
\/E APlE(Z?ée)7
where
A _OR@as), A R ),
PP (z) -~ O (z=rB,xp=%B°)> P E(z5e) -~ O (r=xB ,xB=%B°)>

denote the Greek-Delta corresponding to the first derivative of Py¥, P,¥ w.r.t. «
evaluated at point v = 5. The terms Py® and P/¥ are given in (54)-(59). Equiv-
alently we can write (90) as

75 1 B
log — = - : (92)
xr \/EH(ﬂ, U) APOE((ETBE)
with _
_ OE(x,7p)
E‘G(x’\éé) = T‘(Izi\ée,xBZI’\éé)

and E° given in (69). B
i) Recall that the lower bound Tg® in (84) solution of %b:m =0 is inde-
pendent of current assets value x. At that point, we have:

Appig e
Ve = _ﬂ‘ (93)
AplE(EBE)

ii) The two equivalent formulations (91)-(92) for equation (90) are useful to
understand the economic optimality of the endogenous failure level x5 and its de-
pendence on firm’s activities value z, which is a new feature w.r.t. [30], where the
endogenous failure level is instead x-independent. The left hand side of both equa-
tions is the only one depending on x. Choosing T means choosing the endogenous
level corresponding to the optimal exercise time: due to current assets value x, before
and after x° the correction for the price h(x,xp; p,a) does not exactly compensate
the ratio between the instantaneous variations (due to an instantaneous variation in
x) in the first order correction term and the A of the corresponding Black-Scholes
contract Py¥(x,x5). Equation (92) suggests the same dependence relating the dis-
tance to default and the ratio between the instantaneous variations in approrimate
claim E<(z,xp) and, again, the A-sensitivity of Py" (x,x5). The endogenous failure
level " can be seen as an equilibrium level which increases as current assets value
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x rises. Looking at Equation (91), we interpret the correction term h.(x,xg%; p,7)
as a default-dependent elasticity measure at equilibrium satisfying
X APOE(-T,EE)

1
4 H(p,5)log — = — L7750, 04
S+ () log e = — (94

TB

By simply applying %]Fw » = 0 gives a failure level 5 which is indepen-
dent of firm’s current activities value x corresponding to a non-optimal exercise of
the option to default embodied in equity. We are assuming fast mean reversion and
short time scale parameter €, thus we have

APOE(QSEE) > \/E _ _APOE(EBE)

APIE(Q?I’BE) APIE(EBe)

I

meaning that at point z the ratio between the two Deltas is too small to exercise
the option. Under volatility risk, assuming p < 0 makes the distribution of stock
price returns not symmetric, thickening the left tail: this is why it is not optimal
to exercise at the standard smooth pasting level but choosing a failure level greater
than this. The correction for the price represented by h.(x,xp;p,d) is a default-
dependent correction function of current assets value x which cannot be ignored by
the optimal exercise rule. This is analogous to [35], where the pricing of American
options is addressed when both volatility and interest rates are stochastic. The au-
thors derive a proxy for the optimal exercise rule, showing that it corresponds to
the moneyness (measured in standard deviations) reaching a certain level: behind
our Equation (92) the same idea can be recognized by interpreting the distance to
default as a log-moneyness measure. Recent literature contains an increasing num-
ber of papers ([1], [2], [8], [13], [41]) showing the failure of the standard smooth fit
principle in some optimal stopping problems, suggesting this failure being related
to the assumption of discontinous jumps in the underlying assets dynamics. Closed
form solutions for some optimal stopping problems depending on a diffusion with
jumps are derived in [39], while [1], Theorem 6, propose a characterization of the
smooth-fit principle when a general Lévy process for the underlying assets dynam-
ics is introduced. Optimal stopping under infinite horizon is then considered in
[32], providing examples of the value function not exhibiting smooth pasting at the
optimal stopping boundary.

Remark 4.12 Inside our framework the riskiness of the firm is taken into account
from two different points of view: i) its market price through A, ii) the leverage
effect through p. Ewven in the uncorrelated case p = 0 the endogenous failure level
5 depends on x and is different from the lower bound Tg¢ given in (84), since the
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correction for the volatility level due to coefficient Vy in (38) is still in force. Only
when € — 0 the dependence of the endogenous failure level x5 on x disappears (and
also in case p=0,A=0).

4.2 Debt, Tax Benefits, Bankruptcy Costs

We now analyze the stochastic volatility effect on debt, tax benefits and bankruptcy
costs by first recalling the expressions of their corrected claim prices given by (70)-

(72):

Dz, x) = g T <(1 — a)ep - g) (%2) e, 25:0.9)

T xXr
—c 7C' 7C o\
TB (l‘,mB) = T — T <?B> he(maxB;pa 5)7

——c€ B A _
BC (z,z5) = azp (—) he(z,zp;p,0),
x
with h(x,zp; p, ) given in (44). Due (only) to the infinite horizon assumption, debt
holders receive % without limit of time in the event of no default and (1 —a)zp — %
in case of x reaching x5, meaning < being riskless part of debt value. The corrected

r
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Figure 4: Corrected Debt. The plot shows the Py”(z) term in (55) and corrected debt value

D¢(z,zp) in (70) as functions of the failure level zp € [0,z]. Base case parameters values are:
A=0,7r=006,5 =02 a=05 =035 C =65, Vs =0.003, Vo = 2V3, 2 = 100. Recall A(")
is given in (4), coefficients V5, V3 are given by (38), (39) and p < 0.

tax benefits-claim ﬁe(x, xp) has a downward correction: its first-order fast scale
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correction term P,7P(z,xp) in (61) is negative for all values z > xp, due to the
volatility rlsk influence on the likelihood of default. Corrected bankruptcy cost-
claim BC" (xz,zp) is a defaultable capital structure security which does not pay any
constant continuous coupon c: it only gives ax g to its holder in the event of default.
Its present value is higher than in [30], due to the increased present value of 1 unit
of money at default under (2)-(3).
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Figure 5: Corrected Tax Benefits of Debt. The plot shows the Py"?(z) term in (56) and

corrected tax benefits of debt TB" (z,zp) given in (71) as functions of the failure level zp € [0, z].
Base case parameters values are: A =0, r =0.06, 5 = 0.2, « = 0.5, 7 = 0.35, C = 6.5, V3 = 0.003,
Vo = 2V3, = 100. Recall A(+) is given in (4), coefficients Va, V3 are given by (38), (39) and p < 0.

4.3 Credit Spreads and Leverage Ratios

We now question wether stochastic volatility can increase credit spreads and reduce
leverage ratios w.r.t. results predicted by Leland [30] model. Under (2)-(3) credit
spreads are defined as R¢(x,y) — r, with

R(2,y) = m,

where D(z,y) is given in (50). We denote with R¢:

R (z,2p) = %, (95)
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thus ée(sc, xp) — r is the corrected credit spread in our stochastic volatility model,

with D(z, ) given in (70). Its corresponding value in Leland [30] setting with
constant effective volatility & is

C
PRz 2p) — 1= =5 — 7

PP(z,xp) ’ (96)

with PP (z,zg) given in (55). For a fixed coupon C, randomness in volatility moves
credit spreads exactly in the expected direction, rising them before the default time
in order to compensate investors for the new source of risk, as Figure 6 shows. In
order to study leverage ratios, we consider the stochastic volatility effect on them
by analyzing the behavior of corrected leverage ratios defined as:

I(x, 25) = % (97)

with D¢(z, z) given in (70) and 2¢(z, z5) given in (73).
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Figure 6: Corrected Credit Spreads. The plot shows corrected credit spreads Ee(rr, xp)—rin
(95) and Pf(x,2p) — r in (96) as functions of the failure level zp € [0,z]. Base case parameters

values are: A =0, r =0.06, 6 = 0.2, « = 0.5, 7 = 0.35, C = 6.5, V3 = 0.003, Vo = 2V3, x = 100.
Recall A(+) is given in (4), coefficients V5, V3 are given by (38), (39) and p < 0.

5 Optimal Capital Structure

We numerically derive the optimal coupon chosen by equity holders in order to
maximize the corrected total value of the firm under volatility risk. Recall constraint
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(78): the optimal coupon C** is solution of the following problem

max 0 (z,xp) (98)
el

with 0¢(z, xp) given in (73) as
- C A
v (z,xp) =2 + E — (axB + T—) (ZU—B) he(z,xp;p,0),
r r x

and he(x,zp;p,0) in (44). The aim of our analysis is now to describe the whole
corrected-optimal capital structure value under volatility risk, considering Leland
model [30] with constant effective volatility & in (9) as a benchmark. For each
corrected price ]35(95,:1;3;0) corresponding to a capital-structure claim price, we
denote with P& := ﬁf(x,:’c\és*; 56*) its optimal value, obtained by replacing the
failure level zp with the solution of the optimal stopping problem 5 in (88) and
the coupon C with its optimal value C*. The aim is to analyze the influence of both
sources of risk induced by the model on all financial variables at their optimal level:
at first we only consider the skew effect, captured by p, then its joint influence with
the correction for the volatility level. In this last case we consider the difference
between the corrected effective volatility o* and the average volatility & in (9), with
their relation given by (41). As noted in [20], markets data suggest the corrected
effective volatility being higher than the average volatility, this is why we assume
o*>o0.

Table 1 shows how corporate decisions about optimal capital structure are influ-
enced by the introduction of a negative correlation p between assets value dynamics
(2) and the fast factor process Y;© driving volatility fluctuations (3). We leave p
varying from p = —0.05 to p = —0.1, in order to capture its effects on corporate fi-
nancing decisions. When assuming A = 0 (i.e. zero correction for the volatility level,
with A(-) given in (4)), numerical results show that only the skew effect induced by
p < 0 produces a quantitative significant impact on corporate decisions. Skewness
in the underlying dynamics makes debt less attractive: optimal coupon, debt, total
value of the firm and leverage ratios drop down. And in some cases, this reduction
is quantitatively significant. Only a slightly negative correlation p = —0.05 brings
down leverage of around 8% w.r.t. Leland [30] predictions (row 1, Table 1), while
a 15%-reduction is achieved with p = —0.1. The maximum corrected total value
of the firm is also reduced, due to the combined effect on equity and debt. The
increase in optimal equity value is more than compensated by the reduction in op-
timal debt. The coupon level maximizing corrected total firm value is decreasing
with the skew effect, generating a downward jump in optimal debt from 96.3 in case
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[ p | C* D R* R —r E* 3" L= |

0 [6.501 96.274 6.753 % 75.25b 32168 52.820 128.442 74.956 %
-0.05 | 5.910 84.158 7.022% 102197 39.581 44.916 123.739 68.012 %
-0.06 | 5.741 81452 7.049% 104862 41.417 43413 122.870 66.292 %
-0.07 | 5569 78.796 7.067% 106.744 43.255 41.961 122.051 64.560 %
-0.08 | 5.397 76233 T7.080% 107.991 45.054 40.575 121.287 62.853 %
-0.09 | 5230 73.792 7.087% 108.748 46.787 39.264 120.578 61.198 %
-0.1 | 5203 73.398 7.088% 108.835 47.068 39.053 120.465 60.929 %

Table 1: Skew effect on optimal capital structure. The table shows financial variables at
their optimal level when only the skew effect is considered, i.e. p < 0, A = 0. The first row of the
table reports Leland [30] results as benchmark, as particular case of p = 0,A = 0. We consider
r=0.06, 5 =0.2, « = 0.5, 7 = 0.35 (Leland’s base case values). Recall V3 := \/Epgwfd). We
consider V3 = —0.06p, Vo = 2V3, see also [23]. L, R** are in percentage (%), R® — r in basis
points (bps).

p =0 to 73.4 in case p = —0.1. Despite lower leverage ratios, yield spreads are
increasing with |p|. Letting p = 0, and introducing the correction for the volatility
level will bring the model to a pure Black-Scholes setting with constant effective
volatility o*. This is not the case we are interested in. As a second step we con-
sider both sources of risk associated to firm value. Table 2 shows how financial
variables are modified when also the correction for the volatility level is considered
in a framework with negative leverage effect, i.e. p < 0. As example we consider a
negative correlation p = —0.05 and a gap between o* and & of 1%, 2%, respectively.
The skew effect and the volatility level correction seem to represent an interesting
feature to develop applied to credit risk models. Optimal financing decisions move
w.r.t. a pure Leland [30] model where volatility is constant: when both sources
of risk are considered, their joint influence is quantitatively strong. The optimal
amount of debt is reduced and leverage ratios can drop down from 75% to 62% only
with a slightly negative correlation p = —0.05 and a volatility level correction of 2%.
Numerical results emphasize interesting insights arising from a model where asym-
metry in assets returns distribution and a volatility level correction coexist. This
suggests a possible direction to follow aiming at improving empirical predictions
inside a structural model with endogenous bankruptcy. The mean-reverting process
describing the evolution of assets volatility makes possible to capture how prices are
modified due to the market’s perception of firm’s credit risk: there is uncertainty
about the volatility level and its evolution over time, making the firm becoming a
riskier activity. Investors will require higher compensations: yield spreads must be
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o* Ce* De* Re* R — Fex Z/L_‘Ee* D Le*

|

o 6.501 96.274 6.753%  75.255 32.168 52.820 128.442 74.956 %
g+0.01 | 5701 80.266 7.103 % 110.252 42.011 42.955 123.260 65.120 %
g4 0.02 | 5.597 77.350 7.236 % 123.597 43.495 41.887 124.041 62.358 %

Table 2: Skew effect and volatility level correction: influence on optimal capital
structure. The table shows financial variables at their optimal level when p = —0.05 and also a
volatility correction is considered. Recall that o* = /2 — 2V5. We consider r = 0.06, & = 0.2,
a=0.5,7=0.35, V3 =0.003. L=, R arc in percentage (%), R®* — r in basis points (bps).

higher despite lower leverage ratios.

6 Conclusions

The focus in this paper is to deal with a credit risk stochastic volatility pricing
model following a first passage structural approach to default. The capital struc-
ture of a firm is analyzed in an infinite horizon framework following Leland’s idea
[30] but assuming firm’s assets value belonging to a fairly large class of stochastic
volatility models as in [20]. Volatility is driven by a one factor fast mean reverting
process of OU type and characterized by means of its time scales of fluctuations.
We first address the pricing problem of coupon-paying defaultable claims written on
firm’s assets value, then apply our results to each specific claim defining the firm’s
capital structure. Singular perturbation techniques and asymptotic expansion are
applied following [20]: this enables us to find corrected closed form solutions to
our pricing problem for each coupon-paying defaultable claim, then for each cor-
porate security. We completely describe the firm’s capital structure as a corrected
version of Leland’s results [30], with this correction induced by volatility risk. We
find in closed form a default-dependent correction due to volatility risk which does
not depend on the specific contract we are dealing with, but is instead general and
common to all claims. This correction depends on all parameters involved in the
stochastic volatility model and also on the firm’s current distance to default: it acts
only on the defaultable part of the contract before the failure barrier is touched,
i.e. neither when the contract is riskless, nor when default arrives. Considering
the default-dependent correction’s independence on the specific claim conditions,
we then extend our results and propose in closed form a corrected value for the
Laplace transform of the stopping failure time under volatility risk. The Laplace
transform of the stopping failure time is otherwise not available in closed form un-
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der our stochastic volatility model, but our corrected closed form allows to directly
compute defaultable claim prices. Equity holders face the problem of optimizing
equity value w.r.t. the failure level: standard smooth-fit principle does not give a
failure level solution of the optimal stopping problem, but only a lower bound for
the endogenous default boundary due to limited liability of equity. Choosing that
failure level is not optimal since it would mean an early exercise of the option to
default embodied in equity. We do not derive the endogenous failure level in closed
form, but as implicit solution of a corrected smooth pasting condition involving our
default-dependent correction term, thus depending also on current assets value.

Optimal spreads increase and optimal leverage ratios reduce w.r.t. Leland’s re-
sults [30] as our numerical analysis about optimal capital structure shows. The
market perception of the credit risk associated to the firm is captured by corrected
prices: despite lower leverage, enhanced spreads are predicted by the model, since the
required compensation for risk increases, thus incorporating the asymmetric volatil-
ity phenomenon on corporate financing decisions in a robust model-independent
way.
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