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Abstract
We study a simple monetary model in which a central bank faces a boundedly rational

private sector and has the goal of stabilizing inflation. The system’s dynamics is generated by
the interaction of the expectations about inflation of the various agents involved. A modest
degree of heterogeneity in such expectations is found to have interesting consequences, in
particular when the central bank is uncertain about the relevant behavioral parameters. We
find that a simple heuristic based on mean and variance of the distribution of behavioural
parameters stabilizes the system for a wide parametric region.

1 Introduction
In recent years the ability of central banks to control inflation by way of inflation targeting
policies has generally increased and their credibility has improved accordingly. The issue of
whether monetary authorities are also actually able (and therefore should commit themselves to)
tackle full employment at the same time is controversial, however (see e.g. Thornton [9]). More
recently the worldwide crises has also put forward the issue of the zero lower bound constraint on
nominal interest rates reaching effectiveness, with implications on the range of policy instruments
which remain viable for monetary policy (see Williams [10]).
In this paper, we study a simple model in which an inflation targeting monetary policy is

carried out by a Central Bank (CB henceforth), using money supply as its sole instrument. Also
we assume bounded rationality for both the monetary authority and the private sector. The
model builds on Bischi and Marimon [1] who rank a number of different policies according to
the size of the basin of attraction associated with meaningful steady state equilibria. Also, they
assume bounded rationality for the private sector, which is in turn modelled as a representative
agent but do not especially focus on the CB’s forecasts of relevant variables. In contrast, here
the CB is assumed to have a reasonable, albeit not fully rational, strategy to forecast the private
sector’s inflation expectations. Besides, the private sector has heterogeneous agents, even though
such behavioral heterogeneity will be rather modest. The criterion of judging policies according
to the probability of reaching the target, however, will be maintained. This will make sense in
the context of an exercise about parametric uncertainty for the CB. The authorities shall be
assumed to have correct information about the sample moments of the distribution of behavioral
parameters characterizing the private sector, while ignoring the fine detail of the actual realization
of such parameters.
The results obtained with this simple model are as follows: within the representative agent

framework we show how local stability depends on the interaction between money demand elas-
ticity to inflation, the inflation target and the adaptive parameters involved. We also document
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the relative ranking of this policy with various alternatives, given a criterion focused on the
probability of a stable outcome for the dynamics of inflation. With heterogeneous agents we
study the effect of the number of different types of agents playing a role within the private sector
and find a sort of polarization: the larger such number the less uncertain becomes the issue of
whether stability will prevail, with the actual answer depending on a structural parameter. In
this context a significant role seems to be played by the dispersion of the private sector’s adaptive
parameter, which can be taken as a proxy for the amount of behavioral heterogeneity. We also
describe a heuristic for the choice of a "good" adaptive parameter for the CB, in terms of the
expected long-run outcome.
In the first part of the paper we present the baseline model with a representative agent and

rank various policies, using analytical results. Next we proceed to introduce heterogeneous agents
and parameter uncertainty and we resort to simulations and numerical techniques.

2 The baseline model
We consider the deterministic monetary model of inflation targeting described by Bischi and
Marimon [1]. It is assumed that the government faces the intertemporal budget constraint

MS
t+1 +BS

t+1 = ptgt − ptτ t +MS
t +BS

t It (1)

where Ms is the money supply, BS is the government bonds supply, I is the nominal rate of
return on bonds, g are real expenditures, τ a lump-sum tax and p the price level. By defining
the real term balance deficit as

dt = gt − τ t +
BS
t

pt
It −

BS
t+1

pt
(2)

and using (1) we have that the money supply evolves according to

Ms
t+1 =Ms

t + dtpt (3)

i.e. the real term balance deficit equals to the expansion of the money supply.
Let md the money demand in real terms. The equilibrium condition on the market of money,

Ms
t+1 = md

t+1pt, implies that
md
t+1pt = md

t pt−1 + dtpt. (4)

Such condition can be rewritten as

πt =
md
t

md
t+1 − dt

(5)

where πt =
pt
pt−1

is the gross inflation rate at time t.
The money demand is of the Cagan type, i.e. a function of the expected inflation rate, taking

the linear form
md
t+1 = b− πet+1 (6)

where b > 0, and πet+1 is the private sector forecast at time t of the inflation rate at time t+ 1.
1

The CB sets the desired level of inflation (the inflation target) π∗ (which we assume to be
smaller than b to ensure nonnegative demand at the target) and, in order to attain it, determines
dt given the information set at time t. While, in practice, expansions/contractions of the money

1A money demand function of this kind can be founded from a microeconomic point of view through an
overlapping generation model of general equilibrium with logarithmic utility function (see [1] for more details).
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supply could be the outcome of different policy interventions (e.g. open market operations or
interbank rate level), in our model this has no role on the dynamics of the economy.
From (5) it follows that the optimal inflation target policy, conditional on the bank’s expec-

tations being correct, is

dt = Ec
t [m

d
t+1]−

md
t

π∗
(7)

where Ec
t is the operator which defines the expectations of the CB. The optimal monetary policy

(7) depends on the money demand at time t and on the forecast of the CB about the future
money demand of the private sector.2

Assume that the money demand function is correctly estimated by the CB. The CB must
therefore forecast the private sector’s expectation only. So, the expected inflation rate is an
intermediate target for the optimal monetary policy. By indicating with πct+1 the forecast of the
CB about private sector’s expectations and by substituting (6) and (7) in (5) we have that the
inflation rate evolves according to

πt = π∗
b− πet

π∗(πct+1 − πet+1) + b− πet
. (8)

Observe that if the CB has perfect foresight the optimal policy immediately drives the system
on the target, independently of private sector expectations. In such case, no out-of-equilibrium
dynamics is generated.
In what follows, we study the dynamics of the economy in case both the private sector and

the CB are boundedly rational. Agents in the private sector have adaptive expectations.

πet+1 = (1− α)πet + απt−1. (9)

Accordingly we assume that, for the sake of inferring the expectations prevailing in the private

sector, the CB uses the same mechanism, so that its device is correctly specified, while forecasting
errors are possible due to parameters’ uncertainty:

πct+1 = (1− γ)πct + γπt−1. (10)

2.1 Local analysis

We now determine stability conditions for the system obtained by substitution of equation (8)
for the inflation rate, into (9) and (10). Letting xt = πet−1 we obtain the following dynamical
system ⎧⎪⎨⎪⎩

xt+1 = πet
πet+1 = (1− α)πet + απ∗ b−xt

π∗(πct−πet )+b−xt
πct+1 = (1− γ)πct + γπ∗ b−xt

π∗(πct−πet )+b−xt

(11)

2Under the assumption that the money demand function is correctly estimated by the Central Bank, Eq. (7)
can be rewritten as

dt = d∗ + π∗ −Ec
tπ

e
t+1 +

1

π∗
(πet − π∗)

where d∗ = π∗−1
π∗ (b− π∗). So the Central Bank would react with an increase of the money supply whether

private sector forecasts are expected to be lower than the target or whether past expectations were higher than
the target. More details about relations between the policy in eq. (7) and Taylor rules can be found in Bischi
and Marimon [1] pg. 152.
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The vector π̄∗ = (π∗, π∗, π∗) is the unique stationary steady state. The associated Jacobian
evaluated in the steady state has an eigenvalue equal to 0. The other eigenvalues come from the
following 2× 2 submatrix

J =

µ
1− α+ αC −αC

γC 1− γ − γC

¶
where C = π∗

2

b−π∗ . Notice that C can be interpreted as the product of the target π∗ and the

elasticity to inflation of the money demand at the target, π∗

b−π∗ . With π∗ reasonably close to 1,
C is quite close to such elasticity.
The following proposition summarizes the stability properties of the steady state.

Proposition 1 The stationary steady state, π̄∗ = (π∗, π∗, π∗) for the system (11) satisfies the
following stability properties:
1) for 0 < C ≤ 1, the π̄∗ is locally stable for every choice of (α, γ);
2) for C > 1, there are couples (α, γ) for which π̄∗ is unstable. In particular π̄∗ can lose

stability through a Period-doubling bifurcation with instability for α < 2γ(1+C)−4
γ+2C−2 , or through a

Neimark-Hopf bifurcation with instability for α > γ(1+C)
γ+C−1 .

Proof. In the Appendix.
The results in Proposition 1 have a pictorial representation in Figure 1 which shows the

bifurcation diagrams of the system for C < 1 on the left and C > 1 on the right. The parameter
γ varies on the horizontal axis, while the vertical axis refers to α. With R and C, we denote
regions in which the eigenvalues of the dynamical system at the steady state are real or complex,
respectively. S and U denote the regions in which π̄∗ is stable (white areas) or unstable (grey
areas). The arrows show how the regions expand/contract when C changes. The upshot of
Figure 1 is that when C < 1 the steady state is locally stable whatever the adaptive parameters.
When C grows (beyond 1) the stability region shrinks around the line α = γ so that as C → +∞
the equilibrium is unstable for all couples (α, γ) such that α 6= γ.

Figure 1 about here

Notice that it would appear that the CB could induce C < 1 by choosing an appropriately
low π∗ therefore ensuring stability automatically. However, this might not be technically feasible,
on one hand, e.g. if b < 2 (in that case C < 1 would require π∗ < 1). On the other hand it
might not be desirable, because monetary authorities typically have some form of Phillips-curve
trade-off relationship in the back of their minds, even though in our model there is no explicit
dual mandate (regarding the output gap and inflation) for the CB. In view of this observation
we concentrate on the case C > 1 in the rest of the paper.
We now compare the stability properties of (11) with those obtained by Bischi and Marimon

[1] who study the same model under different policy rules. They rank such policies with regard
to the stability properties of the system, preferring a monetary rule over another if the steady
state of the inflation dynamics is stable for a larger set of α values under the first rule then under
the second one. The policies they consider are:

F - a constant money growth rule à la Friedman

dFt = d∗ =
π∗ − 1
π∗

md (π∗)

O - an optimal-on-equilibrium money rule conditional on past real balances;

dOt = md (π∗)−
md
t−1
π∗
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I - a rule depending on past real balances and on the assumption of the private sector
behavioral inertia;

dIt =
π∗ − 1
π∗

md
t−1.

The policy we study here is

AD - a rule depending on past real balances which is optimal provided that the private sector
adaptive behaviour is correctly estimated

dADt = πct+1 −
md
t

π∗
with πct+1 = (1− γ)πct + γπt−1

Proposition 1 shows that for (AD), if the CB has adaptive expectations and the value of α is
known, it is always possible to find an adaptive parameter γ which locally stabilizes the system.
More interesting is the case with α unknown where the system could be stable or unstable
depending on γ. We study this case in the following proposition where we compare the four
policies.

Proposition 2 Consider the inflation dynamics defined in (5), (6), (7) and (9) under the four
different policies dF , dO, dI and dAD. Let π̄∗ the target steady state of the system. Let Ai ⊂ (0, 1)
the set of α values for which the steady state of the system under the policy i is locally stable.
Let Â be the order relation on the set of policies such that di Â dj if and only if Aj ⊂ Ai.
Then for all π∗ > 1 we have

AD Â F Â I Â O if C < π∗
2

π∗2−π∗

AD Â I Â F Â O if C > π∗
2

π∗2−π∗

Proof. In the Appendix.

Figure 2 about here

Figure 2 illustrates the result stated in Proposition 2. The curves show, for each value of C,
the maximum value of α which guarantees the local stability of the system, which is achieved,
for each policy, for parameter values that lie south-west of the corresponding curve. The inertial
behaviour of a CB trying to mimic an adaptive private sector has positive consequences on the
stability of the target steady state. This fact is somewhat reminiscent of a stream of literature
(e.g. Clarida et al. [3]) showing that the behaviour of central banks is better explained by
introducing a partial adjustment mechanism into the optimal policy.
Proposition 2 is obtained by setting γ = γ̂ in the (AD) policy such that the interval of

stabilizing α is of the type [0, α̂) with α̂ the largest possible value, to ease the comparison.
Focusing on the (AD) policy it is possible to obtain a related interesting result if we drop the
constraint that the interval is of the type [0, α̂). The problem we have in mind is as follows.
Suppose that the CB knows that α is the realization of a random draw from a given probability
distribution f . Then an optimal strategy for the CB would be that of choosing the value of γ
maximizing the probability of ending up with a stable system as shown in the following example.

Example 3 Suppose that α ∼ f . Let AAD
γ the set of α values for which the steady state π̄∗ of

the system (11) is locally stable. It is easy to see that the set AAD
γ is an interval. We want to

find the value of γ such that the probability that the sampled α belongs to AAD
γ is maximized.
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When C < 1 +
√
2 the two curves of Period-Doubling and Neimark-Hopf bifurcations do not

overlap: in this case, by choosing any γ ∈
³
C−1
C , 2

C+1

´
the system is locally stable for any α. On

the contrary, when C > 1 +
√
2 there is no γ value which would work for all α and the optimal

γ value is the solution of the problem

max
γ∈( 2

C+1 ,
C−1
C )

Z γ(1+C)
γ+C−1

2γ(1+C)−4
γ+2C−2

f (x) dx

In the case of uniform distribution f = U(0,1) we obtain the solution γ = 2
C+1 . For such value,

AAD
γ =

h
0, 2C+2C2+1

´
.

In the next Section we will address the problem of choosing an optimal adaptive parameter
for the CB in the heterogeneous agents case.

3 Heterogeneous agents
In this section we remove the assumption of a representative agent and allow instead for n dif-
ferent agents, each having a different adaptive parameter, αi. This assumption of heterogeneous
adaptive behaviour is consistent with previous experimental evidence (see e.g. Colucci and Val-
ori [4], and [7]). The model modifies in a rather straightforward way. Assume the n agents
come up with a specific inflation expectation πit with demand for money m

d
t = φi

¡
b− πit

¢
where

the weight φi reflects the relative importance of agent i in the economy. The aggregate money
demand thus becomes

md
t = b−

nX
i=1

φiπ
i
t

= b− πet

where πet =
Pn

i=1 φiπ
i
t is now the (weighted) mean forecast for time-t inflation. The dynamical

system now becomes (2n+ 1)-dimensional:⎧⎪⎪⎨⎪⎪⎩
xit+1 = πit

πit+1 = (1− α)πit + απ∗
b− n

i=1 φix
i
t

π∗(πct−πet )+b− n
i=1 φix

i
t

πct+1 = (1− γ)πct + γπ∗
b− n

i=1 φix
i
t

π∗(πct−πet )+b− n
i=1 φix

i
t

i = 1, . . . , n (12)

A (2n+ 1)-dimensional vector with each component equal to π∗ is the unique stationary steady
state. The associated Jacobian evaluated in the steady state has an eigenvalue equal to 0 with
multiplicity n, while the remaining eigenvalues come from the following n+ 1× n+ 1 matrix

Jhet =

⎛⎜⎜⎜⎜⎜⎝
(1− α1) + α1φ1C α1φ2C · · · α1φnC −α1C

α2φ1C (1− α2) + α2φ2C · · · α2φnC −α2C
...

...
. . .

...
...

αnφ1C αnφ2C · · · (1− αn) + αnφnC −αnC
γφ1C γφ2C · · · γφnC (1− γ)− γC

⎞⎟⎟⎟⎟⎟⎠ .

(13)
It has been shown elsewhere (see Colucci and Valori [6]) that in spite of its simplicity such

modest form of behavioral heterogeneity may have relevant dynamic consequences, and the same
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applies here. Indeed, we know from Proposition 1, that with a representative agent such that
α = 0.5 and a parameter γ = 0.5 there is local stability (there is a single eigenvalue equal to 0.5
with multiplicity equal 2). However a couple of agents having for example α1 = 0.2, α2 = 0.8 (so
that the average α is again 0.5) and γ = 0.5 will generate an unstable system (for large enough
C). Heterogeneous agents in the private sector therefore matter. It turns out that the outcome
in terms of the steady state’s stability depends in a complicated way on the overall distribution
of the behavioral parameters of the private sector and the CB, beside the structural parameter
C.
Reflecting the broad range of possible behaviors we have already seen in the simpler case with

a representative agents, the local dynamics generated by the system (12) around its steady state
can assume various forms, depending on the parameters. In particular, local stability can be lost
either through a Period-doubling or a Neimark-Hopf bifurcation. While it proved intractable
(to us!) to draw analytical conclusions matching those seen above, in the next subsection we
resort to numerical evidence to shed light on a number of interesting features characterizing this
situation of heterogeneity.3

3.1 Uncertainty about behavioral parameters.

Assume the CB is uncertain about the behavioral parameters used by the agents in the private
sector. Clearly, we might as well conjecture uncertainty about other relevant parameters. How-
ever here we suppose the CB is more reliable in estimating relevant structural parameters than
it is in dealing with the private sector’s expectations.4 We then look for a good choice of its own
gain parameter γ for the CB given such uncertainty. A similar exercise has been carried out e.g.
in Karozumi [8] in the context of a DSGE model.
Let the parameters αi be unknown to the monetary authority. Instead suppose such parame-

ters are drawn (independently) from a known probability distribution with support on the unit
interval. Whilst the effect of a larger value of C is unexpectedly similar to that we have seen
in the representative agent case examined above, it is less obvious to figure out the effect of a
larger n, i.e. a larger number of different types of agents.
Our first set of simulation entails drawing samples of adaptive parameters from the uniform

distribution over [0,1], while γ is set to a constant value (0.5). This is done taking increasing
values of n and increasing values of C. For each n and C we drew 10000 independent samples and
recorded whether or not the system’s steady state was locally stable (by looking at the implied
spectral radius of the Jhet matrix).5 This generates a measure of the empirical probability of
stability as a function of C for various values of n. An interesting phenomenon we observed is
depicted in Figure 3.

Figure 3 about here

As n increases there emerges a threshold value for C such that below the threshold there is
almost certainly convergence whereas past the threshold almost certainly instability will prevail.
This feature, can also be found in other related but different models with heterogeneous agents
(see Colucci and Valori [5] and [6]), and is a kind of polarization. The result represented in

3Colucci and Valori [6] study the effect of introducing heterogeneity in a population of adaptive agents within
a cobweb model and derive analytic conditions for stability in the more general case of n agents. In the model
we study here, the interaction between the CB and the private sector changes substantially the nature of the
Jacobian matrix and such results are no more valid.

4We will address the issue of uncertainty about the parameter b (or equivalently C) which determines the
money demand schedule with the second simulation set.

5The simulations are all implemented with equal weights for each agent, i.e. φi =
1
n
for simplicity.
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Figure 3 does not depend either on the probability distribution of αis or on the particular choice
of γ: in fact it can also be observed if γ itself is the realization of a random variable (with the
same distribution as the αis). For different values of (fixed) γ polarization still emerges, but the
value of C discriminating between the two asymptotic outcomes (0 or 1) changes.
This probability polarization is relevant for the policy maker. Suppose that, in the context

of an economy with a large number of heterogeneous agents, the CB copes with the problem
of choosing its adaptive parameter γ having the stabilization of inflation around the target as
a primary objective. In this case the CB would choose, if it exists, a value of γ such that the
related threshold value is larger than the C. This choice, at least on a probabilistic basis, would
grant stability to the system.
Assume now that C is unknown (e.g. when the value of b is uncertain) then a good question

to answer is: "Which is the value of γ for which the threshold value of C is maximized?". One
may suppose that a good strategy is that of choosing a small value of γ (adaptive expectations
with small adaptive parameters are usually stabilizing); alternatively γ = E [αi] could also make
sense (coherently with the fact that in the representative agent case γ = α is always a good
choice). In fact the right answer is a third one as we discuss below.
The problem we want to address can be summarized as follows. Let pn,f,γ (C) be the set of

functions - depending on the population numerosity n, on the αis probability distribution and on
the CB adaptive parameter γ - which defines the probability of convergence for each value of C.
This is the kind of function we have estimated in the first set of simulations (indeed figure 3 shows
the graphs of pn,f,γ (C) with γ = 0.5, f the uniform distribution and n = 2, 5, 15, 50, 100, 250).
If we suppose that each couple of successive functions has a unique intersection point Cn (i.e. a
point such that pn+1,f,γ (Cn)−pn,f,γ (Cn) = 0) and that the sequence {Cn} converges to Ĉ, then
we are looking for the value of γ which maximizes Ĉ given f . To obtain an approximate value
of this limit we have estimated the root of p50,f,γ (Cn)−p15,f,γ (Cn) using Newton’s method and
evaluating successive points of such difference using the algorithm of the first simulation set. The
exercise has been repeated drawing samples of αis from several Beta distributions.6 The three
graphs in Figure 4 show the result obtained for three different Beta distributions (parameters are:
top (1, 1), bottom left (0.7, 0.3), bottom right (0.7, 2)). In all cases there is evidence of a strong
sensitivity to the choice of γ. The optimal value of γ is always larger than the distribution mean
(distributions mean is: top 0.5, bottom left 0.7, bottom right 0.26), so neither the distribution
mean nor a generic "small" value are a good choice for γ. To a close-up view it emerges that a key
role is played by the distribution variance (distributions variance is: top 0.083, bottom left 0.11,
bottom right 0.052); indeed the peak of the plots can be found for a value of γ approximately
equal to E [f ] + V ar [f ]. In the end, being the αis randomly drawn from a given probability
distribution f , the value of γ maximizing the size of the set of C values for which the system’s
probability of convergence shows polarization toward 1 is γ = E [f ] + V ar [f ]. More easily said:
in the case of heterogeneity of expectations and parameter uncertainty with regard to money
demand functions the best strategy for the CB is to set its adaptive parameter equal to the sum
of mean and variance of the behavioral parameters’ distribution.
As we will see now, the value of γ = E [f ] + V ar [f ] seems to be a robust optimal choice

within this model.

Figure 4 about here

To conclude this section, we want to study reinforce the previous findings to answer the
question of what is a smart choice for γ, from the point of view of a CB that cares for stabilizing

6The parameter A and B of the Beta distributions have been chosen in {0.3, 0.7, 1, 2} in all possible combina-
tions.
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inflation towards a target. We show here that the rather simple heuristic γ = E [f ] + V ar [f ]
shows a strong capacity of stabilizing the system in presence of uncertainty about the private
sector’s adaptive parameters, αi. Notice that the informational requirements on the CB’s part
implied by this are not very heavy. We tested such simple strategy against a wealth of other
fixed choices and against similar competitors using the sample mean and variance: such numerical
exercises involve a wide choice of distributions within the Beta family (both symmetric, including
the special case of the uniform distribution, and asymmetric) for the α parameters, as well as
several different values for the structural parameter C. For each set of parameters we ran 10000
runs. The parameter γ is set in various different ways: constant and variable (depending on the
sampled αis). The simulations covered therefore a grid described in the following table:

A B n
{0.5, 1, 2, 4} {0.5, 1, 2, 4} 100

C Fixed γ Variable γ
{5, 10, 15, 20} {0.1, 0.2, . . . , 0.9, E [f ] , E [f ] + var [f ]} {ᾱ, ᾱ+ V ar(α1, . . . , αn)}

where A and B are the parameters that define the relevant Beta distribution used to draw the
αis, the fixed γ are just constant values for gamma evenly distributed on the unit interval or
depending on the distribution mean and variance, and the variable γ are obtained for each sample
of αis as their sample mean or as their sample mean augmented by their sample variance. The
use of variable values for γ implies that the CB knows the whole set of behavioral parameters or,
at least, that it is capable to estimate it: clearly this is a very strong assumption. Nonetheless,
as we supposed that γ̃ = ᾱ+ V ar(α1, . . . , αn) would have been the best choice, we have decided
to consider it among the alternatives so as to have a benchmark to compare the other possible
choices. A summary of the results is contained in Table \ref.

Table 5 about here

The result of this simulation set confirm what we expected: in order to obtain a stable system,
γ = γ̃ gives the best result in all cases but one (cell with grey background). On the the other
hand, the interesting fact is that the choice γ = E [f ] + var [f ] is also an excellent one. Results
obtained using this heuristics are, with few exceptions (again cells with grey background), the
second best, and when it is not the case they are very near the best outcome (never more than
4% absolute difference).

Conclusion
We developed a simple model in which a central bank and a boundedly rational private sector
interact as the monetary authority pursuits a target for the level of inflation. The expectations
about inflation of the various agents involved effectively drive the dynamics of the system. In-
troducing heterogeneity in such expectations is shown to have a significant impact, in particular
when the central bank is uncertain about the relevant behavioral parameters. A heuristic for the
central bank, based on the knowledge mean and variance of the probability distribution of the
adaptive parameters used within the private sector, is shown to be able to stabilize the system
for a rather large parametric region. This kind of analysis could benefit from further inquiry
in various directions, for example modelling explicitly the goals of the authorities in terms of
controlling the output gap and unemployment and allowing for more interesting expectations
mechanisms in the private sector, such as fitness-based endogenous switching among different
rules.
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Appendix
Proof of Proposition 1.
At first we establish the nature (real or complex) of eigenvalues. From condition tr2

¡
J
(1,1)

¢
−

4 det
¡
J(1,1)

¢
< 0, which ensures that eigenvalues are complex, we have:

α2 (1− C)
2 − α

£
2γ
¡
1 + C2

¢¤
+ γ2 (1 + C)

2
< 0. (14)

The second degree polynomial has the two roots α1,2 =
∙
γ, γ

³
1+C
1−C

´2¸
. The inequality is satis-

fied, given α, γ ∈ (0, 1), in the following cases:

1.1 γ
³
1+C
1−C

´2
< α < γ if C < 0,

1.2 γ < α < γ
³
1+C
1−C

´2
if C > 0,
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while for C = 0 complex eigenvalues are not allowed.
To expose the geometric locus of the Neimark-Hopf bifurcation, we need the solution of

det
¡
J
(1,1)

¢
= 1− γ (1 + C)− α (1− γ − C) > 1. (15)

We obtain (for γ 6= 1− C):

1.3 α > γ(1+C)
γ+C−1 se γ > 1− C

1.4 α < γ(1+C)
γ+C−1 se γ < 1− C.

The case γ = 1−C gives C2 > 1 and the solution |C| > 1 is of no interest as γ ∈ (0, 1). The
Neimark-Hopf bifucation curve correspond to an hyperbola with asymptotes in 1− C (vertical)
e 1 + C (horizontal). The two regions specified in 1.3 e 1.4 belong to the feasible region of
parameters when C > 1 and C < −1 respectively.
From tr

¡
J
(1,1)

¢
> det

¡
J
(1,1)

¢
+ 1, we have 0 > αγ which is never satisfied in the region we are

interested in. So, the Saddle-Node bifucation could never occur.
To find the geometric locus in which a Period-doubling bifurcation occurs we have to find out
when the inequality tr

¡
J
(1,1)

¢
< −det

¡
J
(1,1)

¢
− 1 is satisfied, we have:

2− α (1− C)− γ (1 + C) < −1 + γ (1 + C) + α (1− γ − C)− 1. (16)

Whenever γ 6= 2− 2C, we have two cases:

1.5 α < 2γ(1+C)−4
γ+2C−2 if γ > 2− 2C

1.6 α > 2γ(1+C)−4
γ+2C−2 if γ < 2− 2C.

When γ = 2− 2C there are no solutions.
The Period-doubling bifurcation curve is given by an hyperbola with asymptotes in 2 − 2C
(vertical) e 2+ 2C (horizontal). As in the case of the Neimark-Hopf, conditions 1.5 e 1.6 can be
satisfied, given the restictions on parameter values, for C > 1 and C < −1 respectively.
Proof of Proposition 2. Bischi and Marimon [1] show that:

- AF =
n
α ∈ [0, 1] : α < π

C ∧C > π∗
2

π∗2−π∗

o
- AO = [0, 1] if C < 1, ∅ if C ≥ 1
- AI =

©
α ∈ [0, 1] : α < 1

C

ª
As regards the policy AD, we have to decide how to set the value of the parameter γ as

the set AAD depends from it. In order to facilitate the comparison we set γ = γ̂ such that the
interval of "stable" α is of the type [0, α̂) with α̂ the greatest possible value. It is immediate to
check that these values are γ̂ = 2

1+C and:

- AAD =
n
α ∈ [0, 1] : α < α̂ = 2(1+C)

1+C2

o
.

The result follows immediately.

Figures and tables
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Figure 1: Bifurcation diagrams.

Figure 2: Policy ranking (π∗ = 1.1)
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Figure 3: Polarization of probabilities of convergence as n increases.

Figure 4: Highest value of C granting polarization of probability towards 1 as a function of γ.
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Figure 5: Probability of stable systems under different choices for γ.
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