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Abstract

Equity returns and firm’s default probability are strictly interrelated financial
measures capturing the credit risk profile of a firm. Following the idea proposed
in [20] we use high-frequency equity prices in order to estimate the volatility risk
component of a firm within Merton [17] structural model. Differently from [20]
we consider a more general framework by introducing market microstructure noise
as a direct effect of using noisy high-frequency data and propose the use of non-
parametric estimation techniques in order to estimate equity volatility. We conduct a
simulation analysis to compare the performance of different non-parametric volatil-
ity estimators in their capability of i) filtering out the market microstructure noise,
ii) extracting the (unobservable) true underlying asset volatility level, iii) predicting
default probabilities calibrated from Merton [17] model.

Keywords: market microstructure noise, high-frequency data, non-parametric
volatility estimation, Merton model, default probabilities, volatility risk.

1 Introduction

In structural credit risk models, firstly formalized by [17], a firm’s equity and debt
can be seen as contingent claims partitioning the asset value of the firm. Empirical
tests of structural credit risk models show poor predictions of default probabilities
and credit spreads, especially when considering short maturities. Methods of strict
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estimation or calibration provide evidence that predicted credit spreads are far be-
low observed ones [14], the structural variables explain little of the credit spread
variation [12], and pricing error is large for corporate bonds [18]. A critical issue
about the implementation of these models is that firm’s asset value and volatility are
not directly observable. The idea is then to use the information content of equity
prices and then back out the firm’s asset volatility. Nevertheless, the market mi-
crostructure literature strongly suggests that trading noises can affect equity prices
so that the estimation of equity volatility and other related quantities may become
a difficult task.

As well documented, observed equity prices can diverge from their equilibrium
value due to illiquidity, asymmetric information, price discreteness and other mea-
surement errors. For example, the effects of trading noise on how frequently one
should sample the equity price are analyzed in [4, 2].

In the specific context of structural credit risk models, the relationship between
the unobservable asset volatility and the observed equity value predicted by the
pricing model is masked by trading noise; ignoring microstructure effects could non-
trivially inflate estimates for the ”true” asset volatility, and this would produce
misleading estimates for default probabilities and credit spreads. This issue has
been analyzed in [9], where the authors extend [8] to explicitly account for trading
noise contamination of equity prices: they devise a particle filter-based maximum
likelihood method based solely on the time series of observed equity values, which
is robust to market microstructure effects. The importance of using high frequency
data to back out parameters involved in firm’s value dynamics has been highlighted
by [20], which propose a novel approach to identify the volatility and jump risks
component of individual firms from high-frequency equity prices. Their analysis
suggests that high-frequency-based volatility measures can help to better explain
credit spreads, above and beyond what is already captured by the true leverage ratio.
However, the highest frequency considered in this paper is the 5-minute conservative
sampling frequency which allows to eliminate microstructure effects.

In this paper we propose a particular econometric approach to structural mod-
els calibration based on a non-parametric estimation of equity volatility from high-
frequency intra-day equity prices. Several non-parametric estimators of daily stock
volatility have been proposed in the econometric literature allowing to exploit the
information contained in intra-day high frequency data neglecting microstructure
effects [1, 4, 19, 11, 2, 13, 15]. We propose a Monte Carlo simulation study based
on Merton [17] structural model trying to compare the performance of different
non-parametric volatility estimators in their capability of i) filtering out the market
microstructure noise, ii) extracting the true underlying asset (unobservable) volatil-
ity level, iii) predicting default probabilities. Our analysis shows that the choice of
the volatility estimator can largely affect calibrated default probabilities and hence
risk evaluation. In particular, the commonly used Realized Volatility estimator is
unable to provide reliable estimates for the volatility risk leading to a significant
underestimation of default probabilities.

2



2 Merton model under microstructure effects

In this Section we describe the main features of Merton [17] credit risk structural
model and provide the theoretical definition of each economic quantity and volatility
estimator useful for our simulation analysis. In Subsection 2.1 we characterize firm’s
asset value evolution and in Subsection 2.2 we describe equity volatility estimation
procedure under market microstructure noise.

2.1 Firm value model

We follow Merton [17] structural model by assuming a firm’s value process described
by a geometric Brownian motion which evolves according to

dAt
At

= (µ− δ)dt+ σdWt (1)

where At is asset value at time t, µ is the instantaneous asset return, δ the asset pay-
out ratio and σ the asset volatility. The firm has two classes of claims outstanding:
equity and a zero-coupon debt with maturity T . To be suitable for pricing corporate
debt, we adopt the following bankruptcy assumptions from [17]: (i) the firm issues
one zero-coupon bond with a promised payment B at maturity, (ii) default occurs
only at maturity with debt face value as default boundary, and (iii) when default
occurs, the absolute priority rule prevails. The payoffs to debt holders and equity
holders at time T become, respectively:

DT = min(AT , B), ST = max(AT −B, 0).

From now on, we focus our attention on equity value and default probabilities
in order to develop our computational econometric analysis. Equity claim can be
priced at each time t < T through the standard Black-Scholes option pricing model
as the price of a European call option given by

St = S(At;σ,B, r, δ, T ) = Atφ(dt)−Be−r(T−t)φ(dt − σ
√
T − t), (2)

where

dt :=
log(At

B ) + (r + σ2/2)(T − t)
σ
√
T − t

, (3)

and φ(·) is the standard normal distribution function. Therefore, by applying Itô’s
lemma, the instantaneous volatility Σs

t of the log equity price can be written as:

Σs
t :=

At
St

∂St
∂At

σ. (4)

Notice that the equity volatility is driven by the time-varying factor At, whereas the
asset volatility σ is constant. The firm’s probability of default at maturity T is the
probability of AT being below the constant barrier represented by the face value of
debt B. Under the physical probability measure P we have

P(AT < B|At) = φ(σ
√
T − t− dPt ), (5)

with dPt given by Equation (3) where we only replace the interest rate r with µ− δ.
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2.2 Equity volatility estimation

For a given firm, one can obtain a time series of equity prices {Sj , j = 0, . . . , N},
with a given sampling frequency h = tj − tj−1 assumed to be constant, for ease
of exposition. If one could observe the ”true” equity price, than equity volatility
could be easily estimated by the well known Realized Volatility estimator [7] at any
desired accuracy level using high frequency data. However, as noted for instance
by [9], the time series of observed equity prices may contain trading noises, hence
volatility estimation becomes much more complex. In particular, the relationship
between the unobserved asset and the observed equity value predicted by the pricing
formula (2) may be masked by trading noise. We assume an additive error structure
for the trading noise on the logarithmic equity value as follows

log S̃(tj) = logS(tj) + η(tj), (6)

where the random shocks η(tj), for 0 ≤ j ≤ N are i.i.d. random variables with
mean zero and bounded fourth moment and independent of the efficient log-return
process. The assumption of independence can be relaxed by considering a particular
form of dependent noise, given by [11], with market microstructure noise that is
time-dependent in tick time and correlated with efficient returns

η̃j := α[logS(tj)− logS(tj−1)] + ηj , (7)

where α is a real constant and η̃j and ηj are the shorten notation for η̃(tj) and η(tj).
The case α = 0 corresponds to the case of independent noise assumption.

The basic idea of our paper is that, using suitable volatility estimators, we can
infer the true volatility process Σs

t of equity returns from noisy high-frequency data.
Then, the equity volatility estimate can be used to back out the asset volatility σ
such as to fit exactly, say, the 5-years probability of default by solving Equation (5)
with respect to σ, as explained in details in the following section.

For the reader’s convenience, we now give some details about the implementation
of the volatility measures employed in our analysis. We set p̃t := log S̃t, the noisy
equity log-price. Time is measured in daily units. We build daily measure of volatility
by considering daily windows of n intra-day equity data p̃t,j , j = 0, 1, . . . , n. Besides
the well known Realized Volatility estimator

ΣRV
t :=

n∑
j=1

δj(p̃)
2, (8)

where δj(p̃) := p̃t,j − p̃t,j−1 is the j-th within-day equity log-return on day t, we
consider the following estimators of the volatility process Σs

t : the bias corrected
estimator by Hansen and Lunde [11]

ΣHL
t := ΣRV

t + 2
n

n− 1

n−1∑
j=1

δj(p̃)δj+1(p̃); (9)

the flat-top realized kernels by [4], [6]

ΣK
t :=

H∑
h=−H

k

(
h

H + 1

) n∑
j=|h|+1

δj(p̃)δj−|h|(p̃), (10)
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with kernels of TH2 type k(x) = sin2
(
π
2 (1− x)2

)
. The realized kernels may be

considered as unbiased corrections of the Realized Volatility by means of the first
H autocovariances of the returns. In particular, when H is selected to be zero the
realized kernels become the Realized Volatility. Our analysis includes also the two-
scale estimator by [19]

ΣTS
t :=

S

S − 1

(
1

S

S∑
s=1

ΣG(s)

t − 1

S
ΣRV
t

)
. (11)

The two-scale (subsampling) estimator is a bias-adjusted average of lower frequency
realized volatilities computed on S non-overlapping observation subgrids G(s) con-
taining nS observations. Recently, [13] proposed a pre-averaging technique as an
alternative to subsampling in order to reduce the microstructure effects. The idea
is that if one averages a number of observed log-prices, one is closer to the latent
process p(t). This approach, when well implemented, gives rise to rate optimal es-
timators of power variations. In particular, a consistent estimator of the integrated
volatility can be constructed as

ΣPA
t =

√
∆

θψ2

n−kn+1∑
s=0

δ̄s(p̃)
2 − ψ1∆

2θ2ψ2

n∑
s=1

δs(p̃)
2, (12)

where the pre-averaged return process is given by

δ̄s(p̃) :=

kn∑
r=1

g

(
r

kn

)
δs+r(p̃) =

1

kn

 kn−1∑
j=kn/2

p̃t,s+j −
kn/2−1∑
j=0

p̃t,s+j

 ,

θ = kn
√

∆, ψ1 = 1 and ψ2 = 1/12, corresponding to the ”hat” weight function
g(x) = x ∧ (1− x). The Fourier estimator [15] is given by

ΣF
t =

(2π)2

2N + 1

N∑
s=−N

cs(dp̃n)c−s(dp̃n), (13)

where ck(dp̃n) = 1
2π

∑n
i=1 exp(−ikti−1)δi(p̃). Finite sample MSE-based optimal rules

for choosing the parameters employed by these estimators are discussed in [3], [19],
[16] and [5]. Here, we proceed according to the following rules: a simple approxi-
mation of the optimal sampling frequency for the Realized Volatility estimator is
to choose the number of observations approximately equal to n∗ = (Q/4E[η2]2)1/3,
where Q is the integrated quarticity estimated by means of low frequency returns.
The optimal number of sub-grids S is given by c∗n2/3, where c∗ = (Q/48E[η2]2)−1/3.
For the Kernel estimator, we apply the optimal mean square error bandwidth
selection suggested by [5] and get H = c∗ξ4/5n3/5, where c∗ = (144/0.269)1/5,
ξ2 = E[η2]/

√
Q. In the case of the Pre-averaging estimator, inspired by [5], we

choose kn = c∗ξ4/5n3/5. Finally, for the Fourier estimator, the optimal cutting fre-
quency N can be easily obtained by direct minimization of the estimated MSE given
by Theorem 3 in [16].
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3 Monte Carlo simulation

In this section we provide numerical results of our Monte Carlo simulation analysis.
The aim is to compare the performance of different volatility estimators when

using high-frequency equity data and equity prices are affected by trading noise. We
analyze the performance of the volatility estimators with respect to their ability of i)
filtering the microstructure noise and correctly extract equity volatility, ii) backing
out asset volatility and iii) predicting default probabilities.

We perform a Monte Carlo simulation analysis in which the underlying asset
dynamic is generated according to model (1). Then, high-frequency equity prices
are simulated through Equation (2). The sample contains 500 days and equi-spaced
intra-day data are generated at a frequency h = 4 sec (i.e. n = 21600). The model
parameters are σ = 0.2128, µ = 0.0643, B = 43.13, r = 0.05 and δ = 0.02, as
calibrated by [20] for bonds belonging to rating class A. Then, market microstruc-
ture noise is considered, alternatively, for both cases described by equations (6)-(7).
The random shocks ηj are i.i.d Gaussian random variables with mean zero and
standard deviation equal to 2 times the standard deviation of log-equity returns.
In the dependent noise case (7), we set α = 0.5. Once we have noisy equity prices,
we compare the performance of different volatility estimators in their ability of ex-
tracting the ”true” equity volatility Σs

t given in (4) and other related quantities for
the underlying process describing firm’s assets value dynamics.

Table 1 presents numerical evidence for each equity volatility estimator intro-
duced in subsection 2.2 and used in our comparison when (a) trading noise is in-
dependent of intra-day equity log-returns and (b) trading noise is correlated with
intra-day equity log-returns, respectively.

The table lists the average relative error (ARE), the mean squared error (MSE)
and bias achieved by the different equity volatility estimators. ΣRV

t represents the
Realized Volatility estimator using all tick-by-tick equity data as given by Equation
(8), while ΣRV SS

t refers to the Realized Volatility estimator based on sparse sam-
pling, where the sampling frequency is optimized in order to filter the microstructure
effects, by setting n = n∗ as explained in subsection 2.2. Our results strongly confirm
well known stylized facts documented by the econometric literature and highlighted
by [16]: ΣRV

t estimates are completely swamped by noise and sparse sampling can
only moderately provide efficient estimates. The first order correction of ΣHL

t esti-
mator given in Equation (9), as an alternative to sparse sampling, can reduce the
bias due to the spurious first order autocorrelation in equity returns introduced by
the trading noise. The best results are provided by ΣF

t and by the other estimators
specifically designed to handle microstructure effects ΣTS

t , ΣK
t and ΣPA

t . However,
the rank of estimators is different when we consider absolute error measures such as
MSE and bias versus percentage error measures such as ARE. In fact, in the latter
case ΣHL

t performs better than ΣPA
t and ΣF

t . Finally, we notice that ΣPA
t tends to

underestimate volatility, differently from all the other estimators.
In order to study the influence of different equity volatility estimators on the

default probability predicted by Merton [17] model, we proceed by developing the
following calibration exercise. For each equity volatility estimator, generically de-
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Table 1: Equity Volatility Estimators. The table shows average relative error (ARE), mean squared

error (MSE) and BIAS for different equity volatility estimators. Results are based on 500 daily Monte

Carlo simulations. Panel (a) refers to the trading noise given in Equation (6), panel (b) to Equation (7),

with α = 0.5.

(a) ARE MSE BIAS
ΣRV
t 2.00e+0 4.49e-1 6.69e-1

ΣRV SS
t 3.28e-2 4.13e-4 1.10e-2

ΣTS
t 5.37e-4 2.55e-5 1.97e-4

ΣHL
t 9.89e-4 2.21e-4 3.73e-4

ΣK
t 5.10e-4 5.62e-5 1.83e-4

ΣPA
t -1.19e-3 6.59e-5 -3.87e-4

ΣF
t 1.33e-2 8.01e-5 4.46e-3

(b) ARE MSE BIAS
ΣRV
t 2.24e+0 5.65e-1 7.50e-1

ΣRV SS
t 3.61e-2 4.90e-4 1.21e-2

ΣTS
t 6.31e-4 2.79e-5 1.96e-4

ΣHL
t 1.07e-3 3.25e-4 3.46e-4

ΣK
t 6.29e-4 5.78e-5 2.03e-4

ΣPA
t -1.43e-3 6.79e-5 -4.81e-4

ΣF
t 1.38e-2 8.58e-5 4.60e-3
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noted by E, and each day t in our sample, we find the corresponding asset volatility
estimate σ̂E by matching the 5-years default probability coming from our equity
volatility estimate ΣE

t with the one evaluated through the model using the given
parameters values. In so doing, we act as if we did not know the asset values to mimic
the real-life estimation situation and we conduct inference only based on observable
quantities such as measurable equity volatility and the 5-years default probabilities.
Default probabilities are computed, for any maturity, according to Equation (5). In
order to avoid arbitrage opportunities, following [20], we consider as key assump-
tion that all securities written on the underlying firm value At must have the same
Sharpe ratio, see [17], Equation (6). This consideration enables us to express the
instantaneous asset return µ as a function of the unknown asset volatility, given
each equity volatility estimate ΣE

t , and then to solve Equation (5) for the 5-years
default probability with respect to the asset volatility, to obtain the corresponding
asset volatility estimate σ̂E . Once asset volatility is known, we can compute default
probabilities for any other maturity according to Equation (5).

Before analyzing the impact of the different volatility estimators on the calibra-
tion procedure for default probabilities, we analyze their influence on the calibration
of asset volatility σ. A visual insight on the variability of asset volatility estimates
obtained with the procedures based on the different equity volatility estimators can
be achieved from Figure 1, plotting the ratio σ̂E/σ in the case of independent noise.
It is evident how the high-frequency Realized Volatility procedure (black line in the
bottom) largely underestimate asset volatility. Similar results are obtained for the
dependent noise case, as Figure 2 shows.
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σ̂RV SS/σ

σ̂T S/σ
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σ̂K/σ

σ̂P A/σ

σ̂F/σ

σ̂RV/σ

Figure 1: Calibrated Asset Volatility. The plot shows the ratio between calibrated asset volatility

σ̂E and the true asset volatility σ for 500 daily Monte Carlo simulations. The plot refers to the trading

noise given in Equation (6). Panel (a) of Table 2 gives descriptive statistics of these values.
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Table 2 shows descriptive statistics of calibrated asset volatility. We report re-
sults obtained by matching 5-years default probabilities for each equity volatility
estimator E. Panel (a) of the table refers to a trading noise of the form (6); panel (b)
refers to results obtained for a trading noise of the form (7). It is evident from the
table that the Kernel an Two-scale estimators provide the most accurate estimation
of the true value σ = 0.2128, with the smallest standard deviation. On the contrary,
σ̂RV is strongly biased due to microstructure effects, while the optimized σ̂RV SS is
less biased, at the price of a slightly larger variance. These results are confirmed by
statistics for the ratio σ̂E/σ as well.
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σ̂HL/σ

σ̂K/σ

σ̂P A/σ

σ̂F/σ

σ̂RV/σ

Figure 2: Calibrated Asset Volatility. The plot shows the ratio between calibrated asset volatility

σ̂E and the true asset volatility σ for 500 daily Monte Carlo simulations. The plot refers to the trading

noise given in Equation (7), with α = 0.5. Panel (b) of Table 2 gives descriptive statistics of these values.

The average (over all the ’daily’ Monte Carlo replications) default probabilities
for different maturities and calibration procedures are plotted in Figure 3.

For each day in the sample and for each volatility estimator E we use the cal-
ibrated asset volatility σ̂E in order to compute the default probabilities for any
maturity (from 1 to 5 years) by Equation (5). From the figure, it appears evident
how the Realized Volatility approach based on high frequency noisy data drastically
underestimates default probabilities, so that sparse sampling becomes mandatory
when equity data are affected by microstructure effects. On the whole, all the other
procedures seem to provide sensible results and only a deeper analysis reveals dif-
ferences among different calibration procedures.

The analysis of the effects of using alternative equity volatility estimators on
default probabilities is conducted for different maturities (from 1 to 5 years) through
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Table 2: Calibrated Asset Volatility. The table shows descriptive statistics of calibrated asset volatil-

ity for different equity volatility estimators. Results are based on 500 daily Monte Carlo simulations. Panel

(a) refers to the trading noise given in Equation (6), panel (b) to Equation (7), with α = 0.5.

(a) σ̂RV σ̂RV SS σ̂TS σ̂HL σ̂K σ̂PA σ̂F

Mean 0.192652 0.211811 0.212759 0.212812 0.212770 0.212830 0.212355
Median 0.192648 0.211775 0.212750 0.212618 0.212734 0.212790 0.212313
10 Percentile 0.192569 0.209762 0.212129 0.211089 0.211934 0.211896 0.211390
90 Percentile 0.192743 0.213980 0.213361 0.214912 0.213688 0.213878 0.213298
Min 0.192419 0.207321 0.211354 0.209575 0.210808 0.210616 0.210435
Max 0.192894 0.217353 0.214601 0.219557 0.215141 0.215468 0.214927
Std Deviation 0.000069 0.001575 0.000503 0.001515 0.000742 0.000807 0.000749

σ̂RV /σ σ̂RV SS/σ σ̂TS/σ σ̂HL/σ σ̂K/σ σ̂PA/σ σ̂F /σ
Mean 0.905318 0.995352 0.999808 1.000056 0.999860 1.000139 0.997911
Median 0.905299 0.995186 0.999767 0.999143 0.999689 0.999951 0.997711
10 Percentile 0.904928 0.985726 0.996846 0.991960 0.995929 0.995753 0.993376
90 Percentile 0.905745 1.005543 1.002634 1.009924 1.004173 1.005067 1.002341
Min 0.904225 0.974253 0.993207 0.984843 0.990637 0.989735 0.988885
Max 0.906457 1.021393 1.008465 1.031753 1.011002 1.012535 1.009996
Std Deviation 0.000326 0.007401 0.002363 0.007120 0.003488 0.003792 0.003519
(b) σ̂RV σ̂RV SS σ̂TS σ̂HL σ̂K σ̂PA σ̂F

Mean 0.191966 0.211722 0.212756 0.212841 0.212766 0.212838 0.212340
Median 0.191965 0.211546 0.212734 0.212708 0.212746 0.212813 0.212320
10 Percentile 0.191886 0.209694 0.212077 0.210635 0.211857 0.211817 0.211347
90 Percentile 0.192049 0.213990 0.213403 0.215044 0.213716 0.213845 0.213360
Min 0.191798 0.207310 0.211356 0.208440 0.210610 0.210465 0.210210
Max 0.192136 0.218999 0.214588 0.220014 0.215369 0.215823 0.214626
Std Deviation 0.000062 0.001698 0.000524 0.001801 0.000755 0.000823 0.000774

σ̂RV /σ σ̂RV SS/σ σ̂TS/σ σ̂HL/σ σ̂K/σ σ̂PA/σ σ̂F /σ
Mean 0.902097 0.994936 0.999792 1.000193 0.999840 1.000177 0.997840
Median 0.902090 0.994109 0.999689 0.999566 0.999748 1.000061 0.997745
10 Percentile 0.901721 0.985405 0.996601 0.989825 0.995566 0.995382 0.993174
90 Percentile 0.902485 1.005592 1.002834 1.010547 1.004304 1.004913 1.002631
Min 0.901305 0.974203 0.993215 0.979512 0.989710 0.989029 0.987827
Max 0.902894 1.029129 1.008401 1.033899 1.012071 1.014208 1.008582
Std Deviation 0.000293 0.007982 0.002462 0.008463 0.003550 0.003869 0.003638
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Figure 3: Default Probability. The plot shows default probabilities given by (5). By matching 5-years

default probability coming from our equity volatility estimate with the one evaluated through the model

using true parameters values, we obtain the corresponding calibrated asset asset volatility.

the comparison of the mean relative error between the estimated default probability
and the theoretical one. For each maturity, we consider the following measure

DPEErr := E
[
DP (ΣE

t )−DP (Σs
t )

DP (Σs
t )

]
· 100, (14)

where DP (ΣE
t ) is the default probability calibrated from Merton [17] structural

model when equity and asset volatility are estimated through estimator E; DP (Σs
t )

is the corresponding theoretical default probability when equity and asset volatil-
ity are Σs

t and σ, respectively. Figure 4 shows the mean relative error on different
calibration procedures for the noise setting (7). Similar plots are obtained for the
case (6). The results for the Realized Volatility estimator using tick-by-tick data
have been omitted, since the relative error in this case reaches 78% for the earliest
maturities. When data are optimally sampled, the Realized Volatility calibration
procedure is still affected by an error up to 6% for the shortest maturities. A nega-
tive (positive) error reveals that the calibration procedure underestimates (overes-
timates) default probabilities. Therefore, the classical Realized Volatility approach
can severely underestimate risk. Except Fourier approach, all the other approaches
slightly overestimate default probabilities, with ΣTS

t and ΣK
t providing the best

estimation of risk.
Table 3 shows the corresponding numerical results suggesting that the choice of

the volatility estimator largely affects the default probabilities estimation. A further
extension of our study could be to analyze the magnitude of this influence when
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Figure 4: Default Probability Relative Error. The plot shows default probability mean relative

error given in Equation (14) for maturities from 1 to 5 years. Results are based on 500 Monte Carlo

simulations and refer to the introduction of a trading noise according to Equation (7), with α = 5.

considering different rating classes for corporate bonds, i.e. BB, B.

4 Conclusions

In this paper we consider Merton [17] structural model and use high-frequency equity
prices in order to back out the unobservable asset volatility and calibrate default
probabilities. We perform a Monte Carlo simulation study based on equi-spaced
simulated equity prices and propose alternative equity volatility estimators, assum-
ing data being contaminated by trading noise: the aim is to exploit the information
content of intra-day high frequency data neglecting microstructure effects. While [9]
propose a particle filter-based maximum likelihood method, we propose a different
econometric approach. We consider alternative non-parametric (equity) volatility
estimators and compare their performance in: i) filtering out the market microstruc-
ture noise, ii) extracting the (unobservable) true underlying asset volatility level,
iii) predicting default probabilities. We consider, alternatively, trading noise being
a) log-Gaussian distributed, b) correlated with intra-day equity log-returns. Non-
observability of a firm’s asset value does not actually impede the implementation of
a structural credit risk model: nevertheless, as suggested by our numerical results,
the volatility estimator can largely affect calibrated default probabilities, thus risk
evaluation. In particular, the commonly used Realized Volatility estimator is un-
able to provide reliable estimates for asset volatility under market microstructure,
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Table 3: Default Probability Relative Error. The table shows default probability mean relative

error given in Equation (14) for maturities from 1 to 4.5 years. Results are based on 500 daily Monte

Carlo simulations using different equity volatility estimators. Relative errors are in percentage (%). Panel

(a) refers to the trading noise given in Equation (6), panel (b) to Equation (7).

(a) DPRV
Err DPRV SS

Err DPTS
Err DPHL

Err DPK
Err DPPA

Err DPF
Err

1y -77.552877 -5.653780 -0.016775 0.678380 0.105648 0.508828 -2.556536
1.5y -59.495546 -3.599437 -0.022452 0.297156 0.037454 0.277589 -1.590876
2y -45.163526 -2.460934 -0.019152 0.160047 0.015950 0.174707 -1.075306
2.5y -33.851602 -1.724623 -0.014989 0.094462 0.007189 0.116191 -0.748350
3y -24.702511 -1.200495 -0.011160 0.057574 0.003154 0.077979 -0.518461
3.5y -17.098873 -0.802195 -0.007807 0.034536 0.001215 0.050706 -0.345249
4y -10.622653 -0.484816 -0.004880 0.019058 0.000322 0.029997 -0.208098
4.5y -4.989094 -0.222674 -0.002300 0.008090 -0.000003 0.013540 -0.095374

(b) DPRV
Err DPRV SS

Err DPTS
Err DPHL

Err DPK
Err DPPA

Err DPF
Err

1y -78.826465 -6.124004 -0.027360 1.037514 0.088215 0.572542 -2.640228
1.5y -60.893541 -3.913499 -0.030161 0.468356 0.025755 0.314850 -1.644234
2y -46.422492 -2.680469 -0.024735 0.258533 0.007768 0.199114 -1.111811
2.5y -34.894952 -1.880475 -0.019030 0.155817 0.001382 0.132855 -0.773942
3y -25.516271 -1.309917 -0.014032 0.096727 -0.000922 0.089373 -0.536280
3.5y -17.689657 -0.875766 -0.009755 0.058983 -0.001525 0.058221 -0.357158
4y -11.003165 -0.529489 -0.006071 0.033040 -0.001341 0.034494 -0.215296
4.5y -5.172970 -0.243269 -0.002852 0.014222 -0.000769 0.015589 -0.098680

leading to a significant underestimation of asset volatility and default probabilities.
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