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Abstract

We study the connections between stochastic dominance and law invariant preferences. Whenever

the functional that represents preferences depends only on the law of the random variable, we

shall look for conditions that imply a ranking of distributions. In analogy with the Expected

Utility paradigm, we prove that functional dominance leads to �rst order stochastic dominance.

We analyze in details the case of Dual Theory of Choice and Cumulative Prospect Theory,

including all its distinctive features such as S-shaped value function, reversed S-shaped probability

distortions and loss aversion. These cases can be seen as special examples of a more general

scheme. We �nd necessary and su�cient conditions that imply preferences to depend only on

the mean and variance of the lottery. Our main result is a characterization of such distributions

that imply Mean-Variance preferences, namely the elliptical ones. In particular, we prove that

under mild assumptions over the reference wealth, the prospect value of a portfolio depends only

on its mean and variance if and only if the random assets' return are elliptically distributed.

The analysis is of particular relevance for optimal portfolio choice, mutual fund separation and

Capital Asset Pricing equilibria.
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1 Introduction

Decisions among risky ventures need a way to rank them. While complete orderings are extremely
rare to achieve, partial orderings are quite easy to obtain. When facing multiple alternatives, a
decision maker can at �rst discard those which result ine�cient. After this removal process, the
remaining alternatives form an e�cient set to her.

In economic contexts, a risky venture is often called a lottery.1 To reach an ordering, we can
attach to each lottery its probability distribution. Thus, ranking prospects can be interpreted as
ranking distributions and e�cient lotteries translate into e�cient distributions. Notably, the roots of
this procedure can be traced back to statistical hypotheses tests. One of the earlier results slightly
departing from this �eld of study is Lehmann [26], which undoubtedly inspired subsequent works in
pure and applied decision theory. Systematic studies in �nancial frameworks appeared in the early
60's, culminating with the fundamental contributions of Hanoch and Levy [17] and Hadar and Russell
[16]. Quirk and Saposnik [34] introduced the terms �stochastic dominance� (SD hereafter). In its
original framing, SD is a weak partial ordering over a set of distributions. In�uenced by the von
Neumann-Morgenstern's Expected Utility (EU) paradigm, subsequent literature refers to SD as a
conditions over a set of utility functions that imply ranking of distributions. However, it makes sense
to speak about SD only if one is able to provide such rankings.

∗Dipartimento di Matematica per le Decisioni, Università degli Studi di Firenze, matteo.delvigna@uni�.it.
1To us, the words lottery, prospect and random variable will be synonymous.
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Connections between SD and EU has been extensively studied and understood; for a comprehen-
sive survey, see Levy [28]. The most relevant cases are those of First Stochastic Dominance (FSD)
to include increasing utility functions and Second Stochastic Dominance (SSD) to incorporate con-
cave utility functions. After that, a number of adjustments to SD has been implemented in order to
accommodate various classes of utility functions. However, SD for alternative preference paradigms
lacks a systematic treatment.

The �rst aim of the present paper is to give a uni�ed framework for SD relations for law invariant
preferences. Using familiar language, law invariance means that the decision maker only cares about
probabilities, totally disregarding events. In turn, the functional that represents preferences depends
exclusively on the distribution of the prospect. Law invariant preferences are not new to the �nancial
literature and they have a wide range of applications. Just to mention a few, Kusuoka [25] applies
this idea to coherent risk measures. Carlier and Dana [5] do the same in the context of portfolio
optimization problems for concave utility functions. In Campi and Del Vigna [4] law invariance natu-
rally appears in a number of continuous-time portfolio optimization problem. Finally, law invariance
is closely related to the quantile approach. In this approach, the preference functional is framed in
terms of the inverse of the distribution. This technique has often been employed in the SD literature,
but also in portfolio choice problems. See He and Zhou [18] for a modern general treatment.

The family of law invariant preferences includes EU as well as Prospect Theory (PT) by Kahne-
man and Tversky [21], the Dual Theory of Choice (DT) by Yaari [39] and Tversky and Kahneman'
Cumulative Prospect Theory (CPT) [37]. In this paper, we will focus on DT and the more challeng-
ing CPT. As it will appear clear, in our setting DT and CPT can be seen as involved examples of a
more general picture. Basic results concerning SD for the aforementioned paradigms are well-known.
Interestingly, PT even violates FSD due to the distortion applied to perceived probabilities. On the
contrary, DT has a plain analytical tractability which makes it suitable for ranking distributions.
Various SD relations for DT are studied in [15], where the authors also adapt DT to multivariate
risks. We obtain analogous results using a quite di�erent language and we provide substantially
di�erent proofs.

CPT deserves a special treatment. On one hand, it is not di�cult to prove that the CPT functional
value (also called prospect value) is decreasing in the distribution of the lottery, a concept to be made
rigorous later. However, many authors circumvent technical di�culties assuming speci�c forms for the
value functions and/or the probability distortions. On the contrary, we do not set such limitations and
we prove generalized versions of this results using a less sophisticated machinery. On the other hand,
proving the converse is not immediate at all. To the best of our knowledge, we are proving for the �rst
time the following fact: If the prospect value of some lottery dominates that of another lottery for any
CPT decision maker in a suitable class, then the same ordering is preserved over the distributions
of such lotteries; see Proposition 6. In other words, the prospect value ranking translates to SD.
Note that the same result arises quite naturally in the EU paradigm. As a consequence, rankings of
distributions can be compared even across di�erent preference paradigms.

In the literature, other types of stochastic dominance have been investigated. Here is a list of
works related to ours. Concerning CPT, Baucells and Heukamp [2] provide various extensions to
SSD. Notably, they are able to incorporate all the basic CPT features, ranging from S-shaped value
function to reversed S-shaped weighting functions and loss aversion. A di�erent perspective is that
of Barberis and Huang [1], where SSD is shown starting from normal distributions for the prospects.
Levy and Wiener [31] introduce SSD∗ and Prospect Stochastic Dominance. The �rst one is just the
mirror of SSD for risk-seeking decision makers while the latter is an extension of SD that allows for
probability distortions. Their study on Prospect SD is based on the quantile approach and it leads
to results similar to ours on DT for risk averse agents. Notably, Levy and Wiener [31] anticipate
some of our main �ndings. In particular, they explain how the distortion of probabilities by di�erent
subjects can a�ect the respective distribution rankings. However, if it is not the case then even
substantially di�erent preferences paradigms lead to the same e�cient sets. Leshno and Levy [27]
considere Almost Stochastic Dominance in order to shed light on some �nancial puzzles. In words,
Almost SD originates whenever �most� decision makers agree on the set of lotteries to be excluded
from an e�cient set. In practice, it is the classical SD analysis discarding wild or extreme utility
functions. In Levy and Levy [30] Prospect SD undergoes a deeper analysis together with Markowitz
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Stochastic Dominance, i.e. SD for reversed S-shaped utility functions. Experimental studies con�rm
the latter form for the utility function, rejecting the hypothesis of a S-shaped utility function as in
CPT. Prospect SD and Markowitz SD are extended in Wong and Chan [38] to accommodate for
various shapes of the utility functions as well as for the probability weightings.

Our analysis proceeds with a review of some classes of distributions that play a relevant role in
portfolio choice theory. We shall focus on spherical symmetric, elliptical and location-scale distribu-
tions. At �rst sight, they may seem unrelated to SD as well as to preference paradigms other than
EU. Actually, we will show that they provide the natural link between law invariant functionals that
rank distributions and Mean-Variance (MV) preferences. The strength of MV undoubtedly lies in
its parsimonious description of investors' preferences. Nevertheless, MV leads to a number of non
trivial implications for optimal investment rules, the most appealing being mutual fund separation
and Capital Asset Pricing.

Regarding elliptical distributions, they were �rst introduced in the �nancial literature in order to
generalize the normal distribution. Remarkably, they �t better for portfolio applications since this
class includes random variables with heavy tails densities. A list of econometric works that aim at
calibrating elliptical distributions to real data is an overly laborious task and is out of our scope.
Levy and Duchin [29] brie�y review the history of heavy-tailed distributions �ttings, starting in the
early 60's and still proceeding farther. They add their own estimates about goodness of �t for a
number of distributions. They cover the normal, the extreme value, the log-normal, the Student-t,
the skew-normal and the stable distribution, just to mention a few. However, the logistic distribution
turns out to be the most promising independently on the considered time horizon. Notably, the
logistic is elliptical and our �ndings show that it leads to MV preference functionals. Consequently,
the assumption of MV decision makers has to be seriously considered a realistic one.

In the last part of the paper we focus on a conjecture by Pirvu and Schulze [33] concerning a
characterization of the distributions that imply MV prospect value functionals. In the aforementioned
paper, the authors prove that in the presence of a riskless asset and multivariate elliptically distributed
assets' return, the prospect value of a portfolio depends only on its mean and variance. However,
they conjecture (but are not able to prove) that the converse holds too. Brie�y, our Corollary 4 gives
the answer. Under suitable assumptions over the benchmark wealth, it is true that MV prospect
value implies elliptically distributed stocks' returns. Our �ndings thus bridge the gap between CPT
and MV analysis.

Before proceeding to our contributions, we remark that in the SD literature it is usual to prove
results by contradiction, that is to exhibit a utility function which induces a violation of the assump-
tions. As we consider general classes of preferences, we shall provide particular functionals that lead
to contradiction. Notably, most of our proofs will combine this technique with a limit argument and
we preferred to give explicit expressions whenever possible. In contrast to the literature on CPT that
often a�ords on numerical simulations, we are always able to provide analytical proofs that make our
results sound from a theoretical viewpoint.

This is the outline of the paper. Section 2 introduces law invariant preferences, stochastic dom-
inance and the main facts about distribution rankings. We proceed by analyzing SD for the DT
and the CPT. Section 3 concerns spherical symmetric, elliptical and location-scale distributions. We
point out the equivalence of some de�nitions and we highlight their useful properties. The presenta-
tion relies on Kelker [22] and Owen and Rabinovitch [32]. Section 4 shows the connections between
distribution rankings, mean-variance analysis and elliptical distributions of assets' returns. The CPT
case is treated in details. Section 5 concludes, suggesting various lines for future research. Involved
proofs and examples are relegated to the appendix.

2 Stochastic dominance and law invariant preferences

Throughout the paper, E and V denote the mean and the covariance operator of a random element

respectively, the prime denotes the transpose of a matrix or the derivative of a function and X
d
= Y

means that the random elements X and Y have the same distribution. Integral are to be intended
in the Lebesgue-Stieltjes sense and they are assumed to exists, possibly taking in�nite values. We
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denote R := R ∪ {+∞,−∞}, R+ := [0,+∞) and R− := (−∞, 0]. Finally, Ck(U ;V ) is the set of
functions f : U → V continuously di�erentiable up to the order k.

Let (Ω,F ,P) be a non-atomic probability space and X ⊆ L0(Ω,F ,P) a given set of measurable
real-valued random variables. When modeling risky choices, preferences are de�ned as binary relations
over a set of random variables, i.e. P ⊂ X × X . Preferences must satisfy given axioms and under
suitable assumptions it turns out that they can be represented by a real-valued functional ρ. In turn,
this functional will be characterized by a set of parameters lying in a speci�c class S. We think of S
as a product of subsets of function spaces. Hence we will write ρ : S × X → R. However, in most
cases preferences can be stated over a set of distribution functions instead of over X . Thus, we are
led to the de�nition of law invariant preferences.

De�nition 1 (Law invariant and monotone functional). Assume that preferences P can be represented

through ρ : S ×X → R.

- ρ is law invariant in S i� for every s ∈ S, ρ(s,X) = ρ(s, Y ) whenever X
d
= Y .

- For s ∈ S, ρ(s, ·) is monotone decreasing i� F1(x) ≤ F2(x) for every x ∈ R implies ρ(s, F1) ≥
ρ(s, F2).

The previous de�nition is in the same spirit to that of law invariant coherent risk measures in
Kusuoka [25]. From now on, we shall deal exclusively with law invariant ρ. In words, law invariant
preferences means that our agent is only interested in probabilities and not in events. Therefore, we
will focus on distributions instead of random variables. Since we identify elements in X whenever
they have the same probability law, we shall indi�erently replace ρ(s,X) with ρ(s, FX), where FX is
the distribution of X.

Example 1. If we consider an EU agent then S is a set of utility functions. We can choose the class
S to be U0 := {u ∈ C0(R;R) |u is non decreasing} or U1 := {u ∈ C∞(R;R) |u′ > 0}. The representing
functional will be ρEU (u,X) := E[u(X)] =

∫
R u(x)dFX(x). Another type of preferences is described

by the Dual Theory of Choice as axiomatized in Yaari [39]. In this case, S will be a set of probability
distortions. We could choose T0 := {T : [0, 1] → [0, 1] |T (0) = 0, T (1) = 1, T is non decreasing},
with representing functional ρY (T,X) :=

∫ +∞
0

T (1− FX(x))dx.

The functional ρ(s, ·) describes an ordering induced by the preferences P of a speci�c decision
maker. Such ordering is arbitrary in the sense that nobody can assess whether it is good or not. But
if the preference axioms are reasonable, i.e. they make sense economically, then the alternatives for
S will be somewhat restricted and ρ(s, ·) will satisfy some basic properties independently of s ∈ S.
Even if not so evident, this is the idea that lies behind Stochastic Dominance criteria. Formally, we
have the following de�nition.

De�nition 2 (Stochastic dominance). Let X1, X2 ∈ X and let F1, F2 be the respective distribution

functions.

- F1 stochastically dominates F2 i� F1(x) ≤ F2(x) for every x ∈ R.

- X1 dominates X2 with respect to ρ and S (X1 �(ρ,S) X2 or F1 �(ρ,S) F2) i� for every s ∈ S,
it holds ρ(s, F1) ≥ ρ(s, F2).

- (ρ, S) ranks the distributions i� F1 �(ρ,S) F2 implies F1 stochastically dominates F2.

The intuition behind (ρ, S) ranking the distributions is to obtain a converse of the monotonicity
of ρ as in De�nition 1. Now, one of the main application of SD concerns e�cient sets. Whenever we
are able to rank two distributions using SD, then we can exclude the dominated alternative from the
set of optimal choices. Proceeding this way, the remaining lotteries will be the e�cient ones. In order
to deal with e�cient sets, it would be convenient to �nd conditions that ensure F2 to be dominated
by some F1. A look at De�nition 2 shows that this approach heavily depends on the preference
functional and a relative class of parameters. In fact, it would be su�cient to �nd a pair (ρ, S) that
ranks the distributions to come to an e�cient set.
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Remark 1. When originally de�ning SD, Quirk and Saposnik [34] also required F1(x) < F2(x) for
some x ∈ R. Notwithstanding, the weak partial ordering induced over a given set of distributions is
the same as ours. The authors also proved that such ordering is in fact equivalent to the one induced
by EU with the class of increasing functions; see Proposition 1. From that moment on, SD is often
used as a synonymous to �(ρEU ,U0). We prefer to keep the two concepts separately. The reason will
appear clear later. Similarly, in Hanoch and Levy [17] the authors say that X dominates Y (XDY )
if E[u(X)] ≥ E[u(Y )] for every u ∈ U0 and the equality holds strictly for some u0. This criterion
induces an ordering, denoted D by the authors, which can be intended as a rule �(ρEU , U0). However,
we prefer to use the weak orderings induced by �(ρ,S) since they allow more concise proofs and lead to
clearer results without altering the economic meaning. Finally, observe that �(ρ,S) is an equivalence
relation. Hence, if we de�ne equivalence classes of distributions by identifying those random variables
such that ρ(s,X) = ρ(s, Y ) for every s ∈ S, then � and � lead to the same e�cient sets.

In order to have a sound economic criterion to rank risky prospects, it is necessary to make this
criterion independent on the initial wealth of the decision maker. In other words, whether to accept
or not a gamble should be exclusively a matter of preferences. This idea lies in the original spirit
of SD and in its further developments. Indeed, in Hanoch and Levy [17], the authors write: �The
variables X and Y are de�ned here as the money payo�s of a given venture, which are additions (or
reductions) to the individual's (constant) wealth . . . �(p. 336). We highlight the fact that the property
of independence from the initial endowment is easy to prove in the EU case and consequently it is
not always explicitly mentioned. As a matter of fact, the following general result is crucial and it
shows that the presence of a constant initial wealth is neutral to the ranking.

Lemma 1. Assume (ρ, S) ranks the distributions and ρ(s, ·) is monotone decreasing for every s ∈ S.
Then X1 �(ρ,S) X2 i� (X1 + w) �(ρ,S) (X2 + w) for every w ∈ R.

Proof. By De�nition 2 and the monotonicity of ρ, ρ(s,X1) ≥ ρ(s,X2) for every s ∈ S if and only if F1

stochastically dominates F2. Now, adding a constant w to Xi is equivalent to shift the distribution
Fi by the same quantity w. Therefore, F1 dominates F2 i� the distribution of X1 +w is always equal
of smaller than the distribution of X2 +w. This is in turn equivalent to ρ(s,X1 +w) ≥ ρ(s,X2 +w)
for every s ∈ S.

We remark that both the monotonicity and the ranking property are necessary in order to guaran-
tee the desired equivalence. We now review some basic results of SD in the context of von Neumann-
Morgenstern's Expected Utility paradigm. Apparently, the EU functional is law invariant in the sense
of De�nition 1. Next, we partially recover the notation from Example 1, so that we introduce the
classes

U0 := {u ∈ C0(R;R) |u is non decreasing},
U1 := {u ∈ C1(R;R) |u′ > 0},
U2 := {u ∈ C0(R;R) |u is concave and non decreasing}.

The EU functional is de�ned as

ρEU (u, FX) :=

∫
R
u(x)dFX(x). (1)

Given two distributions F1, F2, �nancial jargon usually refers to First Stochastic Dominance.2 Using
our notations, FSD is just SD as in De�nition 2. It is well-known that the EU functional is monotone
decreasing and (ρEU ,U0) ranks the distributions. We slightly generalize this result to the class U1

proving the following proposition.3

Proposition 1. F1 �(ρEU , U1) F2 i� F1(x) ≤ F2(x) for every x ∈ R.
2This terminology was introduced by Hadar and Russell [16].
3When restricting to a smaller class of functions, the proof for the su�cient condition is straightforward. On the

other hand, proving the necessary part may become mathematically overwhelming.
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Proof. (⇐) The su�cient part readily follows by the property u′ > 0. (⇒) For the necessary part,
suppose F1(x̄) > F2(x̄) for some x̄. By the right continuity of the distributions, there exists n ∈ N
such that F1(x) > F2(x) for every x ∈ [x̄, x̄+ 1

n ]. De�ne a sequence {un}n ⊂ U1 by

un(x) = N
(
2n2

[
x− (x̄+ 1

2n )
])

where N (x) =
∫ x
−∞

1√
2π
e−t

2/2dt is the distribution function of a standard Gaussian random variable.

Clearly, similar sequences {un}n work well too. To compute ρEU (un, F1) we split the integral in three
parts and estimate

ρEU (un, F1) =

∫ x̄

−∞
un(x)dF1(x) +

∫ x̄+1/n

x̄

un(x)dF1(x) +

∫ +∞

x̄+1/n

un(x)dF1(x)

≤ N (−n)F1(x̄) +N (n)[F1(x̄+ 1
n )− F1(x̄)] + 1− F1(x̄+ 1

n ).

Similarly, for ρEU (un, F2) we have

ρEU (un, F2) ≥ N (−n)[F2(x̄+ 1
n )− F2(x̄)] +N (n)[1− F2(x̄+ 1

n )].

For the proof to be completed, it is su�cient to �nd n̂ ∈ N such that ρEU (un̂, F1)− ρEU (un̂, F2) < 0.
Therefore, even if limn un /∈ U1 we can let n go to in�nity and see what happens. Recalling the right
continuity of Fi and using a standard dominated convergence argument, we obtain

lim
n→∞

[
ρEU (un, F1)− ρEU (un, F2)

]
= F2(x̄)− F1(x̄) < 0.

This means that for every ε > 0 there exists n̄ ∈ N such that for every n ≥ n̄ it holds

ρEU (un, F1)− ρEU (un, F2) < ε+ (F2(x̄)− F1(x̄)).

Choosing n̂ = n̄ and ε = 1
2 (F1(x̄)− F2(x̄)) gives the result.

Even if the previous �nding is well-known, we preferred to give here a detailed proof since it
illustrates the general scheme of the proofs concerning SD. In the same vein, the �nancial literature
often refers to Second Stochastic Dominance as to a ranking among the integrals of the distributions.
Formally, F1 SSD F2 if and only if

∫ x
−∞ F1(t)dt ≥

∫ x
−∞ F2(t)dt holds for every x ∈ R. Restricting

the attention to concave functions, we see that such ordering is indeed obtained through a speci�c
functional dominance. For a proof of the next result in a general setting, see Hanoch and Levy [17].

Proposition 2. F1 �(ρEU , U2) F2 i�
∫ x
−∞[F2(t)− F1(t)]dt ≥ 0 for every x ∈ R.

Remember that in the EU paradigm, a risk averse agent is characterized by a concave and non
decreasing utility function. Hence, the previous result says that risk averse decision makers dislike
mean-preserving spreads. We now proceed to derive analogues for Yaari' [39] Dual Theory of Choice
and for Tversky and Kahneman' [37] Cumulative Prospect Theory.

2.1 Stochastic Dominance in the Dual Theory of Choice

In 1987, Yaari [39] axiomatized what he called "Dual Theory of Choice" in order to explain some of
the well-known paradoxes originating from the EU paradigm. By imposing a series of dual axioms,
he explicitly derived a functional representation of dual preferences. In the original setting, Yaari [39]
considered only prospects whose support was included in [0, 1]. An immediate extension concerns
lotteries with non negative compact support. In the same spirit of He and Zhou [18] we consider a
generalized framework which includes non negative random variables X : Ω → R+. As in Example
1, given a distribution FX the mathematical framing of Yaari's preference functional will be

ρY (T, FX) :=

∫ +∞

0

T (1− FX(x))dx, (2)

where T : [0, 1]→ [0, 1] is the probability distortion or weighting function.
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Some remarks are in order. In his Theorem 1, Yaari [39] proved that for bounded lotteries, T
must be continuous and non decreasing to preserve the order of the probabilities. As a by product,
T �xes the end points, i.e. T (0) = 0 and T (1) = 1. From a mathematical viewpoint ρY is a Choquet
expectation, that is an integral with respect to the non additive measure T ◦ P. Observe that ρY is
well de�ned, possibly taking an in�nite value. Furthermore, the integrand is non increasing and if
the support of X is bounded then ρY < +∞. Note that the distortion T a�ects the decumulative
probabilities and no utility function appears in (2). In fact, it can be shown that T is nothing but
the inverse of a suitable utility function u. Not surprisingly, the preferences of a risk-averse agent
are characterized by a convex T . To intuitively see this, observe that the inverse of a concave utility
function u becomes a convex weighting function T and vice versa. Motivated by this argument, we
introduce the following classes of distortions.

T0 := {T ∈ C0([0, 1]; [0, 1]) |T (0) = 0, T (1) = 1, T is non decreasing},
T1 := {T ∈ C1([0, 1]; [0, 1]) |T (0) = 0, T (1) = 1, T ′ > 0},
T2 := {T ∈ C0([0, 1]; [0, 1]) |T (0) = 0, T (1) = 1, T is non decreasing and convex}.

(3)

Since we consider only non negative prospects, in this section the distributions F1 and F2 are assumed
to be null for x < 0. We also need the generalized inverse of a distribution F , namely

F−1(t) := sup{x ∈ R |F (x) ≤ t}, t ∈ [0, 1], (4)

with the convention F−1(1) := +∞. Observe that F−1 is non decreasing and càdlàg (right continuous
with limit on the left) as well as F . Here is the �rst result concerning Stochastic Dominance in the
DT paradigm.

Proposition 3. F1 �(ρY , T1) F2 i� F1(x) ≤ F2(x) for every x ∈ R+.

Proof. We prove here the result for the class T0, leaving to the Appendix the involved case of T1. (⇐)
The su�cient part is a consequence of T being non decreasing, so that

ρY (T, F1) =

∫ +∞

0

T (1− F1(x))dx ≥
∫ +∞

0

T (1− F2(x))dx = ρY (T, F2).

(⇒) For the necessary part, suppose F1(x̄) > F2(x̄) for some x̄ ≥ 0. To show the contradiction, de�ne
the weighting function

T (x) =


0 x ∈ [0, 1− F1(x̄)]
x− (1− F1(x̄))

F1(x̄)− F2(x̄)
x ∈ (1− F1(x̄), 1− F2(x̄))

1 x ∈ [1− F2(x̄), 1].

To compute ρY , we split the integral and using the generalized inverse in (4) we estimate

ρY (T, F1) =

∫ F−1
1 (F2(x̄))

0

1 dx+

∫ x̄

F−1
1 (F2(x̄))

F1(x̄)− F1(x)

F1(x̄)− F2(x̄)
dx ≤ x̄,

since the second integrand is uniformly lower than 1. For the other distribution we have

ρY (T, F2) =

∫ x̄

0

1 dx+

∫ F−1
2 (F1(x̄))

x̄

F1(x̄)− F2(x)

F1(x̄)− F2(x̄)
dx.

Recalling that Fi are right continuous, we deduce the existence of some β > 0 such that F1 and F2

are continuous over [x̄, x̄ + β] and F1(x̄) > F2(x) for every x ∈ [x̄, x̄ + β]. Observe that β does not
intervene explicitly in the distortion T . Hence, de�ning

η :=
F1(x̄)− F2(x̄+ β)

F1(x̄)− F2(x̄)
> 0, (5)

and noticing F−1
2 (F1(x̄)) ≥ x̄+ β, we �nd

ρY (T, F1)− ρY (T, F2) ≤ −
∫ F−1

2 (F1(x̄))

x̄

F1(x̄)− F2(x)

F1(x̄)− F2(x̄)
dx ≤ −βη < 0.
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Proposition 3 shows that ρY is monotone decreasing and it ranks the distributions of non negative
lotteries. Hence, the partial ordering induced by (ρY , T1) over the distributions coincides with that
induced by (ρEU ,U1) for non negative random variables. Suggestively, we formalize this link as
follows.

Corollary 1. F1 �(ρY , T1) F2 i� F1 �(ρEU ,U1) F2.

We now ask whether it is possible to state the equivalence of the SSD and a functional dominance
relation in the DT for risk averse decision makers. If we restrict our attention to essentially bounded
random variables, it turns out that the answer is positive. To prove it, we need the following technical
result.

Theorem 1 (Integral Majorization Theorem). Let f, g : [a, b] → R be two given non increasing

functions. The inequality ∫ b

a

φ(f(x))dx ≤
∫ b

a

φ(g(x))dx

holds for every function φ continuous and convex in [a, b] such that the integrals exists i�∫ s

a

f(x)dx ≤
∫ s

a

g(x)dx for s ∈ [a, b) and

∫ b

a

f(x)dx =

∫ b

a

g(x)dx.

The previous theorem is an extension to the continuous case of a famous inequality due to Hardy,
Littlewood and Polya, also known as Karamata inequality. For a proof, see Theorem 1 in Fan and
Lorentz [13], where a further generalization is shown.4 Without loss of generality, we consider lotteries
taking values over [0, 1].

Proposition 4. Assume X1 and X2 have support contained in [0, 1]. Then F1 �(ρY , T2) F2 i�∫ x
0

[F2(t)− F1(t)]dt ≥ 0 for every x ∈ [0, 1], with equality for x = 1.

Proof. (⇐) Apply Theorem 1 setting a = 0, b = 1, f(x) = 1 − F2(x) and g(x) = 1 − F1(x).

We deduce that for every continuous convex function T : [0, 1]→ [0, 1] it holds
∫ 1

0
T (1− F2(x))dx ≤∫ 1

0
T (1−F1(x))dx. Since we require T (0) = 0 and T (1) = 1, it follows that T must be non decreasing.

In other words, F1 �(ρY , T2) F2. (⇒) It is su�cient to repeat the previous argument backward.

Perhaps the previous result is not so surprising recalling our digression concerning the properties
of ρY . Combining Proposition 2 and 4 we have

Corollary 2. Assume X1 and X2 have support contained in [0, 1]. Then F1 �(ρY , T2) F2 i�

F1 �(ρEU ,U2) F2.

Resuming our analysis we conclude that the Expected Utility paradigm and the Dual Theory of
Choice are quite the same from a SD point of view. Corollary 1 and 2 tell us what distributions
can be left out from the e�cient sets, no matter if the agent's preferences are represented by (1)
or (2). Importantly, the intuition completely lies in turning the utility function u into a probability
distortion via computing the inverse u−1. We now proceed to study the CPT case.

2.2 Stochastic Dominance in the Cumulative Prospect Theory

In Tversky and Kahneman [37], the authors provided the axiomatization of CPT, an improved version
of the earlier PT. The main reason for the success of CPT is that it provides a sound alternative to EU.
Undoubtedly, CPT is more appropriate from a descriptive viewpoint since it has been developed from
experimental observations. At the same time, it retains a good analytical tractability for economic
and �nancial modeling. This are the cornerstone of CPT.

4We are not aware of a similar Integral Majorization Theorem holding for unbounded intervals. Clearly, in the latter
case our arguments can be readily extended.
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(i) A decision maker evaluates gains and losses, i.e. deviations of the terminal wealth W 1 with
respect to a benchmark, or reference wealth W ref . In this setting, a random variable Y ∈ X is
intended as a prospect representing possible gains or losses. Clearly, Y (ω) ≥ 0 will be considered
a gain whereas Y (ω) < 0 will represent a loss. By de�nition, we have Y = W 1 −W ref .

(ii) Evaluation takes place via two distinct utility or value functions, where u+ : R+ → R+ serves
for the gains and u− : R− → R− evaluates losses. Conventionally, we set u+(0) = u−(0) = 0.
Laboratory experiments suggest u+ to be concave and u− to be convex. Thus globally S-shaped
utility functions are observed; see Figure 1. Furthermore, most of the surveyed subjects exhibit
loss aversion, to be discussed later.

(iii) The decision makers assess actual probabilities correctly, but these probabilities are distorted
during the decision process, similarly to what happens in the DT. Moreover, the distortions
on gains are generally di�erent from those on losses. We take T+, T− : [0, 1] → [0, 1] to be
the weighting functions for the probabilities of the gains and the losses respectively. Empirical
evidence suggests that people tend to overweight relatively large gains and losses of small
probabilities. This results in reversed S-shaped weighting functions; see Figure 2.

Tversky and Kahneman [37] introduced CPT and the subsequent computation of the prospect
value in the discrete case, i.e. when the lotteries take only a �nite number of values. A continuous
time functional representation of CPT preferences is as follows. De�ne a vector of parameters v :=
(u+, u−, T+, T−). For a lottery Y with distribution FY , the CPT preference functional turns out to
be

ρCPT (v, FY ) := ρCPT+ (v, FY ) + ρCPT− (v, FY ), where (6)

ρCPT+ (v, FY ) :=

∫ +∞

0

u+(x)d[−T+(1− FY (x))],

ρCPT− (v, FY ) :=

∫ 0

−∞
u−(x)d[T−(FY (x))].

Let us discuss over (6). ρCPT is de�ned as the algebraic sum of the utility from the gains and the
disutility from the losses. In turn, they are computed as Choquet integrals where u+, u− distort
payo�s and T+, T− distort probabilities. Moreover, T+ acts over the decumulative distribution
whereas T− a�ects the cumulative one. In this paradigm, the value functions and the distortions are
complementary in determining the behavior toward risk.

Observe that in (6) the presence of the reference wealth is not explicitly seen. Actually, it is
incorporated in the prospect Y and it evidently in�uences FY . Therefore, the benchmark is an
element that originates from the agent's preferences but it changes the way the distributions of the
lotteries are perceived. For the moment, we are not interested in an explicit form for W ref , nor
for W 1. Henceforth, we do not include the reference wealth in the vector of parameters v and we
consider Y as a given net wealth. Moreover, the reference wealth should not be confused with the
initial wealth. As we proved in Lemma 1, the initial wealth does not a�ect the ordering of the
distributions whenever ρ is monotone decreasing and ranks the distributions in a suitable class. Since
ρCPT satis�es these requirements (we will prove it in a moment), we can think of an arbitrary initial
wealth W 0 to be added to Y . The presence of W 0 amounts to a shift in FY but it leaves unchanged
the ranking of the distributions and the resulting e�cient set.

Loss aversion deserves a special treatment. Loss aversion is easy to explain using familiar language
by saying that �a loss hurts more than an equivalent gain�. A straightforward formulation would be
u+(x) < u−(−x) for every x > 0. The extra condition λ := limx→0+(u+)′(x)/ limx→0−(u−)′(x) >
1 in sometimes employed to model loss aversion against small stakes. A stronger condition that
encompasses the previous two is (u+)′(x) < (u−)′(−x) for every x > 0, as Tversky and Kahneman
already assumed in the original version of CPT [37]. The meaning is quite clear: At any wealth level,
the marginal disutility su�ered through a loss is greater than the marginal utility obtained through an
equivalent gain. We remark that there are many other ways to frame loss aversion. For an overview,
we refer the interested reader to Schmidt and Zank [36] and Köbberling and Wakker [23].
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Remark 2. Unfortunately, equation (6) can be ill-de�ned. Even thought we are using Lebesgue
integrals, it can happen ρCPT+ (v, FY ) = +∞ and ρCPT− (v, FY ) = −∞ for some choices of (v, FY ).
When writing ρCPT (v, FY ) to study SD relations, we will assume that it is well-de�ned. Notably,
He and Zhou [18] and Pirvu and Schulze [33] give su�cient conditions over (v, FY ) for (6) to be
well-posed. Nonetheless, if u+ and u− are bounded then we can integrate by parts and obtain

ρCPT (v, FY ) =

∫ +∞

0

T+(1− FY (x))du+(x)−
∫ 0

−∞
T−(FY (x))du−(x),

as Barberis and Huang do in [1]. Moreover, if u+ and u− are strictly increasing, via a change of
variable we get

ρCPT (v, FY ) =

∫ +∞

0

T+(P(u+(Y ) > x))dx−
∫ 0

−∞
T−(P(u−(Y ) ≤ x))dx,

as in Jin and Zhou [20]. We prefer to use (6) because it is the natural extension to the continuous
case of the original formulation of CPT.

We now see how SD relates to CPT. To this end, we introduce the following classes.

U+
0 := {u+ ∈ C0(R+;R+) |u+(0) = 0, u+ is non decreasing},
U−0 := {u− ∈ C0(R−;R−) |u−(0) = 0, u− is non decreasing}, (7)

and we set V0 := U+
0 ×U

−
0 ×T0×T0, where T0 is de�ned in (3). It is clear that the class V0 is too large

to give a realistic description of CPT. For example, identically null value functions are permitted as
well as weighting functions di�erent from the observed reversed S-shaped ones. In such cases, the
economic meaning of CPT is completely lost. However, we introduce V0 because it is the largest class
where one can give a su�cient condition for ρCPT to be monotone decreasing. Henceforth, the same
condition will be su�cient for any V ⊂ V0. We formalize this fact in the following proposition.

Proposition 5. F1 �(ρCPT ,V0) F2 i� F1(x) ≤ F2(x) for every x ∈ R.

Proof. (⇐) For the gain part, note that if ρCPT+ (v, F1) = +∞ then there is nothing to prove. Hence,
assume ρCPT+ (v, F1) < +∞ and for N ∈ N de�ne

u+
N (x) =

{
u+(x) x ∈ [0, N ],

u+(N) x ∈ (N,+∞).

Noticing that u+
N is non decreasing and bounded, we can integrate by parts and obtain∫ +∞

0

u+
N (x)d[T+(1− F2(x))− T+(1− F1(x))]

= u+
N (x)[T+(1− F2(x))− T+(1− F1(x))]x=+∞

x=0

+

∫ +∞

0

[T+(1− F2(x))− T+(1− F1(x))]du+
N (x)

=

∫ N

0

[T+(1− F2(x))− T+(1− F1(x))]du+
N (x) ≥ 0, N ∈ N.

By a standard monotone convergence argument, we �nd ρCPT+ (v, F1)− ρCPT+ (v, F2) ≥ 0. On the loss
side, we can do a similar analysis whenever ρCPT− (v, F2) < +∞, setting

u−N (x) =

{
u−(x) x ∈ [−N, 0],

u−(−N) x ∈ (−∞,−N).
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If follows∫ 0

−∞
u−N (x)d[T−(F1(x))− T−(F2(x))]

= u−N (x)[T−(F1(x))− T−(F2(x))]x=0
x=−∞ +

∫ 0

−∞
[T−(F2(x))− T−(F1(x))]du−N (x)

=

∫ 0

−N
[T−(F2(x))− T−(F1(x))]du−N (x) ≥ 0, N ∈ N.

Again, by monotone convergence we have ρCPT− (v, F1)− ρCPT− (v, F2) ≥ 0 and we conclude.
(⇒) Assume F1(x̄) > F2(x̄) for some x̄ ≥ 0. So there is a β > 0 such that F1, F2 are continuous

and F1(x) > F2(x) for x ∈ [x̄, x̄+ β]. Observe that choosing T+(x) = x, u−(x) ≡ 0 and any T− ∈ T0

puts us in a situation analogous to the EU paradigm. De�ning

u+(x) =


0 x ∈ [0, x̄],
x−x̄
β x ∈ (x̄, x̄+ β),

1 x ∈ [x̄+ β,+∞),

we �nd a contradiction since

ρCPT (v, F1)− ρCPT (v, F2) =
1

β

∫ x̄+β

x̄

[F2(x)− F1(x)]dx < 0.

Similarly, if x̄ < 0 there exists β > 0 such that x̄+ β < 0, F1, F2 are continuous and F1(x) > F2(x)
for x ∈ [x̄, x̄+ β]. Then we take u+(x) ≡ 0, T+ ∈ T0, T

−(x) = x and

u−(x) =


−1 x ∈ (−∞, x̄],
x−(x̄+β)

β x ∈ (x̄, x̄+ β),

0 x ∈ [x̄+ β, 0].

This leads to the estimate ρCPT (v, F1)− ρCPT (v, F2) < 0 as before.

Clearly, we are not the �rsts in proving that CPT preferences are strongly related to SD. Using
a completely di�erent language, Proposition A1 in Barberis and Huang [1] shows in a similar setting
that ρCPT is monotone decreasing. However, they assume u+, u−, T+, T− to be strictly increasing
and continuous and that integration by parts can be applied as illustrated in Remark 2. We thus
provide a further extension of this result taking a larger class of preference functionals. Moreover, we
do not need to apply integration by parts and we claim that an analogous result holds even relaxing
the continuity assumption over the parameters.

Now, the interesting question is: Can we obtain the same ordering over the distributions if we
select a class smaller than V0? If possible, we would like to select such class in order to satisfy the
salient features of CPT: S-shaped utility function, reversed S-shaped weighting functions and loss
aversion. To this end, we introduce the following classes of value functions.

U+
2 := {u ∈ C1(R+;R+) |u+(0) = 0, (u+)′ > 0 and u+ is concave},
U−2 := {u ∈ C1(R−;R−) |u−(0) = 0, (u−)′ > 0 and u− is convex}. (8)

Next, we specify the class of reversed S-shaped probability distortions.

TRS :=

 T ∈ C1([0, 1]; [0, 1])

∣∣∣∣∣∣∣∣
T (0) = 0, T (1) = 1, T ′ ≥ 0,

T (x) > x in a neighborhood of x=0,
T (x) < x in a neighborhood of x=1,
T crosses once the 45-degree line.

 (9)

Hence, a function T ∈ TRS is strictly concave near the origin and strictly convex near x = 1. The
monotonicity and the single crossing property ensure that T look like those in Figure 2. We now
explicitly model loss aversion via the strong requirement

(u+)′(x) < (u−)′(−x) for every x > 0. (10)

11



In this way, the class of parameters that we consider is

V1 := U+
2 × U

−
2 × TRS × TRS ,

where u+, u− satisfy (10). We are now in a position to state the main result for CPT preferences.

Proposition 6. F1 �(ρCPT ,V1) F2 i� F1(x) ≤ F2(x) for every x ∈ R.

Proof. See the Appendix.

Apparently, Proposition 6 states that (ρCPT ,V1) e�ectively ranks the distributions. To the best of
our knowledge, the previous result is completely new to the literature. We remark that it exploits the
CPT paradigm in its full signi�cance. Moreover, it will naturally suggest the family of distributions
that cause ρCPT to depend only one the mean and the variance of the prospect. More important,
we see that the same ordering over the distributions is induced in the EU paradigm with the class
U1. Consequently, the two criteria identify the same e�cient sets, con�rming that EU and CPT
decision makers are not so di�erent as it could seem at �rst sight. We resume this analysis combining
Proposition 1 and 6 to obtain

Corollary 3. F1 �(ρCPT ,V1) F2 i� F1 �(ρEU ,U1) F2.

Before focusing on the link between SD and mean-variance analysis, we need to review the basic
theory of some classes of distributions that deserve a special place in the portfolio choice literature.

3 Spherical, elliptical and location-scale distributions

We start considering the following well-known de�nition.

De�nition 3 (Spherical distribution). The n-dimensional random vector X is spherically distributed

about the origin i� X
d
= RX for every orthogonal matrix R ∈ Rn×n.

In words, X is spherically distributed about the origin if its distribution is preserved when un-
dergoing invariant orthogonal linear transformations that leave the origin �xed. It follows from the
de�nition that the characteristic function of X depends only on the norm of t, t ∈ Rn. If X has a
density, then such density will depend only on the norm of X.

De�nition 4 (Elliptical distribution). Let ∆ ∈ Rn be a given vector and Σ ∈ Rn×n be a given

symmetric and positive de�nite matrix. The n-dimensional random vector X is elliptically dis-

tributed, X ∈ En(∆,Σ; Ψ), i� the characteristic function of X has the form E[exp(it′X)] ≡ CX(t) =
Ψ(t′Σt) exp(it′∆) for some real function Ψ.

The pair (∆,Σ) is the parametric part of the distribution, whereas Ψ is the non-parametric part,
also called the characteristic generator. These two parts are uncoupled in the sense that the same
parameters can lead to di�erent distributions since they have distinct generators. Here is a list of
the main facts concerning elliptical distributions. Let X ∈ En(∆,Σ; Ψ); for the proofs, we refer the
reader to Kelker [22].

(F1) (Density) If X has a density fX , then fX(x) = cn|Σ|−1/2φ((x − ∆)′Σ−1(x − ∆)) for some
function φ which does not depend on n. φ is called the density generator. Observe that fX is
symmetric since Σ is positive de�nite.

(F2) (Moments) If X has �nite �rst moment, then E[X] = ∆. If X has �nite second moment, then
V(X) = γΣ, where γ ≡ −2Ψ′(0) ≥ 0 does not depend on the parametric part. If ∆ = 0 and
Σ = In is the identity matrix, then γ is the variance of every univariate marginal distribution.

(F3) (Linear combinations) For any matrix T ∈ Rm×n of rank m, m ≤ n, the m-dimensional random
vector TX is elliptical and TX ∈ Em(T∆, TΣT ′; Ψ). In other words, linear combinations of
the elements of X are still elliptical. Notice that the non-parametric part remains unchanged.
As a particular case, we �nd that every subset (Xi1 , . . . , Xik) of X, k ≤ n, is elliptical too.
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(F4) (Regression) Set X = (X1, X2), with X1 a m-dimensional random vector. Identify partitions of
∆ and Σ as (∆1,∆2) and (Σ11,Σ12,Σ21,Σ22) respectively. Then, if the conditional mean of X1

given X2 = x2 exists, it is given by E[X1|X2 = x2] = ∆1 + Σ12Σ−1
22 (x2−∆2). Hence, regression

is linear for the elliptical distributions and conditional means depend only on the parametric
part. If X1 and X2 are uncorrelated, then E[X1|X2] = ∆1 almost surely.

Following Owen and Rabinovitch [32], we introduce the class of multivariate location-scale distri-
butions.

De�nition 5 (Location-Scale distributions). Let ∆ ∈ Rn be a given vector and Σ ∈ Rn×n be a given

symmetric and positive de�nite matrix. Let X be a n-dimensional random vector such that ∆ = E[X]
and the random variable Z := (α′X−E[α′X])/(k

√
α′Σα) has a density f(z, α) for any vector α ∈ Rn

and for any positive scalar k. Then X has a location-scale distribution i� f(z, α) does not depend on

α.

We now explain the deep links between the families of distributions previously introduced.

Lemma 2. For a n-dimensional random vector X, the following relationships hold.

(i) X ∈ En(∆,Σ; Ψ) for some Σ and Ψ i� it exists a non-singular matrix T ∈ Rn×n such that

Z := T (X −∆) is spherically distributed about the origin.

(ii) X ∈ En(0,Σ; Ψ) for some Σ and Ψ i� α′1X
d
= α′2X for every α1, α2 ∈ A, where A =

{α ∈ Rn − {0} |V(α′X) is constant}.5

(iii) Let X admit a density. Then X ∈ En(∆,Σ; Ψ) i� X has a location-scale distribution.

Proof. (i) (⇒) If X ∈ En(∆,Σ; Ψ), then CX−∆(t) = Ψ(t′Σt) and CZ(t) = Ψ(t′TΣT ′t). Hence, for Z
to be spherically distributed about the origin it su�ces to �nd T such that TΣT ′ = In. We can check
that T = D−1/2Q−1 does the job, where Q is the orthogonal matrix (made by eigenvectors of Σ) such
that Σ = QDQ′, D diagonal, and D−1/2 is a square-root of D, i.e. D−1/2 satis�es D−1/2D−1/2 = D.

(⇐) Conversely, assume Z is spherically distributed about the origin. By De�nition 3, it follows
CZ(t) = CRZ(t) = CZ(R′t) for every orthogonal matrix R. Hence, CZ(t) must be of the form Ψ(t′Mt)
for some matrix M and some Ψ. Now, CX(t) = CT−1Z+∆(t) = exp(it′∆)Ψ(t′Σt) for some Σ.

(ii) Suppose X ∈ En(0,Σ; Ψ) and �x α1, α2 ∈ A. Then we have Cα′1X(t) = CX(tα1) =
Ψ(tα′1Σα1t) = Ψ(tα′2Σα2t) = CX(tα2) = Cα′2X(t), for every t ∈ R. Vice versa, if CαX(t) is the
same for every α ∈ A, then the previous chain of equalities shows that CX(t) must be a function
solely of the quadratic form t′Σt for some Σ.

(iii) See Owen and Rabinovitch [32], Proposition 2.

Without loss of generality, one can assume that X has a density. In fact, Lemma 1 in Kelker
[22] states that unless the parent spherical distribution has an atom of positive weight at the origin,
all the marginal distributions of X will have densities. Elliptical distributions are also linked to
stable distributions. In particular, symmetric stable distributions are elliptical. However, there are
stable distributions which are not elliptical (e.g. the Lévy distribution). Similarly, there are elliptical
distributions which are not stable (e.g. the logistic distribution). Thus, the two classes properly
overlap. See Owen and Rabinovitch [32] for more details.

The families of distributions that we introduced, together with the stable one, are closely con-
nected to the issue of stability of distributions with respect to their linear combinations. Generally,
distributions are not closed in this sense. However, (F3) shows that elliptical distributions are and
Lemma 2 strengthens this fact. Surprisingly, if X has second moment the following results hold.

Theorem 2 (Chamberlain [7], Theorem 1). The distribution of α′X+c is determined by its mean and

variance for every α, c i� there is a non-singular matrix T such that z = T (x− E[X]) is spherically

distributed about the origin.

5In Owen and Rabinovitch [32], this statement is actually a de�nition of En(∆,Σ; Ψ). In such case, one should
point out that the vector ∆ can be seen as an additional degree of freedom.
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Theorem 3 (Chamberlain [7], Theorem 2). If E[X] 6= 0, then the distribution of α′X is determined

by its mean and variance for every α i� there is a non-singular matrix T such that TX = (m,Z),
where, conditional on m, Z is spherically distributed about the origin (here m is a scalar random

variable and Z is a (n− 1)-dimensional random vector).

If E[X] = 0, then the necessary and su�cient condition is that z = TX be spherically distributed

about the origin for some non-singular T .

Chamberlain [7] underlines that in Theorem 3 the marginal distribution of m is unrestricted, so
that one has an additional degree of freedom. In fact, Theorem 2 is somewhat more powerful than
Theorem 3 because the necessary condition in Theorem 2 implies the su�cient condition in Theorem
3. E.g., one can use regression as explained in (F4) to �nd (m,Z).

Observe that throughout this section we never referred to the preferences of some decision maker
nor to utility functions or whatever. This means that previously stated facts can be applied to any
preference paradigm. Especially Theorem 2 and 3 by Chamberlain [7], which are reminiscent of MV
analysis in the EU case, can be applied in more general contexts. This will be the issue of the following
section.

4 Mean-Variance preferences and elliptical distributions

Throughout this section, we will assume that every random variable has �nite second moment, that
is X ⊂ L2(Ω,F ,P). Hence it makes sense to conduct a Mean-Variance analysis concerning the
preference functionals. We begin with a standard and intuitive de�nition.

De�nition 6 (Mean-Variance preference functional). Let ρ represent some preferences over X .

- ρ(s, ·) is a function of mean and variance i� ρ(s,X1) = ρ(s,X2) whenever E[X1] = E[X2] and
V[X1] = V[X2].

- ρ is a function of mean and variance in the class S (ρ is MV in S) i� ρ(s, ·) is a function of

mean and variance for every s ∈ S.

By the previous de�nition, it follows that if ρ is MV in S, then ρ is MV in S′ for every S′ ⊂ S.
Evidently, if ρ is MV in S, then ρ is law invariant in S but not vice versa. Furthermore, for a given
distribution FX we can write ρ(s, FX) = h(s,E[X],V[X]) for some h : S × R × R+. To see a case
where the previous de�nition turns out to be useful, consider EU. We can apply Proposition 1 to

conclude that ρEU is MV in U1 i� X1
d
= X2 whenever E[X1] = E[X2] and V[X1] = V[X2].

We also remark that ρ being MV does not imply that it is increasing in the mean and decreas-
ing in the variance, as often assumed in portfolio choice literature. Chamberlain [7] shows that if
ρEU (u, FX) ≡ h(u,E[X],V[X]) and u is concave, then h is a decreasing function of V[X]. Conversely,
he provides an example where h neither is increasing in the mean nor is quasi-concave. For a similar
result in the CPT paradigm, see Example 2 in the Appendix. For the more intuitive case of ρCPT

increasing in the mean and decreasing in the variance, see Del Vigna [11] where a list of various
examples is given.

Another way for ρ to be MV in some class S is to suppose that the distribution of X is of a
particular type. For example, if X is normally distributed then ρEU is MV in U0. Notably, in this
case we do not have to impose speci�c assumptions on S. Everything we need is u(X) ∈ L2(Ω) for
some u ∈ U0. In the EU paradigm, these well-known facts are the starting point in the characterization
of those distributions that imply MV utility functions, namely the elliptical ones. We now extend this
argument further. As usual, we take the random variables Xi to have distribution Fi. The following
lemma will be crucial.

Lemma 3. Assume (ρ, S) ranks the distributions.

- If ρ is law invariant in S and X1 �(ρ,S) X2 then ρ is MV in S.

- If ρ is MV in S then ρ is law invariant in S and X1
d
= X2 whenever E[X1] = E[X2] and

V[X1] = V[X2].
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Proof. (i) First recall that (ρ, S) ranking the distributions and X1 �(ρ,S) X2 imply that F1 stochas-

tically dominates F2. If the mean and the variance of X1 and X2 coincide then X1
d
= X2. Next, the

law invariance of ρ leads to ρ(s,X1) = ρ(s,X2) for every s ∈ S.
(ii) If E[X1] = E[X2], V[X1] = V[X2] and ρ is MV in S, then ρ(s,X1) = ρ(s,X2) for every s ∈ S. In
particular, we have X1 �(ρ,S) X2 which implies X1

d
= X2 since E[X1] = E[X2].

The very important implication of Lemma 3 is that if (ρ, S) ranks the distributions, then we
can unambiguously identify a distribution once we know its mean and variance. Combining this
result with Theorem 2 and 3, we are able to characterize the distributions that imply MV preference
functionals. Since the main application of such results concerns optimal portfolio choice, we shall
put ourselves in that framework. Note that in spite of the hypotheses over the market structure, our
analysis remains valid for analogous linear problems.

For, assume there is a frictionless market with n risky securities whose net return over the period
is given by the random variable X. We set ∆ := E[X] and Σ := V[X], where Σ is a non singular
matrix. We shall consider a riskless asset with net return r ∈ R. The admissible set of portfolios will
be

A := {p ≡ α′X + α0r |α ∈ Rn, α0 ∈ R} ⊂ X , (11)

with the convention α0r ≡ 0 if the riskless investment is not permitted. Note that a portfolio is
identi�ed by the pair (α, α0). We set no short-sale constraints, so the choice of an individual whose
initial endowment is W 0 ∈ R must only satisfy the budget constraint C(p) := α′1+α0r ≤W 0, where
1 is the n× 1 vector of ones. Let ρ|A be the restriction of ρ to the set of attainable portfolios. First,
consider the case where the riskfree asset is available. We are able to give a characterization of the
distributions that imply MV preferences in the case of law invariant functional representations. This
is the main result of our paper.

Theorem 4. Assume ρ|A is law invariant in S and (ρ|A, S) ranks the distributions. Then

ρ|A is MV in S i� X is elliptically distributed.

Proof. (⇒) If X ∈ En(∆,Σ; Ψ) then every admissible portfolio satis�es p ∈ E1(α′∆ + α0r, α
′Σα; Ψ).

By Theorem 2 it follows that the distribution of p is identi�ed by its mean and variance. Note that
here the assumption of (ρ|A) ranking the distributions is super�uous. (⇐) By Lemma 3, (ii), whenever
two portfolios have the same mean and variance, it follows that they have the same distribution too.
Therefore, the distribution of every p is characterized by its mean and variance. By Theorem 2 we
conclude. Here the assumption of ρ|A being law invariant is not necessary.

The previous theorem is a powerful extension of the characterization shown by Chamberlain [7].
Just as an example, it is possible to slightly adjust our arguments to encompass continuous versions
of the Subjective Expected Utility by Savage, Rank Dependent Utility by Quiggin and Choquet
Expected Utility, as considered in Diecidue and Wakker [12]. If the riskless asset is not available and
∆ 6= 0 we can apply Theorem 3 and see that a result similar to Theorem 4 holds but the conclusion
will be: ρ|A is MV in S i� there is a non-singular matrix T such that TX = (m,Z), where, conditional
on m, Z is spherically distributed about the origin. However, if ∆ = 0 then Theorem 3 leads again
to elliptically distributed stocks' returns.

Unfortunately, the interesting case of CPT is not encompassed in our Theorem 4. This is because
the CPT functional evaluate gains/losses instead of admissible portfolios in A. Intuitively, the refer-
ence wealth shifts the set of the distributions of the attainable terminal lotteries so that considering
ρCPT|A is no more sensible. This case deserves a separate analysis due to its theoretical and practical

relevance. Incidentally, we shall answer a conjecture advanced by Pirvu and Schulze [33]. As in that
article, let the reference wealth of the decision maker be

W ref := a′X + b′α+ c, (12)

for some a, b ∈ Rn and c ∈ R. The coe�cients a, b, c possibly depend on some of the parameters
regarding the initial wealth, the market structure or even the portfolio. In other words, they are
allowed to depend on α, α0, W

0, ∆, Σ and r.
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In this way the terminal wealth of the agent will beW 1 := W 0+p. Following CPT, the gains/losses
that the agent shall evaluate are of the form Y = W 1 −W ref . Using (12), we �nd

Y = (α− a)′X + δ, δ :=

{
W 0 + α0r − c− b′α if the riskfree asset is available,

W 0 − c− b′α otherwise.
(13)

We remark that if riskfree investment is allowed, the budget constraint holds with equality since
ρCPT is monotone decreasing.6 We now give a su�cient condition for ρCPT to be MV in V0. As
we already observed, ρCPT will be MV in V1 too. Moreover, the result holds independently on the
availability of the riskfree asset.

Proposition 7. Assume W ref as in (12). If X is elliptically distributed then ρCPT is MV in V0.

Proof. If a = α there is nothing to prove since Y is constant. So let a 6= α. Then Y = γ′X + δ for
some γ ∈ Rn and δ ∈ R, where δ is possibly null. By Lemma 2, (i), and Theorem 2 it follows that
the distribution of Y is characterized by its mean and variance. Therefore, ρCPT is a function that
depends uniquely on E[Y ] and V[X].

We have a number of observations concerning the previous proposition.

1. A deeper analysis shows that if a 6= α, ∆ 6= 0 and δ = 0 then it is su�cient to assume the
existence of a non-singular matrix T such that TX = (m,Z) with Z spherically distributed
about the origin conditional on m; see Theorem 3. Notably, this assumption is weaker than
X ∈ En(∆,Σ; Ψ). The condition δ = 0 requires some coordination between the reference wealth
W ref , the initial wealth W 0 and the availability of the riskfree asset.

2. Some particular cases of the previous observation turn out to be interesting. Assume a = b = 0
so that the reference wealth is constant and independent on the portfolio. If there is a riskless
asset and c = W 0 + α0r then the attainable gains/losses are exclusively of the form Y = α′X.
Hence the decision maker denies herself the evaluation of a riskfree investment but not the
opportunity to safely invest. Conversely, if there is not a riskless asset and c 6= W 0 then
Y = α′X + δ, δ 6= 0. Consequently, the investor preferences re�ect some riskless investment
evaluation without an e�ective riskfree investment. In the latter case we must also require X
to be elliptical distributed. Resuming, the benchmark wealth possibly distorts the way the
distribution of the terminal prospects are perceived as we already observed.

3. If we are aware of the initial wealth W 0 and the parameters a, b, c that describe the reference
wealth, then the distribution of Y can be characterized by the mean and the variance of the
portfolio. Speci�cally, we have Y ∈ E1(E[p] +W 0 − b′α− c− a′∆,V[p] + a′Σa− 2α′Σa; Ψ).

4. W ref as in (12) makes sense since it involves some quantities the investor is aware of. However,
we could suppose W ref to be di�erent from (12).7 In such case, it is clear that ρCPT can fail
to be MV in V0. Notably, if W

ref is independent of X and X is elliptically distributed then we
retain the MV form for ρCPT . Indeed, we have p ∈ E1(α′∆, α′Σα; Ψ) so that the distribution of
p depends only on its mean and variance. Furthermore, we compute FY (x) =

∫
R Fp(x− α0r −

W 0− z)dFW ref (z), where Fp and FW ref are the distribution of p and W ref respectively. Thus,
FY is a function of E[p] and V[p], which in turn are given by E[p] = E[Y ]−W 0 + E[W ref ] and
V[p] = V[Y ]− V[W ref ].

The complete converse of Proposition 7 does not hold. Intuitively, the reason lies in the additional
degrees of freedom brought by the reference wealth in (12). Consequently, we distinguish three cases
in the following proposition.

6Del Vigna [11] shows that in a portfolio optimization problem for a CPT agent, we can �nd as optimal solution
the pair (α, α0) = (0,W 0), that is null risky investment by the CPT agent. However, investment in every portfolio
(α, α0) ∈ Rn+1 is still permitted.

7The literature o�ers a variety of speci�cations for the reference wealth. In most cases, W ref is assumed to be
constant; see Bernard and Ghossoub [3] and He and Zhou [18] among others. Alternatively, it can be stochastic as in
Jin and Zhou [20] or even endogenous as in Köszegi and Rabin [24]. We remark that the choice of a constant benchmark
is classical in equilibrium models with CPT investors; see De Giorgi, Hens, Levy [8] and Del Vigna [11] among others.
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Proposition 8. Assume W ref as in (12) and ρCPT is MV in V1.

(i) If a = α then the distribution of X is unrestricted.

(ii) If a 6= α, ∆ 6= 0 and δ = 0 then there is a non-singular matrix T such that TX = (m,Z),
where, conditional on m, Z is spherically distributed about the origin.

(iii) If (a 6= α and δ 6= 0) or (a 6= α, ∆ = 0 and δ = 0) then X is elliptically distributed.

Proof. By Proposition 6, (ρCPT ,V1) ranks the distributions. Applying Lemma 3, (ii), we �nd that
the mean and the variance of Y characterize its distribution. (i) If a = α then Y is constant so that
ρCPT is MV no matter how X is distributed. (ii) With these hypotheses, we have Y = (α − a)′X.
Thus we apply Theorem 3. (iii) In this case Y = (α− a)′X + δ, δ 6= 0. Hence apply Theorem 2.

We now turn to the question raised by Pirvu and Schulze [33]. The problem is: Does the prospect
value of a portfolio p depend only on its mean and variance if and only if asset returnsX are elliptically
distributed?. For the su�cient part, the authors provide a positive answer by showing directly the
dependence of ρCPT on the mean and variance of some transformation of asset returns. Speci�cally,
they assume the presence of a riskfree asset. Moreover, they suppose elliptical distributed excess
returns over the riskfree rate and the benchmark return in the reference wealth. In our notation, their
assumption becomes X − r1− b =: y ∈ En(∆̂, Σ̂; Ψ̂) for some parameters ∆̂, Σ̂ and Ψ̂. Furthermore,
they suppose y to possess a density. Here are our observations. First, looking at the proof of our
Proposition 7 we note that the presence of a density is not necessary. Second, by Lemma 2, (iii), we
see that if a density exists then we could take X to be location-scale distributed. Third, it seems
more natural to assume elliptically distributed returns for the basic assets X instead of y. In fact,
from a mathematical point of view things are equivalent thanks to Lemma 2, (i). Finally, we observe
that the presence of a riskless asset is not necessary. Our Theorem 4 thus con�rms their answer and
we highlight that their hypotheses can be substantially weakened; see also the previous observations
1 and 4.

For the necessary part, Pirvu and Schulze [33] advance a conjecture but they are not able to prove
it. We remark that in the aforementioned article, portfolios are generated by linear combinations of
y := X − r1− b and not by combinations of X. Together with W ref , this introduces a non negligible
bias between the distribution of X and that of the attainable gains/losses Y . Now, consider Theorem
4. By its proof, we see that the mean and the variance of the gains/losses Y characterize the
distribution of Y but not that of the original assets X. E�ectively, if we exclude the pathological
cases (i) and (ii) of Proposition 8 then the conjecture is correct. Notably, only case (iii) allows for
the strongest conclusion of elliptical asset returns. We thus positively answer the conjecture with the
following corollary.

Corollary 4. Assume W ref as in (12) with ( a 6= α and δ 6= 0 ) or ( a 6= α , ∆ = 0 and δ = 0 ).
ρCPT is MV in V1 i� X is elliptically distributed.

We conclude this section observing that Lemma 3 can be applied to the DT too, since we know that
(ρY , T1) ranks the distributions. However, we have to be careful since ρY only evaluates non negative
terminal wealths. To �x ideas, assume there is a riskfree asset so that W 1 = α′(1+X) +α0(1 + r). If
asset returns X are elliptical, then the distribution of W 1 is characterized by its mean and variance
for every (α, α0). Consequently, ρY is MV in T1. But in order to have a sensible economic model,
we should put further restrictions on X and/or (α, α0) leading to W 1 ≥ 0 almost surely. The other
cases can be studied similarly.

5 Conclusions

In this paper, we studied in a rigorous way law invariant preference functionals and their connections
with stochastic dominance and Mean-Variance analysis. First, we introduced the intuitive notion of
a preference functional ranking the distributions of random variables. This condition is substantially
the converse of the monotonicity of the functional with respect to distributions. Putting together
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the two conditions, we saw that every functional can be made independent of the initial wealth of
the decision maker. After that, we extended First and Second order Stochastic Dominance to the
Dual Theory of Choice. Interestingly, we found the same rankings over the distributions as those
for Expected Utility with the only restriction to non negative lotteries. The most interesting case
remains that of Cumulative Prospect Theory. Even considering S-shaped value functions exhibiting
loss aversion and reversed S-shaped probability distortions, we were able to prove that First Stochastic
Dominance is indeed equivalent to prospect value dominance, a result which is completely new to the
literature.

The previous �ndings opened the door for extending Mean-Variance analysis to more general
preference paradigms than Expected Utility. In particular, we saw how a law invariant functional
that ranks the distributions naturally leads to a functional that depends only on the mean and variance
of the lotteries. Mean-Variance preferences are also strictly connected to elliptical distributions of the
underlying prospects. Our main result is the characterization of the distributions that imply Mean-
Variance preferences, namely the elliptical ones as expected. However, the Cumulative Prospect
Theory paradigm deserves a special treatment. It was already known that elliptical asset's returns
lead to Mean-Variance prospect value. As a matter of fact, we proved under mild assumptions that
whenever the prospect value depends only on the mean and variance, the distribution of the stocks'
returns is elliptical. Furthermore, the presence of a riskless asset does not in�uence the result. This
fact closes Mean-Variance analysis in the Cumulative Prospect Theory to elliptical distributions, as
it happens for Expected Utility.

Here is a list of some topics left uncovered by this paper. To us, they deserve a special attention
and we left them for future research.

First, Mean-Variance analysis has profound links with the mutual fund separation property. For
the Expected Utility paradigm, Cass and Stiglitz [6] characterized the utility functions that imply
separability for every distribution of the stocks' returns. Conversely, Ross [35] characterized the distri-
butions that imply two-fund separability for every concave increasing utility functions. Chamberlain
[7] proved that spherical distributions (with a riskless asset) and conditional spherical distributions
(without a riskless asset) of the risky assets' return leads to separability without restrictions over the
utility functions. We would like to establish a full parallel with the Cumulative Prospect Theory.
In an earlier version of their working paper, De Giorgi, Hens and Levy [8] showed that two-fund
separability holds if asset returns are multivariate normal and the riskfree asset is available for some
special cases of the Cumulative Prospect Theory functional. Pirvu and Schulze [33] extended the
result to elliptical distribution with mild assumptions over the value functions and the probability
distortions. The technicalities in Cumulative Prospect Theory lies in the possible ill-posedness of the
portfolio optimization problem. We ask whether it is possible to characterize the S-shaped utility
functions and/or the weighting functions that imply mutual fund separability. Similarly, we would
like to �nd the distributions that lead to separation without imposing conditions over the Cumulative
Prospect Theory preference functional.

Second, Mean-Variance analysis is the basis for the Security Market Line Theorem and the Capital
Asset Pricing model. Early works on the subject by Sharpe, Lintner and Mossin during the 60's
assumed Mean-Variance preferences to be increasing in the mean and decreasing in the variance.
For Expected Utility maximizers, this is accomplished through a quadratic utility function or via
assumptions on the distributions of the assets. Once such limitations are imposed, one can identify
a frontier of e�cient portfolios. However, Chamberlain [7] showed that even for risk averse investors,
Expected Utility can be non increasing in the mean. Similarly, we highlighted that for Cumulative
Prospect Theory a similar situation is possible too. De Giorgi, Hens and Rieger [10] showed that
Capital Asset Pricing equilibria need not to exist for some speci�cations of Cumulative Prospect
Theory preferences. De Giorgi, Hens and Levy [9] gave a uni�ed framework for a Capital Asset Pricing
model where investors following di�erent preference paradigms coexist. In particular, they showed
the robustness of the Security Market Line Theorem under the assumption of normally distributed
asset returns. Subsequently, Del Vigna [11] provided su�cient conditions for the existence of Capital
Asset Pricing equilibria with positive prices with heterogeneous Expected Utility and Cumulative
Prospect Theory maximizers. As a by-product, endogenous market segmentation can arise. Now,
it is clear that the analysis over the existence of such equilibria can go through assuming elliptical
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returns without heavy restrictions over the preference paradigms. However, a crucial hypothesis for
Capital Asset Pricing models is common knowledge about stocks' payo�s. In other words, every
investor should have the same beliefs about the distributions of the original assets. Our analysis
showed that for Cumulative Prospect Theory maximizers, di�erent reference wealths possibly lead to
di�erent perceptions of such distributions. We wonder about robustness of equilibria with respect to
heterogeneity in such perceptions.

Third, our �ndings pointed out that the Mean-Variance criterion should be commonly employed
when evaluating risky prospects. As long as the distribution of the lotteries remains elliptical, we may
suppose that decision makers have the same e�cient set and consequently follow the same pattern
of choice. This is totally independent of the preference paradigm the individuals adhere, as long
as the representing functional satis�es basic assumptions such as law invariance and monotonicity
in the distribution. Laboratory contexts should highlight such behavior. Additional empirical and
experimental investigation is thus needed.

Finally, our very �rst de�nition involved law invariance and monotone decreasing preference func-
tionals with respect to the distribution of the lotteries. This de�nition is strictly connected to the
wide ambit of risk measures. As is knows, a coherent law invariant risk measure implies such mono-
tonicity. However, the assumptions for coherent risk measures are quite restrictive, in particular
sub-additivity, homogeneity and cash-invariance. Apparently they are not ful�lled by most common
preference functionals. We would like to �nd conditions over the preferences or over the represent-
ing functionals that ensure monotonicity. More generally, we would like to investigate on the links
between risk measures, generalized reward-risk measures and non-expected utilities.

6 Appendix

Proof of Proposition 3. Firstly, we give an intuition of the proof. As already observed in text, we
proved the result for T0 using a weighting function T which did not explicitly exploited the right
continuity of the distributions. This is because we only needed rough estimates for ρY and we could
choose T (x) to be identically null in a neighborhood of x = 0. However, when using the class T1 we
have to be careful, since T strictly positive near 0 can lead to unbounded ρY depending on the choice
of (T, F ). In order to accommodate the presence of any distribution F , we must be able to �nd a
suitable distortion T providing boundedness for ρY . The argument is as follows.

Assume F1(x̄) > F2(x̄) for some x̄ ≥ 0. Choose a sequence {Tn}n ⊂ T1 such that for su�ciently
big n it holds

Tn(x) =


T̃n x ∈ [0, 1− F1(x̄)],
n−2
n

x−(1−F1(x̄))
F1(x̄)−F2(x̄) + 1

n x ∈ (1− F1(x̄), 1− F2(x̄)),

1− 1
n

[
1−x
F2(x̄)

] (n−2)F2(x̄)

F1(x̄)−F2(x̄)

x ∈ [1− F2(x̄), 1],

where T̃n is such that Tn ∈ T1, i.e. T̃n(0) = 0, T̃n(1− F1(x̄)) = 1
n , T̃

′
n > 0, and

lim
n→∞

∫ +∞

x̄

T̃n(1− F1(x))dx = 0.

Some clari�cations are in order. First, we select a S-shaped Tn, being a straight line in the middle
interval and non linear elsewhere. As n grows to in�nity, Tn becomes steeper in the middle interval
and �atter elsewhere. Observe that if F1(x̄) = 1 then we only need the last two pieces of Tn. Second,
we explicitly de�ned these latter pieces in order to give precise estimates, but any other analogous
speci�cation would be correct. Third, Tn converges uniformly to the distortion that we used for T0

but we can apply a limit argument as in Proposition 1. Finally, and more important, we can always
�nd such a sequence {T̃n}n and it can be chosen to be monotone non increasing. For example, if F1

is continuous we can set T̃n(x) ' 1
[F−1

1 (1−x)]n
in a neighborhood of x = 0. If F1 is not continuous,

then we can replace F−1
1 with its convex envelope. If F1 is O(x−m), m ∈ N, for x tending to in�nity,
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then we can even explicitly set

T̃n(x) =
1

n

[
x

1− F1(x̄)

] (n−2)(1−F1(x̄))

F1(x̄)−F2(x̄)

.

Similarly to the proof for the class T0, we now proceed to estimate

ρY (Tn, F1) ≤ x̄+

∫ +∞

x̄

T̃n(1− F1(x))dx,

and

ρY (Tn, F2) ≥ (1− 1
n )x̄+

∫ F−1
2 (F1(x̄))

x̄

[
n− 2

n

F1(x̄)− F2(x)

F1(x̄)− F2(x̄)
+

1

n

]
dx.

For the reader's convenience, we recall the existence of β > 0 such that F1 and F2 are continuous
over [x̄, x̄ + β], F1(x̄) > F2(x) for every x ∈ [x̄, x̄ + β] and F−1

2 (F1(x̄)) ≥ x̄ + β. Setting η as in (5)
and noticing that η does not depend on n, we �nd

ρY (Tn, F1)− ρY (Tn, F2) ≤ 1

n
x̄+

∫ +∞

x̄

T̃n(1− F1(x))dx−
(
n− 2

n

)
ηβ.

Passing to limit for n→∞, we conclude since η > 0.

Proof of Proposition 6. (⇐) Follows from Proposition 5. (⇒) The proof is once again by contradic-
tion, similar to that of Proposition 3. We shall exhibit a sequence {vn}n ⊂ V1, vn = (u+

n , u
−
n , T

+
n , T

−
n )

providing good estimates for the gain and the loss part of ρCPT respectively. Then we pass to the
limit, showing the convergence to a strictly negative value and we conclude.

Now, assume there is x̄ ≥ 0 with F1(x̄) > F2(x̄). Thus we can �nd β > 0 such that F1, F2 are
continuous and satisfy F1(x̄) > F2(x) for x ∈ [x̄, x̄+ β]. Choose the sequence {vn}n as follows. The
value functions are given by

u+
n (x) =

{
Ax x ∈ [0, x̄+ β],

A(x̄+ β) + 1−exp{−2nA[x−(x̄+β)]}
2n x ∈ (x̄+ β,+∞),

(14)

u−n (x) =

{
Bx x ∈ [−(x̄+ β), 0],

−B(x̄+ β)− 1−exp{nB[x+(x̄+β)]}
n x ∈ (−∞,−(x̄+ β)),

(15)

where 0 < A < B < 2A. Observe that this condition is su�cient to guarantee loss aversion as
speci�ed in (10). Moreover, u+

n , u
−
n are bounded, so that we can apply integration by parts. We now

compute estimates independently on the particular choice of T+
n , T

−
n . For the losses part, we have

ρCPT− (vn, F1) =

∫ −(x̄+β)

−∞
u−n (x)d[T−n (F1(x))] +

∫ 0

−(x̄+β)

u−n (x)d[T−n (F1(x))]

≤ −B(x̄+ β)

∫ −(x̄+β)

−∞
d[T−n (F1(x))] +B

∫ 0

−(x̄+β)

xd[T−n (F1(x))]

= −B
∫ 0

−(x̄+β)

T−n (F1(x))dx.

Similar computations give

ρCPT− (vn, F2) ≥ −[B(x̄+ β) + 1
n ]

∫ −(x̄+β)

−∞
d[T−n (F2(x))] +B

∫ 0

−(x̄+β)

xd[T−n (F2(x))]

= − 1
nT
−
n (F2(−(x̄+ β)))−B

∫ 0

−(x̄+β)

T−n (F2(x))dx,
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leading to

I−n := ρCPT− (vn, F1)− ρCPT− (vn, F2)

≤ B
∫ 0

−(x̄+β)

[T−n (F2(x))− T−n (F1(x))]dx+ 1
nT
−
n (F2(−(x̄+ β))). (16)

Now observe that F2(0) < 1, otherwise we can not have x̄ ≥ 0. If F2(0) = 0, then we are done since
equation (16) reduces to

I−n ≤ −B
∫ 0

−(x̄+β)

T−n (F1(x))dx ≤ 0, for every T−n ∈ TRS .

Else F2(0) > 0 and we choose

T−n (x) =


1
n

[
x

F2(0)

]γ
x ∈ [0, F2(0)],

1− (1− 1
n )
[

1−x
1−F2(0)

] γ(1−F2(0))

(n−1)F2(0)

x ∈ (F2(0), 1],
(17)

with γ ∈ (0, 1). Recalling that F2 is non decreasing, we �nd

I−n ≤ B
∫ 0

−(x̄+β)

T−n (F2(x))dx+ 1
nT
−
n (F2(−(x̄+ β)))

≤ B 1
n (x̄+ β) + 1

nT
−
n (F2(−(x̄+ β))),

which converges to 0 as n grows to in�nity. Note that passing to the limit is harmless since we are
integrating a bounded function over a compact set (the same holds for I+

n below). In each case we
see that the loss part of the prospect value can be made as small as we desire. Now, for the gains
part we proceed as before obtaining

I+
n := ρCPT+ (vn, F1)− ρCPT+ (vn, F2)

≤ A
∫ x̄+β

0

[T+
n (1− F1(x))− T+

n (1− F2(x))]dx+ 1
nT

+
n (1− F1(x̄+ β)).

We distinguish four cases depending on the value of F2(x̄+ β) and F1(x̄).

(i) F2(x̄+β) = 0 and F1(x̄) = 1. Then F2(x) = 0 for x ∈ [0, x̄+β] and F1(x) = 1 for x ∈ [x̄, x̄+β].
This leads to

I+
n ≤ −A

∫ x̄+β

x̄

dx = −Aβ < 0, for every T+
n ∈ TRS .

(ii) F2(x̄+ β) > 0 and F1(x̄) = 1. For γ ∈ (0, 1), set

T+
n (x) =

(1− 1
n )
[

x
1−F2(x̄+β)

] γ(1−F2(x̄+β))

(n−1)F2(x̄+β)

x ∈ [0, 1− F2(x̄+ β)],

1− 1
n

[
1−x

F2(x̄+β)

]γ
x ∈ (1− F2(x̄+ β), 1].

Then the integrand appearing in I+
n is dominated by 1

n for x ∈ [0, x̄] and it is lower than ( 1
n −1)

for x ∈ [x̄, x̄+ β]. Hence we �nd

lim
n
I+
n ≤ lim

n
A[ 1

n x̄+ ( 1
n − 1)β] = −Aβ < 0.

(iii) F2(x̄+ β) = 0 and F1(x̄) < 1. For γ ∈ (0, 1), choose

T+
n (x) =


1
n

[
x

1−F1(x̄)

]γ
x ∈ [0, 1− F1(x̄)],

1− (1− 1
n )
[

1−x
F1(x̄)

] γF1(x̄)

(n−1)(1−F1(x̄))

x ∈ (1− F1(x̄), 1].
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Now we estimate

I+
n ≤ A

∫ x̄

0

[T+
n (1− F1(x))− 1]dx+A

∫ x̄+β

x̄

( 1
n − 1)dx+ 1

nT
+
n (1− F1(x̄+ β))

≤ A( 1
n − 1)β + 1

nT
+
n (1− F1(x̄+ β)),

which implies limn I
+
n ≤ −Aβ < 0.

(iv) F2(x̄+ β) > 0 and F1(x̄) < 1. For γ ∈ ( 1
4 , 1), set

T+
n (x) =



(1− 1
n ) x

1−F2(x̄+β) x ∈ [0, 1− F2(x̄+ β)],

1− 1
2n −

1
2n

[
1−x−F2(x̄+β)/2
F2(x̄+β)/2

] (n−1)F2(x̄+β)

1−F2(x̄+β)

x ∈ (1− F2(x̄+ β), 1− F2(x̄+β)
2 ],

1− 1
2n + 1

6n

[
x−1−F2(x̄+β)/2
F2(x̄+β)/3

]4γ
x ∈ (1− F2(x̄+β)

2 , 1− F2(x̄+β)
6 ],

1− 1
3n

[
1−x

F2(x̄+β)/6

]γ
x ∈ (1− F2(x̄+β)

6 , 1].

(18)

See Figure 3. Note that T+
n are linear over [0, 1−F2(x̄+ β)] and they do not depend on F1(x̄).

Moreover, γ must be greater than 1
4 to ensure convexity in a neighborhood of x = 1. Again,

the integrand in I+
n is lower than 1

n for x ∈ [0, x̄]. Recalling that F1, F2 are non decreasing, we
estimate

I+
n ≤ A 1

n x̄+Aβ[T+
n (1− F1(x̄))− T+

n (1− F2(x̄+ β))] + 1
nT

+
n (1− F1(x̄+ β))

≤ A 1
n x̄+Aβ[(1− 1

n ) 1−F1(x̄)
1−F2(x̄+β) − (1− 1

n )] + 1
n ,

which implies limn I
+
n ≤ −Aβ

F1(x̄)−F2(x̄+β)
1−F2(x̄+β) < 0.

Hence, in each case we see that ρCPT+ (vn, F1)−ρCPT+ (vn, F2) tends to a strictly negative quantity.
We observe that the unique connection between the estimates for the gain part and the loss part
is given by the value of F2(0). However, this value only a�ects the analysis for the loss part in
(17). Combining this with the previous estimates concludes. Finally, if F1(−x̄) > F2(−x̄) for some
x̄ > 0 then we �nd β > 0 such that −x̄+ β < 0, F1, F2 are continuous and F1(−x̄) > F2(x) for x ∈
[−x̄,−x̄+β]. We adjust u+

n (u−n ) in equation (14) ((15)) choosing a linear shape for x ∈ [0, x̄] ([−x̄, 0])
and a concave (convex) shape elsewhere. The subsequent analysis proceeds as before, adjusting minor
details and choosing appropriate T+

n , T
−
n .

We now add some remarks to the previous proof. First, we provided explicit expressions for the
value functions and the probability distortions. It is evident that qualitatively similar functions do
the job as well. For u+

n , u
−
n , it is su�cient to assume limx→+∞ u+

n (x) = L+
n with limn L

+
n = A(x̄+β)

and limx→−∞ u−n (x) = −L−n with limn L
−
n = −B(x̄ + β). Analogous considerations hold for T+

n ,
T−n , where we also provided families of functions depending on a real parameter γ. Second, observe
that the weighting functions are in some sense necessary. If they are not present then we just have a
S-shaped utility function and we are led to SD relations as in [30]. Similarly, it is necessary to have
strictly convex-concave value functions at least over some regions. In fact, if we choose linear u+

n ,
u−n , then integrations by parts lead us to a model analogous to DT. In turn, we are obliged to select
S-shaped probability distortions as in the proof of Proposition 3, abandoning the class TRS .

Example 2. The example is twofold. First, we provide a case where ρCPT (v,X) = h(v,E[X],V[X])
is not increasing in the mean. We build on Chamberlain [7] assuming m independent of Z, with
P(m = 3) = P(m = −1) = 1

2 ; P(Z = 1) = P(Z = −1) = θ, P(Z = 0) = 1 − 2θ for θ ∈ (0, 1
2 ). Let

X1 = m and X2 = −m, so that E[X1] = 1, E[X2] = −1 and V[X1] = V[X2] = 4. Recalling the
notation v = (u+, u−, T+, T−), we require u+(x) = x for x ≤ 3 and u−(x) = 3

2x for x ≥ −3. Next,
we require

T+
n (x) = 1

n (2x)1/n, T−n (x) = 1
2 (2x)1/n, for x ∈ [0, 1

2 ), n ∈ N.

De�ne X∗ :=
√

2
θZ. Then E[X∗] = 0 and V[X∗] = 4 for every θ. Straightforward computations show

that ρCPT (vn, X1) = 3
n−

3
4 , ρ

CPT (vn, X2) = 1
n−

9
4 , and ρ

CPT (vn, X
∗) =

√
2
θT

+
n (θ)− 3

2

√
2
θT
−
n (θ). If θ
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is su�ciently small and n is chosen appropriately, then we �nd h(vn, 0, 4) < h(vn,−1, 4) < h(vn, 1, 4)
as claimed. For a direct check, set θ = 1

10 and n = 2.
Second, we show a case where ρCPT is not decreasing in the variance. We build on De Giorgi,

Hens and Levy [8] and Del Vigna [11]. For, select u+ to be strictly increasing and convex and
set u−(x) := −λu+(−x) for x ≤ 0, with λ > 1 to induce loss aversion. Next we choose a special
CPT functional, the so-called rank dependent one. Speci�cally, we assume T+(1 − x) = 1 − T−(x)
for x ∈ [0, 1], with T− continuous, piecewise di�erentiable and strictly increasing. Now, for any
symmetrically distributed random variable Y we have

ρCPT (v, Y ) =

∫ +∞

0

u+(x)d[T−(FY (x))]− λ
∫ 0

−∞
u+(−x)d[T−(FY (x))]

=

∫ +∞

0

u+(x)[(T−)′(FY (x))− λ(T−)′(1− FY (x))]dFY (x).

In particular, if Y ≡ 0 then ρCPT = 0. On the other hand, let Y be a standard normal random
variable. In order to conclude the example, we only need to �nd λ > 1 and T− such that for every
x ∈ ( 1

2 , 1] it holds (T−)′(x)− λ(T−)′(1− x) > 0 . Indeed, u+ is positive as well as dFY . We choose
the probability distortion to be

T−(x) =


1.1x x ∈ [0, 0.1),

0.1x+ 0.1 x ∈ [0.1, 0.5),

1.7x− 0.7 x ∈ [0.5, 1].

An explicit computation shows that λ < 3
2 does the job.
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Figure 2: the reversed S-shaped weighting functions T−n in equation (17) for γ = 0.5, F2(0) = 0.5,
n = 2 (solid), n = 4 (dash-dot) and n = 10 (dashed).

Figure 3: the reversed S-shaped weighting functions T+
n in equation (18) for γ = 0.4, F2(x̄+β) = 0.8,

n = 2 (solid), n = 3 (dash-dot) and n = 5 (dashed).
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