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Abstract

We show that the Truncated Realized Variance (TRV) of a semimartingale asset price converges

to zero when observations are contaminated by microstructure noises. Under the additive iid noise

assumption, a central limit theorem is also proved. In consequence it is possible to construct a

feasible test allowing us to measure the relevance of the noise in the data of a given asset price at a

given observation step. For a given observed price path we thus can optimally select the observation

frequency at which we can ”safely” use TRV to estimate the efficient price integrated variance IV. The

local size of our test is investigated and its performance is verified on simulated data. A comparison

conducted with Bandi and Russel (2008) and Ait-Sahalia, Mykland and Zhang (2005) mean square

error criterions shows that, in order to estimate IV, in many cases we can rely on TRV for lower

observation frequencies than previously indicated when using Realized Variance. The advantages of

our method are at least two: on the one hand the underlying model for the efficient asset price is less

restrictive in that any kind of Ito semimartingale (SM) jump component is allowed. On the other

hand our criterion is pathwise, rather than based on an average estimation error, allowing for a more

precise estimation of IV because the choice of the optimal frequency is based on the observed path.

Further analysis on both simulated and empirical data is conducted in [15].

Key words. Semimartingales with jumps, integrated variance, threshold estimation, test to select

optimal sampling frequency

Gel codes: C12, C14, C32, C60, G12

1 Introduction

When we want to estimate the integrated variance IV
.=

∫ T

0
σ2

sds of an efficient data generating process

(DGP) X based on observations Y = X + ε affected by microstructure noise, we have to decide whether

to pre-average the observations (as e.g. in [17]) or to directly apply an estimator which is consistent in the

absence of noise. This depends on whether the noise is relevant or not in our data, which is determined by

the frequency at which we pick the observations. Given a time series of noisy Brownian semimartingale
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we can use the signature plot of the realized variance (RVh) as a function of the observation step h to

decide whether at a predetermined frequency the noise contamination is relevant or not; when the noise

is judged to be negligible we rely on RVh as a measure of IV . However the observation step ĥ visually

selected by means of the signature plot (SP; [8]) is not necessarily such that RVĥ leaves a reliable estimate

of IV, given that RVĥ cannot disentangle the estimation error from the error induced by the presence

of noise. Moreover, in the presence of jumps in the DGP, RV undergoes a further source of estimation

bias of IV , represented by the sum of the squared jumps. Another important criterion used to estab-

lish the limit frequency at which the noise becomes relevant is theoretically minimizing the conditional

mean square estimation error RVh − IV, as described in [4], [3], [20]. However also there the efficient

data generating process X is assumed to have continuous paths. Further the selected h is optimal on

average, along many paths of the price process, while it is possible that the optimal step for a given day

is different from the step which is optimal in another day. This makes it useful to have a further tool

(a test) allowing to establish, for a fixed path of a fixed asset and a given frequency, whether the noise

is contaminating the asset returns in a non-negligible way or not. We are now going to propose such a

test, to check its reliability on simulated data and it is in progress (in [15]) the application to empirical

data. Questions that we judge to be interesting are 1) checking whether, as stated by some authors

([18]), the mid-quotes are less affected by noise than the transaction prices and at which extent; 2) for

a given frequency, checking how much the pre-averaged time series has been decontaminated by the noise.

2 Model setup

Let us consider the filtered probability space S0 = (Ω0,F0,F0
t∈[0,T ], P

0) generated by a Brownian motion

W and a Poisson random measure µ (possibly allowing for infinite activity jumps), and let the log price of

an asset be modeled as an Ito semimartingale X on S0. We can always arrange the different components

of X so as X = X0 + J, where X0t = x0 +
∫ t

0
asds +

∫ t

0
σs dWs, with cadlag integrands a and σ, and J

has the following representation (see [11])

Jt = J1t + J̃2t =
∫ t

0

∫

|γ(x,s,ω)|>1

γ(x, s, ω)µ(dx, ds) +
∫ t

0

∫

|γ(x,s,ω)|≤1

γ(x, s, ω)[µ(dx, ds)− dxds],

where
∫

1 ∧ γ2(x, s, ω)dx is a.s. finite. As such X0 is called Brownian semimartingale component of X

and J jump component. Process J1 is of finite activity of jump (i.e. almost all paths jump finitely many

times in [0, T ]), and it also has the representation

J1t(ω),=
∑

s≤Nt(ω)

γ(xs, s, ω)

where Nt =
∫ t

0

∫
|γ(xs,s,ω)|>1

1µ(dx, ds) is the counting measure of the jumps with size larger than 1

in absolute value and, for fixed ω if a jump occurs at time s then xs ∈ IR is the mark pointing at

which jump size γ(xs, s, ω) is realized. On the contrary, in general J̃2 has infinite activity (some path

can jump infinitely many times, even densely, in any finite time interval). Let ε be a noise process,
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defined on an extension S := (Ω,F ,Ft∈[0,T ], P ) given as in ([12]). We can only observe the noisy process

Y = X + ε, which is the superposition of the efficient price process X with the contaminating noise. We

have observations Yti
at discrete times ti = ih, i = 1..n, for a given resolution h = T/n.

Define rh := hβ , with β ∈ (0, 1), and ˆIV h :=
∑n

i=1 ∆iY I{(∆iY )2≤rh}, where, for any process Z,

∆iZ = Zti
− Zti−1 . The following further notation is used throughout the paper:

· ∆iZ? = ∆iZI{|∆iZ|≤√rh}, εi := εti

· the asymptotic theory is conducted for n →∞, i.e. h = T/n → 0. In view of the one to one correspon-

dence between n and h, if f is written as a function of h (or alternatively of n) we indifferently indicate

either limh f(h) or limn f(h).

· c indicates a constant which does not depend on i, nor on n, and which keeps the same name even if it

can change from line to line,

· given two real functions f, g (possibly the paths of a stochastic process for fixed ω), f(h) ∼ g(h) means

asymptotic equivalence as h → 0, i.e. there exist constants c1, c2 such that c1 ≤ f(h)
g(h) ≤ c2 keeps true

when h → 0, meaning that if f and g converge (or diverge), they do at the same speed; f(h) << g(h)

means that f(h) = o(g(h));

· ≈ denotes approximation of numerical results of computations;

· N (0, b2) denotes a r.v. with Gaussian law having mean 0 and variance b2; U denotes a standard Gaussian

rv.

We also recall that

· for any process Y , RVh :=
∑n

i=1(∆iY )2;

· for any Ito SM X as above, QV (X) =
∫ T

0
σ2

sds +
∑

s≤T (∆Js)2, where ∆Js = Js − Js−.

Assumption 1. ∀i = 1..n, P{|∆iε| ≤ c
√

rh} = O(
√

rh)

Assumption 2. i)
∫
|γ|>1

1dx is locally bounded in (t, ω);

ii) there exists α ∈]0, 2[ such that
∫
|γ|≤ε

γ2dx ≤ cε2−α.

Remarks.

1) Assumption 1 is verified if e.g. all the increments εi are normally N (0, c2) or uniformly U [−c, c]

distributed (which are the typical examples of additive i.i.d. noise). More generally it is verified each

time that V ar(εi) 6= 0 and the common law ∆iε(P ), i = 1..n has a density f continuous at 0. In fact

the Assumption requests that the probability that an increment of the noise process be small is smaller

and smaller when the observation step h → 0. This is consistent with the idea that when h is very small

while the efficient price increments tend to zero in probability, because X is a semimartingale, the noise

increments keep comparatively large, which gives an explanation of why the SP of RVh increases when

h → 0.

2) Assumption 2 i) is technical and is standard when proving CLTs (e.g. Assumption (K) in [10] implies

our condition i)). Assumption 2 ii) is satisfied when J is Lévy with Blumenthal-Getoor index α or is a

semimartingale (with constant Blumenthal-Getoor index α) satisfying e.g. assumption 2 in [2] (with β

there playing the role of α here). The condition is needed to ensure that, for all n, P{|∆iX| >
√

rh}
and P{|∆iJ̃2| > √

rh} keep bounded by ch1−αβ
2 , uniformly in i = 1..n (see Lemma 8.1 in the Appendix)
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which is needed in the proof of theorem 3.1.

3 Main results

Our first important result is showing that in the presence of microstructure noises the threshold estimator

of IV tends to zero rather than to IV.

Theorem 3.1. Let Y = X + ε be contaminated by microstructure noises and take β > 2/3. Under

Assumptions 1 and 2 we have
ˆIV h

P→ 0.

The intuition is the following. The increments ∆iε have the peculiarity that their variance keeps

high even when h → 0, which makes process ε to fall outside the semimartingales class. Microstructure

noises typically satisfy Assumption 1, because they tend to keep large when h → 0. On the contrary, as

previously said, ∆iX tends to be small for each i (in particular, under Assumption 2 we have P{|∆iX| >
√

rh} ≤ ch1−αβ/2 → 0). It follows that when h → 0 the increment ∆iε tends to predominate on ∆iX

and makes ∆iY large for all i, and all I{(∆iY )2≤rh} will turn out to be zero.

Theorem 3.1 allows us to distinguish whether the observed process is contaminated by (a relevant)

noise or not. In fact if σ 6≡ 0, when X is not contaminated then ˆIV h
P→ ∫ T

0
σ2

sds > 0 ([16]), while if X

is contaminated then ˆIV h
P→ 0. Next theorem enables us to establish confidence intervals for ˆIV h being

significantly far form 0. Observation of X is always affected by some microstructure noises, however if
ˆIV h turns out to be far from zero the impact of the noise is as if it was absent, meaning that it is present

but negligible, not relevant. This is the logic under which the test we propose in the next section works.

In order to construct the mentioned confidence intervals (in Section 4) we need to compute the speed at

which ˆIV h tends to zero in the case where X is contaminated, which is exactly the objective of the next

Theorem. In case σ be null the next theorem is still valid, as within the proof the condition σ 6≡ 0 is

never invoked.

Theorem 3.2. [CLT in the presence of Additive iid noise] Assume that for all h the r.v.s εti , i = 1..n,

n ∈ IN, are IID with zero mean and finite strictly positive variance, and are independent on X. Further

assume that the law of each εti has (the same) Lipschitz and bounded density g. Then when X is

contaminated by the noise and β > 2/3 we have

i)
E[ ˆIV h]

nr
3
2
h

P→ 2
3
E[g(ε1)] =

2
3

∫

IR

g2(x)dx

ii)

NBh :=
ˆIV h − nr

3/2
h

2
3E[g(ε1)]

√
n r

5
4
h

√
2
5E[g(ε1)]

F0−stable→ U,

where U is a random variable on an extension S ′ := (Ω′,F ′,F ′s, P ′) of S, having standard Gaussian law,

and is independent on S.
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Remarks.

1) We recognize that assuming iid noises is not completely realistic, however, as in many other works

following [21], this represents a starting point to understand what one can substantially do.

2) The above assumptions on ε imply that Assumption 1 is satisfied (see point 7) below and Remark 1)

after Ass. 2).

3) The above assumptions on ε are satisfied if e.g. the noise is additive iid with Gaussian εti
.

4) When εti
are i.i.d. with uniform laws, the density g is not Lipschitz over the whole IR, however, as

shown in the proofs section (just after the proof of Theorem 3.2), the results i) and ii) above can be

proved also for the uniform {εti
}, by using the specific features of the uniform density.

5) Condition β > 2/3 implies, from i), that E[ ˆIV h] → 0.

6) By the iid property of the rvs εi, also the differences ui = εi− εi−1 have a common density f , and the

relation between f and the density g of εi is

f(z) =
∫

IR

g(z + y)g(y)dy.

Consequently E[g(ε1)] =
∫
IR

g2(y)dy = f(0), so we can estimate E[g(ε1)] by either making assumptions

on the noise density (e.g. Gaussian or uniform) and then using parametric methods (e.g. deducing the

value f(0) from estimates of the variance of the noise increments given e.g. in [6], p.20) or using non-

parametric methods (as kernel-type estimators of f(0)). Therefore we can implement a feasible version

of NBh

7) V ar(ε1) 6= 0 implies that f(0) = E[g(ε1)] 6= 0, since f(0) = E[g(ε1)] =
∫
IR

g2(y)dy and g cannot be

null.

8) In [19] a power variation based statistic is proposed to study which kind of noise could realistically

affect a given record of observations. The statistic also serves to select an observation frequency at

which the impact of the noise can be considered negligible. The theory however is developed for a noised

Gaussian process (Xt = σWt).

4 Application: measuring the relevance of the noise in finite

samples

In the previous section we obtained that in the presence of microstructure noises in the data, if we

choose β close to one then
∑n

i=1(∆iY )2?
P→ 0 in a way such that Theorem 3.2, ii) holds true, and the

feasible version of NBh where E[g(ep1)] = f(0) is replaced by an estimate f̂(0) tends to a standard

Gaussian rv. On the contrary, in the absence of the noise, since the econometrician believes that some

noise affects the data anyway, he still implements the same feasible version of NBh, but now we have
∑n

i=1(∆iY )2?
P→ IV ≥ 0 (see [16]) and f̂n(0) → +∞ in both the following cases: the case where we use

kernel estimation

f̂n(0) =
1
ns

n∑

i=1

I{|∆iY |<s}
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with s = ϑ
√

h, for some constants ϑ, and the case where we believed that ∆iε are Gaussian N (0, 2σ2
ε)

and estimated fn(0) through the empirical variance of the ultra high frequency returns ∆iY by

f̂n(0) =
1√

2πσ̂2
u

, σ̂2
u =

1
n

n∑

i=1

(∆iY )2 −
( 1

n

n∑

i=1

∆iY
)2

. (1)

In fact, in both cases we have f̂n(0) ∼ h−1/2, which we checked under X ≡ Y ≡ σW by using the

Lindeberg-Feller CLT for a 1-dependent sequence forming a triangular array. Therefore nr
3/2
h f̂n(0) →

+∞, while nr
5/2
h f̂n(0) → 0, so Sh → −∞.

As a consequence, with β close to 1, the following statistic

Sh
.=

ˆIV h − nr
3
2
h

2
3 Ê[g(ε1)]

√
nr

5
4
h

√
2
5 Ê[g(ε1)]

=
ˆIV h − nr

3
2
h

2
3 f̂n(0)

√
nr

5
4
h

√
2
5 f̂n(0)

(2)

allows us to construct a formal test of the hypotheses

H0) presence of the noise, H1) absence of the noise.

In fact, as soon as
√

nr
1/4
h (f(0)− f̂n(0)) → 0 we have

Sh





F0−stable→ U if the noise is present, i.e. under H0)

a.s.→ −∞ if the noise is absent, i.e. under H1).

(3)

Note that if e.g. we use (1) then within the specialized model Y = σW + ε we have f(0)− f̂n(0) ∼ h so

the requirement
√

nr
1/4
h (f(0)− f̂n(0)) → 0 is fulfilled.

The importance of this test stems from indicating us whether, for a given mesh h, we can rely or not

on TRV in order to estimate the IV of X. In practice the data are always affected by some microstructure

noises, so it is a bit delicate to be willing to test whether the noise is present or not. However on finite

samples the contamination can be high or low and then it is meaningful to ask whether the noise can

be neglected or not in order to estimate IV by using ˆIV . To give an answer to this last question is

exactly our intent, and is made possible by looking at the behavior of Sh: when, given an observation

step h, |Sh| assumes a very large value we are led to think that the data behave like as if the noise was

absent, meaning that the effect of the noise is sufficiently low to allow us to estimate IV through ˆIV . If

on the contrary the value assumed by |Sh| is compatible with a standard Gaussian law, than the noise

has to be judged to be relevant and ˆIV has to be considered not reliable. The simulations experiments

below substantially confirm that when the noise affecting the data has small variance or the observation

frequency is low then |Sh| assumes large values, while it assumes small values otherwise. Thus we can

use the magnitude of |Sh| as an indicator of how negligible is the present noise. The negligibility of the

noise contribution to ˆIV is measured below by the performance MEE
.= 100( ˆIV − IV )/IV of ˆIV in

estimating IV.

Note that our test is formulated in a not conventional way, as our hypothesis H0 is ”presence of

noise” rather than ”absence of the noise”. The confidence intervals for our test statistic are given using

that P{|U | > 1.96} = 5%, so that Sh is compatible at the 95% confidence level with a standard normal
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rv if its assumed absolute value is below 1.96, and in such a case H0) is accepted and the noise has to

be considered relevant. Otherwise, for large values of |Sh| formally H0) would be rejected, however in

practice we have an indication of the negligibility of the noise.

The test procedure we propose here summarizes as follows:

• estimate f(0) (using a kernel or assuming a distribution for ∆iε and using the empirical variance

of the ∆iY )

• RULE: consider the noise relevant at 5% level iff |Sh| ≤ 1.96

We remark that using ˆIV h when possible rather than applying estimators specifically accounting for

the presence of the noise has an advantage in efficiency. In fact ˆIV h converges at rate n1/2, in the absence

of the noise, when the jump component J of X has finite variation (see e.g. [?]), while the best rate of an

estimator of IV accounting for the noise is n1/4. This can make an important difference in finite samples.

By implementing Sh for different values of h, we can select optimally the observation mesh ĥ to be

used in order to estimate IV by ˆIV h in the presence of noise. When the observation frequency h is low

the estimation error ˆIV h − IV can be high even in the absence of the noises, because the theory asserts

that ˆIV h−IV tends to zero when h → 0. On the contrary, when the frequency is very high ˆIV h tends to

zero and not to IV, in fact RV would explode to infinity. We are thus proposing an alternative criterion

to the ones proposed so far in the literature, namely the visual inspection of the SP of RVh ([8]) or the

minimization of the conditional (on σ) mean squared error (MSE) of RVh − IV ([4], [3], [20]). SP is

not necessarily such that RVĥ delivers a reliable estimate of IV, given that RVĥ cannot disentangle the

estimation error from the error induced by the presence of the noise. Furthermore both the SP and the

MSE criterions are designed under the assumption that X has continuous paths, while in the presence

of jumps RV undergoes a further source of estimation bias of IV , represented by the sum of the squared

jumps. Moreover, for the MSE criterion the selected h is optimal on average, i.e. along many paths of

the price process, while it is possible that the optimal step for a given day is different from the step which

is optimal in another day. Our approach allows to establish the optimal observation mesh for any fixed

path of a fixed asset and also in the presence of jumps in X.

5 When the noise variance changes as h → 0: the case ρn → ρ > 0

In practice it is realistic to account for the fact that the noise variance can be different for different

sampling frequencies. We are interested here in having the flavor of how the test response changes in

this case. We now indicate by ε
(n)
i the noise which is involved in the observations sampled at frequency

h = T/n and allow that when n changes the noise variance can change, but, for fixed n, V ar(ε(n)
i ) is the

same for all i = 1..n. We now denote V ar(ε(n)
1 ) by ρ2

n rather than by σ2
ε , to recall that in this context

such a variance is not constant. After some preliminary remarks, we separately tackle the case where

ρn → ρ > 0 and the one where ρn → 0. The first case is probably the most realistic, and the test has

theoretically the same asymptotic behavior as when ρn is the same far all n, while the second case serves
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to measure how reliable is the application of the test when we stress the difficulty in identifying the noise

characteristics, i.e. when the hypotheses H
(n)
0 ) and H

(n)
1 ) get closer and closer while n →∞.

If ε = limn ε(n) was a SM then it would give a finite contribution to both limh RVh(Y ) and limh
ˆIV h

rather than making RVh(Y ) to explode and ˆIV h to tend to zero when h → 0. However even if ρn → 0

process ε is never a SM unless it has finite variation (FV). But in the last case the contribution to both

limn RVh(Y ) and limh
ˆIV h would be null. We illustrate how the contribution of the noise process to

limh RVh(Y ) and limh
ˆIV h depends on the behavior of ρn, in the specialized framework where for all

n, for i = 1..n, ε
(n)
i are iid with Gaussian law N (0, ρ2

n). As for each fixed n the r.v.s ∆2k+1ε
(n) are iid

N (0, 2ρ2
n), we apply the classical Lindeberg-Feller Central Limit Theorem (LF-CLT) for triangular arrays

to
∑(n−1)/2

k=1 (∆2k+1ε
(n))2, and we reach that

∑(n−1)/2
k=1 (∆2k+1ε

(n))2 − (n− 1)ρ2
n√

4(n− 1)ρ4
n

d→ N (0, 1). (4)

Therefore in probability we have
∑(n−1)/2

k=1 ∆2k+1(ε(n))2 ∼ (n− 1)ρ2
n an the following cases are possible:

1) if nρ2
n → +∞ the noise process ε cannot be a SM, and the contribution of the {ε(n)

i }i can make

RVh(Y ) either to explode or not and ˆIV h either to tend to 0 or not (see remark 6.4);

2) if nρ2
n → c 6= 0 then the limh RVh(ε(n)) is finite, but ε cannot be a non-trivial local martingale (if

it was, we would have εt =
∫ t

0
αsdWs +

∫ t

0

∫
IR

γ(x, s)[µ(dx, ds) − dxds], for some processes α, γ but as

E[ε2
t ] = limn E[(ε(n)

t )2] = lim ρ2
n = lim1/n = 0 then α ≡ γ ≡ 0 in probability), nor {ε(n)

i }i∈IN is a local

martingale for fixed n (if it was, as supi E[(ε(n)
i )2] < ∞ it would have to be a martingale, however this is

not possible because Ei−1[ε
(n)
i ] = 0 rather than ε

(n)
i−1). In this case the noise contribution to limh RVh(Y )

and limh
ˆIV h is not negligible but finite;

3) if nρ2
n → 0, then by using the LF-CLT it turns out that, in this Gaussian setting, ε is of FV iff

nρn → c ≥ 0, but in any case the noise process gives no contribution to limh RVh(Y ) nor to limh
ˆIV h.

To verify the behavior of our test in the present framework we are interested in knowing the rate at

which ˆIV n converges. The case where ρn → ρ > 0 falls within case 1) above, while the case ρn → 0,

dealt with in the next section, can arise in any of the three cases above.

When ρn → ρ > 0, Assumption 1 is still satisfied under the hypotheses of Theorem 5.1. For instance

in the Gaussian case ε
(n)
i (P ) = N (0, ρ2

n) we have

P{|∆iε
(n)| < c

√
rh} =

√
2√
π

∫ c
√

rh
ρn
√

2

0

e−
y2

2 dy, (5)

and using the Taylor approximation of the above integral we find that P{|∆iε
(n)| < c

√
rh} ∼

√
rh

ρn
which

tends to zero like as
√

rh.

Similarly as in the previous section, we require that for any n, the r.v.s ε
(n)
i , i = 1..n are iid and

that their law has a density gn. Then also the first differences u
(n)
i = ε

(n)
i − ε

(n)
i−1 have a density fn,

and if we assume that there exists a bounded function g(x, y) continuous in the variable y such that

gn(x) = g(x, ρn) then

fn(0) =
∫

g2(x, ρn)dx →n

∫
g2(x, ρ)dx

.= f(0) > 0
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(the last strict positivity follows from the fact that limn V ar(ε(n)
i ) > 0, implying that g2(x, ρ) cannot be

null), and we show that an analogous version of Theorem 3.2 holds true in the present framework. It

follows that with Sh =
ˆIV h−nr

3
2
h

2
3 f̂n(0)

√
nr

5
4
h

√
2
5 f̂n(0)

, as soon as
√

nr
1/4
h (f(0) − f̂n(0)) → 0 we still have (3) and our

test works in the same way as in the previous section.

Note that the densities of the Gaussian laws with zero mean and variances ρ2
n, n ∈ IN, satisfy the

requirements on the functional form of gn. Further
√

nr
1/4
h (f(0) − f̂n(0)) → 0 is fulfilled for instance in

the specialized model Y = σW + ε, if we use (1).

Theorem 5.1. [CLT with changing noise] Assume that for any given n the r.v.s ε
(n)
ti

, i = 1..n, are IID

with zero mean and finite variance ρ2
n, and are independent on X. Further assume that there exists a

bounded function g(x, y), which is continuous in the variable y and Lipschitz in x in the following sense

∀x1, x2, y ∈ IR, |g(x1, y)− g(x2, y)| ≤ L η(y),

with L a constant and η a bounded function, and g is such that, for any fixed n, ε
(n)
ti

(P ) has density gn(x) =

g(x, ρn), for all i = 1..n. Then if ρn → ρ > 0, wn
.= V ar(gn(ε(n)

ti
)) =

∫
g3

n(x)dx− ( ∫
g2

n(x)dx
)2 → ` < ∞

and β > 2/3 we have

i)
E[ ˆIV h]

nr
3
2
h

P→ 2
3
E[g(ε1)] =

2
3
f(0);

ii)

NBh :=
ˆIV h − nr

3/2
h

2
3f(0)

√
n r

5
4
h

√
2
5f(0)

F0−stable→ U

where U is a random variable on an extension S ′ := (Ω′,F ′,F ′s, P ′) of S, having standard Gaussian law,

and is independent on S.

We remark that, for all n, wn > 0 and if ε
(n)
ti

(P ) = N (0, ρ2
n) then wn = (1/

√
3 − 1/2)/(2πρ2

n) and

fulfill the above requirement.

6 Local size: when ρn → 0

For conventional tests the local power is studied, where H0) keeps fixed while the alternative Hn
1 ) moves

towards the null as n → ∞, and the local power of the test is defined as the limit of the probability of

the (moving) critical region under the (moving) alternative. Here we only can move the null hypothesis,

so we assume that under Hn
0 ) the noise has variance ρn = V ar(ε(n)

1 ) such that ρn → 0 as n →∞, while

we keep fixed the alternative of the absence of the noise. We call local size the quantity

lim
n

P{|Sh| > 1.96|Hn
0 }.

The case ρn → 0 splits into two cases where the local size of our test is different. We show the com-

plete picture, in the chosen restricted framework specified below, after having made some preliminary

9



remarks.

Firstly note that when ρn → 0, Assumption 1 is never satisfied. More precisely, still in the case where

ε
(n)
i (P ) = N (0, ρ2

n), by (5) we have:

1) if
√

rh

ρn
→ ∞ then P{|∆iε| < c

√
rh} → 1, meaning that when the noise variance tends to zero but is

less than the squared threshold rh then the increment ∆iε stays substantially always below
√

rh.

2) If
√

rh

ρn
→ c 6= 0, then P{|∆iε| < c

√
rh} → ` ∈ (0, 1) and still Assumption 1 is not satisfied.

3) If
√

rh

ρn
→ 0, then P{|∆iε| < c

√
rh} ∼

√
rh

ρn
which now tends to zero but more slowly than

√
rh.

As Assumption 1 is not valid anymore, in order to find the rate of convergence of ˆIV h we cannot

directly apply Theorem 3.2. In this paper we only are interested in understanding how substantially the

size of our test changes when ρn → 0, so we specialize here our framework as in the following:

Assumption 3. X ≡ σW ; for all n, ε
(n)
i are iid, i = 1..n, and independent on W, with law N (0, ρ2

n),

ρn = hγ , γ > 0.

Secondly, note that ρn → 0 means that the densities gn of {ε(n)
i }i=1..n form a δ-sequence, because

ε
(n)
1/n

P→ 0 so gn tends a.s. to a delta function. It follows that gn(0) → +∞ and fn(0) = E[gn(ε(n)
i )] =

∫
g2

n(x)dx → +∞, which obliges us to properly reformulate the CLT for ˆIV h. We obtain what follows.

Theorem 6.1. [CLT for ˆIV h in the presence of vanishing noise] Under Assumption 3, taking β ∈
(2/3, 1), we have

a) if γ > 1/2 then
ˆIV h − IV√

2hTσ4

d→ U, (6)

b) if γ = 1/2 then
ˆIV h − (σ2 + 2)T√

2h(σ2 + 2)2T
d→ U, (7)

c) if γ ∈ (β/2, 1/2) then
ˆIV h − 2nh2γ

√
8nh4γ

d→ U, (8)

d) if γ = β/2 then, with φ2
.=

∫ 1/
√

2

−∞ y2e−
y2

2 dy/
√

2π, φ4
.=

∫ 1/
√

2

−∞ y4e−
y2

2 dy/
√

2π and ψ
.= 8φ4 − 16φ2

2 +

16φ2 − 16,
ˆIV h − 4nrh(φ2 − 1/2)√

nr2
hψ

d→ U, (9)

e) if γ ∈ (0, β/2) then
ˆIV h − nh3β/2−γ

3
√

π√
nh5β/2−γ

5
√

π

d→ U. (10)

As consequences in probability we have the following limits for ˆIV h in the listed different cases.

a) If γ > 1/2 then ˆIV h → IV, meaning that if ρn <<
√

h <
√

rh, even if the noise remains below the

threshold (we are in case 1) of the list before Assumption 3 and in case 3) of the list after (4) and then

enters within ˆIV h, since it is of FV then its impact is negligible.

10



b) If γ = 1/2 then ˆIV h → IV + 2T, i.e. if ρn ∼
√

h <<
√

rh then all the noise remains below the

threshold and its magnitude is now such that its impact is non-negligible but finite.

c) and d): if γ ∈ [β/2, 1/2) then limh
ˆIV h = +∞ : the noise variance is now higher that

√
h but still less

(or equal) than
√

rh, meaning that any ∆iε remains below the threshold but it is big and makes ˆIV h to

explode.

e) If γ ∈ (0, β/2) then limh
ˆIV h ∈ {+∞, c, 0}. Now ρn >>

√
rh, and makes many terms ∆iY to go

above the threshold and to be excluded by ˆIV h. The higher ρn is the more terms are excluded thus

making the limh
ˆIV h to decline again. In fact, since the denominator in (10) tends to zero, we have

ˆIV h ∼ nr
3/2
h /ρn = h3β/2−γ−1, which can either explode, or tend to a constant or to 0, depending on

whether γ > or = or < 3β/2− 1 respectively.

The above CLT allows us to understand the asymptotic behavior, and thus the local size, of our test

when the noise is vanishing. In practice we do not know which kind of noise is in play and thus we

implement in any case Sh as in the last term of (2).

Theorem 6.2. [Asymptotic behavior of our test when the noise is vanishing] Under Assumption 3, taking

β ∈ (2/3, 1) and f̂n(0) as in (1), we have what follows:

in the cases a), b), c), d) above, i.e. if γ ≥ β/2, then in probability Sh → −∞;

in case e), i.e. if γ ∈ (0, β/2), then in distribution Sh → U.

The local size immediately follows and is shown to depend on how ρn → 0.

Corollary 6.3. [Local size] Under Assumption 3, taking β ∈ (2/3, 1) :

if γ ≥ β/2 then for any fixed quantile qα ≥ 0 of the law of |U |, we have P{|Sh| > qα|Hn
0 } → 1;

if γ ∈ (0, β/2) then P{|Sh| > qα|Hn
0 } → α.

In the first case above the asymptotic behavior of P{|Sh| > qα|H(n)
0 } is the same as for P{|Sh| >

qα|H1}, and thus we are not able to disentangle the relevance of the noise by using our test. In fact we

have ρn ≤ √
rh, meaning that the noise is too small to be recognized: it would be judged to be negligible

by the test because |Sh| under H
(n)
0 explodes. On the contrary whenever γ < β/2, i.e. ρn >

√
rh the

local size of the test coincides with the size of the case where the noise does not vanish, meaning that it

is sufficiently big that in principle we would have to be able to recognize its relevance. The watershed

exponent of h within ρn for the two different cases is exactly β/2, the exponent within the threshold:

the noise is judged to be negligible by our test when γ ≥ β/2, which is exactly when it falls below the

threshold, as limn
√

rh/ρn ∈ (0,∞] is when P{|∆iε| < c
√

rh} <→ ` > 0.

Remark 6.4. If γ < β/2 we have
√

rh

ρn
→ 0 and the test for the relevance of the noise has the same size

as in section 4, when σε was fixed. However now the 95% confidence bands

ˆIV n ∈
(
2nr

3/2
h f̂n(0)/3− 1.96

√
2nr

5/2
h f̂n(0)/5, 2nr

3/2
h f̂n(0)/3 + 1.96

√
2nr

5/2
h f̂n(0)/5

)
,

that we use for deciding whether the noise is negligible or not, have amplitude of the order of c

√
nr

5/2
h h−γ ,

which for large n is larger than in the case of fixed σε, when the amplitude was c

√
nr

5/2
h .This can be

11



explained by the fact that a noise with vanishing variance confuses more with ∆iX than when σε > 0

keeps fixed. Note however that γ < β/2 means that ρn >>
√

rh >>
√

h, i.e. nρ2
n →∞, but the impact of

the noise on ˆIV h can either be relevant or negligible, since the probability limit of ˆIV h ∼ nr
3/2
h h−γ/(3

√
π)

can either be 0, or a positive constant, or infinite.

7 Reliability check on simulations

We check here the reliability of our proposed procedure in recognizing whether ˆIV h is a good estimate

of IV by looking at the magnitude of Sh. Through Sh we then select the optimal observation frequency

to estimate IV. Further analysis on both simulated and empirical data is conducted in [15]. Here we

conduct four different kinds of check. Our DGP is given by

Y = X + τε

where X can follow one of the three models ((12), (13) or (14)) described below, the noise is additive

and given by a process ε which is independent on X. The rvs εti are iid uniform and centered with

different possible values of the variance parameter in the different experiments: V ar(εi)
.= σ2

ε = 2× 10−7

(low level) or σ2
ε = 8 × 10−6 (medium level) or σ2

ε = 8 × 10−5 (high level). In any case σ2
ε is constant

as h varies, as assumed in [14], (p.16). We discriminate the presence or the absence of the noise in the

simulated data through the variable τ , which takes value 1 in the first case, and 0 in the second case.

In the simulation experiments either we consider f(0) = 1/
√

12σ2
ε as known and plug its value directly

into Sh or we estimate f(0) by means of the empirical variance of the n observations ∆iY , where n is

the same as in ˆIV :

f̂(0) = 1/
√

12πσ̂2
ep. (11)

Applications of the test where f(0) is estimated by the non-parametric kernel method is done in [15]. In

all the three proposed models the values of σ keep realistically around 0.4, and the threshold rh has to

be such that about all the squared variations (σti∆iW )2 are below it, so we implement our test using

rh = 0.95× h0.999, where 0.95 is about 6 times 0.42. We take different values of n and of the observation

steps h in the different experiments, then T = nh. For instance when we consider 1” observations over a

whole day with a 7 hour open market (T=0.004 years), then h = 1/(252× 7× 60× 60) and n = 25200,

while if we consider 5’ observations over a day then h = 1/(252× 7× 12) and n = 84.

We recall that we are interested in establishing whether for a given h the noise is too relevant or not

in order to rely on the fact that ˆIV h correctly estimates IV, and such a relevance is measured by the

discrepancy between the behavior of our test statistic Sh and the standard Gaussian law. Our formal

hypothesis is

H0) τ = 1

and we judge that the noise is relevant iff we have |Sh| < 1.96, meaning that we cannot rely that ˆIV h

correcly estimates IV , while we judge that the noise is negligible otherwise. In this last case we more or

less rely on ˆIV h.
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In the following, when we take τ = 1 we simulate H paths of Y , for each path we implement Sh and

compute the following empirical quantile of |Sh|

pct .=
#{|Sh| > 1.96}

H
,

which we use as a test on the distribution of |Sh|. More precisely, as the CLT we gave states an F0-stable

convergence of Sh, we operate conditionally on X, i.e. for a given h the H paths of Y are obtained by

generating one path of X and by adding to it H different paths of ε. When τ = 0 we implement |Sh| only

once.

MODEL GP: Gauss-Poisson process. Here the efficient price X has constant volatility and compound

Poisson jumps:

dX = 0.4dW + dJ, J ≡ J1t =
∑

`≤Nt

Y`, (12)

where J is a compound Poisson jump process, N is a simple Poisson process with intensity λ = 5,

∀`, Y`(P ) = N (0, 0.62), and the parameters are realistically chosen as in [1] and are expressed in annual

unit of measure.

MODEL SV-PJ: Stochastic volatility and Poisson jumps. The dynamics of σ is as in [9] and J is as

above:

dX = −σ2
t /2dt + σtdWt + dJt, d log σt = −k(log σt − θ)dt + νdW

(2)
t , dJt =

∑

`≤Nt

Y`. (13)

The σ parameters log σ0 = log(0.4), k = 0.09, θ = log(0.25), ν = 0.05, ρ = corr(Wt,W
(2)
t ) = −0.7 ∀t,

produce similar σ paths as in [9].

MODEL G-CGMY: constant volatility and CGMY jumps.

dX = 0.3815 dW + dJ, (14)

where J is a CGMY process as proposed in [5] with scale parameter on the J Levy density C = 280.11,

tail decay parameter of the density for the negative jump sizes G = 102.84, tail decay parameter for the

positive jump sizes M = 102.53 and jump activity index Y = 0.1191. The parameter values have been

estimated for MSFT asset prices in [5] (Table 2).

FIRST CHECK. We show the empirical density of the values assumed by our test statistic when

implemented on H=1000 paths of Model GP in the case τ = 1, medium σ2
ε = 8 × 10−6, using n = 1000

observations. Consistently with our common sense, we observe two radically different behaviors when h

is 20’ (left panel of Figure 1) and when h is 1” (right panel): according to the values assumed by Sh in the

first case the noise is judged to be negligible, while in the second case it is judged to be relevant. And in

fact pct = 1,MEE = mean(100( ˆIV − IV )/IV ) = 10.3434, SEE
.=

√
V ar(100( ˆIV − IV )/IV ) = 3.9709

in the first case, while pct = 0.0452,MEE = −84.5334, SEE = 2.3202, in the second one.

SECOND CHECK, Model GP. Under Model 1 we check size (τ = 1) and power (τ = 0) of our test,

for fixed T = 0.004 years, either with h =1 second (n=25200), or 5 minutes (n=84), in the four cases

of absence of noise, low, medium or high level of noise. Recall that when τ = 0 only one path of Y is

13
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Figure 1: Empirical density of the test statistic Sh under the simulated model GP plus additive iid uniform noise with

σ2
ε = 8× 10−6 and n = 1000 observations, h = 1/(252× 21) i.e. 20’ (left), h = 1/(252× 7× 60× 60) i.e. 1” (right), pct=1

(left), pct=0.045 (right).

available and the value 100 × ( ˆIV − IV )/IV is computed only once, and that f̂(0) is still as in (11).

When τ = 1 then H = 1000 paths are generated in each scenario. The produced results are as in Table

1 below.

model GP h pct MEE SEE pct MEE SEE pct MEE SEE

low noise med noise high noise

size

τ = 1

5’ 1 -16.34 5.9 0.88 30.34 17.48 0.035 -27.32 15.90

1” 1 -18.45 0.94 0.17 -84.50 0.46 0.046 -94.97 0.27

power

τ = 0

5’ 1 -9.059 0

1” 1 -9.91 0

TABLE 1. Performance of our test Sh under Model GP: τ is when the simulated data contain the noise component,

τ = 0 otherwise; pct = #{|Sh| > 1.96|X}/H; low noise means σ2
ε = 2 × 10−7, medium noise σ2

ε = 8 × 10−6, high noise

σ2
ε = 8× 10−5. As we condition on the X path, when τ = 1 then Sh is implemented on H = 1000 different simulated paths

Y = X + τε, while when τ = 0 then Sh is implemented only once.

Substantially the statistic behaves as one would expect: for instance, when the variance is low and we

sample at 20’, for the 100% of the paths of Y |Sh| assumes values above 1.96, indicating negligibility of

the noise, and in fact the mean estimation error of IV by ˆIV is not so high, about 16%; if we sample at 1”

the noise is still classified as negligible by Sh, in fact MEE is about 18%; when the noise has high variance

and we sample at 1”, for about the 95% of the samples |Sh| is below 1.96, so according to it the noise

has to be considered relevant, and in fact the mean estimation error is high (about 95%). Consistently

with our common sense, when the noise is at an intermediate level the statistic indicates that it is much

14



more relevant when sampling at UHF than at HF. In the absence of the noise things go as expected, as

according to Sh the noise is always correctly judged to be negligible.

We now change the volatility component in the simulated DGP, assuming Model SV-PJ, and repeat

the previous experiment. The following Table 2 confirms the previous results.

model SV-PJ h pct MEE SEE pct MEE SEE pct MEE SEE

low noise med noise high noise

size

τ = 1

5’ 1 -1.84 6.74 0.97 30.30 16.60 0.038 -27.70 15.17

1” 1 -18.48 0.92 0.15 -84.48 0.47 0.035 -95.00 0.25

power

τ = 0

5’ 1 -10.91 0

1” 1 -11.10 0

TABLE 2. Performance Sh under Model SV-PJ.

We finally consider Model G-CGMY. The outcomes for pct are the following.

model G-CGMY h pct MEE SEE pct MEE SEE pct MEE SEE

low noise med noise high noise

size

τ = 1

5’ 0.008 -64.45 6.12 0.043 -62.89 10.10 0.037 -68.74 10.91

1” 1 -25.19 0.90 0.25 -84.95 0.45 0.05 -95.04 0.26

power

τ = 0

5’ 0 -76.27 0

1” 1 -19.09 0

TABLE 3. Performance Sh under Model G-CGMY.

In this framework in fact ˆIV h is almost always considered unreliable by the test based on the magni-

tude of Sh, and in fact the mean estimation error MEE is high in all cases but when the noise is absent

or low and we observe every 1”. It is possible that now the many small jumps of the GCMY process

are confused by the test with the noise process increments, in fact this confusion is higher for lower

observation frequency when the jumps are not well disentangled of IV, with the result that the noise is

perceived much higher than it is.

THIRD CHECK. We now check the sensitivity of the proposed test to the noise variance σ2
ε . For this,

we simulate a GP model as in (12). Given an observation step h we vary σ2
ε and compute the resulting

pct value. Figure 2 displays the plots of pct as a function of σ2
ε in the two cases of h = 5′ (left panel)

and h = 1′′ (right panel).

Recall that the test classifies the noise as relevant iff pct ≤ 0.05, so we can see that for h = 5′ noises

with variance less than or equal to about 10−8 are negligible, while with h = 1′′ noises with variance

between 10−8.5 and 10−8 are already relevant, as one would expect, because for the same level of noise

the impact on the returns is higher at lower frequency.

FOURTH CHECK. We finally compare the response we obtain using our test with the responses given

on one hand by visualizing the signature plot (SP) of RVh and on the other hand by using the criterion
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Figure 2: Plot of pct =
#{|Sh|>1.96}

H
as a function of σ2

ε . From model GP plus additive iid uniform noise H = 1000 paths

were generated. Each path is observed at n = 1000 points in time and the observation step is either of five minutes (left

panel) or one second (right panel). Recall that the noise is judged by the test to be negligible iff pct >> 5%.

of minimizing the conditional (on σ) mean square estimation error RVh − IV (MSE). We now simulate

only one path of the DGP, with n=33600 observations with minimum discretisation step hmin = 1”,

then for each h = hmin × k, k ∈ {1, 2, 5, 10, 15, 20, 30, 60, 120, 300, 600, 900, 1200, 1800, 2400, 3000, 3600},
we aggregate the available data to reach observation step h and we jointly plot RVh and Sh as functions

of h. We also report the values of h obtained in [4], [20] and [3], which give an approximately optimal

MSE. In [4] (p.348), for a Brownian semimartingale model X (i.e. a semimartingale without jump part,

hereafter indicated by BSM) with iid additive noise, the observation step minimizing MSE is ĥ = T/n̂

where n̂ minimizes

2
T

n
(IQ + o(1)) + 4nE[ε4

1] + 4n2σ4
ε + 8IV σ2

ε + 2σ4
ε − E[ε4

1],

and IQ :=
∫ T

0
σ4

t dt. Because T/n → 0, we computed the n minimizing

2
T

n
IQ + 4nE[ε4

1] + 4n2σ4
ε + 8IV σ2

ε + 2σ4
ε − E[ε4

1],

which is unique and exactly given by nBR
.= y − a/3, where

y = 3
√
−q/2 +

√
q2/4 + p3/27 + 3

√
−q/2−

√
q2/4 + p3/27; p = −a2/3; q = 2a3/27− T × IQ/(4σ4

ε),

a = E[ε4
1]/2σ4

ε . We then set hBR = T/nBR. The authors also suggest that, when the number of used

observations is sufficiently large, then n̂ is well approximated by ñBR
.= 3

√
T × IQ/4σ4

ε , so that

h̃BR
.= 3

√
4T 2σ4

ε/IQ.

In [20] (p.1399), for a BSM model X, an analogous minimization of MSE is conducted and, in the

framework of equally spaced observations, it gives the same approximate optimal observation step as

hBR. Note that in [3] (p.361) the same observation step value as hBR is again selected for a parametric

Gaussian model X = σW where σ is estimated by maximum likelihood and MSE is minimized. The

value hBR is still an approximation of the optimal h, this time the approximation error is small for large

T. The coincidence of the selected observation steps in [3] and [4] is explained by the fact that the ML

estimator coincides with RVh/T.

16



We firstly assume Model SV-PJ and uniform noise. Figure 3 visualizes a comparison of the different

answers given by the different four criteria Sh, SP, hBR, h̃BR within 4 different scenarios. The red

squares with a red cross inside and connected by a red line represent the SP of RVh (RVh without

further specification means RVh(Y ), while later we use RVh(X) to indicate the realized variance of the

efficient process X) as h varies on the horizontal axis. The step h is expressed in seconds and the x-axis

reports ln h. In order to be able to clearly read the figure, on the vertical axis we reported log values

such as log(RVh), log( ˆIV h) and so on. In the top left panel no jumps occurred and the noise level is

medium with σ2
ε = 8× 10−6. According to the plotted SP, as the minimal value is obtained with h ≈ e8

(corresponding to about 50’), one would decide not to use observations with step below 50’ in order to

consider RVh as a reliable estimate of IV. However note that, in this case, with 50’ observations, RVh does

not approximate IV (pink continuous line) nicely. We also reported the unobservable log(RVh(X)) (red

crosses), log( ˆIV h(X)) (blue circles) and the log of the 95% confidence band (pink dotted lines) indicating

when ˆIV h(X) is an acceptable estimate of IV. Such confidence band is computed on the basis of the CLT
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Figure 3: Optimal choices of h to estimate IV, using the different criteria of Sh, SP, hBR, h̃BR, under model SV-PJ.

The noise is additive iid uniform, n = 33600, T = 0.0053, rh = h0.999. The figures in the top row are characterized by

σ2
ε = 8× 10−6 (medium level of noise), while in the second row we have σ2

ε = 2× 10−7 (low level of noise). The figures in

the left column are characterized by the fact that along the simulated path of Y no jumps occurred, while to generate the

figures of the right column we conditioned to the occurrence of one jump. TRV stands for Threshold Realized Variance

and coincides with ˆIV h.

for ˆIV h(X) given in [16]. We see that in the absence of the jumps and of the noise, RVh(X) and ˆIV h(X)

in fact coincide, but they give very accurate estimates of IV only for values of h less than or equal to e7

seconds (about 18’), while for larger values of h they fall outside the confidence interval, meaning that

h ≈ e8 is too large.

On the other hand, the minimal MSE criterion (hBR and h̃BR, pink points on the x-axis) would

suggest that on average it is safe to use RVh with hBR ≈ e4.7 (about 2’) or h̃BR = e8.2 (61’). However,

as we can directly check, for the realized path of Y we are analyzing, the estimation error RVh − IV is

not really acceptable at anyone of the two observation frequencies, as in both cases RVh is outside the

pink dotted confidence range (in this framework of no jumps PlimhRVh = Plimh
ˆIV h and the same CLT

holds for both the estimators).

On the contrary, if we use the threshold estimator of IV, we can take an even lower step (h ≈ e3, i.e.

about 33”) and still safely to approximate IV. In fact the blue stars surrounded by blue circles represent
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the values assumed by log( ˆIV h). The green dashed lines represent the log of the 95% confidence interval

for Sh behaving like a standard Gaussian rv, thus indicating relevance of the noise. A green triangle

on a given value h on the x-axis indicates that for that observation step our test accepts H0) (meaning

relevance of the noise). As soon as log( ˆIV h) enters the green confidence interval, we are aware that

we cannot rely anymore on our estimator because the noise becomes too important. Note that, as h

decreases, for a while ˆIV h follows the shape of RVh, but then the threshold begins to truncate and ˆIV h

is smoothed. Note that with h = e2.2 the ˆIV h estimation error would not be that different than with

h = e3 (in terms of the distance from the pink line), however the test realizes that the noise is too relevant

if h = e2.2 and it is safer not to rely on the response of ˆIV h. On the other hand, with e.g. h = e5.8 the

estimation error of ˆIV h is higher than with e.g. h = e7.5, however ˆIV h − IV is of the magnitude order

of about 6× 10−4 in both cases, which is considered acceptable by the test.

Since in this path no jumps occurred, QV equals IV, and we see that log(RVh) and log( ˆIV h) nearly

coincide for h ≥ e6.4 (10’). However, if some jumps occur, as in the top right panel of Figure 3, we know

that it is forbidden to use RVh to estimate IV, because RVh tends to QV = IV +
∑

t≤T (∆Jt)2. So in

this second panel it is even more evident the problem that the optimal h values for the SP and for the

minimum MSE criterions is not necessarily such that the estimation error of IV is in fact small.

On the other hand the bottom left panel of Figure 3 shows the comparison among the illustrated

optimal frequency selection criterions when the noise variance is decreased to σ2
ε = 2× 10−7. In this case

it turns out that hBR ≈ e−2.6 (which falls outside the x-axis range, and corresponds to about 0.07”),

indicating that the noise is so low that we can use all the available 1” data and rely on RVh to estimate

IV, which however is not the case from our picture. The threshold based test response on the optimal

frequency selection is similar, because no green triangles appear on the x-axis, indicating us to neglect

the noise even when using 1” observations if adopting ˆIV h. In fact our picture clearly suggests that, with

data at UHF, we have to estimate IV by ˆIV h and not by RVh. This is even more so when X undergoes

some jumps (bottom right panel).

We now repeat the comparison on two simulated paths of Model G-CGMY added with with uniform

noises. We have similar pictures (Figure 4) and conclusions as before, for the noise variance levels of

σ2
ε = 8×10−6 (left panel) and σ2

ε = 2×10−7 (right panel). Note that in this case QV always differs from

IV , because J has infinite activity of jump and on [0, T ] it realizes countably many very small jumps.

8 Appendix: proofs of the results

Lemma 8.1. Under Assumption 2 we have, for all n,

P{|∆iX| > √
rh} ≤ ch1−αβ

2 , P{|∆iJ̃2| > √
rh} ≤ ch1−αβ

2 ,

uniformly in i = 1..n.

Proof. Exactly as in Lemma 8.2 iii) in [7].

We remark that the càdlàg property of the paths of a, σ,X entails that the three processes are locally
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Figure 4: Optimal choices of h to estimate IV, using the different criteria of Sh, SP, hBR, h̃BR, under Model G-CGMY.

The noise is additive iid uniform, with σ2
ε = 8× 10−6 in the left panel and σ2

ε = 2× 10−7 in the right one. n = 33600, T

= 0.0053, rh = h0.999.

bounded. By a localization procedure similar to the one in [10] (section 5.4, p.549), we can assume wlog

that they are bounded (as (ω, t) vary within Ω× [0, T ]).

Proof of Theorem 3.1. We have what follows.

0 ≤
n∑

i=1

(∆iY )2I{(∆iY )2≤rh} ≤ 2
n∑

i=1

[(∆iX0)2 + (∆iJ + ∆iε)2][I{∆iN 6=0,(∆iY )2≤rh} + I{∆iN=0,(∆iY )2≤rh}]

note that for sufficiently small h on (∆iY )2 ≤ rh we have |∆iJ + ∆iε| ≤ 2
√

rh, since
√

rh ≥ |∆iY | ≥
|∆iJ + ∆iε| − |∆iX0| implies that |∆iJ + ∆iε| ≤ √

rh + |∆iX0| ≤ 2
√

rh by (14) in [16], therefore

n∑

i=1

[(∆iX0)2 +(∆iJ +∆iε)2]I{∆iN 6=0,(∆iY )2≤rh} ≤
n∑

i=1

[(∆iX0)2 +(∆iJ +∆iε)2][I{∆iN 6=0,|∆iJ+∆iε|≤2
√

rh}

≤ c
(
h ln

1
h

+ rh

)
NT

a.s.→ 0.

On the other hand
n∑

i=1

(∆iJ + ∆iε)2I{∆iN=0,(∆iY )2≤rh} ≤
n∑

i=1

(∆iJ + ∆iε)2I{∆iN=0,(∆iY )2≤rh,|∆iJ+∆iε|≤2
√

rh}

and this last term can be split in

I1 + I2 :=
n∑

i=1

(∆iJ + ∆iε)2I{∆iN=0,(∆iY )2≤rh,|∆iJ+∆iε|≤2
√

rh,|∆iJ̃2|≤√rh}+

n∑

i=1

(∆iJ + ∆iε)2I{∆iN=0,(∆iY )2≤rh,|∆iJ+∆iε|≤2
√

rh,|∆iJ̃2|>√rh}.

By assumption 2 we have, uniformly on i, P{|∆iJ̃2| > √
rh} = OP (h1−αβ

2 ), so in probability

I2 = OP (rhh−
αβ
2 ) = OP (hβ(1−α

2 )) → 0.
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As for I1, on {∆iN = 0, |∆iJ +∆iε| ≤ 2
√

rh, |∆iJ̃2| ≤ √
rh} we have 2

√
rh ≥ |∆iJ +∆iε| ≥ |∆iε|−|∆iJ̃2|

then |∆iε| ≤ 2
√

rh + |∆iJ̃2| ≤ 3
√

rh and by assumption 1 we reach that

E[I1] ≤ crhn
√

rh = h
3
2 β−1 → 0.

Finally we consider
∑n

i=1(∆iX0)2I{∆iN=0,(∆iY )2≤rh} and we write it as

I3 + I4 :=
n∑

i=1

(∆iX0)2
[
I{∆iN=0,(∆iY )2≤rh} − I{(∆iX)2≤Arh}

]
+

n∑

i=1

(∆iX0)2I{(∆iX)2≤Arh},

with A > 1 any constant. We have

I3 =
n∑

i=1

(∆iX0)2
[
I{∆iN=0,(∆iY )2≤rh,(∆iX)2>Arh} − I{(∆iX)2≤Arh}∩({∆iN 6=0}∪{(∆iY )2>rh})

]
:

we now show that on {∆iN = 0, (∆iY )2 ≤ rh, (∆iX)2 > Arh} we have (∆iJ̃2)2 > crh, for a suitable

constant c. In fact, given any constant δ > 0, as before, a.s. for sufficiently small h if (∆iY )2 ≤ rh then

|∆iJ̃2 + ∆iε| ≤ (1 + δ)
√

rh; (15)

moreover if (∆iX)2 > Arh and (∆iY )2 ≤ rh then |∆iε| > (
√

A− 1)
√

rh, since

|∆iε| = |∆iY −∆iX| > |∆iX| − |∆iY | ≥ √
rh −√rh = (

√−1)
√

rh. (16)

putting together (15) and (16) we reach

|∆iJ̃2| = |∆iJ̃2 + ∆iε−∆iε| > |∆iε| − |∆iJ̃2 + ∆iε| ≥ (
√−1− 1− δ)

√
rh

and
√

A− 2− δ > 0 as soon as we choose A > (2 + δ)2, as we wanted. Now a.s., for sufficiently small h,

n∑

i=1

(∆iX0)2
[
I{∆iN=0,(∆iY )2≤rh,(∆iX)2>Arh} ≤

n∑

i=1

(∆iX0)2I{|∆iJ̃2|>c
√

rh} ≤ h ln
1
h

h−
αβ
2 → 0

and the almost sure limit of I3 + I4 is the same as

−
n∑

i=1

(∆iX0)2I{(∆iX)2≤Arh}∩
(
{∆iN 6=0}∪{(∆iY )2>rh}

) +
n∑

i=1

(∆iX0)2I{(∆iX)2≤Arh}.

Note that a.s., for sufficiently small h,
∑n

i=1(∆iX0)2I{(∆iX)2≤Arh}∩{∆iN 6=0} ≤ h ln 1
hNT is negligible, so

we are left with
n∑

i=1

(∆iX0)2
[− I{(∆iX)2≤Arh}∩{(∆iY )2>rh}+ I{(∆iX)2≤Arh}

]
=

n∑

i=1

(∆iX0)2I{(∆iX)2≤Arh,(∆iY )2≤rh}. (17)

However on {(∆iX)2 ≤ Arh, (∆iY )2 ≤ rh} we have |∆iε| = |∆iY − ∆iX| ≤ |∆iY | + |∆iX| ≤ √
rh +

√
Arh, so that almost surely (17) is bounded by h ln 1

h

∑n
i=1 I{|∆iε|≤(

√
A+1)

√
rh}, whose expectation is

O(nh ln 1
h

√
rh) → 0.

Lemma 8.2. Under the assumptions of theorem 3.2, for any even integer q > 0 we have what follows.

1) For fixed ω, for all n for all i = 1..n, define the r.v.

Hq
i (r) .=

∫ √
r

−√r

|u|qg(u−∆iX + εi−1)du.
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It holds that for fixed ω, for all n for all i = 1..n ∃ ξi = ξn
i (ω) ∈ (0, r) :

Hq
i (r) =

r(q+1)/2

q + 1
[
g(

√
ξi −∆iX + εi−1) + g(−

√
ξi −∆iX + εi−1)

]
. (18)

2) ∀n, ∀i
Ei−1[(∆iY?)q] = Ei−1[H

q
i (rh)]

=
r
(q+1)/2
h

q + 1
Ei−1

[
g(

√
ξi −∆iX + εi−1) + g(−

√
ξi −∆iX + εi−1)

]
.

3) 1
n

∑n
i=1 Ei−1[g(s

√
ξi −∆iX + εi−1)]

L1

→ E[g(ε1)] for both cases s = +1, and s = −1.

Proof. 1) Define G(q)(r) := r
q+1
2 and note that Gq(0) = H

(q)
i (0) = 0. Using the Cauchy theorem, a.s. for

all i there exist numbers ξi ∈]0, r[ such that

H
(q)
i (r) =

(H(q)
i )′(ξi)

(G(q))′(ξi)
G(q)(r) =

g(
√

ξi −∆iX + εi−1) + g(−√ξi −∆iX + εi−1)
q + 1

r
q+1
2 . (19)

2) For fixed (h, i) we have Ei−1[(∆iY?)q] = Ei−1

[
(∆iX + ∆iε)qI{|∆iX+∆iε|≤√rh}

]
, and by the indepen-

dence of εi on (εi−1, X) and since q is even the above term equals

Ei−1

[ ∫

IR

(∆iX + z − εi−1)qI{|∆iX+z−εi−1|≤√rh}g(z)dz
]

=

Ei−1

[ ∫ √
rh

−√rh

uqg(u−∆iX + εi−1)du
]

= Ei−1

[
H

(q)
i (rh)

]
,

having changed variable as u = ∆iX + z− εi−1. Now for fixed (i, h), for any fixed ω we have equality [?],

so for fixed (i, h) the two terms in [?] are a.s. equal, therefore their expectations Ei−1 coincide a.s., and

the thesis follows.

3) Firstly note that by the law of large numbers 1
n

∑n
i=1 Ei−1[g(εi−1)] = 1

n

∑n
i=1 g(εi−1)

L2

→ E[g(ε1)]. Sec-

ondly we show that 1
n

∑n
i=1 Ei−1[g(s

√
ξi−∆iX+εi−1)] behaves asymptotically in L1 as 1

n

∑n
i=1 Ei−1[g(εi−1)].

In fact by the Lipschitz property of g, denoting with L its Lipschitz constant,

E

[∣∣∣∣∣
1
n

n∑

i=1

Ei−1[g(s
√

ξi −∆iX + εi−1)− g(εi−1)]

∣∣∣∣∣

]
≤ L

n

n∑

i=1

E[|s
√

ξi −∆iX|]. (20)

Because |s√ξi| ≤ √
rh and we assumed X bounded wlog, we have, for all i, for small h, E[|∆iX|] ≤

√
h <

√
rh and the last display above is dominated by c(E[|s√ξi|] + E[|∆iX|]) ≤ c

√
rh → 0.

Proof of theorem 3.2.

i) We have

E[ ˆIV h] = E[
n∑

i=1

(∆iY?)2] = E
[ ∑

i

Ei−1[(∆iY?)2]
]

by Lemma 8.2 part 2) the last expectation equals

r
3/2
h

3
E

[ n∑

i=1

Ei−1[g(
√

ξi −∆iX + εi−1) + g(−
√

ξi −∆iX + εi−1)]
]

=

nr
3/2
h

1
3
E

[ 1
n

∑

i

Ei−1[g(
√

ξi −∆iX + εi−1) + g(−
√

ξi −∆iX + εi−1)]
]
,
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and the thesis follows from Lemma 8.2 part 3).

In order to prove ii), we apply a classical theorem of convergence for sums of rvs belonging to a

triangular array ([11], Lemma 4.3) to show the convergence in law of the normalized bias NBh. We then

refine the result to an F0−stable convergence. Recall that h = T/n and define

φi = φn
i

.=
(∆iY?)2 − r

3/2
h

2
3E[g(ε1)]√

nr
5/2
h

2
5E[g(ε1)]

and note that φi ∈ Fi. We are going to verify that

(a)
[t/h]∑

i=1

Ei−1[φi]
P→ 0 (b)

[t/h]∑

i=1

Ei−1[φ2
i ]− E2

i−1[φi]
L1

→ CT , (c)
[t/h]∑

i=1

Ei−1[φ4
i ]

P→ 0,

with C a deterministic increasing process with continuous paths. Such conditions imply the convergence

in law of processes {∑[t/h]
i=1 φi, t ≥ 0} to a Gaussian process B with continuous paths, centered, with

independent increments and such that ∀t ≥ 0, E[B2
t ] = Ct.

As for (a),
[t/h]∑

i=1

Ei−1[φi] =
[t/h]∑

i=1

(Ei−1[φi]± 2r
3
2
h

3
Ei−1[g(εi−1)]

√
nr

5
4
h

√
2
5E[g(ε1)]

) =

r
3
2
h

3

[t/h]∑

i=1

Ei−1

[
g(
√

ξi −∆iX + εi−1) + g(−√ξi −∆iX + εi−1)− 2g(εi−1)
]

√
nr

5
4
h

√
2
5E[g(ε1)]

+ (21)

r
3
2
h

3

[t/h]∑

i=1

2Ei−1[g(εi−1)]− 2E[g(ε1)]
√

nr
5
4
h

√
2
5E[g(ε1)]

.

Using the Lipschitz property of g, the first term above has absolute value bounded by

c
r

1
4
h√
n

[t/h]∑

i=1

Ei−1

[
|g(

√
ξi−∆iX+εi−1)+g(−

√
ξi−∆iX+εi−1)−2g(εi−1)|

]
≤ c

r
1
4
h√
n

L

[t/h]∑

i=1

Ei−1

[
|
√

ξi|+|∆iX|
]
.

As argued for (20), Ei−1

[
|√ξi|+ |∆iX|

]
≤ √

rh, further for t ≤ T we have [t/h] ≤ n, so the above display

is dominated by

cr
1
4
h

√
n
√

rh = h
3
4 β− 1

2

which tends to zero by the assumption β > 2/3. As for the second term in (21), it coincides with

c
r

1
4
h√
n

[ [t/h]∑

i=1

g(εi−1)−
[

t

h

]
E[g(ε1)]

]

which, by the central limit theorem for a sequence of iid rvs with finite mean and variance, behaves

asymptotically as r
1/4
h → 0.

As for condition (b), using Lemma 8.2 we have

[t/h]∑

i=1

E2
i−1[φi] =

∑[t/h]
i=1 E2

i−1

[
(∆iY?)2 − r

3/2
h

2
3E[g(ε1)]

]

nr
5
2
h

2
5E[g(ε1)]

≤
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cr3
h

∑[t/h]
i=1 E2

i−1

[
g(
√

ξi −∆iX + εi−1) + g(−√ξi −∆iX + εi−1)
]

nr
5
2
h

+ cr3
h

[
t

h

]
E2

[
g(ε1)]

nr
5
2
h

:

the last term has the same asymptotic behavior as [t/h]r3
h/(nr

5/2
h ) ∼ r

1/2
h → 0, while the first term of the

rhs above is dominated by

c
r
1/2
h

n

[t/h]∑

i=1

Ei−1[g2(
√

ξi −∆iX + εi−1) + g2(−
√

ξi −∆iX + εi−1)].

By the boundedness of g this in turn is dominated by cr
1/2
h → 0. We now compute

[t/h]∑

i=1

Ei−1[φ2
i ] =

[t/h]∑

i=1

Ei−1

[
(∆iY?)4

nr
5
2
h

2
5E[g(ε1)]

]
− r

3
2
h

4
3
E[g(ε1)]

[t/h]∑

i=1

Ei−1

[
(∆iY?)2

]

nr
5
2
h

2
5E[g(ε1)]

+
[

t

h

]
r3
h

4
9

E2[g(ε1)]

nr
5
2
h

2
5E[g(ε1)]

.

By Lemma 8.2 part 2) and the analogous result as in part 3) with [t/h] in place of n, the first term

tends to t/T in probability and the second and the third terms above have both the same asymptotic

behavior as r
1/2
h → 0. We can conclude that condition (b) holds with Ct = t/T, so that the limit process

B = Z/
√

T has the same law of a standard Brownian motion Zt divided by
√

T .

We now check condition (c). We have

[t/h]∑

i=1

Ei−1[φ4
i ] ≤

c

n2r5
h

[t/h]∑

i=1

Ei−1[
∣∣∣(∆iY?)2 − r

3/2
h

2
3
E[g(ε1)]

∣∣∣
4

] ≤ c
∑[t/h]

i=1 Ei−1[(∆iY?)8]
n2r5

h

+
c

n2r5
h

nr6
h.

The last term is of the same order as rh/n → 0, while, using again Lemma 8.2, parts 2) and 3), the first

term of the rhs above is dominated by

c
r
9/2
h

nr5
h

[t/h]
n

∑[t/h]
i=1 Ei−1[g(

√
ξi −∆iX + εi−1) + g(−√ξi −∆iX + εi−1)]

[t/h]
∼ 1

n
√

rh
→ 0.

We now come to the F0-stable convergence of
∑n

i=1 φi. By Proposition VIII.5.33 in [13], because
∑n

i=1 φi converges in law, then it is tight, it is thus sufficient to show that for all A ∈ F0 and all bounded

continuous f the sequence E[IAf(
∑n

i=1 φi)] converges. In fact

E[IAf(
n∑

i=1

φi)] = E
[
E0

[
IAf(

n∑

i=1

φi)
]]

= E
[
IAE0

[
f(

n∑

i=1

φi)
]]

.

By the convergence in law of
∑n

i=1 φi we have that E0

[
f(

∑n
i=1 φi)

] → ∫
f(x)φ(x)dx, where φ is the

density of BT = ZT /
√

T , which is standard Gaussian, and by the dominated convergence theorem, the

last term in the display above converges to P (A)
∫

f(x)φ(x)dx, which concludes the proof of the stated

stable convergence.

Proof of results i) and ii) in the statement of Theorem 3.2 when the noise has uniform

law.

We are now assuming that process ε is independent on X, εi are iid with uniform law, β > 2/3. We

begin by checking the validity of Lemma 8.2. In this framework we have g(x) = C−1I[−C/2,C/2](x),

for some fixed constants C, thus for fixed h, ω, i, H
(q)
i (r) = C−1

∫√r

−√r
uqI|u−∆iX+εi−1≤C/2du is not
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differentiable at the points r = ∆iX − εi−1−C/2,∆iX − εi−1 + C/2. We can apply the Cauchy theorem

as in the proof of part 1) of the Lemma only when (−√r,
√

r) ⊂ (∆iX − εi−1 −C/2, ∆iX − εi−1 + C/2)

(or equivalently when
√

r < C/2− |∆iX − εi−1|), and the following results will be sufficient to prove the

CLT of Theorem 3.2:

1’) for fixed ω, n, i, for r < C/2− |∆iX − εi−1| then ∃ ξi = ξn
i (ω) ∈ (0, r) such that (18) holds true

2’) for any fixed (n, i)

Ei−1[(∆iY?)qI√rh<C/2−|∆iX−εi−1|] = Ei−1[H
q
i (rh)I√rh<C/2−|∆iX−εi−1|]

=
r
(q+1)/2
h

q + 1
Ei−1

[
[g(

√
ξi −∆iX + εi−1) + g(−

√
ξi −∆iX + εi−1)]I√rh<C/2−|∆iX−εi−1|

]
.

3’) 1
n

∑n
i=1 Ei−1[g(s

√
ξi −∆iX + εi−1)]

L1

→ E[g(ε1)] for both cases s = +1, and s = −1.

Proof. Parts 1’), 2’) are proved analogously as for Lemma 8.2. As for 3’) we only have to show that

1
n

n∑

i=1

Ei−1[g(s
√

ξi −∆iX + εi−1)− g(εi−1)]
L1

→ 0.

Using the expression for g(x) and noting that with probability 1 we have εi−1 ∈ (−C/2, C/2), the rhs

term of the last expression equals

−C−1

n

n∑

i=1

Ei−1[I{εi−1∈(−C/2,C/2),|εi−1−∆iX+s
√

ξi|>C/2}]

which has absolute value

1
nC

n∑

i=1

(
Pi−1{εi−1 > C/2 + ∆iX − s

√
ξi}+ Pi−1{εi−1 < −C/2 + ∆iX − s

√
ξi}

)

≤ 1
nC

n∑

i=1

(
Pi−1{εi−1 > C/2 + ∆iX −√rh}+ Pi−1{εi−1 < −C/2 + ∆iX +

√
rh}

)
.

Thus

E
∣∣∣ 1
n

n∑

i=1

Ei−1[g(s
√

ξi −∆iX + εi−1)− g(εi−1)]
∣∣∣

≤ 1
nC

n∑

i=1

(
P{εi−1 > C/2 + ∆iX −√rh}+ P{εi−1 < −C/2 + ∆iX +

√
rh}

)

=
1

nC

n∑

i=1

(
E[P{εi−1 > C/2 + ∆iX −√rh}|∆iX] + E[P{εi−1 < −C/2 + ∆iX +

√
rh|∆iX}]

)
.

Noting that if ∆iX − √rh > 0 the first term is 0 and if ∆iX +
√

rh > 0 the second one is 0, the last

display equals

1
nC

n∑

i=1

(
E[

∫ C/2

C/2+∆iX−√rh

1dz I∆iX−√rh<0] + E[
∫ −C/2+∆iX+

√
rh

−C/2

1dz I∆iX+
√

rh>0]
)

≤ c

n

n∑

i=1

E[
√

rh + |∆iX|] ≤ c sup
i

(E[|∆iX|] +
√

rh) → 0.
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We now prove the result i) and ii) of Theorem 3.2 when εi are uniform.

For i), we have

E[ ˆIV ] = E
[∑

i Ei−1[(∆iY?)2 I{(−√rh,
√

rh)⊂(∆iX−εi−1−C/2,∆iX−εi−1+C/2)}]
]
+

E
[ ∑

i Ei−1[(∆iY?)2 I{(−√rh,
√

rh)⊂(∆iX−εi−1−C/2,∆iX−εi−1+C/2)}c ]
]
.

(22)

Firstly note that

P{−√rh > ∆iX − εi−1 − C/2} = P{√rh < −∆iX + εi−1 + C/2, ∆iX − εi−1 > 0}+

P{√rh < |∆iX − εi−1|+ C/2,∆iX − εi−1 < 0} :

for small h, for any i the last term equals

P{∆iX−εi−1 < 0} = E[P{∆iX < εi−1|∆iX}] = C−1E[
∫ C/2

∆iX

1dz] = C−1E[C/2−∆iX] = 1/2−E[∆iX]/(2C),

and the first term equals

P{∆iX > εi−1 >
√

rh − C/2 + ∆iX} = C−1E[
∫ ∆iX

√
rh−C/2+∆iX

1dz] = C−1(C/2−√rh) = 1/2−√rh/C,

thus in (22) the second term is dominated by

nrh sup
i

P{−√rh < ∆iX − εi−1 − C/2} = nrh sup
i

E[∆iX]/(2C) + cnr
3/2
h → 0,

as β > 2/3 and supi E[|DX|] ≤ c
√

h.

On the other hand, to the first term on the rhs of (22) we can apply result 2’) above, and obtain

nr
3/2
h

1
3
E

[ 1
n

∑

i

Ei−1[g(
√

ξi −∆iX + εi−1) + g(−
√

ξi −∆iX + εi−1)
]
−

nr
3/2
h

1
3
E

[ 1
n

∑

i

Ei−1[g(
√

ξi−∆iX+εi−1)+g(−
√

ξi−∆iX+εi−1)]I{(−√rh,
√

rh)⊂(∆iX−εi−1−C/2,∆iX−εi−1+C/2)}c

]
.

By the boundedness of g and the fact that nr
3/2
h → 0, the second term above is negligible and by result

3’) we reach our thesis.

We now prove ii). We can proceed almost in the same way as in the previous proof of ii) conducted

under the assumption that g was Lipschitz. It is sufficient to give an alternative treatment of the first

term in (21), the only point where we used the Lipshitz property of g in the previous proof. We need to

deal with two terms of kind

c
r
1/4
h√
n

[t/h]∑

i=1

Ei−1

[
|g(s

√
ξi −∆iX + εi−1)− g(εi−1)|

]
.

Using the above computations, the last term is given by

c
r
1/4
h√
n

[t/h]∑

i=1

Ei−1[I{εi−1∈(−C/2,C/2),|εi−1−∆iX+s
√

ξi|>C/2}] ≤ cr
1/4
h

√
n sup

i
(E[|∆iX|] +

√
rh) ≤ cr

5/4
h

√
n → 0,
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as for small h,
√

h <
√

rh.

Proof of Theorem 5.1 [CLT with changing noise] Firstly note that the analogous of Lemma 8.2

holds true with ε
(n)
i and ξ

(n)
i in place of εi and ξi, and, at point 3), with f(0) in place of E[g(ε1)]. In

fact points 1) and 2) are obtained exactly as for Lemma 8.2, while for point 3) we consider the triangular

array
∑n

i=1 φi,n, with φi,n = gn(ε(n)
i )/n. Since

∑
i Ei−1[φ

(n)
i ] → f(0) and

∑
i Ei−1[(φ

(n)
i )2] → 0, we have

∑n
i=1 φi,n

ucp→ f(0). We then write Ln
.= Lη(ρn) and remark that Ln, n ∈ IN are bounded, thus exactly

the same reasoning as in Lemma 8.2 can be applied here.

Secondly, the proof of i) of Theorem 5.1 follows exactly the same lines as for Theorem 3.2.

Third, remark that the speed of convergence of
∑n

i=1 φi,n is
√

wn/n. In fact
∑

i Ei−1[(φ
(n)
i )3] =

∫
g4

n(x)dx/n2 → 0 and thus by the Lindeberg-Feller CLT the speed is
√

nV ar(φ(n)
i ) =

√
wn/n. It follows

that, while following the proof of the convergence to zero of the second term in (21), we still obtain
r

1
4
h√
n

[∑[t/h]
i=1 gn(ε(n)

i−1)−
[

t
h

]
f(0)]

]
≤∼ r

1/4
h

√
wn → 0.

This said, also the proof of ii) follows the one for ii) given in Theorem 3.2.

Proof of Theorem 6.1 [CLT for ˆIV h in the presence of vanishing noise]. We prove a CLT

separately for the sum
∑

i=2k+1 I{(∆iY )2≤rh} of the terms with odd index and the sum
∑

i=2k I{(∆iY )2≤rh}

of the terms with even index of ˆIV h. As the two sums are independent, a CLT holds for the global

sum with limit law being the sum of the two separate limits laws. In order to compute the mean and

variance of each summand we need to evaluate E[(∆iY )2I{(∆iY )2≤rh}] and E[(∆iY )4I{(∆iY )2≤rh}]. Under

Assumption 3 we have

E[(∆iY )2I{(∆iY )2≤rh}] =
2√

2πvh

∫ hβ/2

0

x2e
− x2

2vh dx =

√
2
π

vh

∫ hβ/2
√

vh

0

y2e−
y2

2 dy,

where vh = σ2h + 2ρ2
n and where the above equality is obtained by changing variable y = x/

√
vh, and

E[(∆iY )4I{(∆iY )2≤rh}] =

√
2
π

v2
h

∫ hβ/2
√

vh

0

y4e−
y2

2 dy.

According to the choice of γ we have 5 following different cases, where when we indicate asymptotic

equivalence we also account for the correct constants. In any case the Lindeberg condition turns out to

be verified.

a) If γ > 1/2 then vh ∼ h, hβ/2√
vh
→ +∞, E[(∆iY )2I{(∆iY )2≤rh}] ∼ σ2h, E[(∆iY )4I{(∆iY )2≤rh}] ∼ 3σ4h2

and V ar((∆iY )2I{(∆iY )2≤rh}) ∼ 2σ2h2, so (6) follows. As a consequence, since the denominator tends

to zero, ˆIV h → IV.

b) If γ = 1/2 then vh = (σ2+2)h, hβ/2√
vh
→ +∞, E[(∆iY )2I{(∆iY )2≤rh}] ∼ (σ2+2)h, E[(∆iY )4I{(∆iY )2≤rh}] ∼

3(σ2 + 2)2h2, V ar((∆iY )2I{(∆iY )2≤rh}) ∼ 3(σ2 + 2)2h2 and (7) follows, entailing that ˆIV h → IV + 2T.

c) If γ ∈ (β/2, 1/2) then vh ∼ 2ρ2
n, hβ/2√

vh
→ ` ∈ {+∞, c}, E[(∆iY )2I{(∆iY )2≤rh}] ∼ 2ρ2

n is slower than

h, E[(∆iY )4I{(∆iY )2≤rh}] ∼ 12h4γ , V ar((∆iY )2I{(∆iY )2≤rh}) ∼ 8h4γ so (8) holds true, and implies that

limh
ˆIV h = +∞.

d) If γ = β/2 then vh ∼ 2ρ2
n, hβ/2√

vh
→ 1/

√
2, E[(∆iY )2I{(∆iY )2≤rh}] ∼ 4(φ2−1/2)h2γ , E[(∆iY )4I{(∆iY )2≤rh}] ∼

8r2
h(φ4 − 3/2), V ar((∆iY )2I{(∆iY )2≤rh}) ∼ r2

hψ, and (9) follows. Therefore we reach that ˆIV h →∞.

e) If γ < β/2 then vh ∼ 2ρ2
n, hβ/2√

vh
→ 0, and F (h) .=

∫ hβ/2
√

vh

0 y2e−
y2

2 dy → 0. By applying the Cauchy theorem
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to F (h)/G(h) with G(h) = h3(β/2−γ)

6
√

2
we obtain that E[(∆iY )2I{(∆iY )2≤rh}] ∼ h

3
2 β−γ/(3

√
π). Further still

by using Cauchy theorem with F (h) =
∫ hβ/2−γ/

√
2

0
y4e−

y2

2 dy and G(h) = (β/2−γ)h5(β/2−γ)/(20
√

2(β/2−
γ)), we have E[(∆iY )4I{(∆iY )2≤rh}] ∼ h(5β/2−γ)/(5

√
π) and V ar((∆iY )2I{(∆iY )2≤rh}) ∼ hβ/2−γ , so that

(10) is proved. Since the denominator tends to 0, we obtain that ˆIV h ∼ nh3β/2−γ/(3
√

π), which in fact

can either explode, or tend to to a constant or to 0, depending on whether r
3/2
h n/ρn = h3β/2−γ−1 → +∞

or to a constant or to 0, respectively.

Proof of Theorem 6.2 [Asymptotic behavior of our test when the noise is vanishing] By

using the Lindeberg-Feller CLT we find that, with the correct constant,

f̂n(0) ∼ 1√
2π(σ2h + 2ρ2

n)
∼





h−1/2√
2πσ2 if γ ≥ 1/2

h−γ√
4π

if γ < 1/2.

(23)

Then the statistic we consider behaves, with the right constants, as

Sh ∼
ˆIV h −

√
2nh3β/2

3
√

π(σ2h+2ρ2
n)

√
ch√ √

2nh5β/2

5
√

π(σ2h+2ρ2
n)

Now putting together Theorem 6.1 and (23) we have what follows.

a) if γ > 1/2 we write Sh as

Sh =
ˆIV h − IV√

ch

√
ch√

c′nh5β/2−1/2
+

IV − c′′nh3β/2−1/2

√
c′nh5β/2−1/2

.

Since the first factor is asymptotically Gaussian, the second one tends to 0 and the third term to −∞
the result is immediate.

b) If γ = 1/2 then, analogously as before,

Sh ∼
ˆIV h − ch3(β−1)/2

c′h(5β−3)/4
=

ˆIV h − (σ2 + 2)T
c′′
√

h

c′′
√

h

c′h(5β−3)/4
+

(σ2 + 2)T − ch3(β−1)/2

c′h(5β−3)/4
→ −∞.

c) If γ ∈ (β/2, 1/2) then similarly

Sh ∼
ˆIV h − 2nh2γ

√
8nh4γ

√
8nh4γ

√
cnh5β/2−γ

+
2nh2γ − cnh3β/2−γ

√
c′nh5β/2−γ

→ −∞.

d) If γ = β/2 then

Sh ∼
ˆIV h − nrh

3
√

π√
nr2

h

5
√

π

=
ˆIV h − 4(φ2 − 1/2)rhn√

nr2
hψ

√
5ψ
√

π +

(
4(φ2 − 1/2)− 1

3
√

π

)
rhn

√
nr2

h

5
√

π

→ −∞,

as the first factor is asymptotically Gaussian, the second factor is a constant and the third term has

4(φ2 − 1/2)− 1
3
√

π
< 0 and thus tends to −∞.

e) If γ ∈ (0, β/2) then, with the right constants

Sh ∼
ˆIV h − nh3β/2−γ/(3

√
π)√

nh5β/2−γ/(5
√

π)
,

which is exactly the same as in (10) and thus is asymptotically Gaussian.
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