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Abstract. We introduce a class of nonparametric spot volatility estimators based on delta se-

quences and conceived to include many of the existing estimators in the field as special cases. The

full limit theory is first derived when unevenly sampled observations under infill asymptotics and fixed

time-horizon are considered, and the state variable is assumed to follow a Brownian semimartingale.

We then extend our class of estimators to include Poisson jumps or financial microstructure noise

in the observed price process. As an application of our results, we relate the Fourier estimator to a

specific delta sequence obtained with the Fejér function. The proposed estimators are applied to data

from the S&P500 stock index futures market.

1 Introduction

In the last decade, the larger availability of high-frequency financial data sets has spawned considerable

econometric research on integrated volatility, and in particular on realized volatility (reviews on the

topic can be found in Barndorff-Nielsen and Shephard [11], and in Bandi and Russell [9]). More

recently, the interest has moved to study the variability of the price dynamics at a particular point

in time, the so-called instantaneous or spot volatility. The usage of spot volatility estimates is also

increasing in financial applications. For example, spot volatility estimates have been shown to be
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Curato and Davide Pirino for valuable comments and helpful discussions. We would like to dedicate this work to the
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beneficial, with respect to integrated estimates, in estimating infinitesimal cross-moments [8] and in

testing for the presence of jumps [12]. Spot volatility is also the crucial ingredient in option pricing with

stochastic volatility, where the initial volatility value, in addition to the initial value of the underlying,

is needed to price the option.

With this paper, we try to widen and sustain the class of the existing estimators in the field by

proposing a method to estimate the spot volatility of a univariate semimartingale which can be adapted

in the presence of Poisson jumps or microstructure noise. More importantly, we allow for jumps in the

volatility process; in this case, our estimator will converge to the average of spot volatilities observed

immediately before and after the eventual jump.

One way of estimating instantaneous volatility consists in assuming that the volatility process is a

deterministic function of the observable state variable, and nonparametric techniques can be applied

both in the absence (see Florens-Zmirou [19], Bandi and Phillips [6], Renò [47] and Hoffman [23])

and in the presence of jumps in X (see Johannes [30], Bandi and Nguyen [5], and Mancini and Renò

[36]). Fully nonparametric methods when volatility is instead a càdlàg process have been studied by

Malliavin and Mancino [33, 34] and Kristensen [32] in the absence of jumps, and by Zu and Boswijk

[53], Hoffmann, Munk and Schmidt-Hieber [22] and Ogawa and Sanfelici [42] in the absence of jumps

but with noisy observations. Related studies include the idea of rolling sample volatility estimators

in Foster and Nelson [20], see also Andreou and Ghysels [4], the theory of spot volatility estimation

developed in Bandi and Renò [7], and the kernel based methods of Fan and Wang [17], and Mykland

and Zhang [40]. In the presence of jumps (but absence of noise), spot volatility have been studied by

Jacod and Protter [28], Ngo and Ogawa [41], Aı̈t-Sahalia and Jacod [1] and Dobrev, Andersen and

Schaumburg [15]. Alternatives are studied in Alvarez et al. [2], Genon-Catalot et al [21] and Hoffmann

[24].

The purpose of our study is to define a large class of non parametric estimators of instantaneous

volatility, which includes many of the aforementioned methods. Our intuition suggests that a spot

volatility estimator can be written as the convolution of squared price returns with a sequence of

functions, known as delta sequence, which converges to a Dirac delta function concentrating all the

mass around one point (for applications of delta sequences in statistics see, for instance, Watson and

Leadbetter [50], and Walter and Blum [49]). In particular, we extend the kernel estimator of Kristensen

[32] by proving that a traditional kernel function can be seen as a delta sequence. Our class is shown

to be reasonably wide and it includes the Fejér sequence used in the work of Malliavin and Mancino

[34] and the indicator function used in the work of Jacod and Protter [28].

The study of the asymptotic theory (see Section 2) reveals that the estimators within the class are,

under suitable conditions, normally distributed, when the number of observations diverges to infinity

in a fixed interval [0, T ] and the maximum interval between the observations (not necessarily equally

spaced) shrinks to zero. Our findings are derived under mild assumptions on the driving coefficients

of the stochastic differential equation. In Section 3, we allow for microstructure noise in the data
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and use a two-scale volatility technique, similar to the one in Zhang et al [52], to make our estimator

robust against the noise. In addition, we tackle the problem of discontinuities in the return dynamics

using a threshold estimator as in Mancini [35] to filter out jumps from the observed price process. In

Section 4 we consider the work by Malliavin and Mancino [34] and further investigate the asymptotic

behavior of their proposed Fourier estimator of spot σ. Section 5 presents an empirical analysis using

high-frequency stock index futures, where the above estimators are applied to detect intraday volatility

dynamics. Section 6 concludes.

2 Spot Volatility Estimation in the Basic Setting

In what follows, we will consider a univariate logarithmic price process Xt defined on a filtered proba-

bility space (Ω,F , (Ft)0≤t≤T ,P) satisfying the usual conditions, see e.g. Protter [46]. Our results are

based on the set of assumptions outlined below.

Assumption 1. i) The logarithmic price Xt is the solution of the following stochastic differential

equation

dXt = µtdt+ σtdWt, (2.1)

where the initial condition X0 is measurable with respect to F0, Wt is a standard Brownian motion

defined on the filtered probability space and µt, σt are adapted processes with càdlàg paths.

ii) Given a fixed point t ∈ [0, T ], let Bε(t) = [t − ε, t + ε],with fixed ε > 0, and assume that there

exist Γ > 0, a sequence of stopping times τm ↑ ∞ and constants C
(m)

t
such that for all m, for

(ω, s) ∈ Ω×Bε(t) ∩ [0, τm(ω)], a.s.

Eu∧s[|σu − σs|2] ≤ C
(m)

t
|u− s|Γ, (2.2)

where Et[·] denotes E[·|Ft].

The class of processes for σt we wish to estimate point-wise is larger than the class of the processes

with differentiable paths, and it includes the important case where σt is generated itself by a Brownian

motion as in a stochastic volatility model. Indeed, every càdlàg process σt is also locally bounded, and

for every (possibly jumping) Itô semimartingale σt, the requirement (2.2) is satisfied (with Γ = 1) on

every [0, τm] where σt is bounded, thanks to the Burkholder-Davis-Gundy (BDG hereafter) inequality

(see [26], pag.25). In particular the estimator we are going to propose below is robust to jumps in

volatility.

In order to work with irregular sampling, we adapt to our settings the concept of quadratic variation

of time defined in Mykland and Zhang [39].

Assumption 2. The process Xt is observed n + 1 times at deterministic instants

0 = t0 < t1 < . . . < tn = T , not necessarily equally spaced and with T fixed. We set ∆i = ti − ti−1 and
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∆n = T
n and assume maxi=1,...,n{∆i} = O(∆n). The quadratic variation of time up to a given t ≤ T

is defined as H(t) = limn→∞Hn(t), where

Hn(t) =
1

∆n

∑

ti≤t

(∆i)
2
. (2.3)

Assuming that the above limit exists, we require that H is Lebesgue-almost surely differentiable in [0, T ],

with H ′ such that for some K ≥ 0 (not depending on i)

∣∣∣H ′(ti)−
∆i

∆n

∣∣∣ ≤ K∆i. (2.4)

In the special case of equally spaced observations, ∆i = ∆n, H
′(t) = 1 and (2.4) is satisfied with

K = 0. When the observations are more (less) concentrated around t, then we have H ′(t) < 1

(H ′(t) > 1). The assumption maxi=1,...,n{∆i} = O(∆n) is technical, and means that the partition

should not vary asymptotically too wildly with respect to the equally spaced partition.

Condition in (2.4) for the partition {ti}i is different from condition v) in assumption A of [39]. For

instance, consider the sequence of partitions where the amplitude of the first [n/2] intervals ]ti−1, ti] is

2∆ and of the remaining n−[n/2] is ∆. Then ∆ = 2∆n/3 andH(t) = 4t/3 I{t≤T1}+(4T/9+2t/3)I{t>T1}

with T1 = 2T/3. This function H is not differentiable in T1, however, we have that H ′(ti) − ∆i

∆n
= 0

for all other points. It follows that our Assumption is satisfied. On the contrary, if we only consider

the time points t where H is differentiable, Mykland and Zhang assumption is not fulfilled, since

sup
t>T1

∣∣∣Hn(t)−Hn(t−
√

∆n)√
∆n

−H ′(t)
∣∣∣→ +∞.

Denote the (log-price) return by ∆Xi = Xti −Xti−1
. Our proposed estimator takes the form of a

discrete convolution

σ̂2
n,f (t) =

n∑

i=1

fn(ti−1 − t) (∆Xi)
2
, (2.5)

where fn(·) is a given sequence of real functions belonging to the class specified below.

Definition 1. A sequence F
.
= {fn, n ∈ IN} of functions fn : D → R, with D ⊆ R being a given set

and 0 ∈ D is said to be a delta sequence if, for all processes σt satisfying Assumption 1, as n → ∞
(here and throughout all the paper it is intended that the integrals are defined over the intersection with

s ∈ D),

∫ T

0

fn(s− t)σ2
sds = (σ2)⋆t +R(σ2)

n (t), (2.6)

1

fn(0)

∫ T

0

f2n(s− t)σ2
sds = cf (σ

2)⋆t + op(1), (2.7)

1

f2n(0)

∫ T

0

f4n(s− t)σ2
sds = Op(fn(0)), (2.8)

where R
(σ2)
n (t) = op(1) and

(σ2)⋆t =
(
ψ+
f σ

2
t + ψ−

f σ
2
t−

)
I{t∈]0,T [} + ψ−

f σ
2
T−I{t=T} + ψ+

f σ
2
0I{t=0}

where
∫
x<0

fn(x)dx→ ψ−
f and ψ+

f = 1− ψ−
f (ψ−

f = ψ+
f = 1

2 for symmetric delta sequences).
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Note that if σ2 is continuous in t ∈]0, T [, then (σ2)⋆
t
= σ2

t
. If we instead estimate at boundaries

(t = 0 or t = T ) we have to weight for the exact mass of the delta sequence respectively at the right

and at the left of t.

Condition (2.6) resembles the typical definition of delta sequence in analysis. The technical condi-

tions (2.7) and (2.8) are required to guarantee the existence of a central limit theorem. Delta sequences

have been introduced in statistics to estimate the density of a random variable, see e.g. Watson and

Leadbetter [50]. The main result of this section is stated under a set of additional conditions that we

collect in the following Assumption.

Assumption 3. We assume that F = {fn, n ∈ IN} is a delta sequence with fn(0) → +∞ and
∫
D
fn(x)dx→ 1, and that further the functions fn satisfy:

i) supx∈D |fn(x)| ≤ Cfn(0) for a suitable constant C

ii) fn is Lipschitz in a neighborhood of 0 with Lipschitz constant Ln such that Ln

√
∆n/fn(0) → 0;

further, either fn ≥ 0 or ∆
Γ/2

n

∑
i |fn(ti−1 − t)∆i| → 0.

iii) there exists a constant Mε > 0 not depending on n for which

sup
x∈Bc

ε(0)

|fn(x)| ≤Mε. (2.9)

Theorem 2.2 below can be shown to hold also when the condition Ln

√
∆n/fn(0) →

0 in Assumption 3 ii) is replaced with the condition, less stringent but less di-

rect to be verified,
∑n

i=1

∫ ti
ti−1

|fn(s− t)− fn(ti−1 − t)|ds→ 0 for the consistency part, and
∑n

i=1

∫ ti
ti−1

|fn(s− t)− fn(ti−1 − t)|ds/
√

∆nfn(0) → 0 for the CLT part. Assumption 3 is not straight-

forward to verify for a given sequence fn. For this reason, we specify the following proposition, which

involves a set of sufficient conditions using only the features of fn instead of the features of the process

σt.

Proposition 2.1. Consider a sequence of nonnegative functions fn : D → R, with D ⊂ R and 0 ∈ D,

such that, as n→ ∞, conditions i)− iii) in Assumption 3 are fulfilled, and further:

iv) ∫

D

fn(x)dx→ 1 (2.10)

v) there exists a sequence εn → 0 such that

∫ εn

−εn

fn(x)dx→ 1 (2.11)

vi) ∫

D

f2n(x)

fn(0)
dx→ cf (2.12)

where cf is a real constant
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Then fn is a delta sequence.

In condition iii) of Assumption 3 we chose to normalize f2n(x) by fn(0), but alternatively fn(0) can

be replaced by any sequence an able to deliver similar results, such as an =
∫
f2n(x)dx.

Some relevant examples of sequences fn(x) satisfying Assumption 3 are listed below. Other

examples can be derived from Walter and Blum [49].

Example 1: Kernels

Kernel estimators, used by [32] to estimate spot volatility, can indeed be used to generate a class of

delta sequences. Consider a function K : R → R and a positive sequence hn → 0, and define:

fn(x) =
1

hn
K

(
x

hn

)
. (2.13)

The sequence hn is typically called bandwidth, and since fn(0) =
1
hn
K(0), we can interpret fn(0) as

the inverse of the bandwidth. In the case in which we write the delta sequence as (2.13), Assumption

3 can be reformulated as follows:

Assumption 3′ (for kernels):

1.
∫ +∞
−∞ K(x)dx = 1 and

∫∞
−∞K2(x)dx = c2 ( cf = c2

K(0) )

2. supx∈R
|K(x)| ≤ CK(0)

3. K(x) is almost everywhere differentiable and K ′ is bounded.

4. hn is such that supx∈R
|K ′ (xh−1

n

)
|
√

∆n

h3
n
→ 0.

5. supx∈Bc
ε(t)

∣∣∣ 1
hn
K
(

x
hn

)∣∣∣ ≤Mε.

For example, the Gaussian kernel:

K(x) =
1√
2π
e−

x2

2

has c2 = 1
2
√
π
and cf = 1√

2
, and Assumption 3′ is readily verified, while the Epanechnikov kernel

K(x) =
3

4
(1− x2)I{|x|≤1}

has c2 = 3
5 and cf = 4

5 and also verifies 3′. The indicator kernel:

K(x) =
1

2
I{|x|≤1}

also verifies Assumption 3′ and has c2 = 1
2 and cf = 1.

Example 2: Trigonometric functions
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Trigonometric functions used in Fourier analysis are traditional approximants of the Dirac delta, and

naturally appear in the construction of the Fourier estimator of Malliavin and Mancino [33]. The first

example is the Dirichlet sequence given by gn(x) =
1
2πDNn

(x), with domain [−π, π], where

DN (x) :=
∑

|h|≤N

eihx =
sin
[(
N + 1

2

)
x
]

sinx
2

, (2.14)

and Nn is a diverging sequence. The Dirichlet sequence can be negative at some points. A positive

trigonometric example, which will become crucial in Section 4, is given by fn(x) = 1
2πFNn

(x) with

domain [−π, π], where FN (x) is the Fejér sequence

FN (x) :=
∑

|s|≤N

(
1− |s|

N + 1

)
eisx =

1

N + 1

(
sinN+1

2 x

sinx
2

)2

, (2.15)

and Nn is another diverging sequence. The following properties hold ∀N :

(i)
1

2π

∫ π

−π

FN (x)dx = 1 (ii)
1

2π

∫ π

−π

DN (x)dx = 1

(iii) D2
N (x) = (2N + 1)F2N (x) (iv)

1

FN (0)

∫ π

−π

F 2
N (x)dx =

4π

3
,

proving that fn and gn integrate to 1 and that cf = 2
3 and cg = 1. Now, notice that 1/| sin(x/2)| ≤

1/ sin(ε/2) if ε ≤ |x| ≤ π with 0 < ε < π. This easily proves conditions iv) and vi) in Proposition 2.1

for fn. Moreover, with ε = εn → 0 we have

∫

εn≤|x|≤π

FN (x)dx ≤ 1

N + 1

1

sin2(εn/2)
2(π − εn)

which converges to zero if ǫ2nN → ∞. This proves, together with the remaining trivial conditions in

Proposition 2.1, that FN is a delta sequence.

The following theorem derives the asymptotic distribution of the proposed volatility estimator (2.5).

We will use MN(0, V ) to denote a mixed normal distribution with stochastic variance V .

Theorem 2.2. Let Assumptions 1, 2, 3 hold. If n, fn(0) → ∞ in such a way that fn(0)∆n → 0, then

for any t̄ ∈ [0, T ] we have σ̂2
n,f (t)

p−→ (σ2)⋆
t
. If furthermore, R

(σ2)
n (t) = op

(√
fn(0)∆n

)
, then

1√
fn(0)∆n

[
σ̂2
n,f (t)− (σ2)⋆t

] L−(s)−→ MN
(
0, 2cfH

′(t)(σ4)⋆t
)
,

where the above convergence is stable in law.

A similar result is obtained in Kristensen [32] when fn(x) is of the form (2.13). On the notion of

stable convergence, see Jacod [25].

Remark 1. (On the validity of a CLT)

The crucial condition for the validity of a CLT is R
(σ2)
n (t) = op

(√
fn(0)∆n

)
. This condition is,

however, typically satisfied with suitable choices of the sequence fn(0) (or, in the kernel case, of the
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bandwidth). In the Appendix, we explicitely prove that, for the Gaussian, Epanechnikov and indicator

kernel, this condition is fulfilled when nhΓ+1
n → 0, and for other kernels the condition can be verified

in a similar way. The Fejér sequence is explicitely treated in Proposition 4.1.

Remark 2. (Small sample correction)

In small samples, it is advisable to use the estimator

̂̂σ
2

n,f (t) =

∑n
i=1 fn(ti−1 − t)(∆Xi)

2

∑n
i=1 fn(ti−1 − t)∆i

, (2.16)

from which it is immediate to derive the same asymptotic results as in Theorem 2.2 given that

n∑

i=1

fn(ti−1 − t)∆i −→ 1, as n→ ∞.

Remark 3. (Choice of the optimal fn)

The choice of the optimal sequence fn relies on usual bias-variance trade-off considerations (see, for

example, Fan and Yao [18], or the discussion in Kristensen [32]). From the proof of theorem 2.2, we

can see that the bias depends both on the choice of the kernel and of the regularity of σ. For example,

in the case in which fn is the indicator function, we get (see the proof of Remark 1) that the bias is

O
(
fn(0)

−Γ/2
)
and, given that the variance is O(fn(0)∆n), we get that the optimal choice of fn(0) is

proportional to ∆
− 1

1+Γ

n , and the speed of convergence of the spot volatility estimator is n1/4. About

the choice of the optimal delta sequence, there are almost no results for Γ < 2, with the exception of

[16], who suggests the usage of a double exponential kernel, that is fn(x) = fn(0)e
− 2|x|

fn(0) . To get some

insight on this problem, we simulate the model:

dXt = µ+ σtdW
(1)
t

d log σ2
t = ηdW

(2)
t + dJt (2.17)

where corr(dW (1), dW (2)) = ρ, the jump occurs, exactly, in t = 0.5, with size normally distributed

with mean 1.44 and standard deviation 0.11. We set η = 0.6, ρ = −0.25 and µ = 0.06/252 (these

parameters are based on estimates in [8]). We also set n = 1, 000 and fn(0) = 10 and consider six delta

sequences: indicator, triangular, Gaussian, Epanechnikov, Fejér and double exponential. We adopt the

correction (2.16). The (relative) root mean square error in estimating (σ2)⋆
t=0.5

is shown in Figure

2.1, showing that there is no substantial difference between the five delta sequences, even if the double

exponential kernel seems to present some advantages.

3 Estimation in the presence of microstructure noise/jumps

This section shows that, with proper adjustments, the estimator σ̂2
n,f (t) can be employed to the

analysis of a more general data generating process where prices are affected by microstructure noise

or can display a finite number of jumps, two important aspects that play a relevant role in the study

of financial time series.
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Figure 2.1: Relative RMSE distribution for the estimation of (σ2)⋆
t
on 1, 000 replications of model (2.17), for the five

different delta sequences listed in the legend.

3.1 Robustness to microstructure effects

The following results emphasize the suitability of our theoretical framework to deal with microstruc-

ture noise effects in the observed data. For semplicity, consider logarithmic asset prices Xti which

are observed at equispaced discrete times t0, . . . , tn and are subject to an observation error due to

microstructure noise.

Assumption 4. Assume that observations are equally spaced (∆i = ∆n). Let

Xti = Yti + εi, (3.1)

where Y (ti) is the unobservable efficient price satisfying Assumption 1, and εi denotes the noise com-

ponent. The noise process {εi}0≤i≤n is i.i.d. and independent of Y with E[ǫi] = 0 and E[ǫ8i ] < +∞
.

In what follows, we denote by Vε = E[ǫ2i ] and κε = E[ǫ4i ].

Lemma 3.1. Let Assumptions 3 and 4 hold. If R
(σ2)
n (t) = op

(√
∆nfn(0)

)
and fn(0)∆n → 0 as

n→ ∞, then
1√

fn(0)∆n

(
1

2
∆nσ̂

2
n,f (t)− Vε

)
−→ N

(
0,

1

2
cf
(
κε + V 2

ε

))
, (3.2)

where the above convergence is in distribution.

It is immediate to see that the market microstructure-induced bias is given by

E[σ̂2
n,f (t)− σ2(t)] =

2Vε

∆n

+ o

(
1

∆n

)
, (3.3)
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which diverges at rate n. However, when appropriately corrected by a factor 1
2∆n, a consistent estimate

of the noise variance can be obtained and this is of the form

V̂ε =
1

2
∆nσ̂

2
n,f (t).

To obtain a consistent and asymptotically normally distributed estimator of the spot variance, we

follow the two-scale approach in Zhang et al [52] and propose an estimator with overlapping prices at

the lower frequencies. The idea is to remove the market microstructure noise by subtracting volatility

estimated at two different frequencies, leaving the latent volatility unaffected. The approach we are

proposing here is not efficient. Efficient estimation could be achieved, for example, using multiscales

[51], by smoothing the observed time series via pre-averaging as in Jacod et al [27], or by using

autocovariances and a flat-top kernel as in Barndorff-Nielsen et al [10]. Define an integer n < n and

set

σ̂2,TS
n,n̄ (t) =

1

n

n−n+1∑

i=1

fn(ti−1 − t)
[
(Xti+n−1

−Xti−1
)2 − (Xti −Xti−1

)2
]
. (3.4)

The following Theorem shows that σ̂2,TS
n,n̄ (t) is a consistent and normally distributed estimator in

the presence of microstructure noise.

Theorem 3.2. Let Assumptions 3 and 4 hold. If n, fn(0), n→ ∞ in such a way that nfn(0)∆n → 0,

R
(σ2)
n (t) = op(1) and Ln

√
∆nn/fn(0) → 0, we have σ̂2,TS

n,n̄ (t)
p−→ (σ2)⋆

t
. Furthermore, if R

(σ2)
n (t) =

op

(√
fn(0)∆nn

)
and n = c(∆n)

− 2
3 with c ∈ R, then

1√
fn(0)(∆n)

1
3

[
σ̂2,TS
n,n̄ (t)− (σ2)⋆t

] L−(s)−→ MN
(
0, 2cf

[
V 2
ε + c(σ4)⋆t

])
, (3.5)

where the above convergence is stable in law.

Notice that the speed of convergence of the estimator in (3.5) is in line with that obtained in [52]

in the case of integrated volatility estimation. Indeed, when estimating integrated volatility in the

presence of noise, you get a speed of convergence of n1/6 instead of the n1/2 that you would get in the

absence of noise. With spot volatility, we get n1/6fn(0)
1/2 instead of n1/2fn(0)

1/2.

3.2 Robustness to jumps

We now consider the case where a finite number of Poisson jumps is added to the stochastic integral

driving the state variable dynamics.

Assumption 5. The adapted process Xt defined on [0, T ] satisfies

Xt = Yt + Jt (3.6)

with dJt = cJ(t)dNt, where Yt fulfills Assumption 1, Jt is a doubly stochastic Poisson process, and Nt

is a non-explosive Poisson counting process whose intensity is an adapted stochastic process λt. The
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size of the jumps occurring at times τ1, . . . , τN(t) is given by i.i.d. random variables cJ(τj) such that

P({cJ (τj) = 0}) = 0 ∀t ∈ [0, T ].

Following the approach in Mancini [35], we define our estimator to be

/̂σ
2

n,f (t) =
n∑

i=1

fn(ti−1 − t) (∆Xi)
2
I{(∆Xi)

2≤ϑn}, (3.7)

where I{·} denotes the indicator function and ϑn is a suitable sequence. The aim of the threshold

ϑn is to disentangle the discontinuous variation induced by the Poisson jumps from the continuous

variation induced by the Brownian motion. Asymptotically, this happens when ϑn converges to zero

slower than the modulus of continuity of the Brownian motion, as specified in the next Theorem. Note

that ϑn can also be either a function of time or a stochastic process (see Mancini and Renò [36]).

Alternative options to (3.7) are the flat kernel estimator in Aı̈t-Sahalia and Jacod [1], or the locally

averaged bipower variation proposed by Veraart [48]. Both approaches admit infinite jump activity in

the data.

Theorem 3.3. Let Assumptions 2, 3 and 5 hold. If n, fn(0) → ∞ and ϑn → 0 in such a way that

fn(0)∆n → 0, ϑn/
(
∆n log

1
∆n

)
−→ ∞ and R

(σ2)
n (t) = op (1) we have /̂σ

2

n,f (t)
p−→ σ2(t). Furthermore,

if R
(σ2)
n (t) = op

(√
fn(0)∆n

)
, then

1√
fn(0)∆n

[
/̂σ
2

n,f (t)− (σ2)⋆t

] L−(s)−→ MN
(
0, 2cfH

′(t)(σ4)⋆t
)
,

where the above convergence is stable in law.

4 Relation to the Fourier estimator

In this section, we analyze the Fourier estimator first introduced in Malliavin and Mancino [33]. In

particular, we show that the Fourier estimator can be written as the sum of a delta sequence estimator,

when the function fn(·) is set to be equal to the Fejér sequence (see Example 2), and a zero-mean

noisy term.

In the Fourier method, the classical harmonic analysis is combined with stochastic calculus to

connect the Fourier transform of the log-price process Xt to the Fourier transform of the volatility

function σ2
t . Specifically, the spot volatility estimator is defined to be

σ̂2,F
n,n′,N (t) =

∑

|k|≤N

(
1− |k|

N

)
Hn,n′(k)eikτ , (4.1)

where

Hn,n′(k) :=
T

2n′ + 1

∑

|s|≤n′

Fn(dX)(s)Fn(dX)(k − s), (4.2)

and

Fn(dX)(s) :=
1

T

n∑

j=1

e−isτj−1∆Xj (4.3)

11



is the discrete Fourier transform of dXt. Here τ = 2πt/T and τi = 2πti/T are rescaled times. Malliavin

and Mancino [34] prove that, when N = n′,

σ̂2,F
n,n′=N,N (t)

p−→ σ2
t ,

when n,N → ∞. They also provide a weak convergence result for a Lebesgue average of σ̂2,F
n,n′=N,N (t)−

σ2
t on [0, T ], but do not provide a central limit theorem for the estimation error of the spot variance

(see also Clement and Gloter, [13] for a discussion and a generalization of their results).

In order to apply the Fourier estimator, it is necessary to set the number of coefficients of the price

process n′ used in the computation of the volatility coefficients, and the number of volatility coefficients

N used in the reconstruction of the volatility trajectory. Both n′ and N are sequences depending on

n. Importantly, here we do not restrict to the choice n′ = N , suggesting that an higher n′ is beneficial.

A reference value for equally spaced data is n′ = n/2, also known as Nyquist frequency (see Priestley

[45]).

In what follows, we show that the Fourier estimator does not belong directly to our class but it

can be rearranged into the sum of two terms: the volatility estimator σ̂2
n,f (t), where fn(·) is a rescaled

Fejér sequence, and a cross-product term with zero mean.

Proposition 4.1. Define σ̂2
n,f (t) as in (2.5) with fn(x) = 1

2πFN (x), where FN is defined in Eq.

(2.15), with x ∈]− π, π[. Assume that Assumptions 1,2 and 3 hold, with the exception of property ii)

in Assumption 3. Assume now that, as n,N → ∞, N/n→ 0 in such a way that there exists a sequence

εn → 0 such that N3ε4n/n→ ∞ and N/(nεΓn) → ∞. Then, if t ∈]0, T [,

1√
fn(0)∆n

[
σ̂2
n,f (t)− (σ2)⋆t

] L−(s)−→ MN

(
0,

4

3
(H ′σ4)⋆t

)
.

Proposition 4.2. The Fourier estimator given in (4.1) is such that

σ̂2,F
n,n′,N (t) = σ̂2

n,f (t) + φn,f,g(t)

where

σ̂2
n,f (t) =

n∑

i=1

fn(ti−1 − t)(∆Xi)
2

and

φn,f,g(t) =
1

gn(0)

n∑

i=1

n∑

i6=j=1

fn(tj−1 − t)gn(tj−1 − ti−1)∆Xi∆Xj .

with fn(x) =
1
T FN−1 (2πx/T ) and gn(x) =

1
TDn′ (2πx/T ). It holds that E[φn,f,g(t)] = 0 and, if σ is

independent from Wt, the covariance between σ̂2
n,f (t) and φn,f,g(t) is zero.

Proposition 4.2 shows that, under our set of Assumptions, the Fourier estimator can be redefined

using delta sequences with an improvement in terms of the variance. The cross-term typically adds

noise and computational burden. Kanatani [31] made a similar remark in the case of the integrated

volatility estimation. Note that, in general, the cross-terms might be beneficial to the reduction of the
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Figure 4.1: Fourier estimates of the variance of a single simulated path (the generated variance is the thick solid line)

with n = 2500 and N = 8, in the case n′ = n/2 (thin solid line) and n′ =
√

n (dashed line). It is clear that a lower n′

leads to an higher variance. We also report the estimator (2.5) with the Fejér delta sequence: it is almost identical to

the Fourier estimator with n′ = n/2 but computationally faster.

mean square error in the presence of market microstructure noise, see Mancino and Sanfelici [37, 38],

and Barndorff-Nielsen et al [10].

The above findings are clearly illustrated in Figure 4.1 where it is apparent as the trajectory

estimated with the Fourier method without cross products can either have a larger noise (dashed line),

or perfectly overlap (circles) to the delta sequence estimator in the case in which we choose n′ = n
2 .

Further simulation evidence suggests that, in the unequally spaced case, the optimal choice of n′ is

n
2H′(t)

.

5 Empirical application

In this final Section, we apply the proposed estimators (3.4) and (3.7) to a set of market data consisting

of high-frequency transactions of the S&P 500 stock index futures. We restrict our attention to year

1999 and to contracts closer to maturity. Transactions are recorded over 251 trading days between

8.30 a.m. to 3.15 p.m. and interpolated to a 5−seconds grid. Every day, we then have a total of 4, 860

price returns. For both estimators we use the Epanechnikov kernel with h = 15 minutes.

To calculate the low frequency estimator σ2
n,n̄(t) on the right-hand side of (3.4), we apply a sub-

sampling technique similar to that described in Zhang et al [52] with n = 12, which corresponds to

one-minute returns. In order to avoid the effect of jump dynamics in the observed data, we first remove

from the sample all the days characterized by significant price changes using the procedure described

13
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Figure 5.1: Intraday spot volatility for the S&P500 stock index futures over one year of data calculated using the two

scale estimator (3.4). Days with relevant jump activity are previously removed from the sample. The inset shows the

average estimate of the microstructure noise variance Vǫ.

below. Figure 5.1 plots the estimated intraday spot volatility averaged across days and calculated in

daily time units. The well known U−shape is clearly detected, as it was already observed in previous

studies, see, for instance, Andersen and Bollerslev [3]. The estimate of the microstructure variance Vε

is also provided.

We now turn to the jump-robust estimator, and we use 5-minute returns for computation of spot

volatility estimators, to soften the impact of microstructure noise. To show that our threshold estimator

/̂σ
2

n,f (t) is robust to price jumps, we compare it with the original spot volatility estimator (2.5) using

a data-set created by removing all days with relevant jump activity. The resulting intraday volatility

curves then should be almost identical. To identify the jumps, we employ the C−Tz statistics in Corsi

et al [14], After setting the daily significance level of a jump to 99%, a total of 28 days are detected and

then excluded from the sample. The top panel in Figure 5.2 shows that the volatility curves obtained

with the two aforementioned estimators match almost everywhere, meaning that that /̂σ
2

n,f (t) is not

affected by large price movements and is able to provide robust estimates of the intraday volatility

dynamics. We then apply the same estimation procedure to a sample made of the 28 days initially

removed; the result in plotted in Figure 5.2, bottom panel. As expected, now the two curves behave

quite differently, especially around the market opening time.
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Figure 5.2: Intraday spot volatility for the S&P500 stock index futures averaged over one year of data calculated using

the original volatility estimator (2.5) and the threshold estimator (3.7) respectively. Top panel: original data-set without

relevant jump activity. Bottom panel: sample made of 28 days characterized by large price movements. The significance

level of jump detection is set to 99%. The volatility is measured in daily units.

6 Conclusions

We enlarged the class of spot volatility estimators using localizing sequences of functions which converge

to a Dirac delta. Under mild hypotheses on the data generating process, we provide an asymptotic

theory for the estimators within the class and we propose suitable modifications to assess the effect

of microstructure noise or price discontinuities. As a special case, we related the Fourier estimator

with the delta sequence obtained with the Fejér sequence, showing that the latter is more efficient in

15



the case in which the price follows a Brownian semimartingale and there is neither leverage effect nor

microstructure noise. We finally applied the resulting estimators to a data-set of high-frequency stock

index futures and successfully recovered the traditional U-shaped intraday volatility pattern.

The paper leaves open the possibility of further developments. For example, we would like to study

the joint contribution of microstructure noise and jumps, possibly using the techniques in Jacod et al

[27] and Podolskij and Vetter [43, 44]. Also, the challenging problem of the optimal choice of the delta

sequence is to be addressed. Finally, the asymptotic distribution of the spot volatility obtained with

the Fourier estimator is unknown. We leave all these interesting issues for future research.
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A Proofs

In what follows, we will use
∫
(...)dx to denote an integral over R. C or K indicate a constant which

does not depend on i, nor on the sequence F = {fn, n ∈ IN}, but can depend on t and the localizing

sequence τm, and which keeps the same name even when changing from line to line or from one

side to another of the inequality. Without loss of generality, we assume σ ≥ 0. Recall that for any

Lebesgue-integrable function a, for all ℓ ≥ 1 we have, by Jensen inequality,

1

∆i

∫ ti

ti−1

|as|ds ≤
(

1

∆i

∫ ti

ti−1

|as|ℓds
) 1

ℓ

(A.1)

We remark that assuming µ, σ,H ′ càdlàg entails that they are locally bounded. By a localization

procedure similar to that in [29] (section 5.4, p.549), we can assume without loss of generality that

they are bounded (as (ω, t) vary within Ω× [0, T ]).

In order to prove Theorem 2.2 we use Lemma A.1 below several times with A being equal to σk

for some powers k ∈ {0, 1, 2, 3, 4}. Note that, by property (2.2) and the boundedness of σ, we have, for

k ≥ 2,

Eu∧s[|σu − σs|k] = Eu∧s[|σu − σs|2|σu − σs|k−2] ≤ C|u− s|Γ. (A.2)

and, similarly, we also have, for k ≥ 2,

Eu∧s[|σ2
u − σ2

s |k] ≤ C|u− s|Γ. (A.3)

For k = 1 we instead have, by Jensen inequality, Eu∧s[|σu − σs|] ≤ C|u− s|Γ/2 and Eu∧s[|σ2
u − σ2

s |] ≤
C|u− s|Γ/2.

Proposition 2.1. Assume first that 0 < t < T . Using the boundedness of σ2 and the property (2.10),

we can write:

R(σ2)
n (t) =

∫ T

0

fn(s− t)σ2
sds−

(∫ T

0

fn(s− t)ds+ o(1)

)
(σ2)⋆t

=

∫ T

0

fn(s− t)
(
σ2
s − (σ2)⋆t

)
ds+ op(1),

and, using (2.2) and property (2.11),

E

[∣∣∣∣∣

∫ T

0

fn(s− t)
(
σ2
s − (σ2)⋆t

)
ds

∣∣∣∣∣

]
≤
∫ T

0

fn(s− t)E
[∣∣σ2

s − (σ2)⋆t
∣∣] ds

= C

∫

|s−t|<εn

fn(s− t)E
[∣∣σ2

s − (σ2)⋆t
∣∣] ds

+ C

∫

|s−t|≥εn

fn(s− t)E
[∣∣σ2

s − (σ2)⋆t
∣∣] ds

≤ CεΓ/2n + C

∫

|x|≥εn

fn(x)dx→ 0.

If instead t = T , we repeat the same reasoning above using: ψ−
n =

∫
s−T<0

fn(s− T )ds+ o(1), and we

proceed in a similar way if t = 0. This proves (2.6). To prove (2.7) for fn, it is thus enough to prove
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that gn(x) =
f2
n(x)

cffn(0)
satisfies Eqs. (2.10), which is straightforward from property (2.12), and (2.11),

which is obtained, using supx fn(x) ≤ Cfn(0) as:

0 ≤
∫

|x|≥εn

gn(x)dx =
1

cf

∫

|x|≥εn

fn(x)
fn(x)

fn(0)
dx ≤ C

∫

|x|≥εn

fn(x)dx→ 0.

To prove (2.8), use the boundedness of σ2 and (2.12) and write:
∫ T

0

f4n(t− t)

f2n(0)
σ2
sdt ≤ C

∫ T

0

f2n(t− t)

fn(0)
fn(0)dt ≤ Cfn(0)

Lemma A.1. i) For a sequence of processes A(n) bounded by the same constant K, if fn are Lipschitz

functions and maxi ∆i = O(∆n) then
∫ T

0

fn(s− t)A(n)
s ds−

n∑

i=1

fn(ti−1 − t)

∫ ti

ti−1

A(n)
s ds = Oa.s.(Ln∆n). (A.4)

As a corollary, under (2.6) and if Ln∆n → 0 we have
∑n

i=1 fn(ti−1 − t̄)∆i → 1, as n→ ∞.

ii) Consider a bounded càdlàg process A. If either fn ≥ 0 or ∆
Γ/2

n

∫ T

0
|fn(s−t)|ds→ 0 and (2.9) holds,

if both fn and gn = f2n/(cffn(0)) satisfy (2.6), under maxi ∆i = O(∆n), (2.4) and (2.2) we have

1

∆n

n∑

i=1

fn(ti−1 − t)A(ti−1)∆
2
i

p−→
n→∞

(H ′A)⋆t (A.5)

and
1

∆nfn(0)

n∑

i=1

f2n(ti−1 − t)A(ti−1)∆
2
i

p−→
n→∞

cf (H
′A)⋆t . (A.6)

iii) Under (2.2) and the boundedness of σ, for any p = 0, 1, 2, 3 there exists α > 0 such that for all

i = 1, . . . , n and for a suitable constant Cp,

Ei−1


|σti−1

∆Wi|p
∣∣∣∣∣

∫ ti

ti−1

(
σs − σti−1

)
dWs

∣∣∣∣∣

4−p

 ≤

Cp∆
2
iσ

p
ti−1

(∆α
i I{ti−1∈Bε(t)} + I{ti−1 6∈Bε(t)}).

iv) Under the same assumptions as for ii) above, for any bounded càdlàg process M and α > 0 we

have
n∑

i=1

f2n(ti−1 − t)

fn(0)∆n

Mti−1
∆2

i (∆
α
i I{ti−1∈Bε(t)} + I{ti−1 6∈Bε(t)})

p−→ 0

v) Under (2.2) and the boundedness of σ, for any p = 0, 1 we have for all i = 1, . . . , n and for some

α > 0,

Ei−1


|σti−1

∆Wi|p
∣∣∣∣∣

∫ ti

ti−1

(
σs − σti−1

)
dWs

∣∣∣∣∣

2−p

 ≤ Cp∆iσ

p
ti−1

(∆α
i I{ti−1∈Bε(t)}+

+ I{ti−1 6∈Bε(t)}).

vi) Under (2.2) and the boundedness of σ, for p ∈ [1, 8],

Ei−1

[(∫ ti

ti−1

|σ2
s − σ2

ti−1
|ds
)p]

≤ K∆p
i (∆

Γ/2
i I{ti−1∈Bε(t)} + I{ti−1 6∈Bε(t)}).
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Proof. i) Noting that maxi ∆i = O(∆n) implies
∑

i ∆
2
i ≤ K∆n, we have

∣∣∣
∫ T

0

fn(s− t)Asds−
n∑

i=1

fn(ti−1 − t)

∫ ti

ti−1

Asds
∣∣∣

≤
n∑

i=1

∫ ti

ti−1

|fn(s− t)− fn(ti−1 − t)|Asds

≤ K
∑

i

Ln

∫ ti

ti−1

|s− ti−1|ds ≤ KLn

∑

i

∆2
i ≤ KLn∆n.

As for the corollary, by (2.6) with σ ≡ 1 we have
∫ T

0
fn(s− t̄)ds→ 1, as n→ ∞. Thus it is sufficient

to show that |∑n
i=1 fn(ti−1 − t̄)∆i −

∫ T

0
fn(s− t̄)ds| → 0, which is guaranteed by (A.4) with A ≡ 1.

ii) It is enough to show Eq. (A.5), since the assumptions on fn imply that also gn = f2n/(cffn(0))

is Lipschitz with Lipschitz constant Gn ≤ KLn and thus gn is also satisfying ∆
Γ

nGn → 0 and (2.9).

By applying (2.6) we obtain (H ′A)⋆
t
=
∫ T

0
fn(s− t̄)(H ′A)sds+ op(1). We now show that this last term

has the same asymptotic behavior as
∑n

i=1 fn(ti−1 − t̄)Ati−1
∆2

i /∆n. In fact,

∫ T

0

fn(s− t̄)(H ′A)sds−
n∑

i=1

fn(ti−1 − t)Ati−1
∆2

i /∆n =

∑

i

∫ ti

ti−1

[fn(s− t̄)− fn(ti−1 − t̄)](H ′A)sds+

∑

i

∫ ti

ti−1

fn(ti−1 − t̄)[(H ′A)s −Ati−1
∆i/∆n]ds.

Given the assumed boundedness of H ′A, the first term in the rhs of the display above is a.s. bounded

by KLn

∑
i ∆

2
i ≤ KLn∆n → 0. As for the second sum above, we can write it as

∑

i

∫ ti

ti−1

fn(ti−1 − t̄)H ′
s(As −Ati−1

)ds+ (A.7)

∑

i

∫ ti

ti−1

fn(ti−1 − t̄)(H ′
s −∆i/∆n)Ati−1

ds.

Using (A.4) and (2.4), the last term has the same limit as

∑

i

∫ ti

ti−1

fn(s− t̄)(H ′
s −∆i/∆n)Ati−1

ds,

which is bounded in absolute value by

K
∑

i

|fn(ti−1 − t̄)|∆2
i ≤ K∆n

∫ T

0

|fn(s− t̄)|ds,

which in turn converges to zero by condition ∆nfn(0) → 0 and the Lipschitz property of fn. Now we

deal with the term in (A.7) by splitting it into the sum over the indexes i s.t. ti−1 ∈ Bε(t) and the

sum of the other terms. Since the càdlàg process A has at most countably many jumps within [0, T ]

and each jump time has Lebesgue measure 0, we have

∑

{i:ti−1 6∈Bε(t)}

∫ ti

ti−1

fn(ti−1 − t̄)H ′
s(As −Ati−1

)ds = (A.8)
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∑

{i:ti−1 6∈Bε(t)}

∫ ti

ti−1

fn(ti−1 − t̄)H ′
s(As− −Ati−1

)ds.

Using then (A.4) and the boundedness ofH ′ and A we obtain that the last sum has the same asymptotic

behavior as
∫
Bc

ε(t)
ψ
(n)
s ds, where

ψ(n)
s

.
= fn(s− t̄)H ′

s

(
As− −

∑

j

Atj−1
I]tj−1,tj ](s)

)
.

Note that, for Lebesgue-almost all s, ψ
(n)
s → 0, because any fixed s ∈ [0, T ] belongs to only one

interval, say ]tj̄−1, tj̄ ] and tj̄−1 is always on the left hand side of s, so that Atj̄−1
→ As−, as n → ∞,

and thus
∑

j Atj−1
I]tj−1,tj ](s) → As−. Moreover (2.9) and the boundedness of A and H ′ imply that

|ψ(n)(s)| ≤ KMε which belongs to L1(Bc
ε(t)). By the dominated convergence theorem we conclude

that
∫ T

0
ψ
(n)
s ds→ 0 and (A.8) is asymptotically negligible. Finally we show that

∑

{i:ti−1∈Bε(t)}

∫ ti

ti−1

fn(ti−1 − t̄)H ′
s(As −Ati−1

)ds
P→ 0.

In fact using (2.2) its L1(Ω) norm is dominated by

E


 ∑

{i:ti−1∈Bε(t)}

Ei−1

[ ∫ ti

ti−1

|fn(ti−1 − t̄)||H ′
s||As −Ati−1

|ds
]

 ≤

K
∑

{i:ti−1∈Bε(t)}

∫ ti

ti−1

|fn(ti−1 − t̄)|ds ∆
Γ/2
i ≤ K∆

Γ/2

n

∫ T

0

|fn(s− t̄)|ds→ 0.

iii) Using Hölder inequality, the considered conditional expectation is dominated by

E
1/2
i−1[|σti−1

∆Wi|2p]E1/2
i−1

[∣∣∣
∫ ti

ti−1

σs − σti−1
dWs

∣∣∣
8−2p

]

using then the Burkolder-Davis-Gundy inequality this is less than

Cp

√
σ2p
ti−1

∆p
i

√√√√Ei−1

[(∫ ti

ti−1

(σs − σti−1
)2ds

)4−p
]
. (A.9)

Since p ≤ 3 then by (A.1) with ℓ = 4− p,

1

∆i

∫ ti

ti−1

(σs − σti−1
)2ds ≤

(
1

∆i

∫ ti

ti−1

(σs − σti−1
)2(4−p)ds

)1/(4−p)

,

we obtain that

Ei−1

[(∫ ti

ti−1

(σs − σti−1
)2ds

)4−p
]
≤ Ei−1

[
∆3−p

i

∫ ti

ti−1

(σs − σti−1
)8−2pds

]

≤ ∆3−p
i

∫ ti

ti−1

Ei−1[|σs − σti−1
|8−2p]ds.

Using now assumption (2.2) when ti−1 ∈ Bε(t) and the boundedness of σ otherwise, the last term is

dominated by

∆3−p
i

(
I{ti−1∈Bε(t)}K∆

Γ/2
i + I{ti−1 6∈Bε(t)}∆i

)
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(since ∆Γ
i ≤ ∆

Γ/2
i ) and combining this with (A.9) the thesis follows.

iv) The considered sum is dominated by

K∆
α

n

∑

i:ti−1∈Bε(t)

f2n(ti−1 − t)

fn(0)∆n

∆2
iMti−1

+K
∑

i:ti−1 6∈Bε(t)

f2n(ti−1 − t)

fn(0)∆n

∆2
iMti−1

.

By (A.6) with At = MtIBε(t)
(t) we obtain that the first sum tends to zero in probability. The same

result holds for the second sum, with At =MtIBc
ε(t)

, as A(t) = A(t−) = 0.

v) This proceeds exactly as in iii) by substituting 4− p each time it appears with 2− p.

vi) Using (A.1) with ℓ = p we obtain

Ei−1

[(∫ ti

ti−1

|σ2
s − σ2

ti−1
|ds
)p]

≤ Ei−1

[
∆p−1

i

∫ ti

ti−1

|σ2
s − σ2

ti−1
|pds

]
.

Since |σ2
s − σ2

ti−1
| = |σs − σti−1

||σs + σti−1
| ≤ K|σs − σti−1

|, the last term above goes as follows

K∆p−1
i Ei−1

[∫ ti

ti−1

|σs − σti−1
|pds

](
I{ti−1∈Bε(t)} + I{ti−1 6∈Bε(t)}

)
≤

K∆p
i (∆

Γ/2
i I{ti−1∈Bε(t)} + I{ti−1 6∈Bε(t)}).

Theorem 2.2. It is not restrictive to set µt = 0. We start by proving the stated convergence in law.

Using Eq. (2.6) and then (A.4) and that µ ≡ 0, we have

1√
fn(0)∆n

[
σ̂2
n,F (t)− (σ2)⋆t

]

=
1√

fn(0)∆n

[
n∑

i=1

fn(ti−1 − t)∆X2
i − (σ2)⋆t

]

=
1√

fn(0)∆n

[
n∑

i=1

fn(ti−1 − t)∆X2
i −

∫ T

0

fn(s− t)σ2(s)ds+R(σ2)
n (t)

]

=
1√

fn(0)∆n

[
n∑

i=1

fn(ti−1 − t)

(
∆X2

i −
∫ ti

ti−1

σ2(s)ds

)
+Oa.s.(Ln∆n) +R(σ2)

n (t)

]

=
n∑

i=1

Ui +Oa.s.


Ln

√
∆n

fn(0)


+

R
(σ2)
n (t)√
fn(0)∆n

, (A.10)

where for i = 1..n

Ui :=
fn(ti−1 − t)√
fn(0)∆n



(∫ ti

ti−1

σsdWs

)2

−
∫ ti

ti−1

σ2
sds


 . (A.11)

Since we assumed Ln

√
∆n

fn(0)
→ 0 and R

(σ2)
n (t) = op

(√
fn(0)∆n

)
, the last two terms above tend

to zero in probability, and thus it is sufficient we derive a central limit theorem stable in law for
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∑n
i=1 Ui For that we refer to Theorem IX.7.28 in Jacod and Shiryaev [29] ensuring that the following

are sufficient conditions

(i)

n∑

i=1

Ei−1[Ui]
p−→ 0 (iii)

n∑

i=1

Ei−1[U
4
i ]

p−→ 0

(ii)

n∑

i=1

Ei−1[U
2
i ]

p−→ Vt (iv)

n∑

i=1

Ei−1[Ui∆Hi]
p−→ 0,

where Ei−1[·] abbreviates E[·|Fti−1
] and (iv) has to hold in both the cases where H = W or H = B,

with B any bounded martingale orthogonal (in the martingale sense) toW . Condition i) is immediately

proved using the Itô isometry

n∑

i=1

Ei−1 [Ui] =

n∑

i=1

fn(ti−1 − t)√
fn(0)∆n

Ei−1



(∫ ti

ti−1

σsdWs

)2

−
∫ ti

ti−1

σ2
sds


 = 0.

As for condition (ii), consider

n∑

i=1

Ei−1

[
U2
i

]
=

n∑

i=1

f2n(ti−1 − t)

fn(0)∆n

Ei−1








(∫ ti

ti−1

σsdWs

)2

−
∫ ti

ti−1

σ2
sds





2

 =

∑n
i=1

f2
n(ti−1−t)

fn(0)∆n

{
Ei−1

[(∫ ti
ti−1

σsdWs

)4]
+ Ei−1

[(∫ ti
ti−1

σ2
sds
)2]

− 2Ei−1

[(∫ ti
ti−1

σsdWs

)2 (∫ ti
ti−1

σ2
sds
)]}

.

(A.12)

All the three conditional expectations contain some leading terms, which we need to compute exactly.

Basically, for s ∈]ti−1, ti] we write σs = σti−1
+(σs−σti−1

), we find exact equalities for the expressions

containing σti−1
and by using assumption (2.2) we show that the other terms are asymptotically

negligible. Now write

Ei−1



(∫ ti

ti−1

σsdWs

)4

 = Ei−1



(∫ ti

ti−1

[
σti−1

+ σs − σti−1

]
dWs

)4



= 3σ4
ti−1

∆2
i +

∑

p=0,1,2,3

cpEi−1


(σti−1

∆Wi)
p

(∫ ti

ti−1

[
σs − σti−1

]
dWs

)4−p

 ,

with suitable constants cp. Using Lemma A.1 iii) and iv), the first term within brackets in (A.12)

contributes by
n∑

i=1

f2n(ti−1 − t)

fn(0)∆n

3σ4
ti−1

∆2
i + op(1),

and thanks to (A.6) this in turn has Plim equal to

3cf (H
′σ4)⋆t .

As for the second term within brackets in (A.12) we similarly decompose it as

Ei−1



(
σ2
ti−1

∆i +

∫ ti

ti−1

σ2
s − σ2

ti−1
ds

)2


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= σ4
ti−1

∆2
i +

∑

q=0,1

cpEi−1


(σ2

ti−1
∆i)

q

(∫ ti

ti−1

σ2
s − σ2

ti−1
ds

)2−q

 .

Using Lemma A.1 vi) with p = 2− q, both terms with q = 0, 1 are bounded by

σ2q
ti−1

∆q
i∆

2−q
i (∆α

i I{ti−1∈Bε(t)} + I{ti−1 6∈Bε(t)}),

for some α > 0, which by Lemma A.1 iv) give asymptotically negligible contribution to (A.12), so that

the second term within brackets in (A.12) contributes by

n∑

i=1

f2n(ti−1 − t)

fn(0)∆n

σ4
ti−1

∆2
i + op(1) → cf (H

′σ4)⋆t

by (A.6).

As for the third term within brackets in (A.12) we still decompose it as

Ei−1



(
σti−1

∆Wi +

∫ ti

ti−1

(
σs − σti−1

)
dWs

)2(
σ2
ti−1

∆i +

∫ ti

ti−1

(
σ2
s − σ2

ti−1

)
ds

)


= σ4
ti−1

∆2
i +

∑

p=0,1

cpσ
2+p
ti−1

∆iEi−1

[
(∆Wi)

p
(∫ ti

ti−1

(
σs − σti−1

)
dWs

)2−p
]

+ σ2
ti−1

Ei−1

[
(∆Wi)

2

∫ ti

ti−1

(
σ2
s − σ2

ti−1

)
ds

]

+
∑

q=0,1

cqσ
q
ti−1

Ei−1

[
(∆Wi)

q
(∫ ti

ti−1

(
σs − σti−1

)
dWs

)2−q
∫ ti

ti−1

(
σ2
s − σ2

ti−1

)
ds

]
.

By Lemma A.1 v) and iv) the terms with p = 0, 1 give asymptotically negligible contribution to (A.12).

Noting that
∫ ti
ti−1

|σ2
s − σ2

ti−1
|ds ≤ K∆i, the terms with q = 0, 1 are reduced to terms of exactly the

same type as the ones with p = 0, 1 above and thus are asymptotically negligible. Now we deal with

the term

σ2
ti−1

Ei−1

[
(∆Wi)

2

∫ ti

ti−1

(
σ2
s − σ2

ti−1

)
ds

]

which, by the Hölder inequality is dominated by

σ2
ti−1

√
Ei−1[(∆Wi)4]

√√√√Ei−1

[∣∣∣
∫ ti

ti−1

(
σ2
s − σ2

ti−1

)
ds
∣∣∣
2
]
.

Using Lemma A.1 vi) with p = 2, we obtain that in turn this is less than

K∆2
i (∆

α
i I{ti−1∈Bε(t)} + I{ti−1 6∈Bε(t)}),

with a suitable α > 0 and by A.1 iv) also the contribution of this term is asymptotically negligible.

Therefore the third term within brackets in (A.12) has the same limit in probability as

− 2

n∑

i=1

f2n(ti−1 − t)

fn(0)∆n

σ4
ti−1

∆2
i

P−→ −2cf (H
′σ4)⋆t . (A.13)

23



by lemma A.1 ii). Summing up, the probability limit in condition (ii) is Vt = 2cf (H
′σ4)⋆

t
.

We now deal with the above condition (iii), where we only have to check the negligibility of the

fourth conditional moments, and even some rough estimates are sufficient.

n∑

i=1

Ei−1

[
U4
i

]
=

n∑

i=1

f4n(ti−1 − t)

f2n(0)∆
2

n

Ei−1








(∫ ti

ti−1

σsdWs

)2

−
∫ ti

ti−1

σ2
sds





4

 ≤

n∑

i=1

f4n(ti−1 − t)

f2n(0)∆
2

n

Ei−1



(∫ ti

ti−1

σsdWs

)8

+

(∫ ti

ti−1

σ2
sds

)4

 .

As σs is assumed wlog to be bounded, by the BDG inequality we have that Ei−1

[(∫ ti
ti−1

σsdWs

)8]
≤

K∆4
i and the last sum above is dominated by

K

n∑

i=1

f4n(ti−1 − t)∆i

f2n(0)

∆3
i

∆
2

n

≤ K∆n

n∑

i=1

f4n(ti−1 − t)∆i

f2n(0)
, (A.14)

having used that, by Assumption 2, maxi ∆i ≤ K∆n. However

∆n

∣∣∣∣∣

n∑

i=1

f4n(ti−1 − t)∆i

f2n(0)
−
∫ T

0
f4n(s− t)ds

f2n(0)

∣∣∣∣∣
P−→ 0,

as f4n = g(fn), with g(x) = x4, is also Lipschitz on D with Lipschitz constant KK3
nLn and thus the

sum within the last display is bounded by

∆n

f2n(0)

n∑

i=1

∫ ti

ti−1

|f4n(ti−1 − t)− f4n(s− t)|ds ≤ K
∆

2

n

f2n(0)
K3

nLn

≤ KLn

√
∆n

fn(0)


Ln

√
∆n

fn(0)




3

→ 0.

Consequently, using Eq. (2.8) with σ ≡ 1, the probability limit of (A.14) is the same as

plimK∆n

∫ T

0
f4n(s− t)ds

f2n(0)
≤ plimK∆nfn(0) = 0,

by assumption.

We finally consider condition (iv), starting from the case H = B. Denote Rt =
∫ t

0
σsdWs and

Mt = R2
t −

∫ t

0
σ2
sds. Since B is orthogonal to W we have that d[M,B] ≡ 0. In fact d(R2)t =

2RtdRt + d[R,R]t = 2RtdRt + σ2
t dt, thus d[M,B]t = d[R2, B]t = 2Rtd[R,B]t = 2Rtσtd[W,B]t ≡ 0.

Therefore also M and W are orthogonal, meaning that Eti−1
[∆Mi∆Bi] = 0 for all i = 1..n, and

condition (iv) is verified.

When instead H =W ,

n∑

i=1

Ei−1 [Ui∆Wi] ≤
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≤
n∑

i=1

fn(ti−1 − t)√
fn(0)∆n

√√√√√√Ei−1






(∫ ti

ti−1

σsdWs

)2

−
∫ ti

ti−1

σ2
sds




2


√
Ei−1 [(∆W 2

i )].

Using the computations done in order to evaluate Ei−1[U
2
i ] above, we have

Ei−1






(∫ ti

ti−1

σsdWs

)2

−
∫ ti

ti−1

σ2
sds




2



≤ 2σ4
ti−1

∆2
i +K∆2

i

(
∆α

i I{ti−1∈Bε(t)} + I{ti−1 6∈Bε(t)}

)
,

for a suitable α > 0, therefore the last term within the above display is dominated by

n∑

i=1

fn(ti−1 − t)√
fn(0)∆n

∆
3
2
i

√
2σ4

ti−1
+K(∆α

i I{ti−1∈Bε(t)} + I{ti−1 6∈Bε(t)}) ≤ K

n∑

i=1

fn(ti−1 − t)√
fn(0)

∆i

By (A.5) i) and the assumptions Ln∆n → 0 and fn(0) → ∞, this last has the same probability limit

as
∫

T

0
fn(s−t)ds

fn(0)
, which is zero, as

∫ T

0
fn(s− t)ds → 1 by (2.6), and condition (iv) is verified also when

H =W and this completes the proof of the stable convergence of σ̂2
n,f (t).

For the convergence in probability the condition R
(σ2)
n (t) = op

(√
fn(0)∆n

)
is not required. Indeed

by multiplying both sides of Eq. (A.10) by
√
fn(0)∆n we find

σ̂2
n,F (t)− (σ2)⋆t =

n∑

i=1

fn(ti−1 − t)



(∫ ti

ti−1

σsdWs

)2

−
∫ ti

ti−1

σ2
sds




+Oa.s.(fn(0)∆n) +R(σ2)
n (t).

Last two terms are op(1) by the assumption fn(0)∆n → 0 and (2.6), while we check the negligibility of

the first term by using the law of large numbers for the sum of martingale differences (see e.g. Lemma

4.1 in Jacod [26]). It is sufficient to show that

∑

i

Ei−1[
(√

fn(0)∆nUi

)2
] = fn(0)∆n

∑∑

i

Ei−1[U
2
i ] → 0,

which is ensured by
∑

iEi−1[U
2
i ] → 2cf (H

′σ4)⋆
t
obtained with the computations for ii) above and by

fn(0)∆n → 0.

We now check the negligibility of the drift in order to reach the consistency and the CLT for σ̂2
n,F (t).

If µν ≡ 0, by following (A.10) and substituting ∆Xi we have

σ̂2
n,F (t)− (σ2)⋆

t√
fn(0)∆n

=

n∑

i=1

Ui + 2
∑

i

fn(ti−1 − t)√
fn(0)∆n

∫ ti

ti−1

σsdWs

∫ ti

ti−1

µsds

+
∑

i

fn(ti−1 − t)√
fn(0)∆n

(

∫ ti

ti−1

µsds)
2 +Oa.s.(Ln

√
∆n

fn(0)
) +

R
(σ2)
n (t)√
fn(0)∆n

,
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and we see firstly that again the assumption
R(σ2)

n (t)√
fn(0)∆n

→p 0 is only needed for the CLT and secondly

that showing the negligibility of the second and third terms above is sufficient also to state the consis-

tency of σ̂2
n,F (t). To deal with such terms, which are both of the type

∑
i ξi, we apply Lemma 4.1 in [26],

and in both cases we check condition (4.4). Since
∑

iEi−1[|ξi|] ≤
∑

i

√
Ei−1[|ξi|2] ≤ K

√
Ei−1[|ξi|2],

it is sufficient to check that
∑

iEi−1[ξ
2
i ] → 0. By the boundedness of µ and BDG inequality and then

(A.6) we have

∑

i

f2n(ti−1 − t)

fn(0)∆n

Ei−1



(∫ ti

ti−1

σsdWs

)2(∫ ti

ti−1

µsds

)2

 ≤ K

∑

i

f2n(ti−1 − t)

fn(0)∆n

∆3
i

≤ K∆n

∑

i

f2n(ti−1 − t)

fn(0)∆n

∆2
i →p 0

and
∑

i

f2n(ti−1 − t)

fn(0)∆n

Ei−1

[
(

∫ ti

ti−1

µsds)
4
]
≤ K∆

2

n

∑

i

f2n(ti−1 − t)

fn(0)∆n

∆2
i →p 0

as desired.

Remark 1. Assume t ∈]0, T [. For the Gaussian kernel, with ε as in (2.2) we have

R
(σ2)
n (t)√
fn(0)∆n

= An +
1√

fn(0)∆n

[
1

hn

∫

s∈[0,T ]:|s−t|≤ε

K

(
s− t

hn

)
σ2
sds− (σ2)⋆t

]
, (A.15)

By changing variable via x = (s− t)/hn, the second term in (A.15) is written as Bn+Cn+Dn+En

with

Bn =

∫ 0

−ε/hn
K(x)(σ2

t−hn|x| − σ2
t−)dx√

fn(0)∆n

, Cn =

∫ ε/hn

0
K(x)(σ2

t+hnx
− σ2

t
)dx

√
fn(0)∆n

,

Dn = −
∫ −ε/hn

−∞ K(x)σ2
t−dx√

fn(0)∆n

, En = −
∫ +∞
ε/hn

K(x)σ2
t dx√

fn(0)∆n

.

Using Eq. (2.2), we have:

E [|Bn|] ≤
1√

fn(0)∆n

∫ 0

−ε/hn

K(x)(xhn)
Γ/2dx ≤ C

√
nh1+Γ

n → 0.

A similar result holds for Cn. Moreover,

|An| =
1

hn

√
fn(0)∆n

∣∣∣∣∣

∫

s∈[0,T ]:|s−t|>ε

K

(
s− t

h

)
σ2
sds

∣∣∣∣∣ =

√
hn

K(0)∆n

∣∣∣∣∣

∫ −ε/hn

−t/hn

K(x)σ2
hnx+tdx+

∫ (T−t)/hn

ε/hn

K(x)σ2
hnx+tdx

∣∣∣∣∣ ≤

√
nhn

∫ −ε/hn

−t/hn

K(x)dx+
√
nhn

∫ (T−t)/hn

ε/hn

K(x)dx.
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For the first term, on [−t/hn,−ε/hn], for small hn we have K(x) ≤ K(−ε/hn) = e−
1
2 (

ε
hn

)2 =

o

((
ε
hn

)4)
∼ h4n, so that

√
nhn

∫ −ε/hn

−t/hn
K(x)dx ≤ C

√
nh7n → 0. The second term can be dealt

with in a similar way.

Finally for Dn, the well known inequality

for y > 0:

∫ +∞

y

K(x)dx ≤ C

y
K(y)

and the boundedness of σ imply

|Dn| =
1√

fn(0)∆n

∫ −ε/hn

−∞
K(x)σ2

t−dx ≤ C
√
nhn

∫ −ε/hn

−∞
K(x)dx ≤

√
nhn

hn
ε
e

−ε2

2h2
n

≤ C
√
nh4n → 0.

En is dealt with similarly.

For the Epanechnikov kernel, An = 0 for n large enough, and the rest is similar.

For the indicator kernel, for n large enough,

E


 |R(σ2)

n (t)|√
fn(0)∆n


 =

∫
|x|≤1/fn(0)

1
2fn(0)E

[∣∣∣σ2
t+x/fn(0)

− (σ2)⋆
t

∣∣∣
]
dx

√
fn(0)∆n

≤ C
fn(0)

−Γ/2

√
fn(0)∆n

,

providing the same result.

Lemma 3.1. The proof is based on that of Theorem 2.2. In what follows, we compute conditional

expectations with respect to a new augmented filtration Fε
t obtained by including the observed noise

(εi)ti≤t for each t ∈ [0, T ]. As shown in the proof of Theorem 2.2, it is harmless to set µt = 0 so we do

it in what follows. Write,

1

2
∆nσ̂

2
n,f (t)− Vε =

1

2
∆n(An +Bn + Cn)− Vε,

where

An =
n∑

i=1

fn(ti−1 − t)(∆Yi)
2

Bn = 2

n∑

i=1

fn(ti−1 − t)∆Yi(εi − εi−1)

Cn =
n∑

i=1

fn(ti−1 − t)(εi − εi−1)
2.

For the first term An, we can simply apply Theorem 2.2 and obtain that ∆nAn = Op(∆n). Next,

write Bn =
√
fn(0)

∑n
i=1 UB,i where

UB,i :=
2√
fn(0)

fn(ti−1 − t)∆Yi(εi − εi−1).
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We have Ei−1[UB,i] = 0 and, using the independence of the noise,:

n∑

i=1

Ei−1

[
U2
B,i

]
= 4

n∑

i=1

f2n(ti−1 − t)

fn(0)
Ei−1

[
(∆Yi)

2
]
Ei−1[(εi − εi−1)

2]

= 4

n∑

i=1

f2n(ti−1 − t)

fn(0)
Ei−1

[
(∆Yi)

2
]
(Vǫ + ǫ2i−1)

Now notice that, using the boundedness on σs and Eq. (A.2),

Ei−1[(∆Yi)
2] =

∫ ti

ti−1

Ei−1[σ
2
s ]ds = σ2

ti−1
∆n +

∫ ti

ti−1

Ei−1[σ
2
s − σ2

ti−1
]ds

= σ2
ti−1

∆n +Op

(
∆

1+Γ/2

n

)
(A.16)

so that we can write:

n∑

i=1

Ei−1

[
U2
B,i

]
= 4

n∑

i=1

f2n(ti−1 − t)

fn(0)
(σ2

ti−1
∆n +Op(∆

1+Γ/2

n ))(Vε + ε2i−1)

= 8
n∑

i=1

f2n(ti−1 − t)

fn(0)
σ2
ti−1

∆nVε + op(1) +RB,n

where the op(1) terms is the term multiplying Op

(
∆

1+Γ/2

n

)
, while

RB,n = 4

n∑

i=1

f2n(ti−1 − t)

fn(0)
σ2
ti−1

∆n(ε
2
i−1 − Vε)

p−→ 0

by a generalized version of the law of large numbers, since E[RB,n] = 0 and

16

n∑

i=1

f4n(ti−1 − t)

f2n(0)
E[σ4

ti−1
]∆

2

nE[(ε
2
i−1 − Vε)] = Op(fn(0)∆n)

by the boundedness of σs, the finiteness of the moments of the ǫ and by Eq. (2.8). This proves that
∑n

i=1 Ei−1

[
U2
B,i

] p→ 8Vεcf (σ
2)⋆(t). Similarly, using also the BDG inequality,

n∑

i=1

Ei−1

[
U4
B,i

]
= 16

n∑

i=1

f4n(ti−1 − t)

f2n(0)
Ei−1

[
(∆Yi)

4
]
Ei−1[(εi − εi−1)

4]

≤ 16K

n∑

i=1

f4n(ti−1 − t)

f2n(0)
Ei−1

[
(∆Yi)

2
]2
Ei−1[(εi − εi−1)

4]

= 16K
n∑

i=1

f4n(ti−1 − t)

f2n(0)
σ4(ti−1)∆

2
iEi−1[(εi − εi−1)

4] + op(1)

= Op(fn(0)∆n) → 0

Then
Bn√
fn(0)

−→ MN
(
0, 8Vεcf (σ

2)⋆(t)
)
,

that is, ∆nBn = Op(∆n

√
fn(0)). Now consider the term Dn := 1

2∆nCn − Vε. Write:

UC,i =
1√

∆nfn(0)

1

2
fn(ti−1 − t)∆n

[
(εi − εi−1)

2 − 2Vε
]
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and notice that, since
∑n

i=1 fn(t − ti−1)∆n − 1 = O(Ln∆n) + o(
√
fn(0)∆n), we have Dn =

√
∆nfn(0)

∑n
i=1 UC,i + op

(√
∆nfn(0)

)
. We immediately have E[UC,i] = 0, and:

n∑

i=1

E[U2
C,i] =

1

4

n∑

i=1

1

fn(0)
f2n(ti−1 − t)∆n

(
2κε + 2V 2

ε

)

p−→ 1

2
cf
(
κε + V 2

ε

)
,

while:

n∑

i=1

E[U4
C,i] =

1

16

n∑

i=1

1

fn(0)2
f4n(ti−1 − t)∆

2

nE
[(
(εi − εi−1)

2 − 2Vε
)4]

= Op(fn(0)∆n)

which proves that Dn = Op

(√
fn(0)∆n

)
, which is the leading order, and also proves the statement

in Eq. (3.2).

Theorem 3.2. Write Yi := Yti and Xi := Xti . We have:

σ̂2,TS
n,n̄ (t) =

1

n

n−n+1∑

i=1

fn(ti−1 − t)(Yi+n−1 − Yi−1)
2

+
1

n

n−n+1∑

i=1

fn(ti−1 − t)(ǫi+n−1 − ǫi−1)
2

+
2

n

n−n+1∑

i=1

fn(ti−1 − t)(ǫi+n−1 − ǫi−1)(Yi+n−1 − Yi−1)

− 1

n

n−n+1∑

i=1

fn(ti−1 − t)(Yi − Yi−1)
2

− 1

n

n−n+1∑

i=1

fn(ti−1 − t)(ǫi − ǫi−1)
2

− 2

n

n−n+1∑

i=1

fn(ti−1 − t)(ǫi − ǫi−1)(Yi − Yi−1)

:= A1 +A2 +A3 +B1 +B2 +B3

and define C2 = A2 +B2 and C3 = A3 +B3.

Start with A1 and write:

A1 =
1

n

n−n−1∑

i=1

fn(ti−1 − t)




n∑

j=1

(Yi−1+j − Yi−1+j−1)




2

=
1

n

n∑

i=1

(Yi − Yi−1)
2
n∧i∑

j=1

fn(ti−j − t)

+
2

n

n−n+1∑

i=1

fn(ti−1 − t)
n∑

j>k≥0

(Yi−1+j − Yi−1+j−1) (Yi−1+k − Yi−1+k−1)

:= a+ b

29



Using the Lipschitz property of fn:

fn(ti−j − t) = fn(ti−1 − t) +O(Ln(j − 1)∆n) (A.17)

so that, using Theorem 2.2,:

a =
n∑

i=1

fn(ti−1 − t)(Yi − Yi−1)
2


n ∧ i

n
+

1

n

n∧i∑

j=1

O(Ln(j − 1)∆n)




=

n∑

i=1

fn(ti−1 − t)(Yi − Yi−1)
2

(
1 +

n ∧ i− n

n
+O(Lnn∆n)

)

=

(
(σ2)⋆(t) +Op

(√
fn(0)∆n

))
+ (end effect) +Op(Lnn∆n)

The explicit evaluation of the end effect, using the properties of fn in Assumptions 3 and Eq. (A.2),

gives:

n∑

i=1

fn(ti−1 − t)(Yi − Yi−1)
2n ∧ i− n

n
=

n−1∑

i=1

fn(ti−1 − t)(Yi − Yi−1)
2 i− n

n
= Op(n∆n) (A.18)

Thus we have proved that a − (σ2)⋆(t) = op

(√
fn(0)n∆n

)
. For the term b, write, using again the

Lipschitz property (A.17), rearranging the terms in the sum and evaluating end effects as in Eq. (A.18),

b =
2

n

n∑

i=n

(Yi − Yi−1)

n−1∑

j=1

fn(ti−j−1 − t)(Yi−1 − Yi−j−1) + (end effects)

=
2

n

n∑

i=n

(Yi − Yi−1)
n−1∑

j=1

(
fn(ti−1 − t) +O(Lnn∆n)

)
(Yi−1 − Yi−j−1) + op

(√
fn(0)n∆n

)

=
2

n

n∑

i=n

fn(ti−1 − t)(Yi − Yi−1)

n−1∑

j=1

j−1∑

k=0

(Yi−j+k − Yi−j+k−1) + op

(√
fn(0)n∆n

)

=2

n∑

i=n

fn(ti−1 − t)(Yi − Yi−1)

n−1∑

j=1

(
1− j

n

)
(Yi−j − Yi−j−1) + op

(√
fn(0)n∆n

)

:=

n∑

i=n

bn,i + op

(√
fn(0)n∆n

)

Now, Ei−1[bn,i] = 0 and, using Eq. (A.16):

n∑

i=n

Ei−1[b
2
n,i] = 4

n∑

i=n

f2n(ti−1 − t)Ei−1[(Yi − Yi−1)
2]




n−1∑

j=1

(
1− j

n

)
(Yi−j − Yi−j−1)




2

= 4
n∑

i=n

f2n(ti−1 − t)
(
σ2
ti−1

∆n +Op(∆
1+Γ/2

n )
)



n−1∑

j=1

(
1− j

n

)
(Yi−j − Yi−j−1)




2

=
(
1 +Op(∆

Γ/2

n )
)
·


4

n∑

i=n

f2n(ti−1 − t)σ2
ti−1

∆n

n−1∑

j=1

(
1− j

n

)2

(Yi−j − Yi−j−1)
2
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+8

n∑

i=n

f2n(ti−1 − t)σ2
ti−1

∆n

n−1∑

j>k≥0

(
1− j

n

)(
1− k

n

)
(Yi−j − Yi−j−1)(Yi−k − Yi−k−1)




:=
(
1 +Op(∆

Γ/2

n )
)
(c+ d)

Now write

(Yi−j − Yi−j−1)
2 =

(∫ ti−j

ti−j−1

σsdWs

)2

=

=

(∫ ti−j

ti−j−1

(
σs − σti−j−1

)
dWs + σti−j−1

∆i−jWs

)2

=

(∫ ti−j

ti−j−1

(
σs − σti−j−1

)
dWs

)2

+ 2σti−j−1
∆i−jWs

∫ ti−j

ti−j−1

(
σs − σti−j−1

)
dWs + σ2

ti−j−1
(∆i−jWs)

2
,

and, accordingly, c = c1 + c2 + c3. Using the boundedness of σs, BDG inequality and property (2.2) it

is straightforward to prove that c1 is op(n∆nfn(0)), and further using the Holder inequality also c2 is

proved to be op(n∆nfn(0)). We then deal with the term c3. Start by noticing that we can rearrange

the sums and neglect end-effects which are given by O(n2) terms of the same kind of the Op(nn) terms

that we are going to retain, which are the following:

c3 =4

n∑

i=n

f2n(ti−1 − t)σ2
ti−1

∆n

n−1∑

j=1

(
1− j

n

)2

σ2
ti−j−1

(∆i−jWs)
2

=4

n−n+1∑

i=n−1

σ2
ti(∆i+1Ws)

2∆n

n−1∑

j=1

(
j

n

)2

σ2
ti+n−j

f2n(ti+n−j − t)

Now we use the properties of fn, the boundedness of σ and Lemma A.1 to show that:

c3 =4

n−n+1∑

i=n−1

σ2
ti(∆i+1Ws)

2∆n

n−1∑

j=1

(
j

n

)2

σ2
ti+n−j

(
f2n(ti−1 − t) +Op(L

2
n∆nn)

)

=4

n−n+1∑

i=n−1

σ2
ti(∆i+1Ws)

2∆n

n−1∑

j=1

(
j

n

)2 [
σ2
ti + (σ2

ti+n−j
− σ2

ti)
]
f2n(ti−1 − t)

+ op(n∆nfn(0))

:=c4 + c5 + op(n∆nfn(0))

The term c4 = 4
∑n−n+1

i=n−1 σ
2
ti(∆i+1Ws)

2∆n

∑n−1
j=1

(
j
n

)2
σ2
tif

2
n(ti−1 − t) =

∑n−1
i=0 c4,n,i + end effects is

the leading term since:

1

n∆nfn(0)

∑
Ei[c4,n,i] = 4

n−n+1∑

i=n−1

f2n(ti−1 − t)

fn(0)
σ4
ti∆n

1

n

n−1∑

j=1

(
j

n

)2
p−→ 4

3
cf (σ

4
t )

⋆
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and, using property 2.9 and the Lipschitz property of f4n:

1

(n∆nfn(0))2

∑
Ei[c

2
4,n,i]

p−→ 0

which shows that c4/(n∆nfn(0))
p−→ 4

3cf (σ
4
t
)⋆. The term c5 is instead negligible, since:

1

n∆nfn(0)
E[|c5|] ≤K

n−n+1∑

i=n−1

∆n
1

n

n−1∑

j=1

(
j

n

)2

E
[∣∣∣σ2

ti+n−j
− σ2

ti

∣∣∣
] f2n(ti−1 − t)

fn(0)

≤K(∆nn)
2Γ → 0

Now consider the d term. Write d =
∑n

i=n δn,i and, using Cauchy-Schwartz, BDG and the bound-

edness of σt,

n∑

i=n

Ei−1[δ
2
n,i] =64

n∑

i=n

f4n(ti−1 − t)σ4
ti−1

∆
2

n·

· Ei−1







n−1∑

j>k≥0

(
1− j

n

)(
1− k

n

)
(Yi−j − Yi−j−1)(Yi−k − Yi−k−1)




2



≤K
n∑

i=n

f4n(ti−1 − t)∆
2

nEi−1







n−1∑

j≥0

(
1− j

n

)
(Yi−j − Yi−j−1)




2

 ·

· Ei−1







n−1∑

k≥0

(
1− k

n

)
(Yi−k − Yi−k−1)




2



≤64K
n∑

i=n

f4n(ti−1 − t)∆
2

n




n−1∑

j≥0

(
1− j

n

)2

∆n


 ·

·




n−1∑

k≥0

(
1− k

n

)2

∆n




≤64K

n∑

i=n

f4n(ti−1 − t)∆
4

nn
2 = o(f2n(0)∆

3

nn
2) → 0

since (1 − j/n)2 ≤ 1. This proves that d is negligible with respect to c. Finally, using the same

technique:

n∑

i=n

Ei−1[c
4
n,i] = 16

n∑

i=n

f4n(ti−1 − t)Ei−1[(Yi − Yi−1)
4]




n−1∑

j=1

(
1− j

n

)
(Yi−j − Yi−j−1)




4

≤ 16K

n∑

i=n

f4n(ti−1 − t)∆
2

n




n−1∑

j=1

(
1− j

n

)
(Yi−j − Yi−j−1)




4

and the expected value of the last term is limited, using again BDG, by

16K

n∑

i=n

f4n(ti−1 − t)∆
4

nn
2 = o(fn(0)

2∆
3

nn
2) → 0,
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implying that also the limit in probability is 0.

Finally consider 1√
nfn(0)∆n

∑n−1
i=n Ei−1[bn,i∆Hi] where H = W or H = B as in the proof of

Theorem 2.2. When H = B, :

n−1∑

i=n

Ei−1[bn,i∆Bi] =

n∑

i=n

fn(ti−1 − t)Ei−1 [(Yi − Yi−1)∆Bi]

n−1∑

j=1

(
1− j

n

)
(Yi−j − Yi−j−1)

and this converges to zero since, using the same notations as in the proof of Theorem 2.2 (Yi−Yi−1) =

∆Mi and Ei−1 [∆Mi∆Bi] = 0. When H =W , using the same technique as above,:

1√
nfn(0)∆n

n−1∑

i=n

Ei−1[bn,i∆Wi] ≤

√√√√ 1

nfn(0)∆n

n−1∑

i=n

Ei−1[b2n,i]Ei−1[(∆Wi)2]

=

√√√√√ 1

nfn(0)∆n

n−1∑

i=n

f2n(ti−1 − t)Ei−1 [(Yi − Yi−1)2]




n−1∑

j=1

(
1− j

n

)
(Yi−j − Yi−j−1)




2

∆n

=

√√√√ 1

fn(0)

n−1∑

i=n

f2n(ti−1 − t)Op(∆
4

n) → 0

Altogether, this proves that:
(
A1 − (σ2)⋆

t

)
√
nfn(0)∆n

−→ MN
(
0,

4

3
cf (σ

4)⋆t

)

stably in law.

Next, consider B1. By Theorem 2.2, B1 = Op(fn(0)∆n/n) and can be neglected with respect to

A1. Consider now C2 and C3. Start with C2 :=
∑n−n+1

i=1 αn,i where

αn,i =
1

n
fn(t− ti−1)

(
(ǫi+n−1 − ǫi−1)

2 − (ǫi − ǫi−1)
2
)

Using the fact the the ǫs are iid, we have E[αn,i] = 0 and:

n−n+1∑

i=1

E[α2
n,i] =

fn(0)

n2∆n

n−n+1∑

i=1

fn(t− ti−1)
2

fn(0)
∆n

(
6V 2

ǫ + 2κǫ
)

which implies, provided
∑n−n+1

i=1 E[α4
n,i]

p→ 0 which is readily proved, that

n

√
∆n

fn(0)
· C2 −→ N

(
0, cf

(
6V 2

ǫ + 2κǫ
))
.

We next have C3 :=
∑n−n+1

i=1 βn,i where

βn,i =
2

n
fn(t− ti−1) ((ǫi+n−1 − ǫi−1)(Yi+n−1 − Yi−1)− (ǫi − ǫi−1)(Yi − Yi−1))

Again, Ei−1[βn,i] = 0 and, using the same techniques above and the law of large numbers in the last

step:

n−n+1∑

i=1

Ei−1[β
2
n,i] =

4

n2

n−n+1∑

i=1

f2n(t− ti−1)
[
(Vǫ + ǫ2i−1)Ei−1[(Yi+n−1 − Yi−1)

2]
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+ (Vǫ + ǫ2i−1)Ei−1[(Yi − Yi−1)
2] + 2ǫ2i−1Ei−1[(Yi+n−1 − Yi−1)(Yi − Yi−1)]

]

=
4fn(0)

n2

n−n+1∑

i=1

f2n(t− ti−1)

fn(0)

[
(Vǫ + ǫ2i−1)σ

2
ti−1

n∆n

+(Vǫ + ǫ2i−1)σ
2
ti−1

∆n + 2ǫ2i−1σ
2
ti−1

∆n

]
+ op(1)

=Op(fn(0)/n)

which implies that C2 is the leading term.

Thus, the dominating terms are (A1 − (σ2)∗
t
) = Op((nfn(0)∆n)

1/2) and C2 =

Op(fn(0)
1/2(∆n)

−1/2(n)−1). The two asymptotic rates coincide when n ∼ ∆
−2/3

n as stated, leading to

the desired result.

Theorem 3.3. Denote by X = Y + J where Y is a continuous semimartingale. By virtue of Theorem

1 in Mancini [35], for n large enough, we can write, almost surely,

/̂σ
2

n,f (t) =

n∑

i=1

fn(ti−1 − t)(∆Yi)
2 −

n∑

i=1

fn(ti−1 − t)(∆Yi)
2I{∆Ni 6=0}.

Theorem 2.2 can be applied to the first term, while the second term is Op(NT∆nfn(0)), or equivalently,

op

(√
∆nfn(0)

)
, where NT is the Poisson counting process and is vanishing in the limit.

Lemma A.2. Result (A.6) continues to hold also when fn(x) is given by the Fejér sequence.

Proof. Firstly, remark that for any bounded process A we have

n∑

j=1

∫ tj

tj−1

∣∣fn(s− t)− fn(tj−1 − t)
∣∣ |As|ds ≤ (A.19)

C

n∑

j=1

∫ tj

tj−1

∣∣∣∣∣∣

∑

|k|≤N

(
1− |k|

N

)(
eik(s−t) − eik(tj−1−t)

)
∣∣∣∣∣∣
ds

∼ C

n∑

j=1

∫ tj

tj−1

∣∣∣∣∣∣

∑

|k|≤N

(
1− |k|

N

)
eik(s−t)ik∆j

∣∣∣∣∣∣
ds = C∆n

n∑

j=1

∫ tj

tj−1

fn(s− t)Nds ≤ CN∆n,

where ∼ denotes asymptotic equivalence. It follows from supx |fn(x)| ≤ fn(0) that

1

fn(0)

∣∣∣∣∣∣

n∑

j=1

f2n(tj−1 − t)

∫ tj

tj−1

Asds−
∫ T

0

f2n(s− t)Asds

∣∣∣∣∣∣
= (A.20)

1

fn(0)

∣∣∣∣∣∣

n∑

j=1

∫ tj

tj−1

(f2n(tj−1 − t)− f2n(s− t))Asds

∣∣∣∣∣∣
=

1

fn(0)

∣∣∣∣∣∣

n∑

j=1

∫ tj

tj−1

(fn(tj−1 − t)− fn(s− t))(fn(tj−1 − t) + fn(s− t))Asds

∣∣∣∣∣∣
≤

C

n∑

j=1

∫ tj

tj−1

|fn(tj−1 − t)− fn(s− t)||As|ds ≤ CN∆n.
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Therefore, for the Fejér sequence in place of (A.4) we will make use of

1

fn(0)

∣∣∣∣∣∣

n∑

j=1

f2n(tj−1 − t)

∫ tj

tj−1

Asds−
∫ T

0

f2n(s− t)Asds

∣∣∣∣∣∣
≤ CN∆n (A.21)

Secondly, for the Fejér sequence there exists a sequence εn of positive numbers s.t. ε2nN →
∞ and

∫
|x|>εn

fn(x)dx → 0. As fn ≥ 0,
∫
|x|≤εn

fn(x)dx → 1, supx |fn(x)| ≤ Cfn(0) and
∫
|x|≤εn

f2n(x)/fn(0)dx → cf , by Proposition 2.1, we obtain that (2.7) holds true. In order to show

(A.6) we check that the following tends to 0 in probability:

1

fn(0)

n∑

i=1

f2n(ti−1 − t)A(ti−1)
∆2

i

∆n

− cf (H
′A)⋆t =

1

fn(0)

n∑

i=1

f2n(ti−1 − t)A(ti−1)
∆2

i

∆n

− 1

fn(0)

∫ T

0

f2n(s− t)(H ′A)sds+ oP (1) =

An +Bn + oP (1),

where

An =
1

fn(0)

∫ T

0

∑

i

[f2n(s− t̄)− f2n(ti−1 − t̄)]I]ti−1,ti](s)(H
′A)sds,

Bn =
1

fn(0)

∫ T

0

∑

i

f2n(ti−1 − t̄)[(H ′A)s −Ati−1
∆i/∆n]I]ti−1,ti](s)ds.

An coincides with A.20 and tends a.s. to zero. As for Bn, split it as Bn = B1,n +B2,n where

B1,n =
1

fn(0)

∑

i

∫ ti

ti−1

f2n(ti−1 − t̄)H ′
s[As −Ati−1

]ds,

B2,n =
1

fn(0)

∑

i

∫ ti

ti−1

f2n(ti−1 − t̄)[(H ′
s −∆i/∆n]Ati−1

ds.

For B2,n use that:
f2
n(ti−1−t̄)
fn(0)

≤ |fn(ti−1 − t̄)| = fn(ti−1 − t̄); assumption (2.4) which implies that, for

all i = 1..n, sups∈]ti−1,ti] |H ′(s)−∆i/∆n| ≤ K∆n; the boundedness of A and note that from A.19 we

have
∑

i fn(ti−1 − t̄)∆i =
∫ T

0
fn(s− t̄)ds+OP (N∆n) → 1, so

|B2,n| ≤
∑

i

∫ ti

ti−1

fn(ti−1 − t̄)C∆ids ≤ ∆n

∑

i

fn(ti−1 − t̄)∆i → 0.

For B1,n we proceed analogously as from (A.8) to the end of the proof of ii) by replacing (A.4) with

(A.21), and using for the last inequality that fn ≥ 0 we end up with ∆
Γ

n

∫ T

0
fn(s− t)ds→ 0.

Proposition 4.1. As above, it is harmless to assume that µ = 0. Write,

σ2
n,F (t)− (σ2)⋆t = TE +DE +ME

where

TE = truncation error =

∫ T

0

fn(s− t)σ2
sds− (σ2)⋆t ,
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DE = discretization error =

n∑

i=1

fn(ti−1 − t)

∫ ti

ti−1

σ2
sds−

∫ T

0

fn(s− t)σ2
sds,

ME = martingale error =

n∑

i=1

fn(ti−1 − t)(∆Xi)
2 −

n∑

i=1

fn(ti−1 − t)

∫ ti

ti−1

σ2
sds.

For the martingale error, we do the same as in the proof of Theorem 2.2 to show that

1

∆nfn(0)

(
ME − (σ2)⋆t

)
→ MN

(
0,

4

3
(σ4H ′)⋆t

)
,

having also used Lemma A.2.

For the term DE, by (A.21) we have, for a suitable constant C,

|DE| ≤ CN∆n,

thus
√

n
NDE → 0 and DE is negligible.

For the term TE, with no loss of generality we can take T = π, so that we have t ∈ (0, π). Note

that, in the case Γ = 1, for the Fejér sequence choosing e.g. εn = N−α and N = nδ with α > 0 and

δ ∈ (1/2, 1) sufficiently close to 1, fulfills the requested requirements for (n,N, εn), which also imply

the requirements in Proposition (2.1). For large n we then have

TE = R(σ2)
n =

∫ T

0

fn(s− t)σ2
sds− (σ2)⋆t

=

∫ π−t

−t

fn(x)σ
2
x+tdx−

∫ π

−π

fn(x)(σ
2)⋆t dx

=TE1 + TE2 − TE3,

where

TE1 =

∫

|x|≤εn

fn(x)(σ
2
x+t − (σ2)⋆t )dx,

TE2 =

∫

{|x|>εn}∩(−t,π−t)

fn(x)(σ
2
x+t − (σ2)⋆t )dx,

TE3 =

∫

(−π,−t)∪(π−t,π)

fn(x)(σ
2)⋆t dx.

For large n, TE2, TE3 ≤
∫
|x|>εn

fn(x)dx by the boundedness of σ and it turns out that both TE2 and

TE3 are O(1/(Nε2n)), so that
√

n
N (TE2 − TE3) = O(

√
n/(N3ε4n)) → 0. As for TE1, we take n such

that εn < ε, with ε as in (2.2), so that for |x| ≤ εn we have E[|σ2
x+t

− (σ2)⋆
t
|] ≤ Cε

Γ/2
n and thus

√
n

N
E[|TE1|] ≤

√
n

N

∫

|x|≤εn

fn(x)E[|σ2
x+t − (σ2)⋆t |]dx ≤

√
nεΓn
N

→ 0,

which shows that the whole TE is negligible.

Proposition 4.2. From Eq. (4.1)-(4.3) we have

σ̂2,F
n,n′,N (t) =

∑

|k|≤N

(
1− |k|

N

)
 T

2n′ + 1

∑

|s|≤n′

Fn(dX)(s)Fn(dX)(k − s)


 eikτ
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=
1

T

∑

|k|≤N

(
1− |k|

N

)
 1

2n′ + 1

∑

|s|≤n′

n∑

j′=1

n∑

j=1

e−isτj′−1e−i(k−s)τj−1∆Xj∆Xj′


 eikτ

=
1

T

∑

|k|≤N

(
1− |k|

N

)
 1

2n′ + 1

∑

|s|≤n′




n∑

j=1

e−ikτj−1(∆Xj)
2+

+

n∑

j′ 6=j=1

e−isτj′−1e−i(k−s)τj−1∆Xj′∆Xj




 eikτ

=
1

T

n∑

j=1

∑

|k|≤N

(
1− |k|

N

)
eik(τ−τj−1)(∆Xj)

2

+
1

T (2n′ + 1)

n∑

j′ 6=j=1

∑

|k|≤N

(
1− |k|

N

)
eik(τ−τj−1)

∑

|s|≤n′

eis(τj−1−τj′−1)∆Xj′∆Xj .

By the definitions of Dirichlet and Fejér sequences as given in equations (2.14) and (2.15), we then get

the main statement of the Proposition.
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[23] Hoffmann, M.: Lp estimation of the diffusion coefficient. Bernoulli 5(3), 447–481 (1999)

[24] Hoffmann, M.: Rate of convergence for parametric estimation in a stochastic volatility model.

Stochastic Processes and Applications 97, 147–170 (2002)

[25] Jacod, J.: On continuous conditional Gaussian martingales and stable convergence in law,
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