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Abstract

In this paper, we construct non parametric estimators of the volatility of volatil-
ity and the leverage component (covariance between the asset price and the volatility
process) in the framework of one dimensional stochastic volatility model. The main
feature of our estimator is that, given discrete observations of the price process, we
are able to reconstruct the entire trajectory of the volatility. Thus, we handle the
volatility as an observable variable and the Fourier coefficients of the volatility of
volatility and the leverage processes can be computed. The estimators of the inte-
grated quantities are easily obtained by means of the zero-Fourier coefficients. We
prove consistency and feasible central limit theorems for the proposed estimators.
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Fourier transform, high frequency data.

1 Introduction

Stochastic volatility models are widely recognized to be able to reproduce many features
of the asset returns such as time-varying volatility, volatility clustering and the leverage
effect, i.e. the usual negative correlation between asset price and volatility. Many exper-
imental studies have pointed out that parametric models, e.g Heston model and CEV
models, can reproduce this stylized facts [19]. For this reason, statistical inference for
stochastic volatility models mostly focuses on parametric methods. Usually, the estima-
tions obtained are strictly connected with the model used for the asset price dynamics; a
survey on early estimation methods can be found in [10]. Nevertheless, the standard maxi-
mum likelihood theory is unavailable in this context, because in most cases it is impossible
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to assess the distribution of the price process. A considerable exception is represented by
the paper of [8], in which the authors obtain a Generalized Method of Moments (GMM)
estimator able to overcome the problem for the estimation of the parameters of the Heston
model.

In our paper we extend this line of investigation by proposing an estimator of the
diffusion component of the volatility process which is supposed to be a general continuous
semimartingale. This means that we work in a model free context and we do not assume
the knowledge of the functional form of the volatility of variance. We construct non-
parametric estimators of both the spot and the integrated variance of volatility based on
the Fourier methodology introduced by [20] to estimate multivariate volatility. Moreover,
assuming a stochastic dynamics for the variance of volatility allows us to construct novel
estimators of the leverage process based on the same procedure. The study of the present
paper will be devoted to explore the issues relative to the estimation of volatility of
volatility and leverage processes focusing our attention on the asymptotic properties of
the estimators.

Adding a source of randomness in the diffusion component of the volatility process
is one of the directions taken by financial econometrics to better explain the asset price
volatility dynamics [2] and its application in forecasting model [12],[13], [7], time variance
risk premium [9], [5], [15] and inference on the spot volatility [25]. It is in this direction
that the present paper should be read.

The Fourier analysis methodology has been applied for the first time to the compu-
tation of the spot volatility and covariance in [20] and has been developed in [21]. The
Fourier estimation procedure allows to consider price observations which are not equally
spaced and (in the multivariate case) not synchronous; it uses all the available observa-
tions and avoids any ”synchronization” of the original data, because it is based on the
integration of the time series of returns rather than on its differentiation. Further the spot
volatility is obtained without performing any numerical derivative, which causes numeri-
cal instabilities. Finally, [22] and [23] show that the integrated estimators of volatility and
covariance are robust under microstructure noise.

We extend the Fourier methodology by presenting an iterative procedure to get the
Fourier coefficients of the volatility of volatility, the leverage component (asset price-
volatility covariance) and the variance of the estimation errors.

Starting from the discrete observations of the price process trajectory, we compute the
Fourier coefficients of the volatility. Then, we reconstruct the trajectory of volatility and
can handle it as an observable variable. We iterate the procedure to compute the Fourier
coefficients of the volatility of volatility and the leverage functions. Using the inverse
Fourier transform we obtain spot estimators of the examined stochastic functions. We can
also construct integrated estimators by means of the estimated zero Fourier coefficients. To
the best of our knowledge, the Fourier estimator is the only one that allows to compute a
historical estimation of the trajectory of all the stochastic functions relevant in a stochastic
volatility model. In particular, [6] show that if we have estimations of the trajectory of the
variance of volatility and the leverage, we have a methodology to compute for example
the parameters of the diffusion process of an Heston model that overcome the problems
that we have using a pure parametric estimation method. Finally, in order to produce
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feasible asymptotic theorems for the estimators of variance we extend a procedure that
has been apply in [24] to the estimation of quarticity.

In [2] and [30] two alternative iterative procedures to compute the volatility of volatil-
ity are proposed, which are based on the quadratic variation formula. As it is highlighted
in [21], the definition of the Fourier-type estimators does not depend on the features of
the considered sample, in contrast with the quadratic variation type estimators, which
essentially need synchronous data. For this reason, we choose the Fourier methodology
in order to construct estimators that do not need any manipulation of data and are of
immediate application in any scenario.

This paper is organized as follows. In the second section we describe the iterative
procedure in detail. It is obtained by slightly modifying the estimators of the Fourier
coefficients of the volatility of volatility and leverage functions defined in the paper [6]. In
the third section we study the asymptotic properties for the estimators of the volatility of
volatility. We attain the consistency of the estimators in the case of unevenly spaced price
observations and a feasible central limit theorem for the integrated estimator in the case
of evenly spaced price observations. In the fourth section we turn our attention to the
asymptotic results obtained for the estimators of the leverage function. On finite sample,
in the fifth section we test the accuracy of the asymptotic approximation of the integrated
volatility of volatility estimator with numerical simulations.
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2 The Fourier Estimator

We study estimations of the volatility of volatility and leverage functions of a wide class
of stochastic volatility model. In the sequel, we call p(t) the log-asset price process and
ν(t) the volatility process {

dp(t) = σ(t)dW (t) + a(t)dt
dν(t) = γ(t)dZ(t) + b(t)dt.

(1)

where ν(t) = σ2(t), W (t) and Z(t) are correlated Brownian motions on a filtered proba-
bility space (Ω, (Ft)t∈[0,T ],P), satisfying the usual conditions. We construct estimators of
the process γ2(t), the so called volatility of volatility, and of the leverage process η(t),
which is defined by means of the Itô contraction between the price and volatility

< dp(t), dν(t) >= η(t)dt.

We stress the fact that we do not assume any specific functional form of the volatility
process or of the volatility of volatility process, thus we are working in a model free
setting. In particular, the most common models (e.g. Heston, CEV) are included in our
assumption (1).
By change of the origin of time and rescaling the unit of time, we can always reduce
ourselves to the case where the time window [0, T ] becomes [0, 2π]. For this reason, in
what follows we will consider the time window as [0, 2π] that is the most suitable choice
if we want to apply Fourier analysis. We make the following hypotheses on the processes
that appear in (1):

• (H.1) a(t), b(t), σ(t), γ(t) are continuous in [0, 2π] and adapted to the filtrazion Ft,

• (H.2) ∀p ≥ 1

E
[

sup
t∈[0,2π]

|a(t)|p
]
<∞, E

[
sup

t∈[0,2π]

|b(t)|p
]
<∞,

E
[

sup
t∈[0,2π]

|σ(t)|p
]
<∞, E

[
sup

t∈[0,2π]

|γ(t)|p
]
<∞,

• (H.3) ∀p ≥ 1, the processes σ, γ ∈ D1,p and

E
[
sups,t∈[0,2π]

∣∣∣Dsσ(t)
∣∣∣p] <∞, E

[
sups,t∈[0,2π]

∣∣∣Dsγ(t)
∣∣∣p] <∞.

where D1,p is the Sobolev space of generalized derivative in the sense of Malliavin
and D is the Malliavin derivative [26].

Let us turn our attention to the iterative procedure that allows us to define the
Fourier coefficients of γ2 and η. Starting from n discrete observations of p(t) on the
interval [0, 2π]- the sampling being either evenly spaced or unevenly spaced- we denote
the discrete observed returns by δk(p) = p(tk+1)−p(tk) for all k = 0, ..., n−1. The discrete
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Fourier coefficients of the return process are defined for any integer s such that |s| ≤ M
as follows

cs(dpn) =
1

2π

n−1∑
k=0

e−istkδk(p). (2)

First iteration: we compute an estimation of the Fourier coefficients of volatility
process using the Bohr convolution product of the Fourier coefficients of the return process
for any integer h such that h ≤ L

ch(νn,M) =
2π

2M + 1

∑
|s|≤M

cs(dpn)ch−s(dpn). (3)

The numbers M and L are called cutting frequencies and are respectively related to
the estimations of the Fourier coefficients and the spot volatility process as we see in a
moment. In [21] and [11] it is shown that the estimator (3) is consistent. Using the inverse
Fourier transform, the trajectory of volatility for all t ∈ (0, 2π) is consistently estimated
[21] by

νn,L,M(t) =
∑
|h|≤L

(
1− |h|

L

)
eihtch(νn,M). (4)

The estimator (4) is constructed such that it preserve the positivity of the volatility
function ∀t ∈ (0, 2π) (see Remark 2.3 in [21]). For this reason we will use the same Fourier
inversion formula to obtain spot estimators of volatility of volatility and leverage in order
to preserve the sign of the examined functions.

Second iteration: we handle the volatility as an observable variable and estimate
the Fourier coefficients of the process γ2(t) for any integer l, j such that |l| ≤ N and
|j| ≤ N - where N is the cutting frequency related to the estimations of the Fourier coef-
ficients of the processes γ2 and η and their trajectories.
Using the Bohr convolution product as in (3), we get the Fourier coefficients of the volatil-
ity of volatility

cj(γ
2
n,N,L,M) =

2π

2N + 1

∑
|l|≤N

cl(dνn,L,M)cj−l(dνn,L,M). (5)

The Fourier coefficients of the leverage are defining using the procedure developed in [21]
for the computation of covariance in a multivariate setting, as follows

cj(ηn,N,L,M) =
2π

2N + 1

∑
|l|≤N

cl(dνn,L,M)cj−l(dpn). (6)

In the above definitions, we consider

cl(dνn,L,M) = ilcl(νn,M) +
1

2π

(
νn,L,M(2π)− νn,L,M(0)

)
. (7)
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Remark 2.1. From the integration by part formula applied to the Fourier coefficients of
the volatility process (in continuous time)

cl(ν) =
1

2π

∫ 2π

0

e−iltν(t)dt,

we obtain that

cl(dν) = ilcl(ν) +
1

2π

(
ν(2π)− ν(0)

)
.

Using the estimation of the trajectory of the process ν(t) obtained in the first iteration
and the definition (3), we get (7). We refer to the Appendix for further details regarding
the definition of the coefficients cl used in the asymptotic theory.

Remark 2.2. The choice of the cutting frequencies M , N , L is fundamental to conduct
a coherent harmonic analysis. First, we recall that in order to avoid aliasing effects in
the reconstruction of the trajectory of the process ν(t) in the time domain, we have to
choose M such that M/n < 1/2 (Nyquist frequency). It is also necessary that the rate
N/M and L/M are carefully chosen in order to obtain the asymptotic properties in the
next sections. Throughout the paper, we will use the parameters α and β defined by the
following relations

N = Mα, L = Mβ,

where 0 < α, β < 1, in order to identify the rate between the cutting frequencies.

From the second iteration we have the necessary tools to construct several estimators
of the stochastic processes appearing in (1). The estimator of spot volatility of volatility
is obtained by the Fourier inversion formula as follows

γ̂2(t) =
∑
|j|≤N

(
1− |j|

N

)
eijtcj(γ

2
n,N,L,M). (8)

The estimator of the leverage function is given by

η̂(t) =
∑
|j|≤N

(
1− |j|

N

)
eijtcj(ηn,N,L,M). (9)

Now, we turn our attention to the estimators of the integrated quantities. The integrated
volatility of volatility and the integrated leverage are defined as

γ[2] =

∫ 2π

0

γ2(t)dt, and η[1] =

∫ 2π

0

η(t)dt. (10)

By means of the zero Fourier coefficients we obtain the following estimators of the quan-
tities (10)

2πc0(γ
2
n,N,L,M), (11)

in the case of the volatility of volatility and
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2πc0(ηn,N,L,M) (12)

for the leverage.
We will return to the properties of this estimators in the next sections.

3 Volatility of volatility computation

Throughout this section, we demonstrate the asymptotic properties of the estimators
(8) and (11). Before stating the results, some comments are needed. Given a continuous
function ϕ defined in [0, 2π], denote by ωϕ(τ) the modulus of continuity defined as

ωϕ(τ) := sup
|θ−θ′ |<τ

|ϕ(θ)− ϕ(θ
′
)|

and let ck(ϕ) := F(ϕ)(k), where F denote the Fourier transform, then it holds

sup
t∈I

∣∣∣ ∑
|k|<L

(
1− |k|

L

)
eiktck(ϕ)− ϕ(t)

∣∣∣ ≤ ωϕ

( 4

L

)
, (13)

for all I compact set such that I ⊂ [0, 2π] (see the paper [31] and [28]). Assuming that
the dynamics of volatility process σ2(t) is described by a continuous semimartingale (1),
driven by the Brownian motion Z, means that the approximation (13) becomes in L2-norm
at least

E
[∣∣∣ ∑
|k|<L

(
1− |k|

L

)
eiktck(ν)− ν(t)

∣∣∣2] = O
( 1

Lλ

)
,

for all t ∈ (0, 2π), where λ/2 is the Hölder coefficient of the Brownian motion Z(t)
(0 < λ < 1). We underline this properties because the choice of the rate N/M and L/M
depends on the regularity of the examined volatility process as we see in a moment.
Finally, we remark that Fourier methodology can be applied only if we have high fre-
quencies observations of the price process and that the consistency properties of the
estimators (8) and (11) are obtained in the general case of unevenly spaced price ob-
servations whereas the central limit theorems associated with (11) in the case of evenly
spaced price observations. Hereafter, let the interval [0, 2π] sampled in n points such that
0 = t0 < ... < tk < ... < tn = 2π, we define ρ(n) = maxk=0,...,n−1 |tk+1 − tk|.

3.1 Consistency theorems

We obtain the following consistency theorem for the estimator of the spot volatility of
volatility.

Theorem 3.1. Let γ̂2(t) defined in (8). We assume that hypotheses (H) and the following
relations

N4

M
→ 0,

N2L2

M
→ 0,

N2

Lλ
→ 0, Mρ(n)→ a
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with a ∈ (0, 1
2
) hold true as N,L,M → ∞ and ρ(n) → 0. Then we have the convergence

in probability
lim

n,N,L,M→∞
sup

0<t<2π
|γ̂2(t)− γ2(t)| = 0. (14)

Proof. The first step of the proof shows the consistency of the Fourier coefficients
defined in (5). The limit in probability (14) simply follows by the convergence of Fejer
summation for continuous functions. 2

Concerning the estimator of the integrated function, we attain the following result

Theorem 3.2. Let 2πĉ0(γ
2
n,N,L,M) be the integrated estimator of volatility of volatility.

We assume that hypotheses (H) and the following relations

N4

M
→ 0,

N2L2

M
→ 0,

N2

Lλ
→ 0, Mρ(n)→ a

with a ∈ (0, 1
2
) hold true as N,L,M →∞ and ρ(n)→ 0. Then

2πc0(γ
2
n,N,L,M)

P−→ γ[2].

Therefore, it is clear that assessing the consistency of all the Fourier coefficients of
the volatility of volatility process is all we need to complete the proofs of theorems 3.1
and 3.2. The following theorem is the main result of this section

Theorem 3.3. For all |j| ≤ N , let ĉj(γ
2
n,N,L,M) be the Fourier coefficient of the volatility

of volatility process defined in (5). We assume that hypotheses (H) and the following
relations

N3

M
→ 0

N2L2

M
→ 0

N2

Lλ
→ 0 Mρ(n)→ a (15)

with a ∈ (0, 1
2
) hold true as N,L,M →∞ and ρ(n)→ 0. Then

cj(γ
2
n,N,L,M)

P−→ cj(γ
2). (16)

We point out that the above consistency properties are unaffected by the presence of
the drift components of the semi-martingale p(t) and ν(t) that give negligible contribution
to the limit in probability. We refer the reader to the Appendix for the proof of theorem
3.3.

As we have seen in the previous section, the identification of the rate N/M , L/M
are fundamental. Basically, this is due to the shift of the data analysis in the frequency
domain. The asymptotic theory developed above give us a range in which the admissible
rate can vary in order to obtain a consistent estimator. M has to be chosen proportional
to the number of observations. Recalling that N = Mα and L = Mβ, the hyphoteses (15)
imply that the parameters α and β must satisfy the following relations

4α− 1 < 0
2α + 2β − 1 < 0
2α− βλ < 0
0 < α, β < 1.
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Figure 1: The orange area identify the range in which the parameters α and β can vary
under the hypothesis (15). The admissible area is bounded by two lines that depends on
the regularity of the path of the volatility process. In all the cases, for 0 < λ < 1, a
possible choice of the parameters α and β exists.

The orange area, that we obtain in the Figure 1, identify the possible choice of the
parameters α and β.

3.2 Feasible central limit theorem for the integrated estimator

Considering the j = 0 Fourier coefficient in (16) we have a consistent estimator of the
integrated volatility of volatility (11). In this section, we study the asymptotic error
distribution of this estimator. The result have two parts. The first gives the asymptotic
distribution of the estimator of the integrated volatility of volatility.

Theorem 3.4. We assume that hypotheses (H) and the following relations

N5

M
→ 0

N3L2

M
→ 0

N3

Lλ
→ 0

M

n
→ a (17)

with a ∈ (0, 1
2
) hold true as n,N, L,M →∞. Then

√
N
(

2πc0(γ
2
n,N,L,M)− γ[2]

)
√
πγ[4]

d−→ N(0, 1), where γ[4] =

∫ 2π

0

γ4(s)ds . (18)

In the sequel, we refer to the γ[4], the integrated fourth moment of γ, as the quarticity
of the volatility of volatility. Of course, the problem with this theory is that γ[4] is unknown.
We solve this problem defining a consistent estimator of the quarticity based on the Fourier
methodology. Following [24], we can define an estimator of quarticity as follows

2πc0(γ
4
n,Q,N,L,M), (19)

where
c0(γ

4
n,Q,N,L,M) =

∑
|j|≤Q

cj(γ
2
n,N,L,M)c−j(γ

2
n,N,L,M)
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is the zero-Fourier coefficient of the function γ4(s) and the coefficients cj(γ
2) for all |j| ≤ Q

are defined in (5). We obtain the following theorem.

Theorem 3.5. We assume that hypotheses (H) and the following relations

Q2N4

M
→ 0

Q2N2L2

M
→ 0

Q2N2

Lλ
→ 0

M

n
→ 0 (20)

with a ∈ (0, 1
2
) hold true as n,N, L,M →∞. Then

2πc0(γ
4
n,Q,N,L,M)

P−→ γ[4]

An implication of this is that we can obtain a feasible asymptotic distribution for the
estimation error

√
N
(

2πc0(γ
2
n,N,L,M)− γ[2]

)
√

2π2c0(γ4
n,Q,N,L,M)

d−→ N(0, 1) (21)

The proofs of this results can be found in the Appendix. In particular, the proof of
Theorem 3.4 is based on the stable convergence of the continuous martingale processes
[16], [17]. Stable convergence is a stronger way of convergence than the weak convergence,
but it is weaker than convergence in probability. We can not prove directly that (18) holds,
therefore we have to use this theory in order to attain a proof of the central limit theorem
3.4. This result is obtained by means of analytical tools involving stochastic integrals,
Malliavin calculus, delta sequences theory and martingale inequalities.

In order to use this asymptotic result we need to assess the rate N/M , L/M and
Q/M . Recall that we select the number of frequencies M proportional to the number of
data. We define the parameters α, β and δ as follows

N = Mα L = Mβ Q = M δ,

where 0 < α, β, δ < 1. The hypotheses (17) and (20) imply that
5α− 1 < 0
3α + 2β − 1 < 0
3α− βλ < 0
0 < α, β < 1.

⋃


2δ + 4α− 1 < 0
2δ + 2α + 2β − 1 < 0
2δ + 2α− βλ < 0
0 < α, β, δ < 1.

If we choose δ = 1/16, the green area in the Figure 2 gives an example of the
admissible choice of the parameters α and β.
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Figure 2: The green area identify the range in which the parameters α and β can vary
under the hyphoteses (20) and (17) and supposing that δ = 1/16. In particular, the blue
lines depend on the hypotheses (17) and the black line on (20). The admissible area is
bounded by two lines that depends on the regularity of the path of the volatility process.
In all the cases, for 0 < λ < 1, a possible choice of the parameters α and β exists.

4 Leverage computation

In this section, we prove the asymptotic properties of the estimators (9) and (12). The
proofs of the following results use the same philosophy of the proofs for the computation
of the volatility of volatility. For this reason, in what follows we only emphasize the main
differences between the two computations and we refer the reader to the Appendix for
the proofs of the below theorems.

We start with the consistency properties of the Fourier coefficients of the leverage
function η(t) in the general case of unevenly spaced price observations.

Theorem 4.1. For all |j| ≤ N , let ĉj(ηn,N,L,M) be the Fourier coefficient of the leverage
process defined in (5). We assume that hypotheses (H) and the following relations

N2

M
→ 0

L2

M
→ 0 Mρ(n)→ a (22)

with a ∈ (0, 1
2
) hold true as N,L,M →∞ and ρ(n)→ 0. Then

cj(ηn,N,L,M)
P−→ cj(η). (23)

We define N = Mα and L = Mβ. The hypothesis (22) imply that the parameters α
and β must satisfy the following constraints{

2α− 1 < 0
2β − 1 < 0.
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Figure 3: The red area identify the range in which the parameters α and β can vary under
the hypotheses (22).

These conditions show that the admissible area in which we can choose the parameters
α and β is larger than the admissible area of Theorem 3.3 and not depend by the regularity
of volatility path (Figure 3).

As we have seen in the previous section, the Theorem 4.1 imply that the following
consistency theorems hold.

Theorem 4.2. Let η̂(t) defined in (6). We assume that hypotheses (H) and the following
relations

N2

M
→ 0

L2

M
→ 0 Mρ(n)→ a

with a ∈ (0, 1
2
) hold true as N,L,M → ∞ and ρ(n) → 0. Then we have the following

convergence in probability

lim
n,N,L,M→∞

sup
0<t<2π

|η̂(t)− η(t)| = 0.

Theorem 4.3. Let 2πĉ0(ηn,N,L,M) the integrated leverage estimator. We assume that hy-
potheses (H) and the following relations

N2

M
→ 0

L2

M
→ 0 Mρ(n)→ a

with a ∈ (0, 1
2
) hold true as N,L,M →∞ and ρ(n)→ 0. Then

2πc0(ηn,N,L,M)
P−→ η[1].

Concerning the integrated estimator (12), we can construct a feasible asymptotic
distribution for the estimation error supposing that the observed price process data are
evenly spaced. The result have two parts. The first gives the asymptotic distribution of
the integrated leverage estimator.
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Theorem 4.4. (CLT) We assume that hypotheses (H) and the following relations

N3

M
→ 0

L2N

M
→ 0

N

Lλ
→ 0

M

n
→ a (24)

with a ∈ (0, 1
2
) hold true as n,N, L,M →∞. Then

√
N
(

2πc0(ηn,N,L,M)− η[1]
)

√
πη[2]

d−→ N(0, 1), where η[2] =

∫ 2π

0

σ2(s)γ2(s) + η2(s)ds.

We refer to η[2] as the variance of the leverage estimation error and we call the spot
variance of the leverage the process η(2)(s) = σ2(s)γ2(s)+η2(s). As in the previous section
we define a consistent estimator of η[2] using the Fourier analysis as

2πc0(η
(2)
n,Q,N,L,M), (25)

where

c0(η
(2)
n,Q,N,L,M) =

∑
|j|≤Q

cj(γ
2
n,N,L,M)c−j(νn,M) + cj(ηn,N,L,M)c−j(ηn,N,L,M)

is the zero-Fourier coefficient of the function η(2)(s) and the coefficients cj(γ
2) for all

|j| ≤ Q are defined in (6). We can prove that this estimator is consistent.

Theorem 4.5. We assume that hypotheses (H) and the following relations

Q2N4

M
→ 0

Q2N2L2

M
→ 0

Q2N2

Lλ
→ 0

M

n
→ 0 (26)

with a ∈ (0, 1
2
) hold true as n,N, L,M →∞. Then

2πc0(η
(2)
n,Q,N,L,M)

P−→ η[2]

Under the hypotheses (24) and (26) we have that the admissible choice of the param-
eters α,β and δ (recall that Q = M δ) can be derived by the following relations

3α− 1 < 0
α + 2β − 1 < 0
α− βλ < 0
0 < α, β < 1.

⋃


2δ + 4α− 1 < 0
2δ + 2α + 2β − 1 < 0
2δ + 2α− βλ < 0
0 < α, β, δ < 1.

Finally, we can obtain a feasible asymptotic distribution for the estimation error

√
N
(

2πc0(ηn,N,L,M)− η[1]
)

√
2π2c0(η

(2)
n,Q,N,L,M)

d−→ N(0, 1). (27)

We observe that the admissible area for the choice of the parameters α and β (Figure 4)
is the same as in the hypotheses of the Figure 2.
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Figure 4: The yellow area identify the range in which the parameters α and β can vary
under the hyphoteses (24) and (26) and supposing that δ = 1/16. In particular, the blue
lines depend on the hypotheses (24) and the black line on (26). The admissible area is
bounded by two lines that depends on the regularity of the path of the volatility process.
In all the cases, for 0 < λ < 1, a possible choice of the parameters α and β exists.

5 Numerical study

In this section, we prove that applying a logarithmic transformation to the statistic (21),
we can obtain an asymptotic approximation of the distribution error suitable to construct
confidence intervals. The statistic (21) approximate the distribution N(0, 1) only for very
large value of n. We use the asymptotic theory developed in the section 3 to find a
new statistic that works better on finite sample. Sometimes, the features of the statistic
suggests the most suitable transformation [29]. In our case, the behaviour of (18) is similar
to the realized volatility estimator developed by Barndorff-Nielsen and Shepard [3] and
by Andersen and Bollerslev [1]. In the paper [4], the asymptotic error distribution of
the realized volatility estimator is empirically investigated and is found out that the
logarithmic transformation improves the accuracy. Under a logarithmic transformation,
we can prove that

√
N
(

log(2πĉ0(γ
2
n,N,L,M))− log(γ[2])

)
√

πγ[4]

(γ[2])2

d−→ N(0, 1), (28)

because the Theorem 3.4 holds. Using the Fourier estimators (11) and (19) we obtain the
following feasible statistic

√
N
(

log(2πĉ0(γ
2
n,N,L,M)− log(γ[2])

)
√

2ĉ0(γ4
n,Q,N,L,M )

(ĉ0(γ2
n,N,L,M ))2

d−→ N(0, 1). (29)
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In the sequel, we will study the accuracy in approximating standard normal distribution
of (29). In the statistic (29) five different parameters appear, the number of observations
n that depends on the data we have and the cutting frequencies M , N , L and Q that we
have to choose. The optimization of the cutting frequencies of the estimator (11) is the
main issue of the paper [14]. In this paper, the finite sample properties of the estimator
(11) are studied, even in the presence of market microstructure effects. The bias and the
mean square error of the integrated estimator are computed and a procedure to optimize
the cutting frequencies based on the minimization of the MSE is developed. We will use
this procedure to choose the cutting frequencies (other example of the application of this
methodology can be found in [22], [23] and [24]) in our simulations. We generate (through
simple Euler Monte Carlo discretization) different high frequency evenly spaced data
(price and variance) over a daily trading period of T = 6 hours assuming the following
dynamics {

dp(t) =
√
ν(t)dW (t)

dν(t) = k(θ − ν(t))dt+ ξ
√
ν(t)dZ(t)

where ν(t), t > 0 is the volatility process, k, θ and ξ are constants and W and Z are two
correlated Brownian motions. In particular k is the so called mean reversion parameter, θ
is the long-run mean variance and ξ is the local volatility parameter. We choose v(0) > 0
and 2kθ/ξ2 − 1 > 0, which guarantees that v(t) remains positive (with probability one)
for t > 0. We fix the value of the parameters k, θ, ξ and ρ (the correlation parameter
between the Brownian motion W and Z) as follows

k = 0.03, θ = 0.25, ξ = 0.1, ρ = 0.2.

We simulate 4 different scenarios,

Scenario 1: n = 2160, data frequency 10 seconds,
Scenario 2: n = 4320, data frequency 5 seconds,
Scenario 3: n = 21600, data frequency 1 second,
Scenario 4: n = 43200, data frequency 1/2 second.

For each scenario, we start the optimization procedure of the cutting frequencies with the
following initial conditions:

M = 800, N = 50, L = 50, Q = 10.

The samples of the statistic (29) is computed with 1000 daily replications.
In all the scenarios, the simulations show that the estimated finite sample coverage (set-
ting the nominal level at 95.0) of statistic (29) is near to the sample coverage of a standard
normal distribution. The logarithmic transformation seems to work well in order to pro-
duce a feasible statistic that can work in a finite sample.
As we can see from the QQplots (Figure 5), in the scenario 1 the quantiles of the standard
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Figure 5: QQplots of the 4 simulated Scenarios.

normal distribution are better approximated respect to the other scenarios. This happens
because of the maximum frequencies M ,N ,L and Q that have been used to set up the
optimization procedure. In this simulations, we want to highlight that if the inputs M ,
N ,L and Q are chosen according to the asymptotic theory, that has been developed in the
section 3, the accuracy of the estimation improves. We know that the cutting frequency
M has to be chosen proportional to the number of observations n in order to ensure the
asymptotic result (18). The cutting frequency M has to be only respect the upper bond
indicating by the Nyquist frequency. In the simulations, M = 800 is a suitable choice for
the scenario 1. For the other ones, we should start the optimization procedure using more
higher inputs for M ,N ,L and Q. In the paper [14], after providing a feasible method to op-
timize the choice of the cutting frequencies, simulations of the statistic (29) are conducted
in order to investigate the influence of the parameters M , N , L and Q on the accuracy of
the estimations, even in the presence of microstructure noise. The simulation study, that
we conducted in this section, is only a starting point but it underlines the importance of
further study regarding this type of statistic and the possible future applications of our
estimators.
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6 Appendix

Available on request.
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