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Abstract

An abstract decision problem is an ordered pair where the first component is a nonempty and
finite set of alternatives from which a society has to make a choice and the second component is
an irreflexive relation on that set representing a dominance relation. A crucial problem is to find
a reasonable solution that allows to select, for any given abstract decision problem, some of the
alternatives. A variety of solutions have been proposed over the years. In this paper we propose
a new solution, called justifiable set, that naturally stems from the work by Bubboloni and Gori
(The flow network method, Social Choice and Welfare 51, p.621-656, 2018) and that is based
on the concept of maximum flow value in a digraph. We analyse its properties and its relation
with other solutions like the core, the admissible set, the Copeland set and the generalized
stable set. We also show that the justifiable set allows to define a new Condorcet social choice
correspondence strictly related to the Copeland social choice correspondence and fulfilling lots
of desirable properties among which anonymity, neutrality, Pareto optimality and monotonicity.

Keywords: abstract decision problem; admissible set; generalized stable set; maximum flow; Copeland
set; Copeland method.

JEL classification: D71.

1 Introduction

An abstract decision problem is a pair pX,Rq where X is a nonempty and finite set and R is an
irreflexive relation on X. The set X is interpreted as a set of alternatives from which a society has
to make a choice. The relation R describes a dominance relation among alternatives and if px, yq P R
we say that x dominates y. The relation R can be interpreted by saying that if an alternative y
is taken into consideration by the society, then the existence of alternatives dominating y implies
that the society must reject y and start considering one of those alternatives. If instead there is no
alternative dominating y, then the society will continue to consider y as there is no reason for the
society to change its mind.1

The problem of finding a sensible method to select one or more sets of alternatives for any given
abstract decision problem is a crucial issue. In the literature many methods, called solutions, are
available, each of them based on a clear and sensible rationale. Among them there are the core,

1Such an interpretation is basically in line with the one by Kalai and Schmeidler (1977) and Shenoy (1980) but
other interpretations are possible. Von Neumann and Morgenstern (1944, p.41) interpret the fact that px, yq P R by
saying that the alternative x, if taken into consideration, excludes acceptance of the alternative y (without forecasting
what alternative will ultimately be accepted).
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the stable set (Von Neumann and Morgenstern 1944), the Copeland set (Copeland, 1951; Fishburn,
1977), the admissible set (Kalai et al. 1976), the generalized stable set (Van Deemen 1991), the
socially stable set (Delver and Monsuur 2001), the m-stable set (Peris and Subiza 2013), the w-
stable set (Han and Van Deemen 2016). The core, the admissible set and the Copeland set are
solutions meeting many desirable properties and, differently from the other mentioned solutions,
they always select a unique set of alternatives. However, they also have some disadvantages. If fact,
the core can be empty and the admissible set, that is never empty and always includes the core, is
usually very large and then unable to carefully discriminate among alternatives. The Copeland set
is never empty and it is definitely natural and robust when applied to abstract decision problems
whose dominance relation is asymmetric and quasi-complete, that is, the so called tournaments. On
the other hand, it may exhibit some drawbacks when applied to abstract decision problems that are
not tournaments. In particular, the Copeland set does not necessarily includes the core and some of
its elements may lie outside the admissible set. Similar considerations hold true also for the other
versions of the Copeland set due to Henriet (1995) and Laslier (1997), versions that coincide with
the original one on tournaments.

In this paper we propose a new solution for abstract decision problems, called justifiable set. The
definition of justifiable set is based on the concept of maximum flow value in a digraph. Given two
distinct vertices x and y in a digraph, the maximum flow value from x and y is the largest possible
number of arc-disjoint paths from x to y. Let us observe that, under a mathematical viewpoint, any
abstract decision problem is a digraph once the set of alternatives is identified with the set of vertices
and the dominance relation is identified with the set of arcs. Given now an abstract decision problem
pX,Rq, the justifiable set associated with pX,Rq is then defined as the set of the alternatives x having
the property that, for every other alternative y, the maximum flow value from x to y is greater than
or equal to the maximum flow value from y to x. That definition is strongly inspired to the ideas
in Gvozdik (1987), Belkin and Gvozdik (1989) and Bubboloni and Gori (2018). More precisely, the
justifiable set coincides with the so called flow network solution (with parameter k � 1) restricted to
the set of those networks that can be identified with digraphs, that is, the set of zero-one networks.
For that reason, the analysis of the justifiable set greatly benefits from the numerous results about
the flow network solution proved by Bubboloni and Gori (2018).

The justifiable set is proved to satisfy many properties some of which mitigating the disadvan-
tages of the core, the admissible set and the Copeland set. In particular, the justifiable set always
determines a unique set of alternatives and that set is nonempty and includes the core. Moreover,
the justifiable set is a subset of the admissible set so that it is able to better discriminate among the
alternatives than the admissible set. Further, it coincides with the Copeland set when computed on
tournaments. That implies first that the justifiable set is certainly sound on tournaments. Moreover,
it can be seen as a new way to extend the Copeland set from the set of tournaments to the whole set
of abstract decision problems by means of a rationale different from the idea of associating a score
with each alternative that underlies the Copeland set. It is also worth mentioning that the justifiable
set is neutral, that is, it equally treats alternatives, satisfies a desirable monotonicity property and
it is interestingly related to the generalized stable set, the w-stable set and the m-stable set.

We also propose a remarkable application of the justifiable set to social choice theory. Consider
a society where individuals have to select some elements in a given set of alternatives by aggregating
their preferences on those alternatives. Assume that individual preferences are represented by linear
orders and call a preference profile any list of preferences, each of them associated with a specific
individual in the society. Any function from the set of preference profiles to the set of nonempty
subsets of alternatives is called social choice correspondence (scc) and represents a particular method
for aggregating individual preferences. The concept of scc is crucial in social choice theory and a
large number of sccs have been proposed over the years. By means of the justifiable set we are able
to define a new scc, called justifiable majority scc, simply associating with any preference profile
the justifiable set applied the majority digraph determined by the preference profile. The justifiable
majority scc turns out to satisfies a variety of desirable properties. Indeed, the justifiable majority
scc is proved to be anonymous, neutral, Pareto optimal, monotonic and immune to the reversal bias.
Moreover, it is a refinement of the Schwartz scc and then, in particular, it satisfies the Condorcet
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principle. Further, it always selects all the weak Condorcet winners and never selects the Condorcet
loser. Finally it coincides with the classic Copeland scc (Copeland, 1951; Fishburn, 1977) on the
set of the preference profiles whose majority digraph is a tournament and hence, in particular, on
the set of preference profiles related to an odd number of individuals.

The paper is organized as follows. In Section 2 we introduce some preliminary notation. In Section
3 we give the definition of abstract decision problem and we recall some fundamental solutions, namely
the core and the admissible set. In Section 4 we present the concept of maximum flow value between
two alternatives in an abstract decision problem and in Section 5 the definition of justifiable set is
given. Section 6 is devoted to the comparison of the justifiable set with the core and the admissible
set and in Section 7 some general properties of the justifiable set are proved. In Sections 8 and 9 we
compare the justifiable set with the Copeland set, the generalized stable set, the w-stable set and
the m-stable set. Finally, in Sections 10, 11 and 12 we define the justifiable majority scc, we study
its properties and we describe its strong relation to the Copeland scc.

2 Preliminary notation

We assume 0 R N and we set N0 � NYt0u. Let X be a finite set. We set X2
d � tpx, yq P X2 : x � yu

and X2
� � tpx, yq P X2 : x � yu. The size of X is denoted by |X|. The set of all the subsets of

X is denoted by P pXq. The set of all the nonempty subsets of X is denoted by P�pXq. The set of
bijective functions from X to X is denoted by SympXq and the identity function is denoted by id.

A relation on X is a subset of X2. Let R be a relation on X. The asymmetric part of R is the
relation on X given by aspRq � tpx, yq P R : py, xq R Ru. We say that R is reflexive if, for every x P X,
px, xq P R; irreflexive if, for every x P X, px, xq R R; asymmetric if, for every x, y P X, px, yq P R
implies py, xq R R (that is, R � aspRq); transitive if, for every x, y, z P X, px, yq P R and py, zq P R
imply px, zq P R; quasi-transitive if aspRq is transitive; antisymmetric if, for every x, y P X, px, yq P R
and py, xq P R imply x � y; complete if, for every x, y P X, px, yq P R or py, xq P R; quasi-complete
if, for every x, y P X with x � y, px, yq P R or py, xq P R; a linear order if R is complete, transitive
and antisymmetric. The set of maximal elements of R is defined as

MaxpRq � tx P X : @y P X py, xq P R implies px, yq P Ru � tx P X : @y P X py, xq R aspRqu.

Observe that MaxpRq � MaxpaspRqq. The reversal of R is the relation Rr � tpx, yq P X2
� : py, xq P Ru.

For every ψ P SympXq, we set Rψ � tpx, yq P X2
� : pψ�1pxq, ψ�1pyqq P Ru. For every x P X, we set

DRpxq � ty P X : px, yq P Ru, D
R
pxq � ty P X : py, xq P Ru, DR

� pxq � ty P X : px, yq P aspRqu,

D
R

� pxq � ty P X : py, xq P aspRqu, IRpxq � ty P X : px, yq P R and py, xq P Ru and NRpxq � ty P X :
px, yq R R and py, xq R Ru.

In the rest of the paper X is a fixed nonempty and finite set.

3 Abstract decision problems and classic solutions

An abstract decision problem on X is an ordered pair pX,Rq, where R is an irreflexive relation on
X called dominance relation. If px, yq P R, we say that x dominates y (according to R). The set
of abstract decision problems on X is denoted by ApXq. Given pX,Rq P ApXq, the elements of X
are interpreted as mutually exclusive alternatives from which a society has to make a choice. The
dominance relation R is instead interpreted as the complete description of a specific criterion applied
by the society to pairwise compare the alternatives. The idea is that, assuming that the alternative y

is taken into consideration by the society, if D
R
pyq � ∅ then, on the basis of the criterion described

by R, the society must reject y and start considering one of the alternatives in D
R
pyq, if instead

D
R
pyq � ∅ the society has no reason to change its mind. Thus, the fact that x dominates y according

to R means that if y is taken into consideration by the society then the society must reject y and
might start considering x.
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Abstract decision problems can model a variety of situations. Consider, for instance, a society
whose purpose is to establish which teams must be considered the best at a certain stage of a round-
robin competition where ties are not allowed (so that each match always determined a winner and a
loser). In that case, the decision problem can be modelled by the abstract decision problem pX,Rq,
where X is the set of teams and R is the relation on X such that px, yq P R if x played against y
and won. In other words, the society is comparing any pair of teams on the basis of the result of the
their match, if any. Consider now a society whose purpose is to select some candidates among the
ones running for a certain office. In that case, the decision problem can be modelled by the abstract
decision problem pX,Rq, where X is the set of candidates and R is the relation on X such that
px, yq P R if the majority of individuals prefers x to y. The society is then comparing any pair of
candidates on the basis of a majority criterion. Note that in both examples the dominance relation
R is asymmetric.

The theory of abstract decision problems focuses on the problem of determining a subset of
alternatives whose elements could be reasonably interpreted as potential outcomes. Any method
for determining one or more subsets of alternatives is called a solution. Let us introduce now some
important solutions that will be useful for our purposes. The first one is the set of Condorcet winners.

Definition 1. Let pX,Rq P ApXq. An alternative x is a Condorcet winner of pX,Rq if, for every
y P Xztxu, we have that px, yq P aspRq. The set of Condorcet winners of pX,Rq is denoted by
CW pX,Rq.

Note that |CW pX,Rq| ¤ 1. Indeed, if there were x�, x�� P CW pX,Rq with x� � x��, then it
should be px�, x��q P aspRq and px��, x�q P aspRq, a contradiction. The set of Condorcet winners is
often empty. The core is another solution selecting a larger set of alternatives, namely the ones that
are dominated by no alternative.

Definition 2. Let pX,Rq P ApXq. The core of pX,Rq is the set

COpX,Rq � tx P X : @y P X py, xq R Ru.

Of course, CW pX,Rq � COpX,Rq � MaxpRq. Moreover, if R quasi-complete then we have that
CW pX,Rq � COpX,Rq. Note also that the core may be empty.

A further remarkable solution for abstract decision problems is the admissible set introduced by
Kalai et al. (1976) and Kalai and Schmeidler (1977).2 Let us present its definition. Let pX,Rq be
an abstract decision problem. A path in pX,Rq is a sequence pxjq

m
j�1, where m ¥ 2, x1, . . . , xm are

distinct elements of X and, for every j P t1, . . . ,m � 1u, pxj , xj�1q P R. If x, y P X are distinct, a
path from x to y in pX,Rq is a path pxjq

m
j�1 in pX,Rq such that x1 � x and xm � y. If there is a

path pxjq
m
j�1 from x to y in pX,Rq we say that x directly or indirectly dominates y (according to

R). Indeed, if m � 2 the path exactly describes the fact that x dominates y. If instead m ¥ 3, the
fact that, for every j P t1, . . . ,m � 1u, xj dominates xj�1, suggests that there is a sort of indirect
domination of x over y, meaning that if y is taken into consideration by the society then y must be
rejected and the society might start considering x after reviewing some alternatives.

Let us denote by Rτ the reflexive and transitive closure of R, that is, the smallest reflexive and
transitive relation on X containing R. It is easily seen that

Rτ �
 
px, yq P X2

� : there exists a path in pX,Rq from x to y
(
YX2

d .

Thus, if px, yq P Rτ we have that x � y or x directly or indirectly dominates y, while if px, yq R Rτ

we have that x neither directly nor indirectly dominates y.

Definition 3. Let pX,Rq P ApXq. The admissible set of pX,Rq is the set ADpX,Rq � MaxpRτ q.

Thus, an alternative x is in the admissible set if the fact that y directly or indirectly dominates
x implies that in turn x directly or indirectly dominates y. It is worth noting that when pX,Rq is

2Equivalent definitions of that concept are given by Schwartz (1972, 1986) and Shenoy (1979, 1980). See also Van
Deemen (1997) and Gori (2022).

4



a tournament, that is, R is asymmetric and quasi-complete, then ADpX,Rq coincides with the top
cycle associated with pX,Rq. Moreover, for every abstract decision problem pX,Rq, ADpX,Rq � ∅.3

Finally note that |X| � 1 implies that, for every pX,Rq P ApXq, CW pX,Rq � COpX,Rq �
ADpX,Rq � X.

4 Abstract decision problems and maximum flow value

Let pX,Rq P ApXq and let x, y P X with x � y. We denote by ΓpX,R;x, yq the set of paths from
x to y in pX,Rq. Given γ � pxjq

m
j�1 P ΓpX,R;x, yq, we set Apγq � tpx1, x2q, . . . , pxm�1, xmqu � R.

Let k P N. A sequence of k arc-disjoint paths in ΓpX,R;x, yq is a sequence pγiq
k
i�1 of k paths

in ΓpX,R;x, yq such that, for every i, j P t1, . . . , ku with i � j, Apγiq X Apγjq � ∅. We denote by
ΓkpX,R;x, yq the set of sequences of k arc-disjoint paths in ΓpX,R;x, yq. Of course, ΓpX,R;x, yq � ∅
implies ΓkpX,R;x, yq � ∅ for all k P N and ΓpX,R;x, yq � ∅ implies Γ1pX,R;x, yq � ∅. Moreover
ΓkpX,R;x, yq � ∅ for some k P N.

Any path in ΓpX,R;x, yq justifies the claim that x directly or indirectly dominates y and it
can be identified with an argument supporting that claim. As a consequence, any sequence pγiq

k
i�1 P

ΓkpX,R;x, yq can be interpreted as a family of k independent arguments supporting the claim that x
directly or indirectly dominates y. Here independent means that any two distinct arguments involve
different elements of the dominance relation so that they are substantially different from each other.
The maximum flow value from x to y in pX,Rq is defined as

ϕpX,Rqxy � max
�
t0u Y tk P N : ΓkpX,R;x, yq � ∅u

	
. (1)

Thus, ϕ
pX,Rq
xy can be interpreted as a measure of the strength of the claim that x directly or indirectly

dominates y as it represents the maximum number of independent arguments supporting that claim.

4.1 Networks

A network on X is a triple N � pX,X2
�, cq, where c is a function from X2

� to N0. Let N � pX,X2
�, cq

be a network on X. For every x P X, the outdegree and the indegree of x in N are respectively
defined by

oN pxq �
¸

yPXztxu

cpx, yq, iN pxq �
¸

yPXztxu

cpy, xq.

The reversal of N is the network Nr � pX,X2
�, c

rq where, for every px, yq P X2
�, crpx, yq � cpy, xq.

Given ψ P SympXq, we set Nψ � pX,X2
�, c

ψq, where cψ is defined, for every px, yq P X2
�, by

cψpx, yq � cpψ�1pxq, ψ�1pyqq. We say that N is a balanced network if there exists k P N0 such that,
for every px, yq P X2

�, cpx, yq � cpy, xq � k. Let x, y P X with x � y. A flow from x to y in N is a
function f : X2

� Ñ N0 such that, for every pu, vq P X2
�, fpu, vq ¤ cpu, vq and, for every z P Xztx, yu,

¸
vPXztzu

fpz, vq �
¸

uPXztzu

fpu, zq.

The set of flows from x to y in N is nonempty and finite and it is denoted by FpN ;x, yq. Given
f P FpN ;x, yq, the value of f is the integer

ϕN pfq �
¸

vPXztxu

fpx, vq �
¸

uPXztxu

fpu, xq.

The number
ϕNxy � max

fPFpN ;x,yq
ϕN pfq, (2)

3See, for instance, Theorem 4.1 in Shenoy (1980) or Theorem 9 in Gori (2022).
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which is well defined and belongs to N0, is called the maximum flow value from x to y in N . If
f P FpN ;x, yq is such that ϕN pfq � ϕNxy, then f is called a maximum flow from x to y in N .

Let pX,Rq P ApXq. We have that pX,Rq formally corresponds to a digraph (without loops) and
can be identified with the network NpX,Rq � pX,X2

�, c
pX,Rqq, where cpX,Rq : X2

� Ñ N0 is defined,
for every px, yq P X2

�, by cpX,Rqpx, yq � 1 if px, yq P R, and cpX,Rqpx, yq � 0 if px, yq R R. Observe
that, for every x P X, the outdegree of x in NpX,Rq is |DRpxq| and the indegree of x in NpX,Rq

is |D
R
pxq|. Moreover, it can be proved that, for every x, y P X with x � y, the maximum flow

value from x to y in pX,Rq defined in (1) coincides with the maximum flow value from x to y in
NpX,Rq defined in (2) (see Bang-Jensen and Gutin, 2008, Lemma 7.1.5). It can be also verified that
NpX,Rqr � NpX,Rrq and that, for every ψ P SympXq, NpX,Rqψ � NpX,Rψq. Finally, NpX,Rq is
balanced if and only if pX,Rq is a tournament or pX,Rq � pX,∅q or pX,Rq � pX,X2

�q.
The identification of the abstract decision problem pX,Rq with the network NpX,Rq will turn

out to be crucial to apply to pX,Rq some of the results proved in Bubboloni and Gori (2018).

5 The justifiable set

Definition 4. Let pX,Rq P ApXq. The flow relation associated with pX,Rq is the relation on X
given by

FpX,Rq �
!
px, yq P X2

� : ϕpX,Rqxy ¥ ϕpX,Rqyx

)
YX2

d .

The flow relation was first proposed by Gvozdik (1987) for balanced networks and later generalized
on the whole set of networks by Belkin and Gvozdik (1989) and Bubboloni and Gori (2018). Here we
are basically considering the flow relation associated with those networks corresponding to abstract
decision problems. We are now ready to introduce the main object of the paper.

Definition 5. Let pX,Rq P ApXq. The justifiable set associated with pX,Rq is the set JpX,Rq �
MaxpFpX,Rqq.

It is useful to observe that

JpX,Rq �
!
x P X : @y P Xztxu ϕpX,Rqxy ¥ ϕpX,Rqyx

)
� tx P X : @y P X px, yq P FpX,Rqu .

Thus, an alternative x belongs to the set JpX,Rq if and only if, for any other alternative y, the maxi-
mum number of independent arguments supporting the claim that x directly or indirectly dominates
y is greater than or equal to the maximum number of independent arguments supporting the claim
that y directly or indirectly dominates x.

It is important to note that the justifiable set is not properly a novel object as it corresponds to
the restriction of the so-called flow network solution (with parameter k � 1) defined in Bubboloni and
Gori (2018) to the set of networks corresponding to abstract decision problems. As a consequence,
some important properties of the justifiable set can be directly deduced by the results proved by
Bubboloni and Gori (2018). Nevertheless, the analysis of the justifiable set can be further deepened
looking at those issues that are important to the theory of abstract decision problems, a framework
different from the one considered by Bubboloni and Gori (2018). In particular, we are focusing on
the comparison of the justifiable set with other solutions.

Let us begin with establishing an important fact, namely that the justifiable set is always
nonempty.

Proposition 6. Let pX,Rq P ApXq. Then JpX,Rq � ∅.

Proof. By Theorem 3 in Bubboloni and Gori (2018) applied to NpX,Rq, we deduce that FpX,Rq
is complete and quasi-transitive. As a consequence, the set of the maximal elements of FpX,Rq is
nonempty, that is, JpX,Rq � ∅.

Note also that |X| � 1 implies that, for every pX,Rq P ApXq, JpX,Rq � X.
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6 Comparison with the core and the admissible set

The next propositions show that the justifiable set is core inclusive and it is also a refinement of the
admissible set.

Proposition 7. Let pX,Rq P ApXq. Then COpX,Rq � JpX,Rq.

Proof. Let x P COpX,Rq. Thus, for every y P X, py, xq R R. In order to prove that x P JpX,Rq,

consider y� P X with y� � x and prove that ϕ
pX,Rq
xy� ¥ ϕ

pX,Rq
y�x . We claim that there is no path from

y� to x in pX,Rq. Indeed, assume by contradiction that there exists a path pxjq
m
j�1 from y� to x in

pX,Rq. Thus, in particular, we have that pxm�1, xq P R and that is a contradiction. We deduce then

that ϕ
pX,Rq
y�x � 0. Since ϕ

pX,Rq
xy� ¥ 0, we get ϕ

pX,Rq
xy� ¥ ϕ

pX,Rq
y�x .

Note that it can be COpX,Rq � JpX,Rq when COpX,Rq � ∅. Consider, for instance, the
abstract decision problem pX,Rq, where X � t1, 2, 3u and R � tp1, 2q, p2, 1qu. In that case we have
COpX,Rq � t3u and JpX,Rq � t1, 2, 3u.

Proposition 8. Let pX,Rq P ApXq. Then JpX,Rq � ADpX,Rq.

Proof. Let us prove the inclusion JpX,Rq � ADpX,Rq showing that XzADpX,Rq � XzJpX,Rq.
Consider x P XzADpX,Rq. Thus, there exists y P X such that py, xq P Rτ and px, yq R Rτ . Then
y � x, there is a path from y to x in pX,Rq and there is no path from x to y in pX,Rq. We deduce

then that ϕ
pX,Rq
yx ¡ 0 and ϕ

pX,Rq
xy � 0. That implies that x R JpX,Rq.

Note that it can be JpX,Rq � ADpX,Rq. Consider, for instance, the abstract decision problem
pX,Rq, where X � t1, 2, 3, 4u and R � tp1, 2q, p1, 3q, p2, 4q, p3, 4q, p4, 1qu. In that case we have
JpX,Rq � t1, 2, 3u and ADpX,Rq � t1, 2, 3, 4u.

Proposition 8 has several interesting consequences. Let D � X. We say that D is a dominating
set for pX,Rq if D � ∅ and, for every x P D and y P XzD, px, yq P aspRq.

Proposition 9. Let pX,Rq P ApXq and let D � X be a dominating set for pX,Rq. Then ADpX,Rq �
D.

Proof. Consider x P ADpX,Rq and assume by contradiction that x R D. Since D � ∅, we can pick
y P D. Thus, py, xq P aspRq so that, in particular, x � y and py, xq P Rτ . Since x P ADpX,Rq,
we have that px, yq P Rτ so that there is a path pxjq

m
j�1 in pX,Rq from x to y. In particular, there

exists i� P t1, . . . ,m� 1u such that xi� R D and xi��1 P D. Since pxi� , xi��1q P R, we deduce that
pxi��1, xi�q R aspRq and that contradicts the fact that D is a dominating set for pX,Rq.

Corollary 10. Let pX,Rq P ApXq and let D � X be a dominating set for pX,Rq. Then JpX,Rq �
D.

Proof. Simply note that by Propositions 8 and 9 we get JpX,Rq � ADpX,Rq � D.

Proposition 11. Let pX,Rq P ApXq. If CW pX,Rq � ∅, then CW pX,Rq � COpX,Rq � JpX,Rq �
ADpX,Rq.

Proof. Assume that CW pX,Rq � ∅. Thus CW pX,Rq is a dominating set for pX,Rq. By Proposi-
tions 7, 8 and 9 and by the fact that CW pX,Rq � COpX,Rq, we have that CW pX,Rq � COpX,Rq �
JpX,Rq � ADpX,Rq � CW pX,Rq. Thus, we conclude that in fact CW pX,Rq � COpX,Rq �
JpX,Rq � ADpX,Rq.

A cycle in pX,Rq is a sequence pxjq
m
j�1, where m ¥ 3, x1, . . . , xm�1 are distinct elements of X,

x1 � xm and, for every j P t1, . . . ,m� 1u, pxj , xj�1q P R. We say that a relation R on X is acyclic
if there is no cycle in pX,Rq.

Proposition 12. Let pX,Rq P ApXq and assume that R is acyclic. Then

COpX,Rq � JpX,Rq � ADpX,Rq � MaxpRq.
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Proof. If R is acyclic, then R is asymmetric. As a consequence, COpX,Rq � MaxpRq. Since by
Propositions 7 and 8, we have that COpX,Rq � JpX,Rq � ADpX,Rq, we conclude the proof showing
that ADpX,Rq � COpX,Rq. Consider x P ADpX,Rq. Assume by contradiction that x R COpX,Rq.
Then there exists y P Xztxu such that py, xq P R. Thus, py, xq P Rτ and since x P ADpX,Rq, it must
be px, yq P Rτ . There is then a path pxjq

m
j�1 from x to y in pX,Rq. Thus, the sequence px1jq

m�1
j�1 in

X such that, for every j P t1, . . . ,mu, x1j � xj and x1m�1 � x is a cycle in R and that contradicts
the fact that R is acyclic.

7 Some properties of the justifiable set

The next proposition shows that the justifiable set is a neutral solution, that is, it equally treats the
alternatives.

Proposition 13. Let pX,Rq P ApXq and ψ P SympXq. Then JpX,Rψq � ψpJpX,Rqq.

Proof. From Proposition 8 in Bubboloni and Gori (2018) applied toNpX,Rq, we know that FpX,Rψq �
FpX,Rqψ. Consider now x P JpX,Rψq. Thus, for every y P X, we have that px, yq P FpX,Rψq �
FpX,Rqψ. Thus, for every y P X, we have that pψ�1pxq, ψ�1pyqq P FpX,Rq. Since ψ P SympXq,
for every y P X, we have that pψ�1pxq, yq P FpX,Rq. That means that ψ�1pxq P JpX,Rq and
then x � ψpψ�1pxqq P ψpJpX,Rqq. That proves that JpX,Rψq � ψpJpX,Rqq. Consider now
x P ψpJpX,Rqq. Thus, there exists z P JpX,Rq such that x � ψpzq. We know that, for every y P X,
pz, yq P FpX,Rq. Thus, for every y P X, pψpzq, ψpyqq P FpX,Rqψ. Since ψ P SympXq, we have that,
for every y P X, pψpzq, yq P FpX,Rqψ � FpX,Rψq. Thus x � ψpzq P JpX,Rψq. That proves that
ψpJpX,Rqq � JpX,Rψq. Then, we can conclude that JpX,Rψq � ψpJpX,Rqq.

The next two propositions state conditions that prevent an alternative to be an element of the
justifiable set.

Proposition 14. Let pX,Rq P ApXq and y P X. Assume that there exists x P Xztyu such that

px, yq P aspRq, DRpyq � DRpxq and D
R
pxq � D

R
pyq. Then y R JpX,Rq.

Proof. From Proposition 10 in Bubboloni and Gori (2018) applied to NpX,Rq, we deduce that
px, yq P FpX,Rq and py, xq R FpX,Rq. In particular, we get y R JpX,Rq.

Proposition 15. Let pX,Rq P ApXq and y P X. If |DRpyq|   |D
R
pyq|, then y R JpX,Rq.

Proof. From Proposition 13 in Bubboloni and Gori (2018) applied to NpX,Rq, we have that if

|DRpyq|   |D
R
pyq|, then there exists x P Xztyu such that px, yq P aspFpX,Rqq. As a consequence,

y R JpX,Rq.

The next proposition shows that the justifiable set satisfies a monotonicity criterion that general-
izes the standard concept of monotonicity for tournament solutions to solutions for abstract decision
problems (Laslier, 1997, Definition 2.3.1).

Proposition 16. Let pX,Rq, pX,R1q P ApXq and x P X. Assume that DRpxq � DR1

pxq, D
R1

pxq �

D
R
pxq and

tpy1, y2q P R : y1 � x, y2 � xu � tpy1, y2q P R
1 : y1 � x, y2 � xu.

Then x P JpX,Rq implies x P JpX,R1q.

Proof. From Proposition 11 in Bubboloni and Gori (2018), we deduce that, for every y P Xztxu,
px, yq P FpX,Rq implies px, yq P FpX,R1q. As a consequence, x P JpX,Rq implies x P JpX,R1q.

The next proposition shows that the justifiable set satisfies a property that generalizes the concept
of regularity for tournament solutions to solutions for abstract decision problems (Laslier, 1997,
Definition 2.4.6). Note that, given pX,Rq P ApXq, we have that Proposition 26 (for k � 1) in
Bubboloni and Gori (2018) applied to FpX,Rq assures that FpX,Rq � X2 if and only if JpX,Rq � X.
We are going to use that fact several times in the rest of the section.
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Proposition 17. Let pX,Rq P ApXq. Then JpX,Rq � X if and only if, for every x P X, |DRpxq| �

|D
R
pxq|.

Proof. We know that JpX,Rq � X if and only if FpX,Rq � X2. By Proposition 14 in Bubboloni
and Gori (2018) applied to NpX,Rq, we also have that FpX,Rq � X2 if and only if, for every x P X,

|DRpxq| � |D
R
pxq|. That completes the proof.

The next proposition explores the effect on the justifiable set of reversing the dominance relation.
Proposition 18 implies, in particular, that if |X| ¥ 2 and the justifiable set of pX,Rq consists of a
single alternative, then such an alternative cannot be an element of the justifiable set associated with
pX,Rrq.

Proposition 18. Let pX,Rq P ApXq. Then JpX,Rq � X implies JpX,Rq � JpX,Rrq.

Proof. Assume JpX,Rq � X. Thus, FpX,Rq � X2 and by Proposition 34 (for k � 1) in Bubboloni
and Gori (2018) applied to FpX,Rq, we have that JpX,Rq � JpX,Rrq.

Proposition 19. Let pX,Rq P ApXq. Then R � Rr implies JpX,Rq � X.

Proof. By Proposition 12 in Bubboloni and Gori (2018) applied toNpX,Rq, we know that FpX,Rrq �
FpX,Rqr. If R � Rr we have then that FpX,Rq � FpX,Rqr. Since FpX,Rq is complete we deduce
that FpX,Rq � X2 and that implies JpX,Rq � X.

Proposition 20. Let pX,Rq P ApXq. Then, JpX,Rq � X if and only if JpX,Rrq � X.

Proof. By Proposition 12 in Bubboloni and Gori (2018) applied toNpX,Rq, we know that FpX,Rrq �
FpX,Rqr. Thus we get that FpX,Rrq � X2 is equivalent to FpX,Rqr � X2 that in turn is equivalent
to FpX,Rq � X2. Since we know that FpX,Rq � X2 is equivalent to JpX,Rq � X and FpX,Rrq �
X2 is equivalent to JpX,Rrq � X, the proof is completed.

We conclude by presenting a further property of the justifiable set.

Proposition 21. Let pX,Rq P ApXq. For every y P XzJpX,Rq, there exists x P JpX,Rq such that

ϕ
pX,Rq
xy ¡ ϕ

pX,Rq
yx .

Proof. First of all note that, for every x, y P X with x � y, we have that ϕ
pX,Rq
xy ¡ ϕ

pX,Rq
yx is equivalent

to px, yq P aspFpX,Rqq. For every y P XzJpX,Rq, consider the set Epyq � tz P Xztyu : pz, yq P
aspFpX,Rqqu and note that y R Epyq and Epyq � ∅.

Assume by contradiction that there exists y� P XzJpX,Rq such that, for every x P JpX,Rq, we
have px, y�q R aspFpX,Rqq. Set y1 � y� and note that Epy1q � XzJpX,Rq. Pick then an element in
Epy1q and call it y2. Observe that Epy2q � XzJpX,Rq. Indeed, if there existed x� P Epy2qXJpX,Rq,
from px�, y2q P aspFpX,Rqq, py2, y1q P aspFpX,Rqq and the fact that FpX,Rq is quasi-transitive,
we would deduce px�, y1q P aspFpX,Rqq, that is, x� P Epy1q X JpX,Rq, a contradiction. Pick
then an element in Epy2q and call it y3. Using the same argument as before we can prove that
Epy3q � XzJpX,Rq. Thus, we can recursively define a sequence pyjq

8
j�1 � XzJpX,Rq such that,

for every j P N, pyj�1, yjq P aspFpX,Rqq. Since XzJpX,Rq is finite we can find j1   j2 such that
yj1 � yj2 and yj1 , . . . , yj2�1 are distinct. Due to quasi-transitivity pyj1 , yj2�1q P aspFpX,Rqq. Since
pyj2�1, yj2q � pyj2�1, yj1q P aspFpX,Rqq, we get a contradiction.

Corollary 22. Let pX,Rq P ApXq and x P X. If JpX,Rq � txu, then, for every y P Xztxu, we

have that ϕ
pX,Rq
xy ¡ ϕ

pX,Rq
yx .
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8 Comparison with the Copeland set

In what follows we set

AwtpXq � tpX,Rq P ApXq : R is quasi-completeu, AptpXq � tpX,Rq P ApXq : R is asymmetricu,

and AtpXq � AwtpXq XAptpXq. The set AwtpXq is called set of weak tournaments; the set AptpXq
is called set of partial tournaments; the set AtpXq is called set of tournaments.

The Copeland set is an important solution naturally defined on the set of tournaments (see Laslier,
1997, Definition 3.1.1).

Definition 23. Let pX,Rq P AtpXq. The Copeland set associated with pX,Rq is the set

COP pX,Rq � argmax
xPX

|DRpxq|.

Thus, the alternatives in the Copeland set are the ones that dominate the largest number of
alternatives. The problem of extending the definition of the Copeland set to an environment larger
than AtpXq has been considered in the literature. In particular, extensions to AwtpXq and AptpXq
are proposed. In order to comment such extensions it is convenient to introduce the set

Σ � tpα, β, γ, δq P R4 : α ¥ 0, β ¥ 0, α� β ¡ 0, γ P r�β, αs, δ P r�β, αsu. (3)

Definition 24. Let pX,Rq P ApXq and pα, β, γ, δq P Σ. The generalized Copeland set with parame-
ters pα, β, γ, δq associated with pX,Rq is the set

COP pα,β,γ,δqpX,Rq � argmax
xPX

�
α|DR

� pxq| � β|D
R

� pxq| � γ|IRpxq| � δ|NRpxq|
	
.

The generalized Copeland set with parameters pα, β, γ, δq P Σ selects the alternatives that max-
imize a score that takes into account, for every alternative x, not only the number of alternatives

dominated by x but a linear combination of the four numbers |DR
� pxq|, |D

R

� pxq|, |I
Rpxq| and |NRpxq|.

Such a linear combination obeys to some very natural criteria: the larger is |DR
� pxq| the higher is

the quality of x (unless α � 0); the larger is |D
R

� pxq| the lower is the quality of x (unless β � 0);

elements in IRpxq and NRpxq cannot have an impact stronger than the ones in DR
� pxq and D

R

� pxq
to determine the quality of x.

As the following simple proposition shows, for every pα, β, γ, δq P Σ, COP pα,β,γ,δq is actually an
extension of COP to ApXq.

Proposition 25. Let pα, β, γ, δq P Σ. Then, for every pX,Rq P AtpXq, COP pα,β,γ,δqpX,Rq �
COP pX,Rq.

Proof. Let pX,Rq P AtpXq and x P X. Observe first that, since R is quasi-complete and asymmetric,

IRpxq � ∅, NRpxq � txu, DRpxq � DR
� pxq, D

R
pxq � D

R

� pxq and |DR
� pxq|�|D

R

� pxq| � |X|�1. Thus,
we have that

α|DR
� pxq| � β|D

R

� pxq| � γ|IRpxq| � δ|NRpxq| � α|DR
� pxq| � β|D

R

� pxq| � δ

� α|DR
� pxq| � βp|X| � 1� |DR

� pxq|q � δ � pα� βq|DR
� pxq| � βp|X| � 1q � δ

� pα� βq|DRpxq| � βp|X| � 1q � δ.

Since α� β ¡ 0, we conclude that COP pα,β,γ,δqpX,Rq � COP pX,Rq.

Proposition 25 has an important consequence. The definition of the Copeland set takes into
account, for any alternative x, only the number of alternatives dominated by x (the larger is that
number the higher is the quality of alternative x). However, in order to evaluate the quality of an
alternative x it may be reasonable to consider also the number of alternatives dominating x and
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possibly consider in a special manner the number of alternatives that both are dominated by x and
dominate x as well as the number of alternatives that are not dominated and do not dominate x.
Proposition 25 explains that if those numbers are combined as described in the formula defining
COP pα,β,γ,δq, we still get COP . That makes COP a very convincing solution on AtpXq.

For every pα, β, γ, δq P Σ, COP pα,β,γ,δq is a reasonable extension of COP to the set ApXq that is
based on a clear rationale. Some extensions of that type are considered in the literature, especially
their restriction to the set AwtpXq or to the set AptpXq. The most used extensions are COP p1,0,0,0q,

COP p1,0,1,0q, COP p1,0, 12 ,0q, COP p1,1,0,0q (Copeland, 1951; Fishburn, 1977; Klamer, 2005; Henriet,
1985).4

Note that COP p1,1,0,0q and COP p1,0, 12 ,0q coincide on AwtpXq. Indeed, consider pX,Rq P AwtpXq.
Then, for every x P X, we have that |DR

� pxq| � |D
R

� pxq| � |IRpxq| � |X| � 1 so that

|DR
� pxq| � |D

R

� pxq| � |DR
� pxq| �

�
|X| � 1� |DR

� pxq| � |IRpxq|
�

� 2|DR
� pxq| � |IRpxq| � p|X| � 1q � 2

�
|DR

� pxq| �
1

2
|IRpxq|



� p|X| � 1q,

and that implies COP p1,1,0,0qpX,Rq � COP p1,0, 12 ,0qpX,Rq. On the other hand, we have that

COP p1,0,0,0q, COP p1,0,1,0q and COP p1,0, 12 ,0q are in general different on AwtpXq. Indeed, if X �
t1, 2, 3, 4u and R � tp1, 3q, p1, 4q, p2, 1q, p2, 3q, p2, 4q, p3, 2q, p3, 4q, p4, 1q, p4, 2q, p4, 3qu, then

COP p1,0,0,0qpX,Rq � t1, 2u, COP p1,0,1,0qpX,Rq � t2, 4u, COP p1,0, 12 ,0qpX,Rq � t2u.

Of course, COP p1,0,0,0q, COP p1,0,1,0q and COP p1,0, 12 ,0q coincide on AptpXq while COP p1,1,0,0q and

COP p1,0, 12 ,0q are in general different on AptpXq. In order to show that fact, note that if X �

t1, 2, 3, 4u and R � tp3, 2q, p3, 1q, p4, 3qu, then COP p1,1,0,0qpX,Rq � t3, 4u and COP p1,0, 12 ,0qpX,Rq �
t3u. Finally, the considered solutions are in general different on the whole set ApXq.

Interestingly, as proved in the next proposition, all the generalized Copeland sets applied to a
weak tournament always lead to a subset of the admissible set.

Proposition 26. Let pα, β, γ, δq P Σ. Then, for every pX,Rq P AwtpXq, COP pα,β,γ,δq � ADpX,Rq.

Proof. Let pX,Rq P AwtpXq. Observe first that COP pα,β,γ,δqpX,Rq � COP p1,0,ρ,0qpX,Rq, where

ρ � γ�β
α�β P r0, 1s. Indeed, we have that NRpxq � txu and |DR

� pxq| � |D
R

� pxq| � |IRpxq| � |X| � 1.
Thus, for every x P X, we have that

α|DR
� pxq| � β|D

R

� pxq| � γ|IRpxq| � δ|NRpxq|

� α|DR
� pxq| � γ|IRpxq| � β

�
|X| � 1� |DR

� pxq| � |IRpxq|
�
� δ

� pα� βq|DR
� pxq| � pγ � βq|IRpxq| � βp|X| � 1q � δ

� pα� βq

�
|DR

� pxq| �
γ � β

α� β
|IRpxq|



� βp|X| � 1q � δ,

and that implies COP pα,β,γ,δqpX,Rq � COP p1,0,ρ,0qpX,Rq. Thus, we are left with proving that
COP p1,0,ρ,0qpX,Rq � ADpX,Rq. Let x� P COP p1,0,ρ,0qpX,Rq. Assume by contradiction that x� R
ADpX,Rq. Thus, there exists y P X with y � x� such that py, x�q P Rτ and px�, yq R Rτ . In
particular, px�, yq R R and being R quasi-complete we get py, x�q P aspRq. Consider now z P
DR
� px

�q Y IRpx�q. We know we have px�, zq P R so that z R tx�, yu. Thus, it cannot be pz, yq P R
otherwise we would have that px�, z, yq is a path from x� to y in pX,Rq and that would imply

4It is worth mentioning that two further extensions of COP to AptpXq can be obtained by means of the concepts
of possible winners and necessary winners proposed by Aziz et al (2015) while a further extension of COP to AwtpXq
can be obtained by considering its conservative extension as proposed by Brandt et al. (2018).
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px�, yq P Rτ , a contradiction. Thus, pz, yq R R and since R is quasi-complete, we get py, zq P aspRq.
We conclude then that DR

� px
�q Y IRpx�q Y tx�u � DR

� pyq. Thus,

|DR
� px

�q| � ρ|IRpx�q| ¤ |DR
� px

�q| � |IRpx�q|   |DR
� px

�q| � |IRpx�q| � 1

¤ |DR
� pyq| ¤ |DR

� pyq| � ρ|IRpyq|.

That proves that x� R COP p1,0,ρ,0qpX,Rq, a contradiction.

We observe that, as solutions on ApXq, COP p1,0,0,0q, COP p1,0,1,0q, COP p1,0, 12 ,0q and COP p1,1,0,0q

can select alternatives outside the admissible set. Considering, for instance,

pX,Rq � pt1, 2, 3, 4, 5u, tp1, 2q, p2, 3q, p2, 4q, p2, 5quq P AptpXq, (4)

we have that all the considered solutions select t2u while ADpX,Rq � t1u.
The next proposition shows that the justifiable set is another possible extension of the Copeland

set to the whole set ApXq. That fact is important for two main reasons. First, it provides a new
interpretation of the Copeland set on AtpXq in terms of maximum flow value that certainly makes
the Copeland set an even more convincing solution on that environment. Secondarily, it shows that
the Copeland set can be extended to ApXq by means of a rationale that does not depend on a quite
arbitrary choice of some parameters and that guarantees to prevent selecting alternatives outside the
admissible set.

Proposition 27. For every pX,Rq P AtpXq, JpX,Rq � COP pX,Rq.

Proof. Since pX,Rq P AtpXq, we know that NpX,Rq is balanced. By Proposition 16 in Bubboloni

and Gori (2018) applied to NpX,Rq, we deduce that, for every x, y P X2
�, ϕ

pX,Rq
xy �ϕ

pX,Rq
yx � |DRpxq|�

|DRpyq|. That immediately implies that JpX,Rq � COP pX,Rq.

Note that, considering pX,Rq as in (4), we have that JpX,Rq � ADpX,Rq � t1u. In particular,

JpX,Rq is in general different from COP p1,0,0,0q, COP p1,0,1,0q, COP p1,0, 12 ,0q and COP p1,1,0,0q when
restricted to partial tournaments. The following examples finally show that the justifiable set is in
general different from those generalized Condorcet sets when restricted to weak tournaments, as well.
Indeed, let X � t1, 2, 3, 4u and

R1 � tp1, 3q, p4, 1q, p3, 4q, p4, 2q, p3, 2q, p1, 4q, p2, 1q, p4, 3q, p3, 1qu,

R2 � tp1, 4q, p4, 1q, p3, 2q, p1, 2q, p2, 4q, p1, 3q, p2, 1q, p4, 2q, p3, 4qu,

R3 � tp1, 4q, p2, 1q, p2, 3q, p2, 4q, p3, 1q, p3, 2q, p3, 4q, p4, 1q, p4, 3qu.

A computation shows that

COP p1,0,0,0qpX,R1q � t2, 3, 4u, JpX,R1q � t3, 4u,

COP p1,0, 12 ,0qpX,R2q � COP p1,1,0,0qpX,R2q � t1, 3u, JpX,R2q � t3u,

COP p1,0,1,0qpX,R3q � t2, 3u, JpX,R3q � t2u.

9 Comparison with the generalized stable set

Let pX,Rq be an abstract decision problem. Let ER be the equivalence relation on X defined as

ER �
 
px, yq P X2 : px, yq P Rτ and py, xq P Rτ

(
.

We denote by S pX,Rq the quotient set of X by ER. Recall that S pX,Rq is a partition of X.
The elements of S pX,Rq are called strong components of pX,Rq. Note that, given Y P S pX,Rq
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and x P X, we have that there exists y P Y such that px, yq P Rτ if and only if, for every y P Y ,
px, yq P Rτ . We set

A pX,Rq � tY P S pX,Rq : @x P XzY @y P Y, px, yq R Rτu .

Theorem 28 below states a well-known fact.5

Theorem 28. Let pX,Rq be an abstract decision problem. Then A pX,Rq � ∅ and ADpX,Rq ��
Y PA pX,Rq Y .

Consider now an abstract decision problem pX,Rq and let Y be a nonempty subset of X. The
relation R|Y � RXY 2 is an irreflexive relation on Y so that pY,R|Y q is an abstract decision problem
on Y . As a consequence, we can compute JpY,R|Y q. The following result shows that JpX,Rq is
made up by taking some specific elements from each set in A pX,Rq.

Theorem 29. Let pX,Rq be an abstract decision problem. Then

JpX,Rq �
¤

Y PA pX,Rq

JpY,R|Y q (5)

Proof. In order to simplify the notation, given Y � X with Y � ∅ and x, y P Y with x � y, we write

ϕxy instead of ϕ
pX,Rq
xy and ϕYxy instead of ϕ

pY,R|Y q
xy .

We start claiming that, for every Y P A pX,Rq and x, y P Y with x � y, we have ϕxy � ϕYxy.
Indeed, let Y P A pX,Rq and x, y P Y with x � y.

• Let us prove first that ϕxy ¥ ϕYxy. Let k � ϕYxy. If k � 0 the inequality is trivially satisfied so

that we can assume k ¥ 1. We know then that there exists a sequence pγjq
k
j�1 of k arc-disjoint

paths from x to y in pY,R|Y q. Of course, pγjq
k
j�1 is a also sequence of k arc-disjoint paths from

x to y in pX,Rq so that ϕxy ¥ k � ϕYxy.

• Let us prove now that ϕYxy ¥ ϕxy. Let k � ϕxy. If k � 0 the inequality is trivially satisfied

so that we can assume k ¥ 1. We know then that there exists a sequence pγjq
k
j�1 of k arc-

disjoint paths from x to y in pX,Rq. Let j P t1, . . . , ku and let γj � pxji q
m
i�1, where m ¥ 2

and xj1, . . . , x
j
m P X are distinct, xj1 � x and xjm � y. We are going to prove that γj is a

path from x to y in pY,R|Y q showing that xj1, . . . , x
j
m P Y . Assume by contradiction that there

exists i� P t1, . . . ,mu such that xji� R Y . Since x, y P Y , we have that m ¥ 3 and i� R t1,mu.

Observe now that σ � pxji�i��1q
m�i��1
i�1 is a path from xji� to y in pX,Rq. Thus, pxji� , yq P R

τ .

Since y P Y � ADpX,Rq, we also have that py, xji�q P R
τ so that pxji� , yq P ER. That implies

xji� P Y , a contradiction. Thus, each element of the sequence pγjq
k
j�1 is in fact a path from x

to y in pY,R|Y q. We also have that pγjq
k
j�1 is a sequence of k arc-disjoint paths from x to y in

pY,R|Y q. We conclude then that ϕYxy ¥ k � ϕxy.

Let us move on now to prove (5). Let us denote by C the set on the right hand side of (5).
Let us prove first that JpX,Rq � C. Let x P JpX,Rq. Since JpX,Rq � ADpX,Rq, there exists
Y P A pX,Rq such that x P Y . Let us show that x P JpY,R|Y q, that is, that ϕYxy ¥ ϕYyx for all
y P Y ztxu. Consider y P Y ztxu. Since x P JpX,Rq, we know that ϕxy ¥ ϕyx. By the claim we
immediately conclude that ϕYxy ¥ ϕYyx.

Let us prove now that C � JpX,Rq. Let x P C. Then there exists Y P A pX,Rq such that
x P JpY,R|Y q. Note that, in particular, x P Y and then x P ADpX,Rq. Let us show that x P JpX,Rq,
that is, that ϕxy ¥ ϕyx for all y P Xztxu. Consider y P Xztxu. Assume first that y P Y . Thus,
ϕYxy ¥ ϕYyx and by the claim ϕxy ¥ ϕyx. Assume now that y R Y . Thus ϕyx � 0. Indeed, if it were
ϕyx ¡ 0 we would get the contradiction py, xq P Rτ . From ϕyx � 0, we immediately deduce that
ϕxy ¥ ϕyx � 0.

5See, for instance, Theorem 5 in Kalai and Schmeidler (1977) or Theorem 9 in Gori (2022).
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Corollary 30. Let pX,Rq be an abstract decision problem and Y P A pX,Rq. Then JpX,Rq X Y �
JpY,R|Y q.

Proof. We know that the sets in A pX,Rq are pairwise disjoint. Moreover, for every Y 1 P A pX,Rq,
JpY 1, R|Y 1q � Y 1. Thus, using Theorem 29, we deduce that

JpX,Rq X Y �
� ¤
Y 1PA pX,Rq

JpY 1, R|Y 1q
	
X Y �

¤
Y 1PA pX,Rq

�
JpY 1, R|Y 1q X Y

�

� JpY,R|Y q X Y � JpY,R|Y q.

Theorem 29 allows to get an interesting link between the justifiable set and the generalized stable
set by Van Deemen (1991). We stress that such a solution is defined by the author for partial
tournaments only. In what follows, given A � P�pXq nonempty, we denote by GpAq the nonempty
set of all the possible subsets of X built by picking a single element by each element in A. Thus, for
example, if X � t1, 2, 3, 4u and A � tt1u, t2, 3u, t4uu, GpAq � tt1, 2, 4u, t1, 3, 4uu.

Consider pX,Rq P AptpXq. A subset V of X is called a generalized stable set of pX,Rq if

• for every x, y P V with x � y, px, yq R Rτ ,

• for every y P XzV , there exists x P V such that px, yq P Rτ .

By Theorem 2 in Van Deemen (1991) we know that set of the generalized stable sets coincides with
the set GpA pX,Rqq. That fact along with Theorem 29 allows to get the following proposition.

Proposition 31. Let pX,Rq P AptpXq and let

k � maxt|JpY,R|Y q| : Y P A pX,Rqu.

Then JpX,Rq can be expressed as union of k distinct generalized stable sets but it cannot be expressed
as union of less than k generalized stable sets.

Proof. Let s � |A pX,Rq| and let Y1, . . . , Ys be the elements of A pX,Rq. For every i P t1, . . . , su,
let ci � |JpYi, R|Yiq| and let x1

i , . . . , x
ci
i be the elements of JpYi, R|Yiq. By assumption we have that

maxtc1, . . . , csu � k. Without loss of generality we can assume that c1 � k.
For every t P t1, . . . , ku, let

Vt �
!
x

mintt,ciu
i : i P t1, . . . , su

)
.

Of course, for every t P t1, . . . , ku, Vt P GpA pX,Rqq so that Vt is a generalized stable set. Moreover,
for every t P t1, . . . , ku, we have that Vt is the unique set among V1, . . . , Vk having xt1 as element.
That proves that V1, . . . , Vk are distinct. Finally, recalling Theorem 29, it is immediate to show that

JpX,Rq �
¤

Y PA pX,Rq

JpY,R|Y q �
k¤
t�1

Vt.

That proves that JpX,Rq is union of k distinct generalized stable sets.
Consider now V1, . . . , Vh generalized stable sets with h   k. Since V1, . . . , Vh P GpA pX,Rqq,

each Vt contains at most an element of the set Y1 and then at most an element of JpY1, R|Y1
q. As

a consequence, since |JpY1, R|Y1
q| � k, we have that JpY1, R|Y1

q �
�h
t�1 Vt. In particular, applying

Theorem 29, we get JpX,Rq �
�h
t�1 Vt. That proves that JpX,Rq cannot be expressed as union of

less than k generalized stable sets.

By Proposition 31 we can understand that some generalized stable sets are subsets of JpX,Rq.
That provides a sensible method to refine the concept of generalized stable set.
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Definition 32. Let pX,Rq P AptpXq. We say that V is a justifiable generalized stable set of pX,Rq
if V is a generalized stable set and V � JpX,Rq.

The following proposition is immediately proved.

Proposition 33. Let pX,Rq P AptpXq, A � tJpY,R|Y q : Y P A pX,Rqu and V � X. Then V is a
justifiable generalized stable set pX,Rq if and only if V P GpAq.

Proof. Consider the following facts:

pa1q V is a justifiable generalized stable set of pX,Rq,

pa2q V P GpA pX,Rqq and V � JpX,Rq,

pa3q V P GptY X JpX,Rq : Y P A pX,Rquq,

pa4q V P GpAq.

Using Theorem 2 in Van Deemen (1991) and Definition 32, we get that pa1q is equivalent to pa2q. A
simple set theoretical argument shows that pa2q is equivalent to pa3q. Applying Corollary 30, we get
that pa3q is equivalent to pa4q. Thus, we conclude that pa1q is equivalent to pa4q, as desired.

By means of the previous results, we can also easily highlight some links between the justifiable
set and the w-stable set defined by Han and Van Deemen (2016). Note that that solution is defined
by the authors for partial tournaments only. Consider pX,Rq P AptpXq. A nonempty subset V of X
is called a w-stable set of pX,Rq if6

• for every x, y P V with x � y, px, yq R Rτ ,

• for every x P V and y P XzV , py, xq P Rτ implies px, yq P Rτ .

By Theorem 2 in Van Deemen (1991) and Theorem 4.1 in Han and Van Deemen (2016) we have
that a nonempty subset W of X is a w-stable set of pX,Rq if and only if W � V , where V is a
generalized stable set of pX,Rq. In particular, each generalized stable set is a w-stable set. By
Proposition 31 we have then that, for every pX,Rq P AptpXq, JpX,Rq is union of w-stable sets. In
particular, there are w-stable sets that are included in JpX,Rq. As done for generalized stable sets,
we can naturally define a refinement of the concept of w-stable set as described in Definition 34. Our
definition provides an alternative approach to Definition 5.1 in Han and Van Deemen (2016) where
the authors propose a refinement based on Copeland scores.

Definition 34. Let pX,Rq P AptpXq. We say that W is a justifiable w-stable set of pX,Rq if W is
a w-stable set and W � JpX,Rq.

Finally, we propose a simple remark about the link between the justifiable set and the m-stable
set proposed by Peris and Subiza (2013). Also in this case, that solution is defined by the authors
for partial tournaments only. Consider pX,Rq P AptpXq. A nonempty subset V of X is called a
m-stable set of pX,Rq if

• for every x, y P V , if px, yq P Rτ then py, xq P Rτ ,

• for every x P V and y P XzV , py, zq R Rτ .

By Lemma 1(f) in Peris and Subiza (2013) we have that V is a m-stable set of pX,Rq if and only if
there exists T � A pX,Rq with T � ∅ such that

V �
¤
Y PT

Y.

As an immediate consequence of Theorem 29, we have that if V is an m-stable set of pX,Rq, then
V X JpX,Rq � ∅.

6We add the condition V � ∅ to the original definition of w-stable set by Han and Van Deemen (2016, Definition
4.1). Indeed, the authors implicitly exclude the case V � ∅ in their reasoning, even though the empty set formally
satisfies the conditions of their definition.
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10 The justifiable majority scc

Let us denote by LpXq the set of linear orders on X. Given q P LpXq and x, y P X, we write x ©q y
instead of px, yq P q and we write x ¡q y instead of px, yq P aspqq.

We interpret X as the set of alternatives. Consider a countably infinite set V whose elements are
to be interpreted as potential voters. For simplicity, we assume V � N. Let us consider the set

LpXq� �
¤
I�V

I�∅ finite

LpXqI .

An element of LpXq� is called preference profile. Thus, a preference profile is a function from a finite
and nonempty subset of V to LpXq. Given p P LpXq�, we denote by Domppq the domain of p and,
for every i P Domppq, ppiq P LpXq is interpreted as the preference relation of voter i on the set of
alternatives X.

Let p P LpXq�. We denote by pr the element of LpXq� such that Dompprq � Domppq and such
that, for every i P Domppq, prpiq � ppiqr. If ϕ P SympDomppqq and ψ P SympXq, we denote by ppϕ,ψq

the element of LpXq� such that Dompppϕ,ψqq � Domppq and such that, for every i P Dompppϕ,ψqq,

ppϕ,ψqpiq � ppϕ�1piqqψ.

For every px, yq P X2
�, we set cppx, yq � |ti P Domppq : x ¡ppiq yu|. Note that, given px, yq P X2

�,
we have that cpr px, yq � cppy, xq and, for every ϕ P SympDomppqq and ψ P SympXq, we have that
cppϕ,ψqpx, yq � cppψ

�1pxq, ψ�1pyqq. The majority relation associated with p is the relation on X
defined by

Γppq � tpx, yq P X2
� : cppx, yq ¡ cppy, xqu.

Thus, px, yq P Γppq if, according to p, the number of individuals preferring x to y is larger than the
number of individuals preferring y to x. Of course, we also have that

Γppq �
!
px, yq P X2

� : cppx, yq ¡
|Domppq|

2

)
,

so that px, yq P Γppq if and only if the majority of the voters prefers x to y. It is immediate to prove
that Γppq is asymmetric and in general it is not quasi-complete. The pair pX,Γppqq is called the
majority digraph associated with p and pX,Γppqq P AptpXq. The next result is a useful proposition
whose simple proof is omitted.

Proposition 35. Let p P LpXq�, ϕ P SympDomppqq and ψ P SympXq. Then Γpprq � Γppqr and
Γpppϕ,ψqq � Γppqψ.

A social choice correspondence (scc) is a function from LpXq� to P�pXq. Thus, a scc is a
procedure that allows to select a nonempty set of alternatives for any conceivable preference profile.
Let us define now the main object of the section.

Definition 36. The justifiable majority scc is the scc defined, for every p P LpAq�, by

JMppq � JpX,Γppqq.

The justifiable majority scc satisfies a variety of interesting properties that we are going to discuss
in the next sections. We preliminary observe that, because of Proposition 6, the justifiable majority
scc is well defined, that is, it is always nonempty valued. Moreover, the justifiable majority scc is
a C1 function in the sense of Fishburn (1977) as it only depends on pX,Γppqq. As a consequence it
satisfies the property of homogeneity (see Fishburn, 1977, pp.476-477).
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11 Properties of the justifiable-majority scc

A scc F is anonymous if, for every p P LpXq� and ϕ P SympDomppqq, F pppϕ,idqq � F ppq; neutral if
for every p P LpXq� and ψ P SympXq, F pppid,ψqq � ψpF ppqq.

Proposition 37. JM is anonymous.

Proof. Let p P LpXq� and ϕ P SympDomppqq. By Proposition 35, we know that Γpppϕ,idqq � Γppq.
Thus, we have that

JMpppϕ,idqq � JpX,Γpppϕ,idqqq � JpX,Γppqq � JMppq,

as desired.

Proposition 38. JM is neutral.

Proof. Let p P LpXq� and ψ P SympXq. By Proposition 35, we know that Γpppid,ψqq � Γppqψ. Thus,
applying Proposition 13, we have that

JMpppid,ψqq � JpX,Γpppid,ψqqq � JpX,Γppqψq � ψpJpX,Γppqqq � ψpJMppqq,

as desired.

Let F be a scc. We say that F satisfies the Schwartz principle if, for every p P LpXq�, we have
that F ppq � ADpX,Γppqq.7 Given p P LpXq�, we say that D � X is a dominating set for p if D is
a dominating set for pX,Γppqq. We say that F satisfies the Smith principle if, for every p P LpXq�
and for every D � X dominating set for p, we have that F ppq � D.8 By Proposition 9 we have that
if F satisfies the Schwartz principle, then F satisfies the Smith principle.

Proposition 39. JM satisfies the Schwartz principle. In particular, JM satisfies the Smith prin-
ciple.

Proof. Let p P LpXq�. By Proposition 8, we have that that JMppq � JpX,Γppqq � ADpX,Γppqq.

Let p P LpXq� and x P X. The alternative x is called Condorcet winner for p if, for every
y P Xztxu, px, yq P Γppq; weak Condorcet winner for p if, for every y P Xztxu, py, xq R Γppq. Thus,
the set of Condorcet winners for p coincides with the set CW pX,Γppqq; the set of weak Condorcet
winners for p coincides with COpX,Γppqq. A scc F is said to satisfy the Condorcet principle if
CW pX,Γppqq � ∅ implies F ppq � CW pX,Γppqq.

Proposition 40. JM satisfies the Condorcet principle.

Proof. Let p P LpXq� and assume that CW pX,Γppqq � ∅. By Proposition 11, we have that
CW pX,Γppqq � JpX,Γppqq � JMppq.

The next proposition shows that JM always selects all the weak Condorcet winners.

Proposition 41. Let p P LpXq�. Then COpX,Γppqq � JMppq.

Proof. By Proposition 7, we have that COpX,Γppqq � JpX,Γppqq � JMppq.

A scc F is said Pareto optimal if, for every p P LpXq� and x, y P X, we have that ti P Domppq :
x ¡ppiq yu � Domppq implies y R F ppq.

Proposition 42. JM is Pareto optimal.

7Note that F satisfies the Schwartz principle if and only if F is a refinement of the Schwartz scc defined in Fishburn
(1977, p.473).

8Note that the definition of Smith principle here considered coincides with the one of strong Smith winner consis-
tency in Barberà and Bossert (2023).
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Proof. Let p P LpXq�, x, y P X and set Domppq � I. Assume that ti P I : x ¡ppiq yu � I and prove
that y R JMppq. Note first that, cppx, yq � |I| and cppy, xq � 0 so that px, yq P Γppq � aspΓppqq.

Consider now z P DΓppqpyq. Thus, z R tx, yu and py, zq P Γppq. Considering then the set

A � ti P I : y ¡ppiq zu, we know that |A| ¡ |I|
2 . Consider now A1 � ti P I : x ¡ppiq zu. Note that if

i P A, then y ¡ppiq z and, since x ¡ppiq y and ppiq is a linear order, we conclude that x ¡ppiq z so that

i P A1. Thus, A � A1. We deduce then that |A1| ¡ |I|
2 so that px, zq P Γppq, that is, z P DΓppqpxq.

Thus, DΓppqpyq � DΓppqpxq.

Consider next z P D
Γppq

pxq. Thus, z R tx, yu and pz, xq P Γppq. Considering then the set

A � ti P I : z ¡ppiq xu, we know that |A| ¡ |I|
2 . Consider now A1 � ti P I : z ¡ppiq yu. Note that if

i P A, then z ¡ppiq x and, since x ¡ppiq y and ppiq is a linear order, we conclude that z ¡ppiq y so that

i P A1. Thus, A � A1. We deduce then that |A1| ¡ |I|
2 so that pz, yq P Γppq, that is, z P D

Γppq
pyq.

Thus, D
Γppq

pxq � D
Γppq

pyq.
As a consequence we can apply Proposition 14 and deduce that y R JpX,Γppqq � JMppq.

Let p, p1 P LpXq� with Domppq � Dompp1q and x P X. We say that x improves its position from
p to p1 if

• for every i P Domppq and y P Xztxu, x ¡ppiq y implies x ¡p1piq y;

• for every i P Domppq and y1, y2 P Xztxu, y1 ¡ppiq y2 if and only if y1 ¡p1piq y2.

A scc F is said monotonic if, for every p, p1 P LpXq� with Domppq � Dompp1q and x P F ppq, the fact
that x improves its position from p to p1 implies that x P F pp1q.

Proposition 43. JM is monotonic.

Proof. Let p, p1 P LpXq� with Domppq � Dompp1q � I, x P JMppq � JpX,Γppqq and suppose that x
improves its position from p to p1. We have to show that x P JMpp1q.

Consider z P DΓppqpxq. Thus z � x and px, zq P Γppq. Considering then the set A � ti P I :

x ¡ppiq zu, we know that |A| ¡ |I|
2 . Consider now A1 � ti P I : x ¡p1piq zu. Note that if i P A, then

x ¡ppiq z and, since x improves its position from p to p1, we conclude that x ¡p1piq z so that i P A1.

Thus, A � A1. We deduce then that |A1| ¡ |I|
2 so that px, zq P Γpp1q that is z P DΓpp1qpxq. Thus,

DΓppqpxq � DΓpp1qpxq.

Consider next z P D
Γpp1q

pxq. Thus z � x and pz, xq P Γpp1q. Considering the set A1 � ti P I :

z ¡p1piq xu, we know that |A1| ¡ |I|
2 . Consider now A � ti P I : z ¡ppiq xu. Note that if i P A1, then

z ¡p1piq x and, since x improves its position from p to p1, we conclude that z ¡ppiq x so that i P A.

Thus, A1 � A. We deduce then that |A| ¡ |I|
2 so that pz, xq P Γppq, that is, z P D

Γppq
pxq. Thus,

D
Γpp1q

pxq � D
Γppq

pxq.
Finally note that, since, for every i P Domppq and y1, y2 P Xztxu, y1 ¡ppiq y2 if and only if

y1 ¡p1piq y2, we have that py1, y2q P Γppq if and only if py1, y2q P Γpp1q. Thus,

tpy1, y2q P Γppq : y1 � x, y2 � xu � tpy1, y2q P Γpp1q : y1 � x, y2 � xu.

Since x P JpX,Γppqq, by Proposition 16, we conclude that x P JpX,Γpp1qq � JMpp1q.

A scc F is said immune to the reversal bias if, for every p P LpXq�, F ppq � X implies F ppq �
F pprq.

Proposition 44. JM is immune to the reversal bias.

Proof. Let p P LpXq� and assume that JMppq � X. Thus JMppq � JpX,Γppqq � X. By Proposition
18, we have that JpX,Γppqq � JpX,Γppqrq. Since by Proposition 35 we know that Γppqr � Γpprq,
we conclude that JMppq � JpX,Γppqq � JpX,Γpprqq � JMpprq.
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Proposition 45. Let p P LpXq�. Then JMppq � X if and only if JMpprq � X.

Proof. By Proposition 20 we know that JpX,Γppqq � X if and only if JpX,Γppqrq � X. By Propo-
sition 35 we also know that JpX,Γppqrq � JpX,Γpprqq. Thus, JMppq � JpX,Γppqq � X if and only
if JMpprq � JpX,Γppqrq � X.

Let p P LpXq� and x P X. The alternative x is called Condorcet loser for p if, for every y P Xztxu,
py, xq P Γppq; intermediate Condorcet loser for p if, for every y P Xztxu, px, yq R Γppq and there exists
y� P Xztxu such that py�, xq P Γppq. The set of Condorcet losers for p is denoted by CLppq; the
set of intermediate Condorcet losers for p is denoted by ICLppq. A scc F is said to satisfy the
Condorcet loser principle if, for every p P LpXq�, F ppq X CLppq � ∅. A scc F is said to satisfy the
intermediate Condorcet loser principle if, for every p P LpXq�, F ppq X ICLppq � ∅. Since, for every
p P LpXq�, CLppq � ICLppq we have that if F satisfies the intermediate Condorcet loser principle,
then it satisfies the Condorcet loser principle. Note that the definitions of intermediate Condorcet
loser and intermediate Condorcet loser principle are introduced and studied in Barberà and Bossert
(2023).

Proposition 46. JM satisfies the intermediate Condorcet loser principle.

Proof. Let p P LpXq�. We have to show that JMppq X ICLppq � ∅. If ICLppq � ∅ we immediately
get the desired equality. Assume then that ICLppq � ∅ and let x P ICLppq. We know that there

exists y� P Xztxu such that py�, xq P Γppq. Thus ϕ
pX,Γppqq
y�x ¥ 1. Since, for every y P Xztxu,

px, yq R Γppq we have also that ϕ
pX,Γppqq
xy� � 0. As a consequence, x R JpX,Γppqq � JMppq. We

conclude then that JMppq X ICLppq � ∅.

12 Comparison with the Copeland scc

For every p P LpXq� and x P X, let

wppxq � |ty P Xztxu : cppx, yq ¡ cppy, xqu|,

lppxq � |ty P Xztxu : cppx, yq   cppy, xqu|,

tppxq � |ty P Xztxu : cppx, yq � cppy, xqu|.

The Copeland scc is a classic scc whose definition dates back to Copeland (1951) (see also Fishburn,
1977).

Definition 47. The Copeland scc is the scc defined, for every p P LpXq�, by

COP ppq � argmax
xPX

pwppxq � lppxqq .

Other versions of the Copeland scc can be found in the literature. They can be seen as special
instances of the following general definition. In what follows, let

Σ� � tpα, β, γq P R3 : α ¥ 0, β ¥ 0, α� β ¡ 0, γ P r�β, αsu,

and note that if pα, β, γq P Σ�, then pα, β, γ, 0q P Σ, where Σ is defined in (3).

Definition 48. Let pα, β, γq P Σ�. The generalized Copeland scc with parameters pα, β, γq is the
scc defined, for every p P LpXq�, by

COP
pα,β,γq

ppq � argmax
xPX

pαwppxq � β lppxq � γ tppxqq ,
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Of course, COP
p1,1,0q

coincides with COP . Note also that COP
p1,0, 12 q is considered by Saari and

Merlin (1996), COP
p1,0,γq

with γ P r0, 1s by Faliszewski et al. (2009), COP
p1,0,1q

by Moulin (1983).
Let us prove some simple facts about the generalized Copeland sccs. For every p P LpXq�, let

Γppq � tpx, yq P X2
� : cppx, yq ¥ cppy, xqu.

Note that Γppq P AwtpXq and aspΓppqq � Γppq.

Proposition 49. Let pα, β, γq P Σ� and p P LpXq�. Then COP
pα,β,γq

ppq � COP pα,β,γ,0qpX,Γppqq.

Proof. Simply note that, for every x P X,

wppxq � |D
Γppq
� pxq|, lppxq � |D

Γppq
� pxq|, tppxq � |IΓppqpxq|, |NΓppqpxq| � 1.

That immediately implies the desired equality.

Since we proved that COP p1,1,0,0q coincides with COP p1,0, 12 ,0q on AwtpXq and since Γppq P

AwtpXq for all p P LpXq�, by Proposition 49 we deduce that COP � COP
p1,1,0q

� COP
p1,0, 12 q.

However, we usually have that COP
pα,β,γq

� COP
pα1,β1,γ1q

when pα, β, γq � pα1, β1, γ1q. Define now

D � tp P LpXq� : Γppq P AtpXqu,

and note that D is a quite large set since

tp P LpXq� : |Domppq| is oddu � D.

The following proposition holds true.

Proposition 50. Let pα, β, γq P Σ� and p P D. Then COP
pα,β,γq

ppq � COP ppq.

Proof. By Propositions 25 and 49 and the fact that Γppq P AtpXq, we have that

COP
pα,β,γq

ppq � COP pα,β,γ,0qpX,Γppqq � COP pX,Γppqq � COP p1,1,0,0qpX,Γppqq � COP ppq.

Proposition 50 shows that all the generalized Copeland sccs coincide on D. Denoting by COPD
the restriction of all those sccs to D, we have that COPD fulfils a very remarkable property, namely
that, for every p P D, it selects the alternatives that maximize any score of the type αwppxq�βlppxq�
γtppxq, where pα, β, γq P Σ�. That makes COPD a very convincing method to select alternatives
when preference profiles are in D. Extending COPD to the whole set LpXq� is important and in
fact any generalized Copeland scc represents a possible reasonable extension of COPD. However, it
is not completely clear which among the generalized Copeland sccs better serves on purpose.

The next proposition shows that JM is another possible way to extend COPD to the set LpXq�.
Interestingly, JM is an extension of COPD to the set LpXq� based on a rationale different from the
one underlying all the generalized Copeland sccs, namely the maximization of a suitable score.

Proposition 51. Let p P D. Then JMppq � COP ppq.

Proof. Since p P D, we have that pX,Γppqq P AtpXq so that Γppq � Γppq. By Propositions 25, 27 and
49 we have that

JMppq � JpX,Γppqq � JpX,Γppqq � COP pX,Γppqq � COP p1,1,0,0qpX,Γppqq � COP ppq.
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It is important to note that JM is an extension of COPD satisfying the Schwartz principle. The
fact that the generalized Copeland sccs do not satisfy in general the Schwartz principle makes JM
a very interesting extension of COPD.

Let us complete the section by showing that COP , COP
p1,0,0q

and COP
p1,0,1q

do not to satisfy
in general the Schwartz principle. Consider X � t1, 2, 3, 4, 5u and let p P LpXq� be such that
p : t1, 2, 3, 4, 5, 6u Ñ LpXq and9

pp1q � 12345, pp2q � 12345, pp3q � 12345, pp4q � 54312, pp5q � 25431, pp6q � 25431.

Then, we have that COP ppq � COP
p1,0,0q

ppq � t2u and ADpX,Γppqq � JMppq � t1u. Consider now
X � t1, 2, 3, 4u and let p P LpXq� be such that p : t1, 2, 3, 4, 5, 6u Ñ LpXq and

pp1q � 1423, pp2q � 1423, pp3q � 3214, pp4q � 3214, pp5q � 4231, pp6q � 4312.

Then, we have that COP
p1,0,1q

ppq � t1, 2, 3, 4u and ADpX,Γppqq � JMppq � t1, 3, 4u.

References
Aziz, H., Brill, M., Fischer, F., Harrenstein, P., Lang, J., Seeding, H.G., 2015. Possible and necessary
winners of partial tournaments. Journal of Artificial Intelligence Research 54, 493-534.

Bang-Jensen, J., Gutin, G., 2008. Digraphs Theory, Algorithms and Applications. Springer.
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