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Abstract

We propose new solution concepts for finite strategic games based on the admissible set, a solution concept for
abstract decision problems introduced by Kalai and Schmeidler. The first solution concept, called the better-
response admissible set, selects the strategy profiles that cannot be excluded by a bargaining process where
players consider only unilateral deviations that strictly improve their payoffs. The second solution concept,
called the best-response admissible set, restricts transitions to unilateral deviations that yield the maximum
possible payoff increase. We establish several properties of these solution concepts: both contain the set
of Nash equilibria; they coincide with the set of Nash equilibria for all generalized ordinal potential games;
they are invariant to increasing transformations of the payoffs; the best-response admissible set always selects
rationalizable strategy profiles, while the better-response admissible set, in general, does not. Moreover,
inspired by the properties of the admissible set and the rationale behind the definition of the Schulze voting
method, we introduce special refinements of these solution concepts and establish some of their properties.

Keywords: finite strategic games; Nash equilibrium; abstract decision problem; admissible set; Schulze method;
potential games.

JEL classification: C70; C72.

1 Introduction

An abstract decision problem1 is a pair pX,Rq, where X is a non-empty set and R is an irreflexive relation on
X. The set X represents the set of alternatives among which a society must make a choice. The relation R
describes all the valid arguments that justify the transition from one alternative to another: px, yq P R means
that if the society is currently considering y, then there is a good reason to reject y and start considering x. The
relation R is called the dominance relation on X and, when px, yq P R, we say that x dominates y.

A solution concept for abstract decision problems is a method for selecting, for any given abstract decision
problem, some alternatives to be considered as possible outcomes of the social decision. There are many solution
concepts in the literature, including: the stable set (Von Neumann and Morgenstern 1944), the core (Gillies
1953), the generalized stable set (Van Deemen 1991), the socially stable set (Delver and Monsuur 2001), the
m-stable set (Peris and Subiza 2013), the w-stable set (Han and Van Deemen 2016), the supercore (Roth 1976),
the admissible set (Kalai et al. 1976; Kalai and Schmeidler 1977; Schwartz 1972, 1986; Shenoy 1979, 1980), the
maximum flow value set (Gori 2024). The admissible set of an abstract decision problem, which is the solution
concept we are mainly focusing on in this paper, formally corresponds to the set of the maximal elements of the
transitive and reflexive closure of the dominance relation (Kalai and Schmeidler 1977; Gori 2023). This set has
a fascinating interpretation, as it represents the set of alternatives that cannot be excluded as final outcomes of
a social bargaining process where the society has a positive probability to transition from any alternative to any
other alternative dominating it. Remarkably, the admissible set contains the core (the set of alternatives that

1Also called abstract game (Shenoy 1979) or abstract system (Inarra et al. 2010).
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are not dominated by any other alternative), and, when the set of alternatives is finite, it is nonempty. However,
the admissible set is often very large, which makes it mainly useful to exclude bad alternatives rather than to
select good ones.

Many decision problems can be modeled as abstract decision problems. As a notable example, given a finite
strategic game, (pure or mixed) strategy profiles can be interpreted as alternatives and, once a dominance relation
on the set of strategy profiles is defined, based on assumptions about players’ behavior or characteristics, an
abstract decision problem is associated with the game. At this point, it becomes interesting to explore whether a
given classic solution concept for strategic games, such as the Nash equilibrium or the strong Nash equilibrium,
coincides with or is related to the outcomes of the abstract decision problem when analyzed using a specific
solution concept, such as the core or the stable set. Those connections may be valuable as they may shed
light on classic solution concepts in game theory. Moreover, this approach also allows for the definition of a
broader range of solution concepts for games by simply considering as solution of the game the solution of the
corresponding abstract decision problem via a given solution concept for abstract decision problems.

Several authors have explored this line of research. Kalai and Schmeidler (1977) consider the mixed extension
of a finite strategic game and identify a relation on the set of mixed strategy profiles such that the corresponding
admissible set coincides with the set of mixed Nash equilibria. Greenberg (1989) identifies a suitable abstract
decision problem associated with a game such that its (unique) stable set and its core, respectively, correspond
to the set of coalition-proof Nash equilibria and the set of strong Nash equilibria. Focusing on the dominance
relation on the set of strategy profiles that only accounts for single profitable deviations, called here the better-
response dominance relation, Greenberg (1990) proves the existence of the stable set for any two-player game
with finite strategies, and for any game with a finite number of players each having a binary strategy set; Iñarra
et al. (2007) study the supercore and show its relation with the set of Nash equilibria of the game; Iñarra et
al. (2014) study the stable set of the mixed extensions of two-player two-strategy games, showing, in particular,
that games with a strict Nash equilibrium have infinite stable sets, and games without a strict Nash equilibrium
have just a unique stable set. Iñarra et al. (2010) find a suitable refinement of the better-response dominance
relation that guarantees that the set of mixed Nash equilibria of every finite strategic game always coincides with
the supercore of its associated abstract decision problem. Chwe (1994) introduces a dominance relation on the
set of strategy profiles that accounts for coalitional profitable deviations and incorporates farsighted behavior of
players, who are then assumed to be able to understand the outcome originating by their own deviation and a
chain of subsequent deviations by other players; he then considers the stable set of the corresponding abstract
decision problem finding weak nonemptiness conditions. Suzuki and Muto (2005) specialize the work of Chwe
(1994) to the n-player prisoners’ dilemma game, while Nakanishi (2009) also examines an n-player prisoners’
dilemma game, but focusing on the dominance relation that only accounts for individual profitable deviations of
farsighted players. Bloch and van den Nouweland, (2021) generalize and unify existing results on stable sets in
finite two-player strategic games, both for the better-response dominance relation and its version with farsighted
players.

In this paper, given a finite strategic game, we consider the set of pure strategy profiles as the set of al-
ternatives. Then, we first consider two basic dominance relations: the best-response dominance relation and
the better-response dominance relation. According to the best-response dominance relation, a strategy profile
dominates another if it can be obtained from the latter through a unilateral deviation by a player, provided that
this deviation increases the player’s payoff and the deviating strategy is one of the player’s best responses to
the others’ strategies. According to the better-response dominance relation, as already said, a strategy profile
dominates another if it can be obtained from the latter through a unilateral deviation by a player that increases
the player’s payoff, regardless of whether the deviating strategy is a best response to the others’ strategies.2

We then consider the corresponding admissible sets, respectively called the best-response admissible set and
the better-response admissible set of the game, and analyze their properties. We emphasize that Kalai and
Schmeidler (1977), in their application of the admissible set to finite strategic games, focus exclusively on mixed
strategy profiles, whereas in this paper we consider only pure strategies. Moreover, to the best of our knowledge,
no other application of the admissible set to finite strategic games can be found in the literature.

The best-response admissible set and the better-response admissible set are proved to be nonempty valued, to
include the Nash equilibria, to be invariant under strictly increasing transformations of the payoff functions, and
to select only strategy profiles in which strictly dominant strategies are played, when any exist. Moreover, the
best-response admissible set is also invariant under the elimination of strategies that are never a best response,
and therefore always selects rationalizable strategy profiles. On the other hand, the better-response admissible

2Block and van den Nouweland (2021) call this relation the myopic dominance relation.
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set can include strategy profiles in which some strategies are strictly dominated. This implies that assuming that
players may violate a rationality principle (by deviating without choosing a best response) may lead to strategy
profiles that also violate the same rationality principle. Furthermore, both solutions coincide with the set of
Nash equilibria when applied to generalized ordinal potential games.

Through various examples, it can be observed that the best-response admissible set and the better-response
admissible set often select several strategy profiles.3 Thus, in the second part of the paper, we propose some
special refinements of these sets. The starting point for building the refinements is the observation that sometimes
a decision problem may be modeled by a family of abstract decision problems, all having the same set of
alternatives and where each dominance relation addresses specific aspects of the original problem. In this case,
once a solution concept for abstract decision problems is fixed, it might be interesting to study whether there are
alternatives that belong to the outcome of each abstract decision problem in the family. Of course, in principle,
it may happen that no alternative satisfies this property. However, when the admissible set is considered, things
work particularly well. Indeed, as proved in Gori (2023), if the dominance relations in the family of abstract
decision problems can be ordered in an increasing sequence of sets, then the intersection of all the admissible
sets is nonempty.

A notable example of this approach comes from the theory of social choice. Consider a voting situation
where n individuals express as preferences a linear order over a finite set of alternatives. A natural dominance
relation to consider on the set of alternatives is the majority relation: an alternative x dominates an alternative
y if and only if the number of individuals who prefer x to y is greater than n

2 . The admissible set of the
corresponding abstract decision problem defines the so-called Schwartz set (Schwartz 1972). However, other
natural relations can be considered. In fact, for every integer µ greater than n

2 and less than or equal to n,
we can consider the µ-majority relation: x dominates y if and only if at least µ individuals prefer x to y. The
family of µ-majority relations can be ordered as an increasing sequence of sets. Thus, the intersection of all the
corresponding admissible sets is nonempty (and is included in the Schwartz set). This construction defines the
well-known Schulze voting method, an important method rich in properties and used by several organizations
(Schulze 2011, 2018; Gori 2023).

Given now a finite strategic game G, for every real number t, we define the dominance relation DtpGq, where
a strategy profile dominates another if it can be obtained from the latter by means of a unilateral deviation
by a player, provided that such a deviation results in a payoff variation greater than t for that player, and
that the deviating strategy guarantees the largest payoff among those different from the current one. We also
define the dominance relation EtpGq, where a strategy profile dominates another if it can be obtained from the
latter by means of a unilateral deviation by a player, provided that such a deviation results in a payoff variation
greater than t for that player, regardless of whether a larger payoff would be obtained by playing a different
strategy. We then define the refined best-[better-]response admissible set of the game G as the intersection of the
admissible sets of the abstract decision problems obtained by considering the dominance relations DtpGq [EtpGq]
for nonnegative values of t. Similarly, we define the strongly refined best-[better-]response admissible set of the
game G as the intersection of the admissible sets of the abstract decision problems obtained by considering the
dominance relations DtpGq [EtpGq] for all values of t. We then investigate the properties of these refined solution
concepts.

As obvious, for every finite strategic game, the strongly refined best-[better-]response admissible set is a
subset of the refined best-[better-]response admissible set, which in turn is a subset of the best-[better-]response
admissible set. Furthermore, the refined best-[better-]response admissible set always includes the set of Nash
equilibria, while the strongly refined best-[better-]response admissible set may fail to include it. Notably, the
strongly refined best-[better-]response admissible set is also shown to be non-empty valued, as is the refined
best-[better-]response admissible set. Moreover, we provide upper bounds on the size of each of these sets under
suitable conditions on the game. In particular, this allows us to show that, for almost all two-player games in
which one of the players has at most three strategies, the strongly refined best-response admissible set selects a
unique strategy profile; for almost all games, the strongly refined better-response admissible set selects a unique
strategy profile, regardless of the number of players and the number of players’ strategies. We also provide an
alternative and computationally convenient definition for these sets. Further properties are described throughout
the paper.

3We tested these solution concepts on many randomly generated two-player games, each with up to 15 strategies per player. We
also observed that the best-response admissible set tends to be more selective than the better-response admissible set.
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2 Preliminaries

2.1 Relations

Let X be a finite set. We set X2
d “ tpx, yq P X2 : x “ yu and X2˚ “ tpx, yq P X2 : x ‰ yu. The size of X is

denoted by |X|.
A relation on X is a subset of X2. Let R be a relation on X. The asymmetric part of R is the relation on

X given by aspRq “ tpx, yq P R : py, xq R Ru. We say that R is

• reflexive if, for every x P X, px, xq P R;

• irreflexive if, for every x P X, px, xq R R;

• asymmetric if, for every x, y P X, px, yq P R implies py, xq R R (that is, R “ aspRq);
• transitive if, for every x, y, z P X, px, yq P R and py, zq P R imply px, zq P R;

• quasi-transitive if aspRq is transitive;

• cyclic if there exist m ě 2 and x1, . . . , xm distinct elements of X such that, for every j P t1, . . . ,m ´ 1u,
pxj , xj`1q P R and pxm, x1q P R;

• acyclic if it is not cyclic.

The set of maximal elements of R is defined as

MaxpRq “ tx P X : py, xq P R implies px, yq P R for all y P Xu.
Observe that MaxpRq “ tx P X : py, xq R aspRq for all y P Xu and MaxpRq “ MaxpaspRqq. It is well known that
if X is a nonempty and finite set and R is a quasi-transitive relation on X, then MaxpRq ‰ ∅.

2.2 Abstract decision problems, the core and the admissible set

Let X be a fixed nonempty and finite set. An abstract decision problem on X is an ordered pair pX,Rq, where
R is an irreflexive relation on X called dominance relation. If px, yq P R, we say that x dominates y (according
to R).

Consider an abstract decision problem pX,Rq. The elements of X are interpreted as mutually exclusive
alternatives among which a society has to make a choice. The dominance relation R instead represents the
complete description of all and only the transitions that the society can make with positive probability from
an alternative to another. Specifically, suppose that the society is currently considering an alternative y. If
tx P X : px, yq P Ru ‰ ∅, then the society will reject y and will begin to consider one of the alternatives in this
set, each of which has a positive probability of being selected. If instead tx P X : px, yq P Ru “ ∅ the society
has no reason to modify its choice and y is maintained. Thus, the fact that px, yq P R means that, should the
society be considering y, it must reject y and may transition to considering x.

The core is a natural solution concept for abstract decision problems: it selects the alternatives that are
dominated by no alternative.

Definition 1. Let pX,Rq be an abstract decision problem. The core of pX,Rq is the set

CopX,Rq – tx P X : py, xq R R for all y P Xu.
The main flaw of the core is that it is often empty. Another remarkable solution for abstract decision problems

is the admissible set introduced by Kalai and Schmeidler (1977).4 In order to present such a solution we need
some preliminary definitions. Let pX,Rq be an abstract decision problem. A path in pX,Rq is a sequence pxjqmj“1,

where m ě 2, x1, . . . , xm are distinct elements of X and, for every j P t1, . . . ,m ´ 1u, pxj , xj`1q P R. If x, y P X
are distinct, a path from x to y in pX,Rq is a path pxjqmj“1 in pX,Rq such that x1 “ x and xm “ y. If there is a

path pxjqmj“1 from x to y in pX,Rq, we say that x directly or indirectly dominates y (according to R). Indeed,

4Equivalent definitions of the admissible set are given by Schwartz (1972, 1986), Kalai et al. (1976), and Shenoy (1979, 1980).
See also Van Deemen (1997) and Gori (2023).
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if m “ 2 the path exactly describes the fact that x dominates y. If instead m ě 3, the fact that, for every
j P t1, . . . ,m ´ 1u, xj dominates xj`1, suggests that there is a sort of indirect domination of x over y, meaning
that if y is taken into account by the society, then y must be rejected and the society might start considering x
after reviewing some alternatives.

Let us denote by Rτ the reflexive and transitive closure of R, that is, the smallest reflexive and transitive
relation on X containing R. It is easily seen that

Rτ “ ␣px, yq P X2˚ : there exists a path in pX,Rq from x to y
( Y X2

d .

Thus, if px, yq P Rτ we have that x “ y or x directly or indirectly dominates y, while if px, yq R Rτ we have that
x ‰ y and x neither directly nor indirectly dominates y.

Definition 2. Let pX,Rq be an abstract decision problem. The admissible set of pX,Rq is the set ApX,Rq –
MaxpRτ q.

Thus, an alternative x belongs to the admissible set if the fact that y directly or indirectly dominates x implies
that, in turn, x directly or indirectly dominates y. Interpreting R as a complete description of all and only the
transitions from an alternative to another that the society can make with positive probability, the set ApX,Rq
can be viewed as the set of potential outcomes of a social bargaining process where R governs the transitions
among alternatives. Indeed, from the elementary theory of finite Markov chains, we have that, starting from any
alternative, with probability 1, an element of ApX,Rq is reached after a finite number of steps. Moreover, once
an element in ApX,Rq is reached, all subsequent transitions remain within ApX,Rq.5

Due to the transitivity of Rτ , we have ApX,Rq ‰ ∅. Moreover, CopX,Rq Ď ApX,Rq. It is also important
to note that if R and R1 are dominance relations on X with R Ď R1, we cannot infer either ApX,Rq Ď ApX,R1q
or ApX,R1q Ď ApX,Rq. Nevertheless, as proved in Gori (2023), we certainly have ApX,Rq X ApX,R1q ‰ ∅.
As an example, consider X “ t1, 2, 3, 4u, R “ tp1, 3q, p3, 4qu and R1 “ tp1, 3q, p3, 4q, p4, 1q, p4, 2qu. Thus, R Ď R1,
ApX,Rq “ t1, 2u and ApX,R1q “ t1, 3, 4u.

Let pX,Rq be an abstract decision problem. We denote by S pX,Rq the quotient set of X by the equivalence
relation on X given by ␣px, yq P X2 : px, yq P Rτ and py, xq P Rτ

(
.

Recall that S pX,Rq is a partition of X. The elements of S pX,Rq are called strong components of pX,Rq. Note
that, given Y P S pX,Rq and x P X, we have that there exists y˚ P Y such that px, y˚q P Rτ if and only if, for
every y P Y , px, yq P Rτ . We set

A pX,Rq – tY P S pX,Rq : px, yq R Rτ for all x P XzY and y P Y u .
Thus, given Y P A pX,Rq, x P X and y P Y , if px, yq P Rτ then x P Y and py, xq P Rτ . The elements of A pX,Rq
are called maximal strong components of pX,Rq.

The next result states a well-known fact.6

Theorem 1. Let pX,Rq be an abstract decision problem. Then A pX,Rq ‰ ∅ and ApX,Rq “ Ť
Y PA pX,Rq Y .

In particular, ApX,Rq ‰ ∅.

Consider, for example, the abstract decision problem pX,Rq, where
X “ t1, 2, 3, 4, 5, 6, 7, 8, 9u,

R “ tp1, 2q, p2, 3q, p2, 5q, p3, 1q, p3, 6q, p4, 5q, p4, 7q, p5, 6q, p6, 8q, p6, 9q, p8, 5q, p9, 8qu. (1)

In Figure 1, this abstract decision problem is represented, as usual, by a directed graph: the alternatives
correspond to nodes, and for any x, y P X, there is an arrow from x to y if and only if px, yq P R. We have then
that

S pX,Rq “ tt1, 2, 3u, t4u, t5, 6, 8, 9u, t7uu,
A pX,Rq “ tt1, 2, 3u, t4uu,

CopX,Rq “ t4u,
ApX,Rq “ t1, 2, 3, 4u.

5
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7 8 9

Figure 1: The abstract decision problem pX,Rq in (1).

It can also be shown that, given an abstract decision problem pX,Rq, the set CopX,Rq coincides with the
union of the elements of A pX,Rq that are singletons. Since R is acyclic if and only if all the elements in
S pX,Rq are singletons, we have that if R is acyclic, then CopX,Rq “ ApX,Rq. This equality is remarkable
since it implies that, in the bargaining process governed by R, starting from any alternative, the society will, with
probability one, reach an element in the core after a finite number of transitions, at which point the bargaining
process ends.7 Of course, the fact that the dominance relation is cyclic does not exclude the possibility that the
core and the admissible set may coincide. Consider, for example, the abstract decision problem pX,Rq, where

X “ t1, 2, 3, 4, 5, 6, 7, 8, 9u,
R “ tp2, 3q, p3, 6q, p4, 5q, p5, 2q, p5, 6q, p6, 9q, p7, 8q, p8, 5q, p9, 8qu, (2)

and represented in Figure 2. We have then that R is cyclic and

S pX,Rq “ tt1u, t4u, t7u, t2, 3, 5, 6, 8, 9uu,
A pX,Rq “ tt1u, t4u, t7uu,

CopX,Rq “ ApX,Rq “ t1, 4, 7u.
We finally note that A pX,∅q “ ttxu : x P Xu and, therefore, ApX,∅q “ X.

3 Finite strategic games

A finite strategic game, or simply a game, is a triple G “ xI, pXiqiPI , puiqiPIy, where
• I is a finite set with |I| ě 2,

• for every i P I, Xi is a nonempty and finite set,

• for every i P I, ui is a function from
ś

jPI Xj to R.

Let G “ xI, pXiqiPI , puiqiPIy be a game. The set I is interpreted as set of players and, for every i P I, the set
Xi is interpreted as the set of strategies of player i. We denote by X the set

ś
jPI Xj and we call X the set of

strategy profiles. When the strategy sets of players are not explicitly given, we denote the set of strategy profiles
of G by πpGq. For every i P I, we call ui the payoff function of player i and, for our purposes, it is convenient
to interpret uipxq as the amount of money (say euros) earned (if uipxq ě 0) or lost (if uipxq ă 0) by player i if

5The set ApX,Rq corresponds to the set of recurrent states of any homogeneous Markov chain having X as state space and
ppxyqx,yPX as transition probability matrix, where, for every x, y P X with x ‰ y, pxy ą 0 if and only if py, xq P R.

6See, for instance, Kalai and Schmeidler (1977, Theorem 5) and in Gori (2023, Theorem 9).
7This fact is a consequence of Lemma 35(iv).
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Figure 2: The abstract decision problem pX,Rq in (2).

the strategy profile x occurs. We say that G is trivial if, for every i P I, |Xi| “ 1. Without loss of generality, we
assume that I Ď N and, for every i P I, Xi Ď N.

For every i P I, we denote by X´i the set
ś

jPIztiu Xj . For every i P I and x P X, we denote by xi the
element of Xi corresponding to the component of x associated with i, and by x´i the element of X´i such that,
for every j P Iztiu, its component associated with j equals the component of x associated with j. For every
i P I, s P Xi and σ P X´i, we denote by ps, σq the element of X such that ps, σqi “ s and ps, σq´i “ σ. Thus, for
every i P I and x P X, x “ pxi, x´iq.

A strategy profile x˚ P X is a Nash equilibrium of G if, for every i P I and s P Xi, uipx˚q ě uips, x˚́
iq. The

set of Nash equilibria of G is denoted by NpGq. It is well known that the set of Nash equilibria of a game can
be empty.

For every i P I and σ P X´i, we set

BG
i pσq “ argmax

sPXi

uips, σq,

and, for every i P I and x P X, we set

CG
i pxq “ argmax

sPXiztxiu
uips, x´iq.

Thus, BG
i pσq is the subset of Xi corresponding to the best responses of player i when the strategies of the other

players are described by σ, and CG
i pxq is the subset of Xiztxiu corresponding to the best responses of player i

when the strategies of the other players are described by x´i and player i is forced to modify her strategy xi.
Note that BG

i pσq ‰ ∅, while CG
i pxq ‰ ∅ if and only if |Xi| ě 2. Moreover, given x P X, x P NpGq if and only

if xi P BG
i px´iq for all i P I; given x P X and i P I, xi R BG

i px´iq implies BG
i px´iq “ CG

i pxq. Given i P I and
s P Xi, we say that s is never a best response in G for player i if, for every σ P X´i, s R BG

i pσq; we say that s
is a best response in G for player i if there exists σ P X´i such that s P BG

i pσq. Observe that, for every i P I,
there exists an element in Xi that is a best response in G for player i.8 Given i P I and s P Xi, we say that
s is strictly dominated by s1 P Xi for player i if, for every σ P X´i, uips1, σq ą uips, σq; s is strictly dominated
for player i if there exists s1 P Xi such that s is strictly dominated by s1 for player i; s is a strictly dominant
strategy for player i if, for every s1 P Xiztsu, s1 is strictly dominated by s for player i.

Given pYiqiPI such that, for every i P I, ∅ ‰ Yi Ď Xi, we denote by RpG, pYiqiPIq the game xI, pYiqiPI , puiqiPIy,
where, for every i P I, ui is meant to be restricted to

ś
jPI Yj . The game RpG, pYiqiPIq is then the game obtained

by eliminating from G the strategies in XizYi for all i P I. We set FpGq – RpG, pYiqiPIq, where, for every i P I,
Yi is the set of the elements of Xi that are a best response in G of player i, a set that, as already observed, is
nonempty. In other words, FpGq is the game obtained by eliminating from G all the strategies that are never
a best response in G. We also set F1pGq – FpGq and, for every n P N with n ě 2, FnpGq – FpFn´1pGqq. It is
immediate to observe that

for every n P N, πpFn`1pGqq Ď πpFnpGqq, (3)

there exists m P N such that, for every n ě m, FnpGq “ FmpGq. (4)

8In fact, given i P I, consider x P X that maximizes ui: setting s “ xi and σ “ x´i, we have s P BG
i pσq.
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The set of rationalizable strategy profiles of G is the set9

RapGq –
8č

n“1

πpFnpGqq.

Due to (3) and (4), we have RapGq “ πpFmpGqq for a suitable m P N. In particular, RapGq ‰ ∅.
Following Monderer and Shapley (1996), a generalized ordinal potential for G is a function P : X Ñ R such

that, for every i P I, s, s1 P Xi and σ P X´i, if uips, σq ´ uips1, σq ą 0, then P ps, σq ´ P ps1, σq ą 0; an ordinal
potential for G is a function P : X Ñ R such that, for every i P I, s, s1 P Xi and σ P X´i, uips, σq ´ uips1, σq ą 0
if and only if P ps, σq ´ P ps1, σq ą 0; a potential for G is a function P : X Ñ R such that, for every i P I,
s, s1 P Xi and σ P X´i, uips, σq´uips1, σq “ P ps, σq´P ps1, σq; G is called a generalized ordinal potential [ordinal
potential; potential] game if there exists a generalized ordinal potential [ordinal potential; potential] for G. An
infinite improving walk of G is a sequence pxjq8

j“1 in X such that, for every j P N, there exists i P I such that

xj
´i “ xj`1

´i and uipxj`1q ´ uipxjq ą 0; G satisfies the finite improvement property (fip) if G does not admit
infinite improving walks. Of course, every potential game is an ordinal potential game; every ordinal potential
game is a generalized ordinal potential game. Moreover, a game satisfies the fip if and only if it is a generalized
ordinal potential game.10 Finally, each generalized ordinal potential game admits a Nash equilibrium.

In the paper, we are going to propose several examples of two-player games. For such games, we always
assume that the set of players is t1, 2u, that the set of strategies of player 1 is a set of the type t1, . . . , n1u
with n1 P N, and that the set of strategies of player 2 is a set of the type t1, . . . , n2u with n2 P N. As usual,
we represent two-player games in matrix form with player 1 as row player and player 2 as column player. For
instance, the following writing

G “ 66, 0 6, 123 18, 78
0, 168 54, 70 60, 8

(5)

represents a two-player game, where X1 “ t1, 2u and X2 “ t1, 2, 3u. Recall that the first [second] number in each
entry of the table refers to the value of the payoff function of player 1 [player 2] computed at the corresponding
strategy profile. Thus, denoting the payoff function of player 1 [player 2] by u1 [u2], we deduce from the table
that, for instance, u1p1, 1q “ 66 and u2p1, 2q “ 123. For the game G in (5), we have NpGq “ ∅.

4 Two basic dominance relations

Let G “ xI, pXiqiPI , puiqiPIy be a game. It is possible to interpret X as a set of alternatives among which players,
as a society, have to make a choice through social bargaining. We can then consider the following dominance
relations on X:11

DpGq –
!

px, yq P X2˚ : D i P I such that x´i “ y´i, xi P BG
i py´iq and uipxq ą uipyq

)
,

EpGq –
!

px, yq P X2˚ : D i P I such that x´i “ y´i, and uipxq ą uipyq
)
.

According to DpGq, we assume that in determining the solution of the game through a bargaining process, the
society can transition from one strategy profile to another with positive probability if and only if there is a
unique player who improves her payoff by the largest possible amount, given the strategies of the others. On the
other hand, according to EpGq, we assume that the society can transition from one strategy profile to another
with positive probability if and only if there is a unique player who improves her payoff, not necessarily by the
maximal amount. The relation DpGq reflects the assumption that players, once they know the strategies of the
others, may deviate only by choosing among their best responses, each of them having positive probability to be
selected. In contrast, the relation EpGq models a situation in which players may face cognitive or informational
limitations, leading them to deviate by choosing any strategy that increases their payoff, each of them having
positive probability to be selected, even if it is not a best response.

Of course, we have DpGq Ď EpGq. Moreover, if G is trivial, then DpGq “ EpGq “ ∅ since X2˚ “ ∅. However,
DpGq and EpGq can be empty even though G is not trivial. Indeed, for every game G whose payoff functions
are constant, we have DpGq “ EpGq “ ∅.

9Bernheim (1984), Pearce (1984).
10Monderer and Shapley (1996, Lemma 2.5).
11These relations are present in the literature. See, for instance, Kalai and Schmeidler (1977), Kukushkin (2011), Block and van

den Nouweland (2021).
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1,1 1,2 1,3

2,1 2,2 2,3

Figure 3: The abstract decision problem pX,DpGqq for G in (5).

1,1 1,2 1,3

2,1 2,2 2,3

Figure 4: The abstract decision problem pX,EpGqq for G in (5).

Proposition 2. Let G “ xI, pXiqiPI , puiqiPIy be a game. Suppose that, for every i P I, |Xi| ď 2. Then
DpGq “ EpGq.
Proof. We know that DpGq Ď EpGq. Consider now px, yq P EpGq. Thus, there exists i P I such that x´i “ y´i

and uipxq ą uipyq. Since px, yq P X2˚, we have that xi ‰ yi and then Xi “ txi, yiu. Thus, xi P BG
i py´iq and then

px, yq P DpGq. We then get EpGq Ď DpGq, so we conclude DpGq “ EpGq.
Once such dominance relations are introduced, one can consider the abstract decision problems pX,DpGqq

and pX,EpGqq. For example, if G is the game in (5), the abstract decision problems pX,DpGqq and pX,EpGqq
are represented in Figures 3 and 4.

It is easy to check that, for every game G, CopX,DpGqq “ CopX,EpGqq “ NpGq. We can now give the
following crucial definitions.

Definition 3. Let G be a game.

• The best-response admissible set of G is the set DpGq – ApX,DpGqq.
• The better-response admissible set of G is the set EpGq – ApX,EpGqq.
The strategy profiles selected by the best-response admissible set are the ones that cannot be excluded as

potential outcomes of a bargaining process among the players, where each player unilaterally deviates in order
to increase its payoff by the largest possible amount. The strategy profiles selected by the better-response
admissible set are instead the ones that cannot be excluded as potential outcomes of a bargaining process among
the players, where each player unilaterally deviates in order to increase its payoff by any amount. The best-
response admissible set and the better-response admissible set determine, for every finite strategic game G, a
subset of its strategy profiles, and then they can be thought of as solution concepts for those games. We stress
that the better-response admissible set was basically introduced by Kalai and Schmeidler (1977).12 Note that,

12Kalai and Schmeidler (1977) consider the mixed extension of a finite strategic game and are interested in finding a suitable
dominance relation on the set of mixed strategy profiles having the property that the corresponding admissible set (whose set of
alternatives is in this case infinite) coincides with the set of Nash equilibria in mixed strategies of the game. The authors first
consider the analog of the relation EpGq, but realize that the corresponding admissible set is, in general, very large and, even though
it always contains the set of Nash equilibria, it does not coincide with it. Thus, to reach their goal, they need to consider a more
sophisticated and less intuitive relation.
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if G is a trivial game, then DpGq “ EpGq “ X. Moreover, by Proposition 2, if each player in a game G has at
most two strategies, then DpGq “ EpGq.

In order to assess the two solutions, we establish some of their properties.

Proposition 3. Let G be a game. Then DpGq ‰ ∅, EpGq ‰ ∅, NpGq Ď DpGq, NpGq Ď EpGq.
Proof. By Theorem 1, we deduce DpGq ‰ ∅ and EpGq ‰ ∅. Moreover, NpGq “ CopX,DpGqq Ď DpGq and
NpGq “ CopX,EpGqq Ď EpGq.
Proposition 4. Let G “ xI, pXiqiPI , puiqiPIy be a game and let ϕ “ pϕiqiPI be such that, for every i P I, ϕi is a
strictly increasing function from Impuiq to R. Then, DpGϕq “ DpGq and EpGϕq “ EpGq, where Gϕ is the game
xI, pXiqiPI , pϕi ˝ uiqiPIy.
Proof. Simply note that DpGϕq “ DpGq and EpGϕq “ EpGq.

The following result shows that the best-response admissible set satisfies a significant rationality principle,
namely, it is invariant under the elimination of strategies that are never a best response. Proposition 5 is proved
in the appendix.

Proposition 5. Let G “ xI, pXiqiPI , puiqiPIy be a game and let pYiqiPI be such that, for every i P I, ∅ ‰
Yi Ď Xi. Assume that, for every i P I and s P XizYi, s is never a best response in G for player i. Then
DpGq “ DpRpG, pYiqiPIqq.

As a consequence of Proposition 5, we deduce that the best-response admissible set always selects strategy
profiles that are rationalizable, as proved in the next proposition.

Proposition 6. Let G be a game. Then DpGq Ď RapGq.
Proof. First, let us prove that, for every n P N, DpGq “ DpFnpGqq. That can be easily done by induction.
Indeed, by Proposition 5 applied to G, we have that DpGq “ DpFpGqq “ DpF1pGqq. Suppose now that,
DpGq “ DpFnpGqq. Thus, applying now Proposition 5 to FnpGq, we deduce DpFn`1pGqq “ DpFpFnpGqqq “
DpFnpGqq “ DpGq.

Since, for every n P N, DpFnpGqq Ď πpFnpGqq, we deduce that, for every n P N, DpGq Ď πpFnpGqq. We then
conclude DpGq Ď RapGq.

Unlike the best-response admissible set, the better-response admissible set may select strategy profiles that
are not rationalizable. Indeed, consider the game G in (5) and note that for player 2 strategy 3 is strictly
dominated by strategy 2. A computation shows that DpGq “ tp1, 1q, p1, 2q, p2, 1q, p2, 2qu, while EpGq “ πpGq.
In particular, EpGq selects strategy profiles whose some components are strictly dominated strategies. As a
consequence, EpGq Ę RapGq, and, therefore, E cannot satisfy the property described in Proposition 5.

However, the next proposition shows that any strictly dominant strategy must be component of any strategy
profile in EpGq.
Proposition 7. Let G “ xI, pXiqiPI , puiqiPIy be a game, x P X, k P I and s P Xk be a strictly dominant strategy
for player k. If x P DpGq, then xk “ s. If x P EpGq, then xk “ s.

Proof. Assume that x P DpGq. By Proposition 5, we know that DpGq “ DpFpGqq. Recall that FpGq “
xI, pYiqiPI , uiy, where, for every i P I, Yi is the set of the elements of Xi that are a best response in G for player
i. Thus, Yk “ tsu and that implies xk “ s.

Assume now that x P EpGq. Suppose by contradiction that xk ‰ s. Thus, pps, x´kq, xq P EpGq and then
pps, x´kq, xq P EpGqτ . Since x P EpGq, we have px, ps, x´kqq P EpGqτ . Thus, there exists a path pxjqmj“1 from x

to ps, x´kq in pX,EpGqq. Since x1
k ‰ s and xm

k “ s, there exists j P t1, . . . ,m´1u such that xj
k ‰ s and xj`1

k “ s.
Since pxj , xj`1q P EpGq and since s is a strictly dominant strategy for player k, we get a contradiction.

If, for a game G, we have DpGq “ NpGq [EpGq “ NpGq], then, by the results discussed in Section 2.2,
the social bargaining process governed by DpGq [EpGq] almost surely leads to a Nash equilibrium after a finite
number of transitions. It is then an interesting problem to determine families of games for which such equalities
hold. The next result shows that that happens for generalized ordinal potential games.13

13The fact that, for a generalized potential game G, the relations DpGq and EpGq are acyclic is a well-known fact (see, for instance,
Kukushkin 2011).
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Proposition 8. Let G be a generalized ordinal potential game. Then, DpGq and EpGq are acyclic. As a
consequence, DpGq “ EpGq “ NpGq.
Proof. SinceG is a generalized ordinal potential game, we know thatG satisfies the fip. Suppose by contradiction
that EpGq is cyclic. Then there exist m ě 2 and x1, . . . , xm P X such that, for every j P t1, . . . ,m ´ 1u,
pxj , xj`1q P EpGq and pxm, x1q P EpGq. For every j P Z, there exists a unique element t in the set t1, . . . ,mu
such that m divides j ´ t, and we denote that element by rjs. Consider now the sequence pyjq8

j“1 defined, for

every j P N, by yj “ xr´js. Note that pyjq8
j“1 is an infinite improving walk of G. Indeed, consider j P N. If

r´js P t2, . . . ,mu, then r´j´1s “ r´js´1 P t1, . . . ,m´1u and pyj`1, yjq “ pxr´js´1, xr´jsq P EpGq. If r´js “ 1,
then r´j ´ 1s “ m and pyj`1, yjq “ pxm, x1q “ py, xq P EpGq. In both cases, in particular, there exists i P I
such that yj`1

´i “ yj´i and uipyj`1q ´ uipyjq ą 0. That contradicts the fact that G is fip. Thus, we conclude
that EpGq is acyclic. Moreover, since DpGq Ď EpGq, we also deduce that DpGq is acyclic.

Since DpGq and EpGq are acyclic, due to the remarks made in Section 2.2, we deduce ApX,DpGqq “
CopX,DpGqq and ApX,EpGqq “ CopX,EpGqq, that is, DpGq “ NpGq and EpGq “ NpGq.

As can be seen through examples, both the best-response admissible set and the better-response admissible
set may determine rather large sets of strategy profiles. The remainder of the paper is devoted to the definition
and study of suitable refinements of these solution concepts. The approach we follow is strongly inspired by
an alternative definition of the Schulze method, a well-known voting procedure appreciated for its theoretical
strengths (Schulze 2011, 2018), proposed by Gori (2023). The underlying idea is that replicating a similar
approach within a game-theoretical framework might lead to new solution concepts endowed with interesting
properties. The strategy we will follow has already been outlined in the introduction. We first define families
of dominance relations over the set of strategy profiles, each with a clear interpretation. We then consider the
admissible sets associated with the corresponding abstract decision problems. Finally, we take the intersection of
all these admissible sets. Each strategy profile in this intersection has the property to be considered a potential
outcome of the bargaining process among players, regardless of which particular dominance relation governs it.

5 Further dominance relations

Let G “ xI, pXiqiPI , puiqiPIy be a game. For every t P R, let DtpGq and EtpGq be the dominance relations on X
defined as

DtpGq “
!

px, yq P X2˚ : D i P I such that x´i “ y´i, xi P CG
i pyq and uipxq ´ uipyq ą t

)
,

EtpGq “
!

px, yq P X2˚ : D i P I such that x´i “ y´i, and uipxq ´ uipyq ą t
)
.

According to DtpGq, in determining the solution of the game through a bargaining process, the society can
transition from one strategy profile to another with positive probability if and only if there is a unique player
who deviates by choosing one of the best responses among the strategies different from the current one and, doing
so, her payoff variation is greater than t. According to EtpGq, in determining the solution of the game through
a bargaining process, the society can transition from one strategy profile to another with positive probability if
and only if there is a unique player who deviates by choosing a strategy that guarantees her a payoff variation
greater than t. If t ą 0, DtpGq and EtpGq can be interpreted as describing a situation in which all players incur
a psychological cost in deviating, and this cost is quantified for each player as t euros. If instead t ă 0, DtpGq
and EtpGq can be interpreted as describing a situation in which all players derive satisfaction from having the
power to change the status quo, and this satisfaction is quantified for each player as |t| euros.

Finally, D0pGq “ DpGq and E0pGq “ EpGq, where the latter equality is straightforward, while the former is
proved in the following proposition.

Proposition 9. Let G “ xI, pXiqiPI , puiqiPIy and t P R`. Then

DtpGq “
!

px, yq P X2˚ : D i P I such that x´i “ y´i, xi P BG
i py´iq and uipxq ´ uipyq ą t

)
. (6)

In particular, D0pGq “ DpGq.
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Proof. Let us denote by Dt̊ pGq the set on the right hand side of (6). We prove DtpGq “ Dt̊ pGq by proving the
two inclusions DtpGq Ď Dt̊ pGq and Dt̊ pGq Ď DtpGq.

Let px, yq P DtpGq. Then there exists i P I such that x´i “ y´i, xi P CG
i pyq and uipxq ´ uipyq ą t. Since

t ě 0, we have that uipxq ą uipyq. That implies that yi R BG
i py´iq. Thus, CG

i pyq “ BG
i py´iq. Then xi P BG

i py´iq
and px, yq P Dt̊ pGq. We conclude that DtpGq Ď Dt̊ pGq.

Let px, yq P Dt̊ pGq. Then there exists i P I such that x´i “ y´i, xi P BG
i py´iq and uipxq ´ uipyq ą t. Since

t ě 0, we have that uipxq ą uipyq. That implies that yi R BG
i py´iq. Thus, BG

i py´iq “ CG
i pyq. Then xi P CG

i pyq
and px, yq P DtpGq. We conclude that Dt̊ pGq Ď DtpGq.

Of course, for every t P R, DtpGq Ď EtpGq. Moreover, if G is trivial, then, for every t P R, DtpGq “ EtpGq “ ∅
since X2˚ “ ∅. However, given t P R, we may have DtpGq “ ∅ and EtpGq “ ∅ even if G is not trivial. For
example, if t ě 0 and G is a non-trivial game whose payoff functions are constant, then DtpGq “ EtpGq “ ∅.
The following propositions describe some further facts about the aforementioned dominance relations.

Proposition 10. Let G “ xI, pXiqiPI , puiqiPIy be a game. Suppose that, for every i P I, |Xi| ď 2. Then, for
every t P R, DtpGq “ EtpGq.
Proof. We know that DtpGq Ď EtpGq. Consider now px, yq P EtpGq. Thus, there exists i P I such that x´i “ y´i

and uipxq ´ uipyq ą t. Since px, yq P X2˚, we have that xi ‰ yi and then Xi “ txi, yiu. Thus, xi P CG
i pyq and

then px, yq P DtpGq. We then get EtpGq Ď DtpGq, and so DtpGq “ EtpGq follows.

Proposition 11. Let G “ xI, pXiqiPI , puiqiPIy and t, t1 P R with t ď t1. Then Dt1 pGq Ď DtpGq and Et1 pGq Ď
EtpGq.
Proof. Let px, yq P Dt1 pGq and prove that px, yq P DtpGq. We know that there exists i P I such that x´i “ y´i,
xi P CG

i pyq and uipxq ´ uipyq ą t1. As a consequence, x´i “ y´i, xi P CG
i pyq and uipxq ´ uipyq ą t, that is,

px, yq P DtpGq. The proof of the inclusion Et1 pGq Ď EtpGq is analogous.

Given a game G “ xI, pXiqiPI , puiqiPIy, we can consider, for every t P R, the abstract decision problems
pX,DtpGqq and pX,EtpGqq and the corresponding admissible set ApX,DtpGqq and ApX,EtpGqq, simply denoted
by DtpGq and EtpGq. Of course, since pX,D0pGqq “ pX,DpGqq and pX,E0pGqq “ pX,EpGqq, we have that
D0pGq “ DpGq and E0pGq “ EpGq. Note also that if G is trivial, then, for every t P R, DtpGq “ EtpGq “ X.
Moreover, by Proposition 10, if each player in a game G has at most two strategies, then, for every t P R,
DtpGq “ EtpGq.

Let us consider now t ą 0. A strategy profile x˚ P X is a t-equilibrium of G if, for every i P I and s P Xi,
uipxq ě uips, x´iq´ t. Of course, every Nash equilibrium of G is a t-equilibrium of G. It is easy to check that, for
every t ą 0, CopX,DtpGqq and CopX,EtpGqq coincide with the set of t-equilibria of G. Thus, for every t ą 0, all
the t-equilibria of G are elements of DtpGq and EtpGq and so, in particular, NpGq Ď DtpGq and NpGq Ď EtpGq.

6 Some refinements

We are now ready to introduce some further key concepts of the paper.

Definition 4. Let G be a game.

• The refined best-response admissible set of G is the set

D‚pGq –
č

tPR`

DtpGq.

• The strongly refined best-response admissible set of G is the set

D˝pGq –
č

tPR
DtpGq.

• The refined better-response admissible set of G is the set

E‚pGq –
č

tPR`

EtpGq.
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• The strongly refined better-response admissible set of G is the set

E˝pGq –
č

tPR
EtpGq.

Thus, the refined best-response admissible set of G selects the strategy profiles that have the property that, for
every t P R`, they cannot be excluded as potential outcome of a bargaining process governed by the dominance
relation DtpGq. Given x P D‚pGq, we then have that x satisfies the following property: if there exist y P X and
t P R` such that y directly or indirectly dominates x according to DtpGq, then x directly or indirectly dominates
y according to DtpGq. Similar considerations can be made for the other three sets in Definition 4.

According to their definitions, the computation of the sets in Definition 4 appears complex. As explained
in Section 8, when a non-trivial game is considered, it is possible to provide an equivalent definition for each
of these sets that turns out particularly useful for computational purposes (Theorem 21). Of course, if G is a
trivial game, then D‚pGq “ D˝pGq “ E‚pGq “ E˝pGq “ X since, for every t P R, DtpGq “ EtpGq “ X. Thus,
for trivial games, the computation is immediate.

The following simple proposition states some basic facts about the new solution concepts.

Proposition 12. Let G be a game. Then D˝pGq Ď D‚pGq Ď DpGq, E˝pGq Ď E‚pGq Ď EpGq, NpGq Ď D‚pGq,
NpGq Ď E‚pGq.
Proof. From the definition of D‚pGq and D˝pGq, it immediately follows D˝pGq Ď D‚pGq. Since D0pGq “ DpGq,
we also get the inclusion D‚pGq Ď DpGq. Finally, we know that NpGq Ď D0pGq and that, for every t ą 0,
NpGq Ď DtpGq. Thus, NpGq Ď D‚pGq. The proof for the other inclusions is analogous.

Note that all the inclusions in Proposition 12 are in general strict. Moreover, the two sets NpGq and D˝pGq,
as well as NpGq and E˝pGq, can be disjoint even when they are both nonempty. For example, for the two-player
game

G “
0, 0 0, 0 0, 0
0, 0 3, 1 1, 3
0, 0 1, 3 4, 2

we have NpGq “ tp1, 1qu, DpGq “ EpGq “ tp1, 1q, p2, 2q, p2, 3q, p3, 2q, p3, 3qu, D‚pGq “ E‚pGq “ tp1, 1q, p3, 3qu,
D˝pGq “ E˝pGq “ tp3, 3qu.

Of course, by Propositions 6 and 12, we deduce that D‚pGq Ď RapGq and D˝pGq Ď RapGq. On the other
hand, E˝ can select strategy profiles in which some players play a strictly dominated strategy. For example, for
the game G in (5), we have D‚pGq “ D˝pGq “ tp1, 2qu and E‚pGq “ E˝pGq “ tp1, 3qu. However, by Proposition
7 and 12, if a player of a game G admits a strictly dominant strategy, then that strategy is part of each element
in E‚pGq and E˝pGq.

Of course, a major problem is to understand whether the solution concepts defined in Definition 4 are
nonempty valued. The next theorem, which is the first main result of the paper, shows that all of them actually
are. Its proof is in the appendix.

Theorem 13. Let G be a game. Then D˝pGq ‰ ∅ and E˝pGq ‰ ∅.

Proposition 14 shows that the sets in Definition 4 are not affected by applying to the payoff function of each
player a positive affine transformation, provided that all transformations have the same multiplicative factor.

Proposition 14. Let G “ xI, pXiqiPI , puiqiPIy be a game and let a P R with a ą 0, and b P RI . Then, D‚pGa,bq “
D‚pGq, D˝pGa,bq “ D˝pGq, E‚pGa,bq “ E‚pGq, E˝pGa,bq “ E˝pGq, where Ga,b is the game xI, pXiqiPI , paui `
biqiPIy.
Proof. Let us prove that D‚pGa,bq “ D‚pGq and D˝pGa,bq “ D˝pGq. First, we prove that, for every t P R,
DtpGa,bq “ D t

a
pGq. Let t P R. Consider x, y P X and the following facts:

(a) px, yq P DtpGa,bq,
(b) there exists i P I such that x´i “ y´i, xi P CGa,b

i pyq, and pauipxq ` biq ´ pauipyq ` biq ą t,

(c) there exists i P I such that x´i “ y´i, xi P CG
i pyq, and uipxq ´ uipyq ą t

a ,
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(d) px, yq P D t
a

pGq.
By definition of DtpGa,bq and D t

a
pGq, we have that (a) is equivalent to (b), and (c) is equivalent to (d). Moreover,

since a ą 0, we have xi P CGa,b

i pyq if and only if xi P CG
i pyq; pauipxq ` biq ´ pauipyq ` biq ą t if and only if

uipxq ´ uipyq ą t
a . Thus, (b) is equivalent to (c). That proves the equality DtpGa,bq “ D t

a
pGq.

Observing now that πpGa,bq “ πpGq and recalling that a ą 0, we have

D‚pGa,bq “
č

tPR`

DtpGa,bq “
č

tPR`

ApπpGa,bq, DtpGa,bqq “
č

tPR`

ApπpGq, D t
a

pGqq

“
č

rPR`

ApπpGq, DrpGqq “
č

rPR`

DrpGq “ D‚pGq,

and
D˝pGa,bq “

č

tPR
DtpGa,bq “

č

tPR
ApπpGabq, DtpGa,bqq “

č

tPR
ApπpGq, D t

a
pGqq

“
č

rPR
ApπpGq, DrpGqq “

č

rPR
DrpGq “ D˝pGq.

The proof of the equalities E‚pGa,bq “ E‚pGq and E˝pGa,bq “ E˝pGq is analogous and then omitted.

In general, the considered solutions are sensitive to changes in payoff functions due to the application of
positive affine transformations having different multiplicative factors. Consider, for example, the two-player
games

G “ 3, 1 1, 3
1, 3 4, 2

, G1 “ 3, 2 1, 6
1, 6 4, 4

,

and note that G1 is obtained by G by leaving unchanged the payoff function of player 1 and doubling the
payoff function of player 2. A computation shows that D‚pGq “ D˝pGq “ E‚pGq “ E˝pGq “ tp2, 2qu and
D‚pG1q “ D˝pG1q “ E‚pG1q “ E˝pG1q “ tp2, 1q, p2, 2qu.
Proposition 15. Let G “ xI, pXiqiPI , puiqiPIy be a game. Assume that, for every i P I, |Xi| ď 2. Then
D‚pGq “ E‚pGq and D˝pGq “ E˝pGq
Proof. By Proposition 10, we know that, for every t P R, DtpGq “ EtpGq. That fact immediately implies the
desired equalities.

An immediate but useful remark follows from Proposition 12: given a game G, if DpGq “ NpGq, then
D‚pGq “ NpGq; similarly, if EpGq “ NpGq, then E‚pGq “ NpGq. Thus, if DpGq “ NpGq [EpGq “ NpGq], it
follows that D˝pGq Ď NpGq [E˝pGq Ď NpGq], and therefore D˝pGq [E˝pGq] provides a method to discriminate
among Nash equilibria. As shown in Proposition 8, this occurs, in particular, when G is a generalized ordinal
potential game.

Consider now a potential game G. Monderer and Shapley (1996, Lemma 2.7) proved that if P1 and P2 are
potentials for G, then there exists a constant c such that, for every x P X, P1pxq ´P2pxq “ c. As a consequence,
any potential for G is maximized by the same set of strategy profiles, each of which is a Nash equilibrium. As
emphasized by Monderer and Shapley, maximizing the potential provides a criterion for selecting among Nash
equilibria.

Interestingly, given a potential game G, the sets D˝pGq and E˝pGq do not, in general, coincide with the set
of strategy profiles that maximize the potential of G. For example, consider the two-player game

G “
5, 5 4, 4 7, 7 6, 6
0, 0 7, 7 5, 5 6, 6
7, 7 4, 4 1, 1 4, 4
3, 3 4, 4 6, 6 5, 5

. (7)

We have that G is a potential game with potential P pxq “ u1pxq. A computation shows that D˝pGq “
tp1, 3q, p2, 2qu and E˝pGq “ tp3, 1qu, while the set of strategy profiles maximizing P coincides with the set
NpGq “ tp1, 3q, p2, 2q, p3, 1qu.

14



7 Heterogeneous and strongly heterogeneous games

Let G “ xI, pXiqiPI , puiqiPIy be a game. Let D˚pGq and E˚pGq be the irreflexive relations on X defined as

D˚pGq –
!

px, yq P X2˚ : D i P I such that x´i “ y´i and xi P CG
i pyq

)
,

E˚pGq –
!

px, yq P X2˚ : D i P I such that x´i “ y´i

)
.

Of course, D˚pGq Ď E˚pGq. Moreover, D˚pGq “ ∅ [E˚pGq “ ∅] if and only if G is trivial. Given px, yq P D˚pGq
[px, yq P E˚pGq], we denote by ipx, yq the unique element of I for which x´i “ y´i. Thus, for every t P R, we
have

DtpGq “
!

px, yq P D˚pGq : uipx,yqpxq ´ uipx,yqpyq ą t
)
,

EtpGq “
!

px, yq P E˚pGq : uipx,yqpxq ´ uipx,yqpyq ą t
)
.

Let us also define the set

DpGq –
!
uipx,yqpxq ´ uipx,yqpyq P R : px, yq P D˚pGq

)
,

E pGq –
!
uipx,yqpxq ´ uipx,yqpyq P R : px, yq P E˚pGq

)
.

Note that DpGq “ ∅ [E pGq “ ∅] if and only if G is trivial. Moreover, |DpGq| ď |D˚pGq| and |E pGq| ď |E˚pGq|.
The following proposition holds.

Proposition 16. Let G “ xI, pXiqiPI , puiqiPIy be a game. Suppose that, for every i P I, |Xi| ď 2. Then,
D˚pGq “ E˚pGq and DpGq “ E pGq.
Proof. We know that D˚pGq Ď E˚pGq. Consider now px, yq P E˚pGq. Thus, there exists i P I such that
x´i “ y´i. Since px, yq P X2˚, we have that xi ‰ yi and then Xi “ txi, yiu. Thus, xi P CG

i pyq and then
px, yq P D˚pGq. We then get E˚pGq Ď D˚pGq, and so D˚pGq “ E˚pGq. As an immediate consequence, we also
get DpGq “ E pGq.
Definition 5. Let G be game. We say that G is heterogeneous if |DpGq| “ |D˚pGq|. We say that G is strongly
heterogeneous if |E pGq| “ |E˚pGq|.

Observe that, since D˚pGq Ď E˚pGq, if G is strongly heterogeneous, then it is heterogeneous. Moreover,
if G is a trivial game, then G is strongly heterogeneous, since E pGq “ E˚pGq “ ∅. Observe also that if
G “ xI, pXiqiPI , puiqiPIy is such that, for every i P I, |Xi| ď 2, then, by Proposition 16, G is heterogeneous if
and only if G is strongly heterogeneous.

Consider now a game G “ xI, pXiqiPI , puiqiPIy such that I “ t1, 2u, X1 “ t1, 2u and X2 “ t1, 2u. In this case,
independently on the payoff functions of G, we have that D˚pGq and E˚pGq both coincide with the set having
the following eight elements:

pp1, 1q, p2, 1qq, pp2, 1q, p1, 1qq, pp1, 1q, p1, 2qq, pp1, 2q, p1, 1qq,
pp1, 2q, p2, 2qq, pp2, 2q, p1, 2qq, pp2, 1q, p2, 2qq, pp2, 2q, p2, 1qq.

Assuming now, for example, that

G “ 2,´2 ´3, 3
´4, 4 5,´5

, (8)

we have DpGq “ E pGq “ t´9,´8,´6,´5, 5, 6, 8, 9u. Thus, G is strongly heterogeneous since |E pGq| “ |E˚pGq| “
8.

The next result is the second main result of the paper. Its proof is in the appendix.

Theorem 17. Let G “ xI, pXiqiPI , puiqiPIy be a game.

(i) If G is heterogeneous, then |D‚pGq| “ |A pX,DpGqq| and |D˝pGq| “ |A pX,D˚pGqq|.
(ii) If G is strongly heterogeneous, then |E‚pGq| “ |A pX,EpGqq| and |E˝pGq| “ 1.
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Theorem 17(i) states that, given a heterogeneous game G, the number of elements in D‚pGq equals the
number of maximal strong components of pX,DpGqq. This number is, in general, much smaller than the size of
DpGq. Indeed, by Theorem 1, DpGq corresponds to the union of the maximal strong components of pX,DpGqq.
Of course, D˝pGq is smaller than D‚pGq and Theorem 17(i) explains that its size coincides with the number of
maximal strong components of pX,D˚pGqq. Similarly, given a strongly heterogeneous game G, Theorem 17(ii)
states that the number of elements in E‚pGq equals the number of maximal strong components of pX,EpGqq.
Again, this number is, in general, much smaller than the size of EpGq. Indeed, by Theorem 1, EpGq corresponds
to the union of the maximal strong components of pX,EpGqq. Theorem 17(ii) also states that E˝pGq is a
singleton. All the facts stated in Theorem 17 gain particular significance once noticed that there are many
strongly heterogeneous games. Let us clarify this point.

Let I be a set of players and pXiqiPI be a family of strategy sets. We denote by GpI, pXiqiPIq the set of
games whose set of players is I and where, for every i P I, the set of strategies of players i is Xi. We also
denote by HpI, pXiqiPIq [SHpI, pXiqiPIq ] the set of [strongly] heterogeneous games in GpI, pXiqiPIq. The next
proposition shows that HpI, pXiqiPIq and SHpI, pXiqiPIq are very large subsets of GpI, pXiqiPIq. Of course,
SHpI, pXiqiPIq Ď HpI, pXiqiPIq. In order to formally state the proposition, we need some preliminary work.

Let φ be a bijective function from t1, . . . , |X|u to X. Using φ, we can naturally build a bijection Ψ from
GpI, pXiqiPIq to R|I||X| by defining, for every G “ xI, pXiqiPI , puiqiPIy P GpI, pXiqiPIq, ΨpGq as the element of
R|I||X| such that, for every j P t1, . . . , |I||X|u, the j-th component of ΨpGq is urpφpj ´ pr ´ 1q|X|qq, where
r P t1, . . . , |I|u is such that j P tpr ´ 1q|X| ` 1, . . . , pr ´ 1q|X| ` |X|u. We can then consider on GpI, pXiqiPIq the
topology and the measure respectively induced by the euclidean topology and the Lebesgue measure on R|I||X|
through Ψ. The next proposition, proved in the appendix, holds.

Proposition 18. Let I be a finite set with |I| ě 2, and pXiqiPI be a family of finite and nonempty sets. Then,
HpI, pXiqiPIq and SHpI, pXiqiPIq are open subsets of GpI, pXiqiPIq having full measure.

We end the section by describing some consequences of Theorem 17. We know that DpGq “ NpGq implies
D‚pGq “ NpGq. The next proposition explains, among other things, that the conditions DpGq “ NpGq and
D‚pGq “ NpGq are in fact equivalent for heterogeneous games.

Proposition 19. Let G be a game. If G is heterogeneous, then the following facts are equivalent:

(i) D‚pGq “ NpGq,
(ii) D‚pGq “ DpGq,
(iii) DpGq “ NpGq.
If G is strongly heterogeneous, then the following facts are equivalent:

(iv) E‚pGq “ NpGq,
(v) E‚pGq “ EpGq,
(vi) EpGq “ NpGq.

The following result specializes to the case of games with two players. Recall that a two-player game G “
xt1, 2u, pX1, X2q, pu1, u2qy is strictly competitive if, for every x, y P X, we have that u1pxq ě u1pyq if and only if
u2pyq ě u2pxq.
Proposition 20. Let G “ xt1, 2u, pX1, X2q, pu1, u2qy be a two-player game. Then the following facts hold.

(i) If G is strictly competitive, then E‚pGq “ E˝pGq.

(ii) If G is heterogeneous, then |D‚pGq| ď mint|X1|, |X2|u and |D˝pGq| ď max
!
1, mint|X1|,|X2|u

2

)
.

(iii) If G is strongly heterogeneous, then |E‚pGq| ď mint|X1|, |X2|u and |E˝pGq| “ 1.

(iv) If G is strongly heterogeneous and strictly competitive, then there exists x˚ P X such that E‚pGq “ E˝pGq “
tx˚u.
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(v) If G is strongly heterogeneous and strictly competitive and NpGq ‰ ∅, then there exists x˚ P X such that
NpGq “ EpGq “ E‚pGq “ E˝pGq “ tx˚u.

By Proposition 20(ii), we deduce, in particular, that if G “ xt1, 2u, pX1, X2q, pu1, u2qy is a heterogeneous
two-player game with mint|X1|, |X2|u ď 3, then |D˝pGq| “ 1. Moreover, by Propositions 15 and 20(iii), if G is
a heterogeneous game in which each player has at most two strategies, then |D˝pGq| “ 1.

The proofs of Propositions 19 and 20 are in the appendix.

8 Computing the solutions

In this section, we describe an efficient method for computing all the solution concepts introduced in Definition
4.

Let X be a nonempty and finite set with |X| ě 2. A network on X is a triple N “ pX,X2˚, cq, where c is a
function from X2˚ to R. Note that X2˚ ‰ ∅ since |X| ě 2. The set of networks on X is denoted by N . A network
solution is a function from N to the set of nonempty subsets of X, that is, a procedure for selecting some of
the vertices of any given network on X. Network solutions (as well as procedures for ranking the vertices of a
network) are extensively studied in the literature (Laslier 1997; Langville and Meyer 2012; González-Dı́az et al.
2014).

Based on the Schulze method introduced by Schulze (2011), Bubboloni and Gori (2018) propose a special
network solution called Schulze network solution. Let us recall its definition. Let N “ pX,X2˚, cq P N . A path
in N is a sequence pxjqmj“1, where m ě 2, x1, . . . , xm are distinct elements of X. Consider now x, y P X distinct.

A path from x to y in N is a path pxjqmj“1 in N such that x1 “ x and xm “ y. The set of paths from x to y in

N is denoted by ΓpN, x, yq. Note that ΓpN, x, yq is nonempty and finite. Given γ “ pxjqmj“1 P ΓpN, x, yq, let

δN pγq – min
␣
cpxj , xj`1q : j P t1, ...,m ´ 1u( .

Define then
sNxy – max

␣
δN pγq : γ P ΓpN, x, yq( .

The Schulze network solution, denoted by Sch, is defined, for every N P N , by

SchpNq –
␣
x P X : sNxy ě sNyx for all y P Xztxu( .

We emphasize that an algorithm of polynomial time in the size of |X| for the computation of SchpNq can be
deduced from the algorithm described in Schulze (2011).

Let G “ xI, pXiqiPI , puiqiPIy be a non-trivial game. Thus, |X| ě 2, DpGq ‰ ∅ and E pGq ‰ ∅. We can then
consider the two numbers

dpGq – mint´1,minpDpGqq ´ 1u,
epGq – mint´1,minpE pGqq ´ 1u.

We stress here that the crucial property of dpGq is that it is a negative number smaller than the minimum of
DpGq. Analogously, the crucial property of epGq is that it is a negative number smaller than the minimum of
E pGq.14

We then associate with G the functions cD‚
G : X2˚ Ñ R, cD˝

G : X2˚ Ñ R, cE‚
G : X2˚ Ñ R, cE˝

G : X2˚ Ñ R, defined,
14By Lemma 28 proved in the appendix, we can actually deduce the equality epGq “ minpE pGqq ´ 1.
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for every px, yq P X2˚, as

cD‚
G px, yq “

#
uipx,yqpxq ´ uipx,yqpyq if px, yq P D˚pGq and uipx,yqpxq ´ uipx,yqpyq ą 0,

dpGq otherwise,

cD˝
G px, yq “

#
uipx,yqpxq ´ uipx,yqpyq if px, yq P D˚pGq,
dpGq otherwise,

cE‚
G px, yq “

#
uipx,yqpxq ´ uipx,yqpyq if px, yq P E˚pGq and uipx,yqpxq ´ uipx,yqpyq ą 0,

epGq otherwise,

cE˝
G px, yq “

#
uipx,yqpxq ´ uipx,yqpyq if px, yq P E˚pGq,
epGq otherwise.

We finally associate with G the networks

ND‚ pGq “ pX,X2˚, c
D‚
G q, ND˝ pGq “ pX,X2˚, c

D˝
G q,

NE‚ pGq “ pX,X2˚, c
E‚
G q, NE˝ pGq “ pX,X2˚, c

E˝
G q.

We are now ready to state the third main result of the paper. The proof is in the appendix.

Theorem 21. Let G be a non-trivial game. Then D‚pGq “ SchpND‚ pGqq, D˝pGq “ SchpND˝ pGqq, E‚pGq “
SchpNE‚ pGqq, E˝pGq “ SchpNE˝ pGqq.

9 Two-player two-strategy games

In this section we focus on the special case of two-player two-strategy games. By Proposition 15, for every
two-player two-strategy game G, we have that D‚pGq “ E‚pGq and D˝pGq “ E˝pGq. Thus, in what follows, we
refer to D‚pGq and D˝pGq only.

9.1 Coordination games

Consider the two-player game

G “ a1, a2 d1, c2
c1, d2 b1, b2

,

where, a1 ą c1, a2 ą c2, b1 ą d1, b2 ą d2. This game represents the general coordination game. We have
NpGq “ tp1, 1q, p2, 2qu. Applying Theorem 21, we get D‚pGq “ tp1, 1q, p2, 2qu and

• D˝pGq “ tp1, 1qu if and only if minta1 ´ c1, a2 ´ c2u ą mintb1 ´ d1, b2 ´ d2u,
• D˝pGq “ tp2, 2qu if and only if minta1 ´ c1, a2 ´ c2u ă mintb1 ´ d1, b2 ´ d2u,
• D˝pGq “ tp1, 1q, p2, 2qu if and only if minta1 ´ c1, a2 ´ c2u “ mintb1 ´ d1, b2 ´ d2u.

As a particular case, consider the symmetric coordination game

G “ a, a d, c
c, d b, b

,

where, a ą c and b ą d. We have

• D˝pGq “ tp1, 1qu if and only if a ´ c ą b ´ d,

• D˝pGq “ tp2, 2qu if and only if a ´ c ă b ´ d,

• D˝pGq “ tp1, 1q, p2, 2qu if and only if a ´ c “ b ´ d.
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Then, D˝pGq selects between the two Nash equilibria the one from which a deviation causes a greater loss. This
is equivalent to saying that D˝pGq excludes the Nash equilibrium that is strictly risk-dominated by the other, if
any (Harsanyi and Selten, 1988, Lemma 5.4.4).

Consider now the following asymmetric coordination game

G “ a1, a2 d1, c2
c1, d2 a2, a1

,

where a1 ą a2 ą maxtd1, c2u and mintd1, c2u ą maxtc1, d2u. The game G corresponds to the Bach or Stravinsky
game, where

X1 “ X2 “ t1 “ Bach, 2 “ Stravinskyu,
player 1 prefers Bach to Stravinsky, and player 2 prefers Stravinsky to Bach. We have

• D˝pGq “ tp1, 1qu if and only if d1 ą c2,

• D˝pGq “ tp2, 2qu if and only if d1 ă c2,

• D˝pGq “ tp1, 1q, p2, 2qu if and only if d1 “ c2.

Thus, D˝ selects as a unique strategy profile pBach,Bachq [pStravinsky,Stravinskyq] if and only if in the scenario
where each player goes to her favorite concert alone, the player who prefers Bach [Stravinsky] is more satisfied
than the other.

9.2 Anti-coordination games

Consider the two-player game

G “ a1, a2 d1, c2
c1, d2 b1, b2

,

where, c1 ą a1, d2 ą b2, d1 ą b1, c2 ą a2. This game represents the general anti-coordination game. We have
NpGq “ tp1, 2q, p2, 1qu. Applying Theorem 21, we get D‚pGq “ tp1, 2q, p2, 1qu and

• D˝pGq “ tp1, 2qu if and only if mintc2 ´ a2, d1 ´ b1u ą mintc1 ´ a1, d2 ´ b2u,
• D˝pGq “ tp2, 1qu if and only if mintc2 ´ a2, d1 ´ b1u ă mintc1 ´ a1, d2 ´ b2u,
• D˝pGq “ tp1, 2q, p2, 1qu if and only if mintc2 ´ a2, d1 ´ b1u “ mintc1 ´ a1, d2 ´ b2u.
As a particular case, assume further that mintc1 ´ a1, c2 ´ a2u ą maxtd2 ´ b2, d1 ´ b1u. Note that, under

these additional assumptions, the game corresponds to the Chicken game supposing

X1 “ X2 “ t1 “ Straight, 2 “ Swerveu.
We have

• D˝pGq “ tp1, 2qu if and only if d1 ´ b1 ą d2 ´ b2,

• D˝pGq “ tp2, 1qu if and only if d1 ´ b1 ă d2 ´ b2,

• D˝pGq “ tp1, 2q, p2, 1qu if and only if d1 ´ b1 “ d2 ´ b2.

Thus, for example, the equilibrium selected by D˝pGq is pStraight,Swerveq if deviating from the strategy profile
pSwerve,Swerveq is more profitable for player 1 than for player 2.

19



9.3 Discoordination games

Consider the game

G “ a1, a2 d1, d2
b1, b2 c1, c2

,

where, a1 ą b1, b2 ą c2, c1 ą d1, d2 ą a2. This game can be seen as a generalization of the matching-pennies
game. We have NpGq “ ∅. Consider the set

Γ “ ta1 ´ b1, b2 ´ c2, c1 ´ d1, d2 ´ a2u
and assume that there exists v˚ P Γ such that, for every v P Γztv˚u, v˚ ă v. Applying Theorem 21, we deduce
that:

• if v˚ “ a1 ´ b1, then D‚pGq “ D˝pGq “ tp2, 1qu,
• if v˚ “ b2 ´ c2, then D‚pGq “ D˝pGq “ tp2, 2qu,
• if v˚ “ c1 ´ d1, then D‚pGq “ D˝pGq “ tp1, 2qu,
• if v˚ “ d2 ´ a2, then D‚pGq “ D˝pGq “ tp1, 1qu.

Thus, D‚pGq andD˝pGq both select as unique strategy profile the one for which the profitable unilateral deviation
generates the smallest payoff variation.
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A Proofs

In this appendix, we provide the proofs of Theorems 13, 17 and 21, and Propositions 5, 18, 19 and 20. Those
proofs are sometimes based on some preliminary propositions.

A.1 Proof of Proposition 5

Proposition 22. Let G “ xI, pXiqiPI , puiqiPIy be a game and let pYiqiPI be such that, for every i P I, ∅ ‰
Yi Ď Xi. Assume that, for every i P I and s P XizYi, s is never a best response in G for player i. Defined
G1 “ RpG, pYiqiPIq and Y “ πpG1q “ ś

jPI Yj, we have that

(i) for every i P I and σ P ś
jPIztiu Yj, BG

i pσq “ BG1
i pσq;

(ii) DpGq X Y 2 “ DpG1q.
Proof. (i) Let i P I and σ P ś

jPIztiu Yj . Observe that σ P ś
jPIztiu Xj . We have

BG1
i pσq “ argmax

sPYi

uips, σq “ argmax
sPXi

uips, σq “ BG
i pσq,

where the second equality holds because each element in XizYi is never a best response in G for player i and
then, in particular, it cannot be a best response to σ.

(ii) Let us first prove that DpGq X Y 2 Ď DpG1q. Let px, yq P DpGq X Y 2. Then x, y P Y and there exists i P I
such that

x´i “ y´i, xi P BG
i py´iq, uipxq ą uipyq. (9)

By (i) and the fact that y´i P ś
jPIztiu Yj , we have that (9) is equivalent to

x´i “ y´i, xi P BG1
i py´iq, uipxq ą uipyq.
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Then, we conclude that px, yq P DpG1q.
Next, let us prove that DpG1q Ď DpGq X Y 2. Let px, yq P DpG1q. Then x, y P Y and there exists i P I such

that
x´i “ y´i, xi P BG1

i py´iq, uipxq ą uipyq. (10)

By (i) and since y´i P ś
jPIztiu Yj , we have that (10) is equivalent to

x´i “ y´i, xi P BG
i py´iq, uipxq ą uipyq.

Then, we conclude that px, yq P DpGq X Y 2.

Proof of Proposition 5. Let G1 “ RpG, pYiqiPIq “ xI, pYiqiPI , puiqiPIy and Y “ πpG1q “ ś
jPI Yj .

Let us first prove that DpG1q Ď DpGq. Let x P DpG1q and prove that x P DpGq showing that, for every y P X
such that py, xq P DpGqτ , we have px, yq P DpGqτ .

Let y P X be such that py, xq P DpGqτ . Thus, there exists m ě 2 and a sequence pyjqmj“1 in X such that

y1 “ y, ym “ x and, for every j P t1, . . . ,m ´ 1u, pyj , yj`1q P DpGq. We know that x “ ym P Y . Assume, by
contradiction, that there exists j P t1, . . . ,m ´ 1u such that yj R Y . We can assume that j is the largest index
for which yj R Y . Thus, yj R Y , yj`1 P Y and pyj , yj`1q P DpGq. We know that there exists i P I such that

yj´i “ yj`1
´i , yji P BG

i pyj`1
´i q, uipyjq ą uipyj`1q.

From yj R Y , yj`1 P Y and yj´i “ yj`1
´i , we deduce that yji P XizYi and then yji is never a best response in G

for player i. However, we have yji P BG
i pyj`1

´i q, a contradiction. We then conclude that the sequence pyjqmj“1 is
actually a sequence in Y . As a consequence, by Proposition 22(ii), we have that, for every j P t1, . . . ,m ´ 1u,
pyj , yj`1q P DpG1q, and so py, xq P DpG1qτ . Since x P DpG1q, we know that px, yq P DpG1qτ . Thus, there exists
s ě 2 and a sequence pzjqsj“1 in Y such that z1 “ x, zs “ y and, for every j P t1, . . . , s ´ 1u, pzj , zj`1q P DpG1q.
In particular, the sequence pzjqsj“1 is also a sequence in X and, by Proposition 22(ii), for every j P t1, . . . , s´1u,
pzj , zj`1q P DpGq. Thus, px, yq P DpGqτ , as desired.

Let us prove now that DpGq Ď DpG1q. Let x P DpGq and prove that x P DpG1q showing that x P Y and that,
for every y P Y such that py, xq P DpG1qτ , we have that px, yq P DpG1qτ .

Assume by contradiction that x R Y . Thus, there exists i P I such that xi P XizYi. Consider then
yi P BG

i px´iq. Since xi is never a best response in G for player i, we have that xi R BG
i px´iq and, in particular,

yi ‰ xi. Let us set y “ pyi, x´iq P X. Since

y´i “ x´i, yi P BG
i px´iq, uipyq ą uipxq,

we have that py, xq P DpGq. Thus, py, xq P DpGqτ and, since x P DpGq, we know that px, yq P DpGqτ . Thus,
there exists s ě 2 and a sequence pzjqsj“1 in X such that z1 “ x, zs “ y and, for every j P t1, . . . , s ´ 1u,
pzj , zj`1q P DpGq. Therefore, there exists j P t1, . . . , s ´ 1u such that zji “ xi and zj`1

i ‰ xi. That implies, in
particular, that

zj´i “ zj`1
´i , zji “ xi P BG

i pzj`1
´i q,

and that is a contradiction since xi is never a best response for player i. We then conclude that x P Y .
Consider now y P Y such that py, xq P DpG1qτ , and prove that px, yq P DpG1qτ . Since py, xq P DpG1qτ , we know

that there exists m ě 2 and a sequence pyjqmj“1 in Y such that y1 “ y, ym “ x and, for every j P t1, . . . ,m ´ 1u,
pyj , yj`1q P DpG1q. In particular, pyjqmj“1 is a sequence in X such that y1 “ y, ym “ x and, by Proposition

22(ii), for every j P t1, . . . ,m ´ 1u, pyj , yj`1q P DpGq. Thus, we have that py, xq P DpGqτ . Since x P DpGq, we
know that px, yq P DpGqτ . Thus, there exists s ě 2 and a sequence pzjqsj“1 in X such that z1 “ x, zs “ y and,

for every j P t1, . . . , s ´ 1u, pzj , zj`1q P DpGq. We know that zs “ y P Y . Assume, by contradiction, that there
exists j P t1, . . . , s ´ 1u such that zj R Y . We can assume that j is the largest index for which zj R Y . Thus,
zj R Y , zj`1 P Y and pzj , zj`1q P DpGq. We know that there exists i P I such that

zj´i “ zj`1
´i , zji P BG

i pzj`1
´i q, uipzjq ą uipzj`1q.

From zj R Y , zj`1 P Y , and zj´i “ zj`1
´i , we deduce that zji P XizYi. Then, zji is a never best response in

G for player i. However, we have zji P BG
i pzj`1

´i q, a contradiction. We then conclude then that the sequence
pzjqmj“1 is actually a sequence in Y and therefore, by Proposition 22(ii), we have that, for every j P t1, . . . , s´1u,
pzj , zj`1q P DpG1q. Thus, px, yq P DpG1qτ , as desired.
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A.2 Proof of Theorem 13

Lemma 23. Let G “ xI, pXiqiPI , puiqiPIy be a game, i P I and σ P X´i with |BG
i pσq| ě 2. Then 0 P DpGq

Proof. Let s, s1 P BG
i pσq be such that s ‰ s1. Thus, s1 P CG

i pps, σqq and then pps1, σq, ps, σqq P D˚pGq. Since
uips1, σq “ uips, σq, we conclude that uips1, σq ´ uips, σq “ 0 P DpGq.
Lemma 24. Let G be a game and t P DpGq with t ă 0. Then ´t P DpGq.
Proof. Let px, yq P D˚pGq be such that uipxq ´ uipyq “ t, where i “ ipx, yq. Thus, x´i “ y´i, xi ‰ yi
and xi P CG

i pyq. Since uipxq ă uipyq, we deduce that yi P BG
i px´iq and then yi P CG

i pxq. We then have
py, xq P D˚pGq, and so uipyq ´ uipxq “ ´t P DpGq.
Lemma 25. Let G “ xI, pXiqiPI , puiqiPIy be a game, i P I be such that |Xi| ě 2, and σ P X´i be such that
|BG

i pσq| “ 1. Then there exists t ą 0 such that t,´t P DpGq.
Proof. Let s P Xi such that BG

i pσq “ tsu. Since |Xi| ě 2, we have that there exists s1 P CG
i pps, σqq and then

pps1, σq, ps, σqq P D˚pGq. Since s1 ‰ s, we deduce that uips1, σq ă uips, σq and uips1, σq´uips, σq P DpGq. However,
we surely have s P CG

i pps1, σqq and then also pps, σq, ps1, σqq P D˚pGq. As a consequence, uips, σq´uips1, σq P DpGq.
Setting then t “ uips, σq ´ uips1, σq ą 0, we get t,´t P DpGq.
Lemma 26. Let G “ xI, pXiqiPI , puiqiPIy be a heterogeneous game, i P I and σ P X´i. Then, |BG

i pσq| “ 1.

Proof. Assume by contradiction that there are s, s1 P BG
i pσq with s ‰ s1. Then pps1, σq, ps, σqq P D˚pGq and

pps, σq, ps1, σqq P D˚pGq. However, uips1, σq ´ uips, σq “ uips, σq ´ uips1, σq “ 0. Thus, |DpGq| ă |D˚pGq|. That
contradicts the fact that G is heterogeneous.

Lemma 27. Let G be a non-trivial game. Then the following facts hold true:

(i) if |DpGq| “ 1, then DpGq “ t0u;
(ii) if |DpGq| ě 2, then there exists t ą 0 such that t P DpGq;
(iii) if G is heterogeneous, then there exists t ą 0 such that t,´t P DpGq.
Proof. We set G “ xI, pXiqiPI , puiqiPIy.
(i) Assume that |DpGq| “ 1. Since G is non-trivial, there exists i P I such that |Xi| ě 2. Consider then σ P X´i.
By Lemma 25, we know that it cannot be |BG

i pσq| “ 1. Thus, |BG
i pσq| ě 2 and by Lemma 23, 0 P DpGq. As a

consequence, DpGq “ t0u.
(ii) Assume that |DpGq| ě 2. Suppose by contradiction that, for every t P DpGq, t ď 0. By Lemma 24, none of
the elements of DpGq can be negative. Thus, DpGq “ t0u, and then |DpGq| “ 1, a contradiction.

(iii) Assume that G is heterogeneous. Since G is non-trivial, there exists i P I such that |Xi| ě 2. Consider then
any σ P X´i. Since G is heterogeneous, by Lemma 26, |BG

i pσq| “ 1. By Lemma 25 we conclude that there exists
t ą 0 such that t,´t P DpGq.
Lemma 28. Let G be a game. Then the following facts hold true:

(i) if t P E pGq, then ´t P E pGq;
(ii) if |E pGq| “ 1, then E pGq “ t0u;
(iii) if |E pGq| ě 2, then there exists t P E pGq such that t ą 0;

(iv) if G is strongly heterogeneous, then 0 R E pGq.
(v) if G is non-trivial and strongly heterogeneous, then there exists t ą 0 such that t,´t P E pGq.
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Proof. (i) Assume that t P E pGq. Then there exists px, yq P E˚pGq such that uipx,yqpxq ´ uipx,yqpyq “ t. Since
py, xq P E˚pGq and ipy, xq “ ipx, yq we deduce that ´t “ uipy,xqpyq ´ uipy,xqpxq P E pGq.
(ii) Assume that |E pGq| “ 1. Thus, there exists t P R such that E pGq “ ttu. Suppose, by contradiction, that
t ‰ 0. Then, we have ´t ‰ t. By (i) we know that ´t P E pGq and so |E pGq| ě 2, a contradiction.

(iii) Assume that |E pGq| ě 2. Thus, there exists t P E pGq such that t ‰ 0. If t ą 0, then we have completed the
proof. If instead t ă 0, then, by (i), we know that ´t P E pGq and since ´t ą 0 we have completed the proof.

(iv) Assume that G is strongly heterogeneous. Suppose by contradiction that 0 P E pGq. Thus, there exists
px, yq P E˚pGq such that uipx,yqpxq´uipx,yqpyq “ 0. Since ipx, yq “ ipy, xq, we have uipy,xqpyq´uipy,xqpxq “ 0. Then
px, yq and py, xq are two elements of E˚pGq associated with the same element of E pGq. Thus, |E pGq| ă |E˚pGq|
and G is not strongly heterogeneous, a contradiction.

(v) Assume that G is non-trivial and strongly heterogeneous. Thus, E pGq ‰ ∅ and, by (iv), we know that
0 R E pGq. Thus, there exists t P E pGq with t ‰ 0. Thus, we conclude applying (i).

Proposition 29. Let G be a non-trivial game. Then, for every t ă minpDpGqq, DtpGq “ D˚pGq, DtpGq “
DdpGqpGq and DtpGq “ DdpGqpGq.
Proof. Since G is non-trivial, DpGq is nonempty (and finite), and so minpDpGqq is well defined. Let t ă
minpDpGqq. We know that DtpGq Ď D˚pGq. Consider now px, yq P D˚pGq. Since uipx,yqpxq ´ uipx,yqpyq P DpGq
and t ă minpDpGqq, we have uipx,yqpxq ´uipx,yqpyq ą t. Thus, we conclude that px, yq P DtpGq. That also proves
that D˚pGq Ď DtpGq. Thus, DtpGq “ D˚pGq.

Since, in particular, dpGq ă minpDpGqq, we have DtpGq “ D˚pGq “ DdpGqpGq. Therefore, DtpGq “
ApπpGq, DtpGqq “ ApπpGq, DdpGqpGqq “ DdpGqpGq.
Proposition 30. Let G “ xI, pXiqiPI , puiqiPIy be a game. Then A pX,E˚pGqq “ tXu and ApX,E˚pGqq “ X.

Proof. If G is trivial, then E˚pGq “ ∅ and the desired equalities have already been observed.
Assume now that G is non-trivial. Let us prove A pX,E˚pGqq “ tXu. This is equivalent to prove that, for

every x, y P X with x ‰ y, px, yq P E˚pGqτ . Consider then x, y P X with x ‰ y and prove that there is a path
from x to y in pX,E˚pGqq. For every j P t0, . . . , |I|u, let xj P X be defined as follows: for every i P I with i ą j,
xj
i “ xi; for every i P I with i ď j, xj

i “ yi. We have x0 “ x and x|I| “ y. Moreover, for every j P t1, . . . , |I|u,
xj´1

´j “ xj
´j . Then, for every j P t1, . . . , |I|u, we have xj´1 “ xj or pxj´1, xjq P E˚pGq. Thus, the sequence

pxjq|I|
j“0 admits a subsequence that is a path from x to y in pX,E˚pGqq. Thus, A pX,E˚pGqq “ tXu. From

A pX,E˚pGqq “ tXu, it immediately follows that ApX,E˚pGqq “ X.

Proposition 31. Let G be a non-trivial game. Then

D‚pGq “
č

tPpDpGqXR`qYt0u
DtpGq, D˝pGq “

č

tPDpGqYtdpGqu
DtpGq.

Proof. Since G is non-trivial, we have D˚pGq ‰ ∅ and DpGq ‰ ∅. Assume first that |DpGq| “ 1. Thus, by
Lemma 27(i), we have DpGq “ t0u.

• If t P p´8, 0q, then, by Proposition 29, DtpGq “ DdpGqpGq.
• If t P r0,`8q, then DtpGq “ ∅, and so DtpGq “ πpGq “ D0pGq. Indeed, assume by contradiction that
there exists px, yq P DtpGq. Thus, px, yq P D˚pGq and uipx,yqpxq ´ uipx,yqpyq ą t. Since px, yq P D˚pGq
implies uipx,yqpxq ´ uipx,yqpyq P DpGq, we get uipx,yqpxq ´ uipx,yqpyq “ 0. We then deduce the contradiction
0 ą t.

Then, we have

D˝pGq “
č

tPR
DtpGq “

¨
˝ č

tPp´8,0q
DtpGq

˛
‚X

¨
˝ č

tPr0,`8q
DtpGq

˛
‚

“ DdpGqpGq X D0pGq “
č

tPDpGqYtdpGqu
DtpGq,
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and
D‚pGq “

č

tPR`

DtpGq “ D0pGq “
č

tPpDpGqXR`qYt0u
DtpGq.

Assume now that |DpGq| ě 2. Let DpGq “ ttjukj“1, where k ě 2, and tj ă tj`1 for all j P t1, . . . , k ´ 1u.
• If t P p´8, t1q, then, by Proposition 29, DtpGq “ DdpGqpGq.
• Let a, b P R be such that a ă b and pa, bq X DpGq “ ∅. Then, for every t P ra, bq, DtpGq “ DapGq, and
so DtpGq “ DapGq. Indeed, let t P ra, bq, we know, by Proposition 11, that DtpGq Ď DapGq. Consider
now px, yq P DapGq. Then px, yq P D˚pGq and uipx,yqpxq ´ uipx,yqpyq ą a. Assume by contradiction that
px, yq R DtpGq. Since px, yq P D˚pGq it must be uipx,yqpxq ´ uipx,yqpyq ď t. Since t ă b, we deduce that
a ă uipx,yqpxq ´ uipx,yqpyq ă b. Thus, uipx,yqpxq ´ uipx,yqpyq P DpGq X pa, bq, a contradiction. We conclude
then that px, yq P DtpGq. We then get the inclusion DapGq Ď DtpGq. Thus, the equality DtpGq “ DapGq
follows.

• If t P rtk,`8q, then DtpGq “ ∅, and so DtpGq “ πpGq “ DtkpGq. Indeed, assume by contradiction that
there exists px, yq P DtpGq. Thus, px, yq P D˚pGq and uipx,yqpxq ´ uipx,yqpyq ą t. Since px, yq P D˚pGq
implies uipx,yqpxq ´uipx,yqpyq P DpGq, we get uipx,yqpxq ´uipx,yqpyq ď tk. We then deduce the contradiction
tk ą t.

Then, we have

D˝pGq “
č

tPR
DtpGq “

¨
˝ č

tPp´8,t1q
DtpGq

˛
‚X

¨
˝ č

jPt1,...,k´1u

¨
˝ č

tPrtj ,tj`1q
DtpGq

˛
‚
˛
‚X

¨
˝ č

tPrtk,`8q
DtpGq

˛
‚

“ DdpGqpGq X
¨
˝ č

jPt1,...,k´1u
Dtj pGq

˛
‚X DtkpGq “ DdpGqpGq X

¨
˝ č

jPt1,...,ku
Dtj pGq

˛
‚“

č

tPDpGqYtdpGqu
DtpGq.

In order to prove the desired result for D‚pGq, observe that, since |DpGq| ě 2, by Lemma 27(ii), we know that
there exists a positive element in DpGq. Let j˚ be the smallest element of the set t1, 2, . . . , ku for which tj˚ ą 0.
Thus, DpGq X p0, tj˚ q “ ∅ and then, for every t P r0, tj˚ q, DtpGq “ D0pGq.

If j˚ “ k, then DpGq as a unique positive element, say t˚. Thus,

D‚pGq “
č

tPR`

DtpGq “
¨
˝ č

tPr0,t˚q
DtpGq

˛
‚X

¨
˝ č

tPrt˚,`8q
DtpGq

˛
‚

“ D0pGq X Dt˚ pGq “
č

tPpDpGqXR`qYt0u
DtpGq.

If instead j˚ ă k, then

D‚pGq “
č

tPR`

DtpGq “
¨
˝ č

tPr0,tj˚ q
DtpGq

˛
‚X

¨
˝ č

jPtj˚,...,k´1u

¨
˝ č

tPrtj ,tj`1q
DtpGq

˛
‚
˛
‚X

¨
˝ č

tPrtk,`8q
DtpGq

˛
‚

“ D0pGq X
¨
˝ č

jPtj˚,...,k´1u
Dtj pGq

˛
‚X DtkpGq “ D0pGq X

č

jPtj˚,...,ku
Dtj pGq “

č

tPpDpGqXR`qYt0u
DtpGq.

Proposition 32. Let G be a non-trivial game. Then

E‚pGq –
č

tPpE pGqXR`qYt0u
EtpGq, E˝pGq –

č

tPE pGq
EtpGq.
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Proof. Since G is non-trivial, we have E˚pGq ‰ ∅ and E pGq ‰ ∅. Assume first that |E pGq| “ 1. Thus, by
Lemma 28(ii), we have E pGq “ t0u.

• If t P p´8, 0q, then EtpGq “ E˚pGq, and so, by Proposition 30, EtpGq “ πpGq. Indeed, we know that
EtpGq Ď E˚pGq. Consider now px, yq P E˚pGq. Thus, uipx,yqpxq´uipx,yqpyq “ 0 ą t and then px, yq P EtpGq.
We then deduce E˚pGq Ď EtpGq, and the equality EtpGq “ E˚pGq follows.

• If t P r0,`8q, then EtpGq “ ∅, and so EtpGq “ πpGq “ E0pGq. Indeed, assume by contradiction that
there exists px, yq P EtpGq. Thus, px, yq P E˚pGq and uipx,yqpxq ´ uipx,yqpyq ą t. Since px, yq P E˚pGq
implies uipx,yqpxq ´ uipx,yqpyq P E pGq, we get uipx,yqpxq ´ uipx,yqpyq “ 0. We then deduce the contradiction
0 ą t.

Thus, for every t P R, EtpGq “ πpGq. Then, we have

E˝pGq “
č

tPR
EtpGq “

č

tPR
πpGq “ πpGq “ E0pGq “

č

tPE pGq
EtpGq,

and
E‚pGq “

č

tPR`

EtpGq “
č

tPR`

πpGq “ πpGq “ E0pGq “
č

tPE pGqXR`

EtpGq.

Assume now that |E pGq| ě 2. Let E pGq “ ttjukj“1, where k ě 2, and tj ă tj`1 for all j P t1, . . . , k ´ 1u.
• If t P p´8, t1q, then EtpGq “ E˚pGq, and so, by Proposition 30, EtpGq “ πpGq. Indeed, we know
that EtpGq Ď E˚pGq. Consider now px, yq P E˚pGq. Thus, uipx,yqpxq ´ uipx,yqpyq ě t1 ą t and then
px, yq P EtpGq. We then conclude E˚pGq Ď EtpGq, and the equality EtpGq “ E˚pGq follows.

• Let a, b P R be such that a ă b and pa, bq X E pGq “ ∅. Then, for every t P ra, bq, EtpGq “ EapGq, and
so EtpGq “ EapGq. Indeed, let t P ra, bq, we know, by Proposition 11, that EtpGq Ď EapGq. Consider
now px, yq P EapGq. Then px, yq P E˚pGq and uipx,yqpxq ´ uipx,yqpyq ą a. Assume by contradiction that
px, yq R EtpGq. Since px, yq P E˚pGq it must be uipx,yqpxq ´ uipx,yqpyq ď t. Since t ă b, we deduce that
a ă uipx,yqpxq´uipx,yqpyq ă b. Thus, uipx,yqpxq´uipx,yqpyq P E pGqXpa, bq, a contradiction. We then conclude
that px, yq P EtpGq. Thus, we get the inclusion EapGq Ď EtpGq, and so the equality EtpGq “ EapGq follows.

• If t P rtk,`8q, then EtpGq “ ∅, and so EtpGq “ πpGq “ EtkpGq. Indeed, assume by contradiction that
there exists px, yq P EtpGq. Thus, px, yq P E˚pGq and uipx,yqpxq ´ uipx,yqpyq ą t. Since px, yq P E˚pGq
implies uipx,yqpxq ´ uipx,yqpyq P E pGq, we get uipx,yqpxq ´ uipx,yqpyq ď tk. We then deduce the contradiction
tk ą t.

Then, we have

E˝pGq “
č

tPR
EtpGq “

¨
˝ č

tPp´8,t1q
EtpGq

˛
‚X

¨
˝ č

jPt1,...,k´1u

¨
˝ č

tPrtj ,tj`1q
EtpGq

˛
‚
˛
‚X

¨
˝ č

tPrtk,`8q
EtpGq

˛
‚

“ πpGq X
¨
˝ č

jPt1,...,k´1u
Etj pGq

˛
‚X EtkpGq “ πpGq X

¨
˝ č

jPt1,...,ku
Etj pGq

˛
‚“

č

tPE pGq
EtpGq.

In order to prove the desired result for E‚pGq, observe that, since |E pGq| ě 2, by Lemma 28(iii), we know that
there exists a positive element in E pGq. Let j˚ be the smallest element of the set t1, 2, . . . , ku for which tj˚ ą 0.
Thus, E pGq X p0, tj˚ q “ ∅ and then, for every t P r0, tj˚ q, EtpGq “ E0pGq.

If j˚ “ k, then E pGq as a unique positive element, say t˚. Thus,

E‚pGq “
č

tPR`

EtpGq “
¨
˝ č

tPr0,t˚q
EtpGq

˛
‚X

¨
˝ č

tPrt˚,`8q
EtpGq

˛
‚“ E0pGq X Et˚ pGq “

č

tPpE pGqXR`qYt0u
EtpGq.

If instead j˚ ă k, then

E‚pGq “
č

tPR`

EtpGq “
¨
˝ č

tPr0,tj˚ q
EtpGq

˛
‚X

¨
˝ č

jPtj˚,...,k´1u

¨
˝ č

tPrtj ,tj`1q
EtpGq

˛
‚
˛
‚X

¨
˝ č

tPrtk,`8q
EtpGq

˛
‚
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“ E0pGq X
¨
˝ č

jPtj˚,...,k´1u
Etj pGq

˛
‚X EtkpGq “ E0pGq X

č

jPtj˚,...,ku
Etj pGq “

č

tPpE pGqXR`qYt0u
EtpGq.

Proof of Theorem 13. If G is trivial, then we know that D˝pGq “ E˝pGq “ πpGq ‰ ∅. Thus, we can assume
then that G is non-trivial.

Let us first prove that D˝pGq ‰ ∅. Since G is non-trivial, DpGq ‰ ∅. Let DpGq Y tdpGqu “ ttjukj“1, where
k ě 2 and tj ă tj`1 for all j P t1, . . . , k ´ 1u. Of course, t1 “ dpGq. By Proposition 11, we know that, for every
j P t1, . . . , k ´ 1u, Dtj pGq Ě Dtj`1pGq. Let us define, for every j P t1, . . . , ku, Rj “ Dtk´j`1

pGq. By Proposition
31, we have

D˝pGq “
č

tPDpGqYtdpGqu
DtpGq “

kč

j“1

ApπpGq, Rjq.

Since pRjqkj“1 is a sequence of irreflexive relations on X such that, for every j P t2, . . . , ku, Rj´1 Ď Rj , by
Theorem 3 in Gori (2023), we deduce that D˝pGq ‰ ∅.

Let us now prove that E˝pGq ‰ ∅. Since G is non-trivial, E pGq ‰ ∅. If |E pGq| “ 1, by Lemma 28(ii), we
know that E pGq “ t0u. Thus, by Proposition 32, E˝pGq “ E0pGq ‰ ∅.

Assume then that |E pGq| ě 2. Thus, E pGq “ ttjukj“1, where k ě 2 and tj ă tj`1 for all j P t1 . . . , k ´ 1u.
By Proposition 11, we know that, for every j P t1, . . . , k ´ 1u, Etj pGq Ě Etj`1

pGq. Let us define, for every
j P t1, . . . , ku, Rj “ Etk´j`1

pGq. By Proposition 32, we have

E˝pGq “
č

tPE pGq
EtpGq “

kč

j“1

ApπpGq, Rjq.

Since pRjqkj“1 is a sequence of irreflexive relations on X such that, for every j P t2, . . . , ku, Rj´1 Ď Rj , by
Theorem 3 in Gori (2023), we deduce that E˝pGq ‰ ∅.

A.3 Proof of Theorem 17

Theorem 33. Let X be a nonempty and finite set, α P N, pRiqαi“0 be a sequence of irreflexive relations on X.
Assume that A pX,R0q “ ttxu : x P Xu and, for every i P t1, . . . , αu, Ri´1 Ď Ri and |RizRi´1| “ 1. Then,

ˇ̌
ˇ̌
ˇ
αč

i“0

ApX,Riq
ˇ̌
ˇ̌
ˇ “ |A pX,Rαq|.

Proof. Consider the sequence pppyi, pziqqαi“1 in X2˚ where, for every i P t1, . . . , αu, ppyi, pziq is the unique element in
RizRi´1. We can then consider the sequence of functions pνiqαi“0 defined in the statement of Theorem 10 in Gori
(2023). By Theorem 10 in Gori (2023), we know that:

(a1) tναpY q : Y P A pX,R0quzt∅u “ A pX,Rαq;
(b1) for every Y, Y 1 P A pX,R0q distinct with ναpY q ‰ ∅ and ναpY 1q ‰ ∅, we have ναpY q ‰ ναpY 1q;

(c1)
αč

i“0

ApX,Riq “
ď

Y PA pX,R0q,ναpY q‰∅
Y .

Since A pX,R0q “ ttxu : x P Xu, the aforementioned properties are equivalent to the following ones:

(a2) tναptxuq : x P Xuzt∅u “ A pX,Rαq;
(b2) for every x, y P X distinct with ναptxuq ‰ ∅ and ναptyuq ‰ ∅, we have ναptxuq ‰ ναptyuq;

(c2)
αč

i“0

ApX,Riq “
ď

xPX,ναptxuq‰∅
txu.
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Consider now the function F from tx P X : ναptxuq ‰ ∅u to A pX,Rαq defined, for every x P X, by F pxq “
ναptxuq. The function F is well defined by (a2). Moreover, using (a2), we deduce that F is surjective, and, using
(b2), we deduce that F is injective. Thus, from (c2) and the fact that F is bijective, we get

ˇ̌
ˇ̌
ˇ
αč

i“0

ApX,Riq
ˇ̌
ˇ̌
ˇ “

ˇ̌
ˇ̌
ˇ̌

ď

xPX,ναptxuq‰∅
txu

ˇ̌
ˇ̌
ˇ̌ “ |tx P X, ναptxuq ‰ ∅u| “ |A pX,Rαq|.

Proof of Theorem 17(i). If G is trivial, then |X| “ 1 and we know that D˝pGq “ D‚pGq “ X. Moreover, DpGq “
D˚pGq “ ∅, and A pX,∅q “ ttxu : x P Xu. Thus, |D˝pGq| “ |D‚pGq| “ |A pX,DpGqq| “ |A pX,D˚pGqq| “ 1.
Assume now that G is non-trivial. Thus, DpGq ‰ ∅. Moreover, since G is heterogeneous, we know that
|DpGq| “ |D˚pGq| and, by Lemma 27(iii), DpGq has a positive element and a negative element.

Let us prove that |D˝pGq| “ |A pX,D˚pGqq|. Assume then that DpGq “ ttjukj“1, where α “ |DpGq| ě 2 and,
for every j P t1, . . . , α ´ 1u, tj ă tj`1. Let us set t0 “ dpGq. By Proposition 31, we have that

D˝pGq “
č

tPDpGqYtdpGqu
DtpGq “

αč

j“0

Dtj pGq.

Defining, for every j P t0, . . . , αu, Rj “ Dtα´j
pGq, we get that

D˝pGq “
αč

j“0

ApX,Rjq.

By Proposition 29, we know that Rα “ D˚pGq. Moreover, R0 “ DtαpGq “ ∅ and then A pX,R0q “ ttxu :
x P Xu. Finally, for every j P t1, . . . , αu, Rj´1 “ Dtα´j`1

pGq Ď Dtα´j
pGq “ Rj . Thus, we complete the proof

showing that, for every j P t1, . . . , αu, |RjzRj´1| “ 1. Indeed, we can apply Theorem 33 and deduce that
|D˝pGq| “ |A pX,D˚pGqq|.

Consider then j P t1, . . . , αu. Note that tα´j`1 ‰ t0 “ dpGq, and so tα´j`1 P DpGq. We know that there
exists px, yq P D˚pGq such that

uipx,yqpxq ´ uipx,yqpyq “ tα´j`1 ą tα´j .

Thus, px, yq P Dtα´j
pGq “ Rj and px, yq R Dtα´j`1

pGq “ Rj´1. Thus, |RjzRj´1| ě 1.
Assume by contradiction that |RjzRj´1| ě 2. Then, there are px, yq, px1, y1q P Rj “ Dtα´j

pGq with px, yq ‰
px1, y1q such that px, yq, px1, y1q R Rj´1 “ Dtα´j`1

pGq. Thus,
tα´j`1 ě uipx,yqpxq ´ uipx,yqpyq ą tα´j , tα´j`1 ě uipx1,y1qpx1q ´ uipx1,y1qpy1q ą tα´j .

Since uipx,yqpxq ´ uipx,yqpyq P DpGq and uipx1,y1qpx1q ´ uipx1,y1qpy1q P DpGq, it must be

tα´j`1 “ uipx,yqpxq ´ uipx,yqpyq “ uipx1,y1qpx1q ´ uipx1,y1qpy1q.
But that contradicts the fact that |DpGq| “ |D˚pGq|, since there are two elements of D˚pGq that correspond to
the same element of DpGq.

Let us prove now that |D‚pGq| “ |A pX,DpGqq|. Note that |pDpGq X R`q Y t0u| ě 2. Assume then that
pDpGq X R`q Y t0u “ ttjuαj“0, where α ě 1 and, for every j P t1, . . . , α ´ 1u, tj ă tj`1. Of course, t0 “ 0. By
Proposition 31, we know that

D‚pGq “
č

tPpDpGqXR`qYt0u
DtpGq “

αč

j“0

Dtj pGq.

Defining, for every j P t0, . . . , αu, Rj “ Dtα´j
pGq, we get that

D‚pGq “
αč

j“0

ApX,Rjq.
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We have that Rα “ Dt0pGq “ D0pGq “ DpGq. Moreover , R0 “ DtαpGq “ ∅ and then A pX,R0q “ ttxu :
x P Xu. Furthermore, for every j P t1, . . . , αu, Rj´1 “ Dtα´j`1

pGq Ď Dtα´j
pGq “ Rj . We complete the proof

showing that, for every j P t1, . . . , αu, |RjzRj´1| “ 1. Indeed, we can apply Theorem 33 and deduce that
|D‚pGq| “ |A pX,DpGqq|.

Consider then j P t1, . . . , αu. Note that tα´j`1 ‰ t0 “ 0 and then tα´j`1 P DpGq. We know that there exists
px, yq P D˚pGq such that

uipx,yqpxq ´ uipx,yqpyq “ tα´j`1 ą tα´j .

Thus, px, yq P Dtα´j
pGq “ Rj and px, yq R Dtα´j`1

pGq “ Rj´1. Thus, |RjzRj´1| ě 1.
Assume by contradiction that |RjzRj´1| ě 2. Then, there are px, yq, px1, y1q P Rj “ Dtα´j

pGq with px, yq ‰
px1, y1q such that px, yq, px1, y1q R Rj´1 “ Dtα´j`1

pGq. Thus,
tα´j`1 ě uipx,yqpxq ´ uipx,yqpyq ą tα´j , tα´j`1 ě uipx1,y1qpx1q ´ uipx1,y1qpy1q ą tα´j .

Since uipx,yqpxq ´ uipx,yqpyq P DpGq and uipx1,y1qpx1q ´ uipx1,y1qpy1q P DpGq, it must be

tα´j`1 “ uipx,yqpxq ´ uipx,yqpyq “ uipx1,y1qpx1q ´ uipx1,y1qpy1q.
But that contradicts the fact that |DpGq| “ |D˚pGq|, since there are two elements of D˚pGq that correspond to
the same element of DpGq.

The next proof is analogous to the previous one. For completeness, we write it down.

Proof of Theorem 17(ii). If G is trivial, then |X| “ 1 and we know that E˝pGq “ E‚pGq “ X. Moreover, EpGq “
E˚pGq “ ∅, and A pX,∅q “ ttxu : x P Xu. Thus, |E˝pGq| “ |E‚pGq| “ |A pX,EpGqq| “ |A pX,E˚pGqq| “ 1.
Assume now that G is non-trivial. Thus, EpGq ‰ ∅. Moreover, since G is strongly heterogeneous, we know that
|E pGq| “ |E˚pGq| and, by Lemma 28(v), E pGq has a positive element and a negative element.

Let us prove that |E˝pGq| “ |A pX,E˚pGqq| so that, by Proposition 30, we can conclude that |E˝pGq| “ 1.
Assume then that E pGq “ ttjuαj“1, where α “ |E pGq| ě 2 and, for every j P t1, . . . , α ´ 1u, tj ă tj`1. Let us set
t0 “ epGq. Note that Et0pGq “ E˚pGq and, by Proposition 30, Et0pGq “ X. By Proposition 32, we have that

E˝pGq “
č

tPE pGq
EtpGq “

αč

j“0

Etj pGq.

Defining, for every j P t0, . . . , αu, Rj “ Etα´j
pGq, we get that

E˝pGq “
αč

j“0

ApX,Rjq.

We have that Rα “ Et0pGq “ E˚pGq. Moreover, E0 “ EtαpGq “ ∅ and then A pX,R0q “ ttxu : x P Xu.
Finally, for every j P t1, . . . , αu, Rj´1 “ Etα´j`1

pGq Ď Etα´j
pGq “ Rj . Thus, we complete the proof showing

that, for every j P t1, . . . , αu, |RjzRj´1| “ 1. Indeed, we can apply Theorem 33 and deduce that |E˝pGq| “
|A pX,E˚pGqq|.

Consider then j P t1, . . . , αu. Note that tα´j`1 ‰ t0 “ epGq, and so tα´j`1 P E pGq. We know that there
exists px, yq P E˚pGq such that

uipx,yqpxq ´ uipx,yqpyq “ tα´j`1 ą tα´j .

Thus, px, yq P Etα´j
pGq “ Rj and px, yq R Etα´j`1

pGq “ Rj´1. Thus, |RjzRj´1| ě 1.
Assume by contradiction that |RjzRj´1| ě 2. Then, there are px, yq, px1, y1q P Rj “ Etα´j

pGq with px, yq ‰
px1, y1q such that px, yq, px1, y1q R Rj´1 “ Etα´j`1pGq. Thus,

tα´j`1 ě uipx,yqpxq ´ uipx,yqpyq ą tα´j , tα´j`1 ě uipx1,y1qpx1q ´ uipx1,y1qpy1q ą tα´j .

Since uipx,yqpxq ´ uipx,yqpyq P E pGq and uipx1,y1qpx1q ´ uipx1,y1qpy1q P E pGq, it must be

tα´j`1 “ uipx,yqpxq ´ uipx,yqpyq “ uipx1,y1qpx1q ´ uipx1,y1qpy1q.
But that contradicts the fact that |E pGq| “ |E˚pGq|, since there are two elements of E˚pGq that correspond to
the same element of E pGq.
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Let us prove now that |E‚pGq| “ |A pX,EpGqq|. Note that |pE pGq X R`q Y t0u| ě 2. Assume then that
pE pGq X R`q Y t0u “ ttjuαj“0, where α ě 1 and, for every j P t1, . . . , α ´ 1u, tj ă tj`1. Of course, t0 “ 0. By
Proposition 32, we know that

E‚pGq “
č

tPpE pGqXR`qYt0u
EtpGq “

αč

j“0

Etj pGq.

Defining, for every j P t0, . . . , αu, Rj “ Etα´j pGq, we get that

E‚pGq “
αč

j“0

ApX,Rjq.

We have that Rα “ Et0pGq “ E0pGq “ EpGq. Moreover, R0 “ EtαpGq “ ∅ and then A pX,R0q “ ttxu : x P Xu.
Furthermore, for every j P t1, . . . , αu, Rj´1 “ Etα´j`1

pGq Ď Etα´j
pGq “ Rj . We complete the proof showing

that, for every j P t1, . . . , αu, |RjzRj´1| “ 1. Indeed, we can apply Theorem 33 and deduce that |E‚pGq| “
|A pX,EpGqq|.

Consider then j P t1, . . . , αu. Note that tα´j`1 ‰ t0 “ 0 and then tα´j`1 P E pGq. We know that there exists
px, yq P E˚pGq such that

uipx,yqpxq ´ uipx,yqpyq “ tα´j`1 ą tα´j .

Thus, px, yq P Etα´j pGq “ Rj and px, yq R Etα´j`1pGq “ Rj´1. Thus, |RjzRj´1| ě 1.
Assume by contradiction that |RjzRj´1| ě 2. Then, there are px, yq, px1, y1q P Rj “ Etα´j pGq with px, yq ‰

px1, y1q such that px, yq, px1, y1q R Rj´1 “ Etα´j`1
pGq. Thus,

tα´j`1 ě uipx,yqpxq ´ uipx,yqpyq ą tα´j , tα´j`1 ě uipx1,y1qpx1q ´ uipx1,y1qpy1q ą tα´j .

Since uipx,yqpxq ´ uipx,yqpyq P E pGq and uipx1,y1qpx1q ´ uipx1,y1qpy1q P E pGq, it must be

tα´j`1 “ uipx,yqpxq ´ uipx,yqpyq “ uipx1,y1qpx1q ´ uipx1,y1qpy1q.
But that contradicts the fact that |E pGq| “ |E˚pGq|, since there are two elements of E˚pGq that correspond to
the same element of E pGq.

A.4 Proof of Proposition 18

Proof of Proposition 18. For simplicity in what follows we set G “ GpI, pXiqiPIq, H “ HpI, pXiqiPIq and SH “
SHpI, pXiqiPIq. If, for every i P I, |Xi| “ 1, then G “ H “ SH and the theorem is true.

Assume then that there exists i P I such that |Xi| ě 2. Let

rD “
! `px, yq, px1, y1q˘ P D˚pGq2 : px, yq ‰ px1, y1q

)
,

rE “
! `px, yq, px1, y1q˘ P E˚pGq2 : px, yq ‰ px1, y1q

)
,

and note that ∅ ‰ rD Ď rE. Moreover, we have that

H “
č

ppx,yq,px1,y1qqP rD

␣xI, pXiqiPI , puiqiPIy P G : uipx,yqpxq ´ uipx,yqpyq ‰ uipx1,y1qpx1q ´ uipx1,y1qpy1q( ,

and

SH “
č

ppx,yq,px1,y1qqP rE

␣xI, pXiqiPI , puiqiPIy P G : uipx,yqpxq ´ uipx,yqpyq ‰ uipx1,y1qpx1q ´ uipx1,y1qpy1q( .

Consider now ppx, yq, px1, y1qq P rE. Observe, in particular, that x ‰ y, x1 ‰ y1 and px, yq ‰ px1, y1q. There are
then j1, j2, j3, j4 P t1, . . . , |I||S|u with j1 ‰ j2, j3 ‰ j4 and pj1, j2q ‰ pj3, j4q such that

Ψ
´

txI, pXiqiPI , puiqiPIy P G : uipx,yqpxq ´ uipx,yqpyq ‰ uipx1,y1qpx1q ´ uipx1,y1qpy1qu
¯
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“ tv P R|I||S| : vj1 ´ vj2 ‰ vj3 ´ vj4u “ R|I||S|ztv P R|I||S| : vj1 ´ vj2 ´ vj3 ` vj4 “ 0u.
Observe now that j1 R tj2, j3u or j2 R tj1, j4u. Indeed, assume by contradiction that they both fail and so
j1 P tj2, j3u and j2 P tj1, j4u. Since j1 ‰ j2, it must be j1 “ j3 and j2 “ j4. Thus, we get pj1, j2q “ pj3, j4q, a
contradiction. We deduce then that the equation

vj1 ´ vj2 ´ vj3 ` vj4 “ 0

is an equation of the type av “ 0, where a P R|I||S| with a ‰ 0. Indeed, if j1 R tj2, j3u, then the coefficient of vj1
cannot be zero; if j2 R tj1, j4u, then the coefficient of vj2 cannot be zero.

As a consequence, for every ppx, yq, px1, y1qq P rE, the set

Ψ
´

txI, pXiqiPI , puiqiPIy P G : uipx,yqpxq ´ uipx,yqpyq ‰ uipx1,y1qpx1q ´ uipx1,y1qpy1qu
¯

is a hyper-plane in R|I||S| and then it is closed in R|I||S| and has null measure in R|I||S|. Thus, the set

␣xI, pXiqiPI , puiqiPIy P G : uipx,yqpxq ´ uipx,yqpyq ‰ uipx1,y1qpx1q ´ uipx1,y1qpy1q(

is closed in G and has null measure in G. Recalling that ∅ ‰ rD Ď rE, we then conclude that H and SH are open
subsets of G having full measure in G.

A.5 Proof of Proposition 19

Proposition 34. Let G “ xI, pXiqiPI , puiqiPIy be a game and x P X. Then the three following facts are equivalent:

(i) x P NpGq,
(ii) txu P A pX,DpGqq,
(iii) txu P A pX,EpGqq.
Proof. (i)ñ (ii) Assume that x P NpGq. If, by contradiction, txu R A pX,DpGqq, then there exists y P X such
that py, xq P DpGq. Thus, there exists i P I such that x´i “ y´i and uipyq ą uipxq. That contradicts the fact
that x P NpGq.
(ii)ñ (iii) Assume that txu P A pX,DpGqq. If, by contradiction, txu R A pX,EpGqq, then, there exists y P Y
such that py, xq P EpGq. Thus, there exists i P I such that x´i “ y´i and uipyq ą uipxq. Considering now
zi P BG

i px´iq, we have that zi ‰ xi. Setting z “ pzi, x´iq, we have that uipzq ě uipyq ą uipxq. Thus,
pz, xq P DpGq and that implies that txu R A pX,DpGqq, a contradiction.

(iii)ñ (i) Assume that txu P A pX,EpGqq. If, by contradiction, x R NpGq, then there exists y P X and i P I
such that x´i “ y´i and uipyq ą uipxq. Thus, py, xq P EpGq and so txu R A pX,EpGqq, a contradiction.

Proof of Proposition 19. Let G “ xI, pXiqiPI , puiqiPIy. Assume first that G is heterogeneous and prove the
equivalence of (i), (ii), and (iii).

(i)ñ (ii) Assume that D‚pGq “ NpGq. By Proposition 34, we know that ttxu : x P NpGqu Ď A pX,DpGqq. Of
course, |ttxu : x P NpGqu| “ |NpGq|. Moreover, by Theorem 17, |A pX,DpGqq| “ |D‚pGq| “ |NpGq|. We deduce
then that

A pX,DpGqq “ ttxu : x P NpGqu.
Using now Theorem 1, we then conclude that DpGq “ NpGq “ D‚pGq.
(ii)ñ (iii) Assume now that D‚pGq “ DpGq. By Theorem 1, we know that DpGq “ Ť

Y PA pX,DpGqq Y . Moreover,

since G is heterogeneous, by Theorem 17, we also know that |D‚pGq| “ |A pX,DpGqq|. Since D‚pGq “ DpGq, it
must be

|A pX,DpGqq| “
ˇ̌
ˇ̌
ˇ̌

ď

Y PA pX,DpGqq
Y

ˇ̌
ˇ̌
ˇ̌ .

30



Since the elements of A pX,DpGqq are pairwise disjoint, that implies that, for every Y P A pX,DpGqq, |Y | “ 1.
Thus, by Proposition 34, we conclude that DpGq Ď NpGq. Since, by Proposition 3, NpGq Ď DpGq, we conclude
that DpGq “ NpGq.
(iii)ñ (i) Assume that DpGq “ NpGq. By Proposition 3, we know that NpGq Ď D‚pAq Ď DpGq. Thus, we
conclude that D‚pGq “ DpGq.

Assume now that G is strongly heterogeneous and prove the equivalence of (iv), (v), and (vi). The proof is
completely analogous to the previous one. However, for the sake of completeness, we propose it below.

(iv)ñ (v) Assume that E‚pGq “ NpGq. By Proposition 34, we know that ttxu : x P NpGqu Ď A pX,EpGqq. Of
course, |ttxu : x P NpGqu| “ |NpGq|. Moreover, by Theorem 17, |A pX,EpGqq| “ |E‚pGq| “ |NpGq|. We deduce
then that

A pX,EpGqq “ ttxu : x P NpGqu.
Using now Theorem 1, we then conclude that EpGq “ NpGq “ E‚pGq.
(v)ñ (vi) Assume now that E‚pGq “ EpGq. By Theorem 1, we know that EpGq “ Ť

Y PA pX,EpGqq Y . Moreover,

since G is strongly heterogeneous, by Theorem 17, we also know that |E‚pGq| “ |A pX,EpGqq|. Since E‚pGq “
EpGq, it must be

|A pX,EpGqq| “
ˇ̌
ˇ̌
ˇ̌

ď

Y PA pX,EpGqq
Y

ˇ̌
ˇ̌
ˇ̌ .

Since the elements of A pX,EpGqq are pairwise disjoint, that implies that, for every Y P A pX,EpGqq, |Y | “ 1.
Thus, by Proposition 34, we conclude that EpGq Ď NpGq. Since, by Proposition 3, NpGq Ď EpGq, we conclude
that EpGq “ NpGq.
(vi)ñ (iv) Assume that EpGq “ NpGq. By Proposition 3, we know that NpGq Ď E‚pAq Ď EpGq. Thus, we
conclude that E‚pGq “ EpGq.

A.6 Proof of Proposition 20

The following lemma collects some basic facts about the maximal strong components of an abstract decision
problem.

Lemma 35. Let pX,Rq be an abstract decision problem. The following facts hold.

(i) Let Y P A pX,Rq, y P Y and x P X. If px, yq P Rτ , then x P Y and py, xq P Rτ .

(ii) Let Y,Z P A pX,Rq with Y ‰ Z, y P Y and z P Z. Then py, zq R Rτ .

(iii) Let Y,Z P A pX,Rq with Y ‰ Z, y P Y , z P Z and x P X. Then px, yq R Rτ or px, zq R Rτ .

(iv) For every x P X, there exists y P ApX,Rq such that py, xq P Rτ .

(v) Assume that A pX,Rq “ tY u. Then, for every y P Y and x P X, py, xq P Rτ .

Proof. (i) Straightforward.

(ii) If, by contradiction, py, zq P Rτ , then y P Z. We know that Y ‰ Z implies Y X Z “ ∅. Since y P Y X Z, we
get a contradiction.

(iii) Assume, by contradiction, that px, yq P Rτ and px, zq P Rτ . Thus, by (i), x P Y X Z. Since Y ‰ Z implies
Y X Z “ ∅, we get a contradiction.

(iv) First of all, for every x P X, let us denote by Spxq the unique element in S pX,Rq which x belongs to and
set

T pxq “ ty P XzSpxq : py, xq P Rτu.
Note that, T pxq “ ∅ if and only if x P ApX,Rq. For every x P XzApX,Rq, pick an element in T pxq and denote
it by dpxq; for every y P ApX,Rq, set dpyq “ y. Of course, for every x P XzApX,Rq, dpxq ‰ x and pdpxq, xq P Rτ .

Consider now x˚ P X and prove that there exists y˚ P ApX,Rq such that py˚, x˚q P Rτ . If x˚ P ApX,Rq,
simply take y˚ “ x˚. Assume then that x˚ P XzApX,Rq. Consider the sequence pxjq8

j“1 of X recursively
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defined as follows: x1 “ x˚ and, for every j P N, xj`1 “ dpxjq. Let us prove that there exists m P N such that
xm P ApX,Rq. Assume by contradiction that, for every m P N, xm P XzApX,Rq. Since XzApX,Rq is finite
and, for every m P N, xm`1 ‰ xm, there exists j, k P N with k ě 2 such that xj “ xj`k and, xj , . . . , xj`k´1 are
distinct. We then have, for every l P t1, . . . , k ´ 1u, pxj`l, xj`l´1q P Rτ . By transitivity of Rτ , we deduce that
pxj`k´1, xjq P Rτ . Moreover, pxj , xj`k´1q “ pxj`k, xj`k´1q P Rτ . Thus, Spxjq “ Spxj`k´1q. However, since
xj “ xj`k “ dpxj`k´1q, we must have xj R Spxj`k´1q, a contradiction.

Thus, there exists m P N such that xm P ApX,Rq. Consider the minimum m for which that is true. Of
course, since x1 P XzApX,Rq, we have m ě 2. Thus, we have x1, . . . , xm´1 P XzApX,Rq and xm P ApX,Rq.
As a consequence, for every j P t1, . . . ,m´1u, we get pxl`1, xlq P Rτ , and then, by transitivity of Rτ , pxm, x1q “
pxm, x˚q P Rτ . Since xm P Y , we have py˚, xmq P Rτ and, using again the transitivity of Rτ , we conclude that
py˚, x˚q P Rτ , as desired.

(v) Consider now y˚ P Y and x˚ P X and prove that py˚, x˚q P Rτ . By (iv), we know that there exists z˚ P Y
such that pz˚, x˚q P Rτ . Since py˚, z˚q P Rτ , by transitivity of Rτ , we conclude that py˚, x˚q P Rτ , as desired.

Let G “ xI, pXiqiPI , puiqiPIy be a game. For every Y Ď X and i P I, we set

PipY q “
!
σ P X´i : there exists s P Xi such that ps, σq P Y

)
.

Proposition 36. Let G “ xI, pXiqiPI , puiqiPIy be a heterogeneous game and let Y,Z P A pX,DpGqq with Y ‰ Z.
Then, for every i P I, we have PipY q X PipZq “ ∅.

Proof. Assume by contradiction that there exists i P I such that PipY q X PipZq ‰ ∅. Consider then σ P
PipY q X PipZq. Thus, there are s, s1 P Xi such that ps, σq P Y and ps1, σq P Z. Since Y, Z P A pX,DpGqq with
Y ‰ Z, we have that Y X Z “ ∅. Thus, s ‰ s1. Since G is heterogeneous, by Lemma 26, there exists ps P Xi

such that BG
i pσq “ tpsu. If s “ ps, then pps, σq, ps1, σqq P DpGq. However, by Lemma 35(ii), pps, σq, ps1, σqq R DpGq,

a contradiction. If s1 “ ps, then pps1, σq, ps, σqq P DpGq. However, by Lemma 35(ii), pps1, σq, ps, σqq R DpGq, a
contradiction. If s ‰ ps and s1 ‰ ps, then ppps, σq, ps, σqq P DpGq and ppps, σq, ps1, σqq P DpGq. However, by Lemma
35(iii), ppps, σq, ps, σqq R DpGq or ppps, σq, ps1, σqq R DpGq, a contradiction.

The proof of the next proposition is completely analogous to that of Proposition 36. For the sake of com-
pleteness, we propose it.

Proposition 37. Let G “ xI, pXiqiPI , puiqiPIy be a heterogeneous game and let Y,Z P A pX,D˚pGqq with Y ‰ Z.
Then, for every i P I, we have PipY q X PipZq “ ∅.

Proof. Assume by contradiction that there exists i P I such that PipY q X PipZq ‰ ∅. Consider then σ P
PipY q X PipZq. Thus, there are s, s1 P Xi such that ps, σq P Y and ps1, σq P Z. Since Y,Z P A pX,D˚pGqq with
Y ‰ Z, we have Y X Z “ ∅. Thus, s ‰ s1. Since G is heterogeneous, by Lemma 26, there exists ps P Xi such
that BG

i pσq “ tpsu. If s “ ps, then pps, σq, ps1, σqq P D˚pGq. However, by Lemma 35(ii), pps, σq, ps1, σqq R D˚pGq,
a contradiction. If s1 “ ps, then pps1, σq, ps, σqq P D˚pGq. However, by Lemma 35(ii), pps1, σq, ps, σqq R D˚pGq,
a contradiction. If s ‰ ps and s1 ‰ ps, then ppps, σq, ps, σqq P D˚pGq and ppps, σq, ps1, σqq P D˚pGq. However, by
Lemma 35(iii), ppps, σq, ps, σqq R D˚pGq or ppps, σq, ps1, σqq R D˚pGq, a contradiction.

Proposition 38. Let G “ xI, pXiqiPI , puiqiPIy be a strongly heterogeneous game and let Y,Z P A pX,EpGqq with
Y ‰ Z. Then, for every i P I, we have PipY q X PipZq “ ∅.

Proof. Assume by contradiction that there exists i P I such that PipY q X PipZq ‰ ∅. Consider then σ P
PipY q X PipZq. Thus, there are s, s1 P Xi such that ps, σq P Y and ps1, σq P Z. Since Y,Z P A pX,EpGqq
with Y ‰ Z, we have Y X Z “ ∅. Thus, s ‰ s1. Since G is strongly heterogeneous, by Lemma 28(iv), we
get uips, σq ‰ uips1, σq and so pps, σq, ps1, σqq P EpGq or pps1, σq, ps, σqq P EpGq. However, by Lemma 35(ii),
pps, σq, ps1, σqq R EpGq and pps1, σq, ps, σqq R EpGq, a contradiction.

Proposition 39. Let G “ xI, pXiqiPI , puiqiPIy be a heterogeneous game. Then,

|A pX,DpGqq| ď mint|X´i| : i P Iu.
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Proof. Consider i P I. For every Y P A pX,DpGqq, since Y ‰ ∅, |PipY q| ě 1. Thus, by Proposition 36, we have
that

|A pX,DpGqq| ď
ÿ

Y PA pX,DpGqq
|PipY q| “

ˇ̌
ˇ̌
ˇ̌

ď

Y PA pX,DpGqq
PipY q

ˇ̌
ˇ̌
ˇ̌ ď |X´i|.

As a consequence, |A pX,DpGqq| ď mint|X´i| : i P Iu.
Proposition 40. Let G “ xt1, 2u, pX1, X2q, pu1, u2qy be a heterogeneous two-player game with |X1| ě 2 and
|X2| ě 2. Then,

|A pX,D˚pGqq| ď mint|X1|, |X2|u
2

.

Proof. Let Y P A pX,D˚pGqq and prove that |P2pY q| ě 2. Since Y ‰ ∅, there exist s˚ P X1 and t˚ P X2 such
that ps˚, t˚q P Y . Since |X1| ě 2, CG

1 ps˚, t˚q ‰ ∅. Let ps P CG
1 ps˚, t˚q. Thus, ppps, t˚q, ps˚, t˚qq P D˚pGq and so

also pps, t˚q P Y . As a consequence, ps, s˚ P P2pY q. In particular, |P2pY q| ě 2. An analogous reasoning allows also
to show that |P1pY q| ě 2.

By Proposition 37, for every i P t1, 2u, we have that

|A pX,D˚pGqq| ď
ÿ

Y PA pX,D˚pGqq

|PipY q|
2

“ 1

2

ÿ

Y PA pX,D˚pGqq
|PipY q| “ 1

2

ˇ̌
ˇ̌
ˇ̌

ď

Y PA pX,D˚pGqq
PipY q

ˇ̌
ˇ̌
ˇ̌ ď |X´i|

2
.

As a consequence, |A pX,D˚pGqq| ď mint|X1|,|X2|u
2 .

Proposition 41. Let G “ xI, pXiqiPI , puiqiPIy be a strongly heterogeneous game. Then,

|A pX,EpGqq| ď mint|X´i| : i P Iu.
Proof. Consider i P I. For every Y P A pX,EpGqq, since Y ‰ ∅, |PipY q| ě 1. Thus, by Proposition 38, we have
that

|A pX,EpGqq| ď
ÿ

Y PA pX,EpGqq
|PipY q| “

ˇ̌
ˇ̌
ˇ̌

ď

Y PA pX,EpGqq
PipY q

ˇ̌
ˇ̌
ˇ̌ ď |X´i|.

As a consequence, |A pX,EpGqq| ď mint|X´i| : i P Iu.
Lemma 42. Let G “ xt1, 2u, pX1, X2q, pu1, u2qy be a strictly competitive two-player game. Let R be the relation
on X defined as

R “ tpx, yq P E˚pGq : uipx,yqpxq ´ uipx,yqpyq ě 0u. (11)

Then |A pX,Rq| “ 1.

Proof. Assume by contradiction that there are Y,Z P A pX,Rq with Y ‰ Z. First, note that, P1pY qXP1pZq “ ∅
and P2pY qXP2pZq “ ∅. Indeed, assume by contradiction that there exists i P t1, 2u such that PipY qXPipZq ‰ ∅.
Consider then σ P PipY q X PipZq. Thus, there are s, s1 P Xi such that ps, σq P Y and ps1, σq P Z. Since
Y,Z P A pX,Rq with Y ‰ Z, we have Y X Z “ ∅, and so s ‰ s1. Since uips, σq ´ uips1, σq ě 0 or uips1, σq ´
uips, σq ě 0, we get pps, σq, ps1, σqq P R or pps1, σq, ps, σqq P R. However, by Lemma 35(ii), pps, σq, ps1, σqq R R and
pps1, σq, ps, σqq R R, a contradiction.

Consider now ps1, s2q P Y and pt1, t2q P Z. Of course, they are distinct since Y XZ “ ∅. Since P1pY qXP1pZq “
∅ and P2pY q X P2pZq “ ∅, we also have that s1 ‰ t1 and s2 ‰ t2. Observe now that ps1, t2q R Y Y Z.
Indeed, assume by contradiction that ps1, t2q P Y Y Z: if ps1, t2q P Y , then, since pt1, t2q P Z, we deduce that
t2 P P1pY q X P1pZq “ ∅, a contradiction; if instead ps1, t2q P Z, then, since ps1, s2q P Y , we deduce that
s1 P P2pY q XP2pZq “ ∅, a contradiction. Similarly, we can prove that pt1, s2q R Y YZ. Of course, due to s1 ‰ t1
and s2 ‰ t2, we also have ps1, t2q ‰ pt1, s2q.

Since Y,Z P A pX,Rq and since ps1, t2q R Y YZ, and pt1, s2q R Y YZ, using Lemma 35(i), we have then that

u1ps1, s2q ą u1pt1, s2q, u1pt1, t2q ą u1ps1, t2q, u2ps1, s2q ą u2ps1, t2q, u2pt1, t2q ą u2pt1, s2q.
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Thus, using the fact that G is strictly competitive, we deduce that

u1ps1, s2q ą u1pt1, s2q, u1pt1, t2q ą u1ps1, t2q, u1ps1, s2q ă u1ps1, t2q, u1pt1, t2q ă u1pt1, s2q.
As a consequence, we get

u1ps1, s2q ă u1ps1, t2q ă u1pt1, t2q ă u1pt1, s2q ă u1ps1, s2q,
that implies the contradiction u1ps1, s2q ă u1ps1, s2q.
Proof of Proposition 20. (i) Assume that G is strictly competitive. Consider R defined in (11). By Lemma 42,
we know that there exists Y Ď X such that A pX,Rq “ tY u, and so Y “ ApX,Rq. Let us prove now that,
for every t ă 0, we have that Y Ď EtpGq. Let t ă 0, we know that R Ď EtpGq. As a consequence, we have
that Y is included in a strong component Y 1 of pX,EtpGqq. Let us prove next that Y 1 is the unique element in
A pX,EtpGqq. Let Z P A pX,EtpGqq and suppose by contradiction that Y 1 ‰ Z. Consider x˚ P Y Ď Y 1 and
z P Z. Since Y 1, Z P S pX,EtpGqq and Y 1 ‰ Z, we have that Y 1 XZ “ ∅ and so x˚ ‰ z. Moreover, since x˚ P Y
and A pX,Rq “ tY u, by Lemma 35(v), we have that there exists a path from x˚ to z in pX,Rq. Thus, the same
path is also a path from x˚ to z in pX,EtpGqq. Thus, it must be Z “ Y 1, a contradiction. As a consequence,
A pX,EtpGqq “ tY 1u and EtpGq “ Y 1 Ě Y , as desired.

Let us now prove that there exists t ă 0 such that Y “ EtpGq. Assume first that |E pGq| “ 1. Then, by
Lemma 28(ii), we know that E pGq “ t0u. Thus, R “ X2˚ and EtpGq “ X2˚ for all t ă 0. We then get Y “ EtpGq
for all t ă 0. Assume now that E pGq ‰ t0u. Then, by Lemma 28(i), E pGq contains a negative number. Let t˚ be
the maximum of the set E pGq X p´8, 0q. Surely R Ď Et˚ pGq. Let us prove the opposite inclusion. Assume that
px, yq P Et˚ pGq. Then there exists i P I such that x´i “ y´i and uipxq ´ uipyq ą t˚. If uipxq ´ uipyq ă 0, then
we get the contradiction uipxq ´ uipyq P E pGq X pt˚, 0q. Thus, it must be uipxq ´ uipyq ě 0 and then px, yq P R.
Thus, we conclude that R “ Et˚ pGq and so Y “ Et˚ pGq.

We then have

E˝pGq “
č

tPR
EtpGq “

¨
˝ č

tPR`

EtpGq
˛
‚X

¨
˝ č

tPp´8,0q
EtpGq

˛
‚“ E‚pGq X Y.

In order to prove that E˝pGq “ E‚pGq, it is enough to show that E0pGq Ď Y . Assume by contradiction that there
exists ps1, s2q P E0pGqzY . Let us first prove that any strategy profile of the type pt1, s2q with t1 P X1zts1u cannot
be element of Y . In fact, assume by contradiction that pt1, s2q P Y with t1 P X1zts1u. If u1ps1, s2q ě u1pt1, s2q,
then pps1, s2q, pt1, s2qq P R and then ps1, s2q P Y , a contradiction. If instead u1ps1, s2q ă u1pt1, s2q, then
ppt1, s2q, ps1, s2qq P E0pGq. Since ps1, s2q P E0pGq there exists a path from ps1, s2q to pt1, s2q in pX,E0pGqq. Since
that path is also a path from ps1, s2q to pt1, s2q in pX,Rq, we deduce that ps1, s2q P Y , a contradiction. With
analogous reasoning we can also prove that any strategy profile of the type ps1, t2q with t2 P X2zts2u cannot be
an element of Y .

Consider now pt1, t2q P Y . Thus, s1 ‰ t1 and s2 ‰ t2. Since pt1, s2q, ps1, t2q R Y , we must have u1pt1, t2q ą
u1ps1, t2q and u2pt1, t2q ą u2pt1, s2q. Moreover, since G is strictly competitive, from the last inequality we get
u1pt1, t2q ă u1pt1, s2q.

Assume now by contradiction that u1pt1, s2q ą u1ps1, s2q, that is, ppt1, s2q, ps1, s2qq P E0pGq. Thus, γ “
ppt1, t2q, pt1, s2q, ps1, s2qq is a path from pt1, t2q to ps1, s2q in E0pGq. Since ps1, s2q P E0pGq, there exists a path
from ps1, s2q to pt1, s2q in pX,E0pGqq. Since that path is also a path from ps1, s2q to pt1, s2q in pX,Rq, we deduce
that ps1, s2q P Y , a contradiction. Thus, it must be u1pt1, s2q ď u1ps1, s2q. An analogous reasoning shows that
it must be u2ps1, t2q ď u2ps1, s2q and, using the fact that G is strictly competitive we get u1ps1, t2q ě u1ps1, s2q.

Using the inequalities previously proved, we get the chain

u1pt1, t2q ă u1pt1, s2q ď u1ps1, s2q ď u1ps1, t2q ă u1pt1, t2q.
We then deduce the contradiction u1pt1, t2q ă u1pt1, t2q.
(ii) Assume that G is heterogeneous. From Theorem 17 and Proposition 39, we conclude that

|D‚pGq| “ |A pX,DpGqq| ď mint|X1|, |X2|u.
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Let us now prove that |D˝pGq| ď maxt1, mint|X1|,|X2|u
2 u. By Theorem 17, we know |D˝pGq| “ |A pX,D˚pGqq|.

Thus, we are going to prove that |A pX,D˚pGqq| ď maxt1, mint|X1|,|X2|u
2 u.

If |X1| ě 2 and |X2| ě 2, then we immediately conclude using Proposition 40. Assume now that |X1| ě 2
and |X2| “ 1. Consider the unique element σ P X2. By Lemma 26, we know that there exists ps P X1

such that BG
i pσq “ tpsu. Thus, for every s P X1ztpsu, we have ppps, σq, ps, σqq P D˚pGq. As a consequence,

|A pX,D˚pGqq| “ 1 “ maxt1, mint|X1|,|X2|u
2 u. The same argument proves that the desired inequality is true if

|X1| “ 1 and |X2| ě 2.
Finally, if G is trivial, then we have

|A pX,D˚pGqq| “ |tXu| “ 1 “ max

"
1,

mint|X1|, |X2|u
2

*
.

(iii) Assume that G is strongly heterogeneous. From Theorem 17 and Proposition 41, we easily deduce |E‚pGq| “
|A pX,EpGqq| ď mint|X1|, |X2|u and |E˝pGq| “ 1.

(iv) Assume that G is strongly heterogeneous and strictly competitive. Then the result follows from (i) and (iii).

(v) Assume that G is strongly heterogeneous and strictly competitive and NpGq ‰ ∅. Since NpGq Ď E‚pGq
and, by (iv), |E‚pGq| “ 1, we conclude that NpGq “ E‚pGq “ E˝pGq. By Proposition 19, we also get NpGq “
E‚pGq “ E˝pGq “ EpGq.

A.7 Proof of Theorem 21

Proof of Theorem 21. Assume that G “ xI, pXiqiPI , puiqiPIy.
Let us first prove the equality D‚pGq “ SchpND‚ pGqq. By Theorem 4 in Gori (2023), we have

SchpND‚ pGqq “
č

µPImpcD‚
G q

ApX,ΣµpND‚ pGqqq,

where
ΣµpND‚ pGqq “ tpx, yq P X2˚ : cD‚

G px, yq ě µu.
We have ImpcD‚

G q “ pDpGq X p0,`8qq Y tdpGqu. Assume first that |ImpcD‚
G q| “ 1. Thus, ImpcD‚

G q “ tdpGqu
and, since G is non-trivial, by Lemma 27, it must be DpGq “ t0u. As a consequence, for every t P R`, we have
DtpGq “ ∅ and so DtpGq “ X. Thus, D‚pGq “ X. On the other hand,

SchpND‚ pGqq “
č

µPImpcD‚
G q

ApX,ΣµpND‚ pGqqq “ ApX,ΣdpGqpND‚ qq “ ApX,X2˚q “ X.

We then conclude that D‚pGq “ SchpND‚ pGqq.
Assume now that |ImpcD‚

G q| ě 2. Let k ě 1 and t0, . . . , tk P R distinct be such that, for every j P t1, . . . , ku,
tj´1 ă tj and ImpcD‚

G q “ tt0, . . . , tku. Thus, we have

• t0 “ dpGq ă 0;

• t1 ą 0;

• pDpGq X R`q Y t0u “ t0u Y tt1, . . . , tku;
• Σt0pND‚ pGqq “ X2˚, and so ApX,Σt0pND‚ pGqqq “ X;

• Σt1pND‚ pGqq “ tpx, yq P X2˚ : cD‚
G px, yq ě t1u “ tpx, yq P X2˚ : cD‚

G px, yq ą 0u “ D0pGq, and so
ApX,Σt1pND‚ pGqqq “ D0pGq;

• DtkpGq “ ∅ and so DtkpGq “ X.
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If k “ 1, then, by Proposition 31, we have

SchpND‚ pGqq “
č

µPImpcD‚
G q

ApX,ΣµpND‚ pGqqq “ ApX,Σt0pND‚ pGqqq X ApX,Σt1pND‚ pGqqq

“ X X D0pGq “ Dt1pGq X D0pGq “
č

tPpDpGqXR`qYt0u
DtpGq “ D‚pNq.

If k ě 2, for every j P t2, . . . , ku, we have

Σtj pND‚ pGqq “ tpx, yq P X2˚ : cD‚
G px, yq ě tju “ tpx, yq P X2˚ : cD‚

G px, yq ą tj´1u “ Dtj´1
pGq.

Thus, by Proposition 31,

SchpND‚ pGqq “
č

µPImpcD‚
G q

ApX,ΣµpND‚ pGqqq “
kč

j“0

ApX,Σtj pND‚ pGqqq

“ X X D0pGq X
kč

j“2

ApX,Dtj´1pGqq “ D0pGq X
k´1č

j“1

Dtj pGq

“ D0pGq X
kč

j“1

Dtj pGq “
č

tPpDpGqXR`qYt0u
DtpGq “ D‚pNq,

as desired.
Next, let us prove the equality D˝pGq “ SchpND˝ pGqq. By Theorem 4 in Gori (2023), we have

SchpND˝ pGqq “
č

µPImpcD˝
G q

ApX,ΣµpND˝ pGqqq,

where
ΣµpND˝ pGqq “ tpx, yq P X2˚ : cD˝

G px, yq ě µu.
We have ImpcD˝

G q “ DpGq Y tdpGqu, and note that |ImpcD˝
G q| ě 2 since G is non-trivial. Let k ě 1 and

t0, . . . , tk P R distinct be such that, for every j P t1, . . . , ku, tj´1 ă tj and ImpcD˝
G q “ tt0, . . . , tku. Thus, we have

• t0 “ dpGq ă 0;

• Σt0pND˝ pGqq “ X2˚, and so ApX,Σt0pND˝ pGqqq “ X;

• Σt1pND˝ pGqq “ tpx, yq P X2˚ : cD˝
G px, yq ě t1u “ tpx, yq P X2˚ : cD˝

G px, yq ą t0u “ D˚pGq, and so, by
Proposition 29, ApX,Σt1pND˝ pGqqq “ DdpGqpGq “ Dt0pGq;

• DtkpGq “ ∅ and so DtkpGq “ X.

If k “ 1, then, by Proposition 31, we have

SchpND˝ pGqq “
č

µPImpcD˝
G q

ApX,ΣµpND˝ pGqqq “ ApX,Σt0pND˝ pGqqq X ApX,Σt1pND˝ pGqqq

“ X X DdpGqpGq “ DdpGqpGq X Dt1pGq “
č

tPDpGqYtdpGqu
DtpGq “ D˝pGq.

If k ě 2, then, for every j P t2, . . . , ku, we have

Σtj pND˝ pGqq “ tpx, yq P X2˚ : cD˝
G px, yq ě tju “ tpx, yq P X2˚ : cD˝

G px, yq ą tj´1u “ Dtj´1
pGq.

Thus, by Proposition 31, we finally get

SchpND˝ pGqq “
č

µPImpcD˝
G q

ApX,ΣµpND˝ pGqqq “
kč

j“0

ApX,Σtj pND˝ pGqqq
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“ X X DdpGqpGq X
kč

j“2

ApX,Σtj pND˝ pGqqq “ DdpGqpGq X
kč

j“2

ApX,Dtj´1
pGqq

“ DdpGqpGq X
k´1č

j“1

Dtj pGq “
kč

j“0

Dtj pGq “
č

tPDpGqYtdpGqu
DtpGq “ D˝pNq,

as desired.
Let us now prove the equality E‚pGq “ SchpNE‚ pGqq. By Theorem 4 in Gori (2023), we have

SchpNE‚ pGqq “
č

µPImpcE‚
G q

ApX,ΣµpNE‚ pGqqq,

where
ΣµpNE‚ pGqq “ tpx, yq P X2˚ : cE‚

G px, yq ě µu.
We have ImpcE‚

G q “ pE pGq X p0,`8qq Y tepGqu. Assume first that |ImpcE‚
G q| “ 1. Thus, ImpcE‚

G q “ tepGqu and,
since G is non-trivial, by Lemma 28, it must be E pGq “ t0u. As a consequence, for every t P R`, we have
EtpGq “ ∅ and so EtpGq “ X. Thus, E‚pGq “ X. On the other hand,

SchpNE‚ pGqq “
č

µPImpcE‚
G q

ApX,ΣµpNE‚ pGqqq “ ApX,ΣepGqpNE‚ qq “ ApX,X2˚q “ X.

We then conclude that E‚pGq “ SchpNE‚ pGqq.
Assume now that |ImpcE‚

G q| ě 2. Let k ě 1 and t0, . . . , tk P R distinct be such that, for every j P t1, . . . , ku,
tj´1 ă tj and ImpcE‚

G q “ tt0, . . . , tku. Thus, we have

• t0 “ epGq ă 0;

• t1 ą 0;

• pE pGq X R`q Y t0u “ t0u Y tt1, . . . , tku;
• Σt0pNE‚ pGqq “ X2˚, and so ApX,Σt0pNE‚ pGqqq “ X;

• Σt1pNE‚ pGqq “ tpx, yq P X2˚ : cE‚
G px, yq ě t1u “ tpx, yq P X2˚ : cE‚

G px, yq ą 0u “ E0pGq, and so
ApX,Σt1pNE‚ pGqqq “ E0pGq;

• EtkpGq “ ∅ and so EtkpGq “ X.

If k “ 1, then, by Proposition 32, we have

SchpNE‚ pGqq “
č

µPImpcE‚
G q

ApX,ΣµpNE‚ pGqqq “ ApX,Σt0pNE‚ pGqqq X ApX,Σt1pNE‚ pGqqq

“ X X E0pGq “ Et1pGq X E0pGq “
č

tPpE pGqXR`qYt0u
EtpGq “ E‚pNq.

If k ě 2, for every j P t2, . . . , ku, we have

Σtj pNE‚ pGqq “ tpx, yq P X2˚ : cE‚
G px, yq ě tju “ tpx, yq P X2˚ : cE‚

G px, yq ą tj´1u “ Etj´1
pGq.

Thus, by Proposition 32,

SchpNE‚ pGqq “
č

µPImpcE‚
G q

ApX,ΣµpNE‚ pGqqq “
kč

j“0

ApX,Σtj pNE‚ pGqqq

“ X X E0pGq X
kč

j“2

ApX,Etj´1
pGqq “ E0pGq X

k´1č

j“1

Etj pGq
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“ E0pGq X
kč

j“1

Etj pGq “
č

tPpE pGqXR`qYt0u
EtpGq “ E‚pNq,

as desired.
Let us finally prove the equality E˝pGq “ SchpNE˝ pGqq. By Theorem 4 in Gori (2023), we have

SchpNE˝ pGqq “
č

µPImpcE˝
G q

ApX,ΣµpNE˝ pGqqq,

where
ΣµpNE˝ pGqq “ tpx, yq P X2˚ : cE˝

G px, yq ě µu.
We have ImpcE˝

G q “ E pGqYtepGqu, and note that |ImpcE˝
G q| ě 2 since G is non-trivial. Let k ě 1 and t0, . . . , tk P R

distinct be such that, for every j P t1, . . . , ku, tj´1 ă tj and ImpcE˝
G q “ tt0, . . . , tku. Thus, we have

• t0 “ epGq ă 0;

• E pGq “ tt1, . . . , tku;
• Σt0pNE˝ pGqq “ X2˚, and so ApX,Σt0pNE˝ pGqqq “ X;

• Σt1pNE‚ pGqq “ tpx, yq P X2˚ : cE‚
G px, yq ě t1u “ tpx, yq P X2˚ : cE‚

G px, yq ą t0u “ E˚pGq, and so, by
Proposition 30, ApX,Σt1pNE‚ pGqqq “ X;

• EtkpGq “ ∅ and so EtkpGq “ X.

If k “ 1, then, by Proposition 32, we have

SchpNE˝ pGqq “
č

µPImpcE˝
G q

ApX,ΣµpNE˝ pGqqq “ ApX,Σt0pNE˝ pGqqq X ApX,Σt1pNE˝ pGqqq

“ X X X “ X “ Et1pGq “
č

tPE pGq
EtpGq “ E˝pGq.

If k ě 2, then, for every j P t2, . . . , ku, we have

Σtj pNE˝ pGqq “ tpx, yq P X2˚ : cE˝
G px, yq ě tju “ tpx, yq P X2˚ : cE˝

G px, yq ą tj´1u “ Etj´1
pGq.

Thus, by Proposition 32, we finally get

SchpNE˝ pGqq “
č

µPImpcE˝
G q

ApX,ΣµpNE˝ pGqqq “
kč

j“0

ApX,Σtj pN ˝ pGqqq

“ X X X X
kč

j“2

ApX,Σtj pN ˝ pGqqq “ X X
kč

j“2

ApX,Etj´1
pGqq

“ X X
k´1č

j“1

Etj pGq “
kč

j“1

Etj pGq “
č

tPE pGq
EtpGq “ E˝pNq,

as desired.
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