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Abstract

In this paper, we study marriage formation in an optimal stopping problem
where meetings can be of two types: one in which individuals meet potential
partners randomly, and one (�assortative�) in which the meeting occurs be-
tween individuals with similar characteristics. The presence of assortative
meetings in�uences the expectations of the quality of potential spouses, and
in turn the marriage choice. We show that individuals of high rank tend to be
pickier in their marriage hunting. This does not necessarily mean that they
marry later than other individuals, since the higher expected quality of their
potential partners can make them marry earlier than individuals with a lower
universal characteristic. In particular, individuals with medium rank tend to
marry later than the other types, since they are picky but the quality of their
potential partners is usually lower than for high-rank individuals.
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1 Introduction

A common feature in models of marriage formation is the presence of �assortative

matching�(Becker, 1973), which alludes to a relationship (either positive or negative)

between the characteristics of partners. In the matching literature with transferable

utility, assortative matching is assumed to occur according to the characteristics of

the utility function (Becker, 1973, in the seminal paper and Shimer and Smith, 2000,

in the search literature, inter alia),1 while in the literature with nontransferable

utility, partners are assortatively matched at equilibrium: individuals sharing the

same social class choose each other in the marriage game (McNamara and Collins

1990, Burdett and Coles 1997 and Bloch and Ryder 2000, inter alia.). In both

approaches, nothing is said about the way people meet. The social, educational and

working environment may ultimately a¤ect the meeting, even though individuals

decide not to match afterwards.

Our aim is thus to model marriage formation by allowing for di¤erent types of

meetings. We analyse an optimal stopping framework, where two characteristics de-

termine an individual�s type: a characteristic whose evaluation depends on a certain

idiosyncratic preference of each potential partner (�speci�c�characteristic) and an-

other characteristic (�universal�characteristic) that can be ranked commonly by all

individuals, such as income, beauty, social status, and so on.

We build the model as a �two-sided secretary problem�(Eriksson, 2007): indi-

viduals meet potential partners at any period and simultaneously decide whether to

propose according to the potential partner type and the expectation on the future

potential partners. We assume that individuals with similar (social, educational, aes-

thetic) characteristics have a certain probability of meeting due to facts of life (i.e.,

attending similar social environments, obtaining the same level of education, and

so on), even though this does not necessarily lead to marriage formation. In order

to distinguish our approach, we will refer to this as �assortative meeting�. Hence

meeting can be assortative (the potential partner belongs to the same universal rank

1Technically, a household utility function is super-modular, if partners�characteristics are com-
plements, leading to positive assortative matching. If the utility function is sub-modular, the
partners�characteristics are substitutes (negative assortative matching).
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of the individual) or random (the partner is randomly drawn by the population) in

each period. From this perspective, the paper o¤ers a comparison of di¤erent types

of meetings and how these a¤ect the individuals�behaviour.

The results depend on the state of the world in which an individual stands. In as-

sortative meeting, individuals with a high universal characteristic are less demanding

if the probability of having assortative meetings in the future is low, and vice versa.

This result is due to the fact that, given a low probability of having assortative meet-

ings in the future, the quality of the expected future partners is low for individuals

with a high universal characteristic. Therefore they are less choosy with the choice

of a potential partner met today of the same universal rank. In a random meeting,

individuals with high universal characteristic are harder to please compared to other

individuals, and they are more demanding the higher the importance of the universal

characteristic in evaluating a partner. The reason is that an individual with a high

universal rank knows that the chance of having future assortative meetings ensures

a high expectation about the quality of future potential partners, at least from a

universal-characteristic perspective. This does not necessarily mean that individuals

with a high universal characteristic marry later than other individuals. In fact, as-

sortative meeting makes them meet partners of better quality, which increases their

chance of an early marriage.

Interestingly, individuals with medium-high rank tend to marry later than any

other type, because they are fussy but the quality of their potential partner is lower

than high rank individuals. This result is in line with some empirical evidence

showing late marriages among members of the American middle class (Wilcox, 2010,

Marquardt et al., 2012).

Related literature. There is an extensive literature on models of spouse search.
In the economic literature, the assignment problem is the framework employed to

determine optimal marriage pairings (Shapley and Shubik, 1972 and Becker, 1973).

In the developments of the assignment problem, the economic literature borrowed the

standard Diamond-Mortensen-Pissarides search framework (see Burdett and Coles,

1997, Shimer and Smith, 2000, and Smith, 2006, inter alia).

While several approaches have been adopted to investigate this problem, our
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analysis rests on the optimal stopping framework. McNamara and Collins (1990)

consider a job search game which can be modi�ed to model marriage formation.2

In the model, employers interview a sequence of candidates for a job and decide

whether to o¤er the job to a candidate. Each candidate is interviewed by a sequence

of employers and decide whether to accept each o¤er. They �nd that assortative

matching occurs where the best employers are matched with the best candidates.

Analogously in the mate choice version of the problem, both men and women of

similar quality are matched together.

In recent years, this approach has been considerably extended. See, in particular,

Alpern and Renyers (1999 and 2005), Malazov and Falko (2008), Ramsey (2008, 2011)

and Alpern and Katrantzi (2009). As in Ramsey (2008), we analyse the problem with

discrete time and �nite or in�nite horizon.

In particular, Ramsey (2011) considers a model where partners are ranked ac-

cording to two characteristics. He assumes two stages, courting and acceptance, and

in each stage it is possble to observe only one characteristic. Contrary to Ramsey

(2011), we assume that individuals observe both characteristics at the same time.3

Finally, Ramsey (2011) does not take into account the expected time to marry.

Alpern et al. (2013) analyse marriage formation when individuals�preferences are

based on age, which naturally changes over time. Finally, our approach is somewhat

similar to Eriksson et al. (2007), who develop a model where individuals optimise

the expected rank of their partner. Compared to Eriksson et al. (2007), we consider

both two dimensions of heterogeneity and two types of meeting.

The remainder of the paper is structured as follows. Section 2 presents the model,

and Section 3 shows the baseline results. Section 4 illustrates the expected time

necessary to marry. Section 5 extends the analysis by assuming an in�nite horizon,

while Section 6 investigates the case where individuals are not aware of the type of

meeting they are. Conclusions are in Section 7. All the results are formally derived

in the appendix.

2Parker (1983) and Real (1991) formulate similar models for two-sided mate choice.
3A technical di¤erence is that Ramsey (2011) assumes the distribution of characteristics as

discrete.
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2 The model

We study a �nite, large universe of M single men and W single women. Time is

discrete and the horizon is �nite (Ramsey, 2008).4 The multistage game starts at

period t = 1 and lasts for N periods. In each period, a man fromM meets a woman

from W . A stage of the multistage game is called �meeting�. After each meeting, a

man m and a woman w simultaneously decide whether to propose. If both propose,

the process ends, and the two players exit the game. If at least one of them refuses,

then the game transits to the next period. We assume that being unmarried is

always worse than being married. This assumption implies that, at period N; all the

remaining unmatched players are willing to marry.

We assume that any pair who leaves the market is immediately replaced by clones

(MacNamara and Collins, 1990, Bloch and Ryder, 1994, and Morgan, 1994, inter

alia). Hence the formation of matchings in each period does not modify the distrib-

ution of single individuals when a marriage occurs.

Each player ranks the potential partner using two characteristics. The �rst char-

acteristic, denoted by �, re�ects the speci�c, idiosyncratic and universally unrankable

trait of an individual. For example some individuals like caring and attentive part-

ners, some others prefer independent persons. The preference is subjective and can-

not be compared between di¤erent individuals. The second characteristic, denoted

by I; represents a universally rankable aspect of the individual, such as income, ed-

ucation, social class and so forth. The universal type does not change throughout

the game: clearly, this is a simpli�cation, as characteristics may change over time,

altering I.5 For instance, income generally increases over time, whereas beauty de-

creases over time. Information is perfect and complete: individuals recognise the

type of each potential partner and are aware of the characteristics of the distribution

of individuals.6

We assume that an individual evaluates potential spouses according to the linear

4In Section 5 we extend the analysis to the case with in�nite periods.
5See Alpern et al. (2013).
6Note that the type of potential partner is known during the meeting only. Hence players cannot

anticipate whether a potential partner will accept to marry.
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combination of these characteristics, which we will refer as �rank�:

R = (1� �)� + �I; (1)

where � 2 (0; 1) weights the importance of the universal characteristic compared to
the individual characteristic. We assume � to be public information and identical

for all players. The level of � re�ects the role played in the romantic choice by

universally estimable characteristics (social class, income, education) compared to

personal preferences for speci�c aspects of a partner. For instance, it can be imagined

that in a conservative society individuals put more weight on aspects such as the

social status or income when they evaluate a partner.

The meeting can be of two types. We denote the set of types as S = fr; �rg,
where s = r is called �random�meeting while s = �r is called �assortative�meeting.

A random meeting occurs when an individual meets the partner by chance. This

happens anytime the rankable characteristic of an individual (social status, income,

education, and so forth) does not in�uence the occurring meeting. For example,

two individuals running into each other at the grocery store, both going to the

football stadium or to a public party. Therefore, with random meeting, any two

people from the universe can meet. Assortative meeting occurs when an individual

meets the partner in a context in which his or her rankable characteristic is relevant

in determining the meeting. All the encounters at school, at the university, in a

family or a private party are examples of assortative meeting. We assume that, with

assortative meeting, the universal rank of the potential partner will be the same as

the individual�s. This assumption is made for simplicity, as considering an imperfect

correlation (for instance, implemented with a noise) would complicate the analysis

without altering the qualitative features of our results. Also, notice that the state

of the world does not in�uence the speci�c characteristic of a potential partner. We

assume that all players are aware of the meeting they participate.

In each period t, the meeting is assortative with exogenous probability � 2 (0; 1)
and random with probability 1 � �; � being constant, equal to all the players and
known by them. The value of � depends on the customs of the society we have in
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mind. For instance, in a traditional society, it is more likely that individuals with

common background are matched together (� high). To the best of our knowledge,

this is the �rst contribution to the literature in which two types of meeting may

alternatively take place.

Since the characteristics of potential partners are not known at the beginning of

the game, suppose that an individual i 2 fm;wg in each period t = 1; : : : ; N meets

a partner j 2 fm;wg and j 6= i in state s with the following rank:

Rstj =

8<:(1� �) �tj + �Itj; if s = r ( with prob. 1� � )

(1� �) �tj + �Ii; if s = �r ( with prob. � )

where

� �tj is a random variable with continuous uniform distribution in [0; 1], re�ecting
the idiosyncratic preference of an individual i for a potential partner j met in

t = 1; : : : ; N: Let �tj be independent variables for t = 1; : : : ; N .

� Itj is a random variable with continuous uniform distribution in [0; 1], repre-

senting the universal rank of a potential partner j met in t = 1; : : : ; N: Let Itj
be independent variables for t = 1; : : : ; N .

� Ii = I 2 [0; 1] is the universal rank of the partner with assortative meeting,
which is the same as individual i who evaluates the partner j:

Considering �tj and Itj as independent variables means that potential partners

met in the past do not in�uence future meetings. We assume that men and women

rank potential partners symmetrically, implying that they have the same probability

of observing a certain � and (in the random matching state) I. This assumption

is for the sake of simplicity and does not correspond exactly to what happens in

the real world. For instance, in many societies beauty is more evaluated by men,

whereas income is more evaluated by women.7 The assumption that men and women

7See, for instance, Coles and Francesconi (2011).
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rank potential partners symmetrically implies that the universal rank in assortative

meeting state I is equal for man m and woman w.

As common in optimal stopping problems, we assume that all players adopt

threshold strategies. We denote a player i�s action in period t and state s as asti (I):

this is a threshold such that the player must propose in period t and state s if and only

if the potential partner�s rank is greater than the threshold in t, i.e., Rstj > a
s
ti (I).

If both players who met propose, then a marriage takes place and player i (j) gets

a payo¤ Rstj (R
s
ti). Given the structure of the stage game, we may construct a

multistage game de�ning the set of players� strategies and payo¤ functions. The

strategy ai of player i with universal rank I in the multistage game is a collection of

stage strategies fasti (I)gs2S;t=1;:::;N indicating whether the marriage must be proposed
to a potential partner with absolute rank Rstj in period t and state s for every

t = 1; : : : ; N . In other words, a player�s strategy in the multistage game is a set of

thresholds such that a player proposes a marriage in period t and state s if and only

if the observed rank is greater than the threshold in t, i.e., Rstj > a
s
ti (I). Therefore,

a high asti (I) implies that a player is more likely to delay marriage, since he or she

needs to meet a potential partner with a high rank in order to agree to marry.

The goal of player i is to maximise the discounted expected rank of his or her

spouse. We thus de�ne a player�s utility function in period t in state s as the partner�s

expected rank if the marriage takes place, i.e.:

U sti (ai (I)) =

8<:E
�
RstjjRstj > asti (I) ; Rsti > astj (Ij)

�
(asti (I)) ; if Rstj > a

s
ti (I) ; R

s
ti > a

s
tj (Ij)

�Ut+1;i (ai (I)) ; otherwise
(2)

where � 2 (0; 1] is the discount factor, astj (Ij) is the potential partner j�s strategy
and Ut+1;i (ai (I)) is the utility function in the subgame starting from period t+ 1 :

Ut+1;i (ai (I)) = �U
�r
t+1;i

�
a�rt+1;i (I)

�
+ (1� �)U rt+1;i

�
art+1;i (I)

�
:

Notice that the discount factor may be also interpreted as a constant search cost.

The utility of an individual who remains single is assumed zero, ensuring that each
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player will eventually marry.

Using (2) we can write the recurrence equation for a player�s utility function:

U sti (ai (I)) =Pr
s
m (a

s
ti (I))E

�
RstjjRstj > asti (I) ; Rsti > astj (Ij)

�
(asti (I))

+ [1� Prsm (asti (I))] �Ut+1;i (ai (I)) :

3 Baseline results

3.1 Bellman equation and strategies

The following Bellman equation represents the player i�s maximal utility function.

With probability Prsm (a
s
ti (I)), player i marries in period t and state s, obtaining the

payo¤ being equal to the expected rank of the partner (conditional to acceptance).

With probability (1�Prsm (asti (I))), player i does not marry in period t and transits
to the next time period. In this case his or her payo¤will be the discounted maximal

utility calculated for the next time period:

V st (I) =max
ast (I)

�
Prsm (a

s
ti (I))E

�
RstjjRstj > asti (I) ; Rsti > astj (Ij)

�
(asti (I))

+ �(1� Prsm (asti (I)))
�
�V �r

t+1(I) + (1� �)V rt+1(I)
�	

(3)

with boundary conditions for t = N and states s = �r and s = r:

V �r
N(I) =E[(1� �)�Nj + �I] =

1� �
2

+ �I; (4)

V rN =E[(1� �)�Nj + �INj] =
1

2
: (5)

Here the Bellman function V st (I) is the maximal expected rank of a partner, and

E[RstjjRstj > ai (I) ; Rsti > aj (Ij)] (asti (I)) is the expected rank of a potential partner
j met in period t in state s if player i marries using strategy a. Expression �V �r

t+1(I)+

(1 � �)V rt+1(I) is the expected payo¤ of an individual i (or the absolute rank of j)
if they chose to not marry in period t and the game transits to the next period.
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Notice that player i�s strategy asti (I) is within the interval [0; 1] if s = r; but from

the interval [�I; �I + 1� �] if s = �r. The latter is the interval of possible values of
the random variable Rrtj. The optimal strategies for the last period N are ar�N (I) = 0

for random meeting and a�r�Ni (I) = �I for assortative meeting, since a player prefers

to marry than remain single.

In order to solve the Bellman equation, we begin by deriving the conditional

probability of marrying according to the occurring state at time t: Then we determine

the conditional expectation of the expected rank of a person if the met players both

agree to marry. These steps are developed in the appendix.

3.2 Players�equilibrium strategies

From now on, we will omit the label i; j for brevity. The following proposition shows

the equilibrium strategy with assortative meeting.

Proposition 1 The equilibrium strategy fa�r�t (I)gt=1;:::;N�1 of a player with universal
rank I in the assortative meeting state �r is:

a�r�t (I) =

8>>>><>>>>:
�I; if Vt+1(I) <

4�I + 1� �
4�

;

4�Vt+1(I)� (�I + 1� �)
3

; if
4�I + 1� �

4�
� Vt+1(I) <

�I + 1� �
�

;

�I + 1� �; if Vt+1(I) �
�I + 1� �

�
:

(6)

In Proposition 1, the optimal strategy is higher the higher an individual�s univer-

sal rank I in cases when Vt+1(I) < �I
�
+ 1��

4�
and Vt+1(I) � �I+1��

�
. In other words,

it is less likely that an individual would accept to marry if he/she is from a high

universal rank. Corollary 1 follows from Proposition 1.

Corollary 1 In assortative meetings, a player does not marry before period N if

and only if the expected rank Vt+1(I) satis�es:

Vt+1(I) �
�I + 1� �

�
(7)
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for every t = 1; : : : ; N � 1.

Condition (7) can be satis�ed when the universal rank is very high, and the inten-

sity of assortative meeting is also very high. Accordingly, players wait for potential

partners with a higher rank in the following meetings. And if inequality (7) is satis-

�ed for every t = 1; : : : ; N � 1, then a player does not marry until period N in the

assortative meeting states.

Let us turn now on the optimal strategy with random meeting for each period

t = 1; :::; N � 1. For the sake of exposition, consider �rst the case where � � 1
2
.

Proposition 2 The equilibrium strategy far�t (I)gt=1;:::;N�1 of a player with universal
rank I in the random meeting state r when � � 1

2
is:

ar�t (I) =

8>>>>>>>>><>>>>>>>>>:

0; if Vt+1(I) <
1

4�

1� �; if
1

4�
� Vt+1(I) <

5� 19�+ 11�2
6(1� 3�)�

1 + �

6
+
2�

3
Vt+1(I)� 
1; if

5� 19�+ 11�2
6(1� 3�)� � Vt+1(I) <

5�+ 1

6�
6�Vt+1(I)� 1

5
; if Vt+1(I) �

5�+ 1

6�
;

(8)

where


1 =

q
16�2 (Vt+1(I))

2 � 16� (1� �)Vt+1(I) + 5�2 + 6�+ 5
6

:

Consider next the case where � < 1
2
.

Proposition 3 The equilibrium strategy far�t (I)gt=1;:::;N�1 of a player with universal
rank I in the random meeting state r when � < 1

2
is:
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ar�t (I) =

8>>>>>>>>><>>>>>>>>>:

0; if Vt+1(I) <
1

4�

�; if
1

4�
� Vt+1(I) <

11�2 � 3�� 3
6(3�� 2)�

2� �
6

+
2

3
�Vt+1(I)� 
2; if

11�2 � 3�� 3
6(3�� 2)� � Vt+1 <

6� 5�
6�

6�Vt+1(I)� 1
5

; if Vt+1(I) �
6� 5�
6�

;

(9)

where


2 =

q
16�2(Vt+1(I))2 � 16�(2� �)Vt+1(I) + 5�2 � 16�+ 16

6
:

3.3 Existence and uniqueness of the equilibrium

Given the assumptions on the Bellman equation considered, there exists a unique sub-

game perfect equilibrium in theN -period meeting game. The existence of equilibrium

is straightforward and follows from Selten (1975). The uniqueness of the subgame

perfect equilibrium when all players use optimal strategies as�t (I), t = 1; : : : ; N ,

s = r; �r yielding the Bellman equation (3) follows from the functional forms used

in the right part of (3). In the case of assortative meeting s = �r, then (3) is a

continuous function of a�r�t (I) with a unique maximum on the interval of possible

strategy values [�I; �I + 1� �] for every t = 1; : : : ; N . Therefore, each player i has
a unique optimal strategy in every period in which assortative meeting takes place.

Random meetings can be considered similarly. The functions in the right part of

Bellman equations (28) and (29) are continuous in ar�t (I) for both � � 1
2
and � < 1

2

and has a unique maximum within the interval of possible strategies [0; 1] for every

t = 1; : : : ; N . Hence, a player has a unique optimal strategy in every period in which

random meeting occurs.
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3.4 Analysis of equilibrium

In this section, we consider some comparative statics of optimal strategies in both

random and assortative meetings.

3.4.1 Variation of I

Begin by showing how a variation of the universal rank in�uences the payo¤ and the

optimal strategy in equilibrium. The following propositions summarise the results.

Proposition 4 The equilibrium payo¤ in the assortative (random) meeting state is

an increasing (non decreasing) function of a player�s universal rank I.

Proposition 4 intuitively says that players with higher universal rank obtain a

higher payo¤ in equilibrium.

Proposition 5 Assortative meeting. For:

� >
1

4�N�1
; (10)

the optimal strategy a�r�t (I) is a non-decreasing function of a player�s universal rank

I for any t = 1; : : : ; N .

Random meeting. The optimal strategy ar�t (I) is a non-decreasing function of
I.

Condition (10) is su¢ cient but not necessary. Indeed the necessary condition for

a�r�t (I) to be non-decreasing cannot be obtained explicitly, this due to the recurrent

form of optimal strategies. For example, for N = 2 the condition � > 1
4�
is also

necessary. For N = 3 the necessary condition is:

� >
1� �+ �I � 1��

4

q
3(1��)
�

��
;

and so on.
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Proposition 5 shows that, in the assortative meeting state, the optimal strat-

egy changes with a player�s universal rank according to the intensity of assortative

meeting. If � is high, then players with high universal rank are more �demanding�,

because the future chance of being in the assortative meeting state (and thus to meet

high ranked partners) will be higher. Therefore they can wait for a better idiosyn-

cratic match. Conversely, if � is low, then players are pickier if they have a low I,

since a low � implies a relatively higher future expectation for low-I types. Indeed,

low universal rank players expect a relatively higher payo¤ from a random meeting.

In the random meeting state, the high-I types generally are more patient, as their

future potential partners generally have a higher expected rank, due to the chance

of being in the assortative meeting state.

3.4.2 Variation of �

Consider next the e¤ects of a variation of the intensity of assortative meeting � on

the optimal strategies.

Proposition 6 Assortative meeting. If

4�I + 1� �
4�

� Vt+1(I) <
�I + 1� �

�
;

then
@a�r�t (I)

@�
/ @Vt+1(I)

@�
Q 0 for V �r

t+1(I) Q V rt+1(I):

If

Vt+1(I) <
4�I + 1� �

4�
_ Vt+1(I) �

�I + 1� �
�

;

then a variation of � does not a¤ect the optimal strategy.

Random meeting. If

Vt+1(I) �
5� 19�+ 11�2
6(1� 3�)� ;
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then
@ar�t (I)

@�
/ @Vt+1(I)

@�
Q 0 for V �r

t+1(I) Q V rt+1(I):

If

Vt+1(I) <
5� 19�+ 11�2
6(1� 3�)� ;

then a variation of � does not a¤ect the optimal strategy.

Therefore, the e¤ects of � on the optimal strategy depend on which future con-

ditional expectation is higher. Since the value of V �r
t+1(I) strictly depends on the

individual�s universal rank, in turn it is more likely that V �r
t+1(I) > V

r
t+1(I) (and in

turn @Vt+1(I)
@�

> 0) for higher levels of I:

For completeness, we examine the game when � = 0 and � = 1. When � = 0,

players participate only to random meetings, and Vt(I) = V rt (I) satis�es the Bellman

equation (28) for � � 1
2
and (29) for � < 1

2
, and the optimal strategies take the forms

(8) and (9), respectively. If � = 1, the Bellman equation Vt(I) = V �r
t (I) satis�es

equation (27) and the optimal strategy takes the form of equation (6).

4 Expected time to marry

In this section, we examine how long an individual expects to remain unmarried.

We denote T as a discrete random variable representing the number of the periods

in which a player expects to marry, where T = 1; 2; :::; N . In optimal stopping liter-

ature, this variable is called stopping time. In order to calculate the mathematical

expectation of the number of periods needed to marry we need to �nd the proba-

bility that a player marries in each particular period t. Denote this probability as

Pt, 8 t = 1; : : : ; N . For period 1, this probability can be de�ned by the following

expression:

P1 = (1� �) Prrm (ar1 (I)) + � Pr�rm (a�r1 (I)) �M1:

For period 2, the probability of marrying is as follows:

P2 = (1�M1) ((1� �) Prrm (ar2 (I)) + � Pr�rm (a�r2 (I))) = (1�M1)M2:
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Hence for period k, the probability can be obtained by the expression:

Pk =(1�M1) : : : (1�Mk�1) ((1� �) Prrm (ark (I)))
+ � Pr�rm (a

�r
k (I))) = (1�M1) : : : (1�Mk�1)Mk:

If a player does not marry in the �rst N � 1 periods of the game and participates in
the last N th period he marries in this period with probability 1 (given the assumption

that a player always prefers to marry than to remain single), i.e.,

PN = (1�M1) : : : (1�MN�1):

The expectation of T is determined as follows.

Proposition 7 The expected time to marry is given by:

ET = P1 + 2P2 + : : :+NPN =
NX
i=1

i

(
i�1Y
k=1

(1�Mk)

)
Mi:

The expected number of periods before to marry is a function of the player�s

strategy a and all parameters �, �, I.

Unfortunately, it is not possible to elicit analytical results, thus we examine the

properties of Proposition 7 using a numerical simulation. First, we consider it for

di¤erent universal ranks. We appoint the following parameters values: � = 0:7,

N = 100, � = 1, I = 0:01; 0:33; 0:66; and 0:99: The results are summarised in Table

1 and shown graphically in Figure 1.

The relationship between universal rank and time to marry is non-monotone. The

time to marry is low for individuals with low levels of universal rank, it increases for

medium levels of universal rank, and it decreases again for high universal rank. In

particular, the peak in the expected time to marry is for low-medium types when

� = 0:25 and for high-medium types when � = 0:80.8 Two factors contribute to this

result. First, the higher importance of � makes individuals with a high universal
8For � = 0:25; the peak is around I = 0:12, so that the non-monotonicity cannot be detected

from Table 3.
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I � = 0:25 � = 0:80
0.01 46.38 42.36
0.33 44.60 42.82
0.66 42.48 50.53
0.99 42.27 41.55

Table 1: Expected number of periods needed to marry for di¤erent I.

characteristic more picky in their partner choice, thus delaying the marriage. The

�rst e¤ect prevails on the second e¤ect when the universal characteristic is not so

high but, for very high universal characteristics, the second e¤ect more than o¤sets

the �rst e¤ect, so that the time expected of marrying is lower. Thus individuals with

a very high universal characteristic tend to marry sooner than other individuals.

Alternatively, medium-rank individuals tend to marry later because they are fussy

and the quality of their potential partners is more likely to be lower. This result is

in line with some stylised facts, showing that individuals coming from middle class

tend to marry later (Wilcox, 2010, Marquardt et al., 2012). Among other reasons,

the dynamic that led to this evidence can be explained with the increase in the
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ways of meeting people (cheaper transportation costs, chats, social networks, and

so forth), which allows more information about the characteristics of individuals

and induces more meetings among potential partners with similar characteristics

(assortative meeting). Individuals expect this type of meetings in the future, which

a¤ects their marriage decisions.

We then consider the change in the expected number of periods before marrying

for di¤erent �. We appoint the following parameters values: I = 0:9, N = 100,

� = 1, � = 0:01; 0:33; 0:66; and 0:99: As in the previous example, we assume either

� = 0:25 or � = 0:80: See Table 2 and Figure 2. The results are interpreted with a

� � = 0:25 � = 0:80
0.01 44.70 43.24
0.33 43.66 41.90
0.66 42.42 42.01
0.99 41.81 41.80

Table 2: Expected number of periods needed to marry for di¤erent �:

high-type player (I = 0:9) as reference. The results are opposite if we consider a low-
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type player, this because, while a high-type player is happy to be in the assortative

meeting state, a low-type player prefers to be in the random matching state in order

to avoid meetings with low types.9 The function is non-monotone, since two e¤ects

interplay: on the one hand, given I = 0:9; the probability of meeting someone of

high type increases with �; on the other hand, an increase in � increases the future

chance of being in assortative meeting state, and in turn the expected future matches.

When the weight of the universal characteristic is low, the �rst e¤ect is dominated

by the second e¤ect for low levels of �, which leads to a peak in the expected time

to marry for low �. Conversely, when � is high, the longest expected time to marry

emerges for values of � . 0:1 and between 0:6 and 0:85. Moreover, consistent with
the previous simulation, a high � ensures shorter waiting to marry due to the high

universal type considered.

5 In�nite horizon

In this section, we extend the analysis to the case with in�nite periods. We show that

the �ndings are qualitatively similar to the results obtained in the �nite case. Suppose

that the universes M and W are in�nite, and the game lasts an in�nite number of

periods. In this case, the backward Bellman approach considered above cannot be

applied. In order to have boundary conditions to solve the Bellman equation, given

the in�nite periods, we look for equilibria in stationary strategies. In other words, a

player�s strategy a = as (I) does not depend on the period. In this case, we are not

able to show the equilibrium strategies in an explicit form. The functional equation

for the player�s payo¤ which is the expected partner�s rank in the game beginning

from state s is now:

V s (as (I)) =Prsm (a
s (I))E

�
Rsj jRsj > as (I) ; Rsi > as (Ij)

�
+�(1� Prsm (as (I))) (�V �r (a�r (I)) + (1� �)V r (ar (I))) : (11)

9Upon request, the results for low-universal type players can be provided.
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Equation (11) is the equivalent of equation (3) for the case with in�nite periods.

Denote the vector (V �r (a�r (I)) ; V r (ar (I)))T as V (a�r (I) ; ar (I)) and rewrite equation
(11) in the vectorial form:

V (a�r (I) ; ar (I)) = A1 + �A2(�; 1� �)V (a�r (I) ; ar (I)) ; (12)

where

A1 = (A11;A12) =
�
Pr�rm (a

�r (I))E
�
R�rj jR�rj > a�r (I) ; R�ri > a�r (Ij)

�
;

Prrm (a
r (I))E

�
Rrj jRrj > ar (I) ; Rri > ar (Ij)

��T
A2 = (A21;A22) =

�
1� Pr�rm (a�r (I))E

�
R�rj jR�rj > a�r (I) ; R�ri > a�r (Ij)

�
;

1� Prrm (ar (I))E
�
Rrj jRrj > ar (I) ; Rri > ar (Ij)

��T
:

Given equation (12) we obtain the following result.

Proposition 8 Assume � 6= 1 and that players do not use their highest strategies

(a�r (I) = �I + 1� � and ar (I) = 1). Then a player�s payo¤ is:

V (a�r (I) ; ar (I)) =
1

1� �(�A21 + (1� �)A22)

 
1� �(1� �)A22 �(1� �)A21

��A22 1� ��A21

!
A1:

(13)

When � = 1 and players use their highest strategies in any period and for any

kind of meeting we obtain the following system of Bellman equations:

V �r (a�rmax (I) ; a
r
max (I)) = �V

�r (a�rmax (I) ; a
r
max (I)) + (1� �)V r (a�rmax (I) ; armax (I)) ;

V r(a�rmax(I); a
r
max(I)) = �V

�r (a�rmax (I) ; a
r
max (I)) + (1� �)V r (a�rmax (I) ; armax (I)) ;

which amounts to V �r (a�rmax (I) ; a
r
max (I)) = V r (a�rmax (I) ; a

r
max (I)). In this case a

player never proposes a marriage in the game, and the game never stops.

As in the �nite case, the player�s optimal strategy maximises the expected rank

of the expected partner:

�V �r (a�r (I)) + (1� �)V r (ar (I)) = �A11 + (1� �)A12
1� �(�A21 + (1� �)A22)

; (14)
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s.t. a�r (I) 2 [�I; �I + 1� �] and ar (I) 2 [0; 1]:

We then analyse the equilibrium payo¤s in a numerical example. In particular, we

compare the equilibrium payo¤with in�nite horizon with the results in the �nite case

when N = 100. We appoint the following parameters values: � = 0:95, and either

� = 0:25 or � = 0:80: In Table 3, we keep � = 0:7 and we examine the equilibrium

payo¤ for I = 0:01; I = 0:33; I = 0:66 and I = 0:99: In Table 4, we keep I = 0:9

and we show the results for � = 0:01; � = 0:33; � = 0:66 and � = 0:99:

� = 0:25 � = 0:80
I In�nite game Finite game In�nite game Finite game
0.01 0.5359 0.5359 0.4838 0.4838
0.33 0.5762 0.5762 0.4838 0.4838
0.66 0.6272 0.6272 0.6283 0.6283
0.99 0.6864 0.6864 0.8735 0.8735

Table 3: Equilibrium payo¤ for �nite (N = 100) and in�nite game with � = 0:7 and
di¤erent I.

� = 0:25 � = 0:80
� In�nite game Finite game In�nite game Finite game
0.01 0.6065 0.6066 0.6199 0.6198
0.33 0.6392 0.6392 0.7559 0.7559
0.66 0.6666 0.6666 0.8010 0.8009
0.99 0.6890 0.6890 0.8202 0.8201

Table 4: Equilibrium payo¤ for �nite (N = 100) and in�nite game with I = 0:9 and
di¤erent �.

The tables show that the equilibrium payo¤s in the �nite and in�nite case are very

close. Thus the analytical results obtained in the �nite case are robust by assuming
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an in�nite horizon.10

6 Incompete information

In this section, we consider the case with incomplete information about the states,

i.e., the situation in which players do not know which kind of meeting they partic-

ipate. Hence the strategies adopted by players are state-independent. In order to

model this, we modify the N -period meeting game as follows. Suppose that, for

every t = 1; : : : ; N , a player uses the same strategy at (I) in assortative and random

meetings, so that at (I) = a�rt (I) = art (I). This situation re�ects the situations in

which an individual does not know exactly which kind of meeting (state) takes place

in every period.

In this modi�ed meeting game we consider the payo¤ of a player in the N -

period game, as the linear combination of the player�s expected payo¤s in the games

beginning with particular meetings (assortative and random):

V1 (at (I)) = �V
�r
1 (at (I)) + (1� �)V r1 (at (I)) :

The Bellman equation for the maximal expected rank Vt (at (I)) in period t takes the

form of:

Vt(I) =max
at(I)

�
� Pr�rm (at (I))E

�
R�rtjjR�rtj > at (I) ; R�rti > at (Ij)

�
(15)

+(1� �) Prrm (at (I))E
�
RrtjjRrtj > at (I) ; Rrti > at (Ij)

�
+ � f�(1� Pr�rm (at (I))) + (1� �)(1� Prrm (at (I))gVt+1(I)g ;

with boundary condition:

VN(I) = �

�
1� �
2

+ �I

�
+
1� �
2

: (16)

10Upon request, we can provide additional numerical examples in which the similarities of results
between the �nite and the in�nite case are con�rmed.
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With state-independent strategies, a player uses the same strategies for random and

assortative meetings in the same period. Then, the set of possible strategies are in

the set [0; 1] for all states. The probability of marrying is given by:

Pr�rm (at (I)) =

8>>>><>>>>:
1; if at (I) 2 [0; �I);�
1� at (I)� �I

1� �

�2
; if at (I) 2 [�I; �I + 1� �);

0; if at (I) 2 [�I + 1� �; 1]:

Moreover in the assortative meeting state, the conditional expectation of the absolute

rank of the chosen j under the condition that the marriage takes place in period t is:

E
�
R�rtjjR�rtj > at (I) ; R�rti > at (Ij)

�

=

8>>>><>>>>:
�I +

1� �
2

; if at (I) 2 [0; �I);
�I + 1� �+ at (I)

2
; if at (I) 2 [�I; �I + 1� �);

0; if at (I) 2 [�I + 1� �; 1]:

With state-independent strategies, the player�s optimal strategy is implicitly de�ned.

Notice that the player�s payo¤ in the N -period meeting game with state-independent

strategies, i.e. the expected rank of the potential partner, is not larger than the payo¤

in the game with state-dependent strategies.

7 Concluding remarks

We have studied marriage formation through an optimal stopping problem approach,

where individuals have two di¤erent dimensions of heterogeneity, and two possible

kinds of meetings, a random and an assortative one, may occur over time. We show

that individuals with a high universal characteristic tend to be pickier in their mar-

riage hunting. This does not necessarily mean that they marry later than other

individuals, since the higher expected quality of their potential partners in the as-
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sortative meeting state can make them marry earlier than individuals with a lower

universal characteristic. Interestingly, individuals with medium-high rank tend to

marry later than the other types, since they are picky, but the quality of the indi-

viduals they meet tends to be lower than high-rank individuals.

The analysis carried out did not consider divorce explicitly, but this indeed can

be easily implemented. First notice that, given a large universe of men and women,

the number of divorces occurring in each period would not change the distribution of

single individuals. Second, once assumed that divorce occurs with exogenous proba-

bility, then there is no reason to expect that this probability may change according

to whether two individuals decide to marry or not in a certain period. Of course,

the probability of divorcing may change with the length of a relationship.

Further extensions may take into account di¤erent universal characteristics for

men and women. According to the customs considered, these may be di¤erent for the

two genders. For example in Western societies, men appoint a higher value to beauty

compared to women, whereas women appoint a higher value to �nancial security (See

Coles and Francesconi, 2011). These developments of the current model are left for

future work.
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8 Appendix

8.1 Bellman equation

In what follows we solve the Bellman equation by steps.

8.1.1 Conditional probability

The �rst step is to �nd the probability of marrying according to the occurring state

at time t. Begin by the assortative meeting state.

Proposition 9 The conditional probability to marry in the assortative meeting state
for any period t = 1; : : : ; N � 1 is given by

Pr�rm (a
�r
t (I)) =

�
1� a

�r
t (I)� �I
1� �

�2
; (17)

where a�rt (I) 2 [�I; �I + 1� �].

Proof. The probability that both ranks satisfy condition Rstj > a
s
ti (I) ; R

s
ti > a

s
tj (Ij)

is the probability that a marriage takes place in period t and state s, i.e.

Prsm (a
s
ti (I)) � Prs

�
Rstj > a

s
ti (I) ; R

s
ti > a

s
tj (Ij)

�
:

Since men and women are symmetric, then their strategy is symmetric too, so that

Prs
�
Rstj > a

s
ti (I) ; R

s
ti > a

s
tj (Ij)

�
� Prs

�
Rstj > a

s
ti (I)

�2
:

We �nd the probability density distribution function fR�rtj(x) of R
�r
tj = (1� �) �tj+

�I by using the consolidation formula of independent random variables:

fR�rtj(x) =
1

1� �f�tj
�
x� �I
1� �

�
=

8<:
1

1� �; if x 2 [�I; �I + 1� �]

0; if x =2 [�I; �I + 1� �];
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where f�tj(x) is a probability density function of the variable �tj. Thus the cumulative

distribution function FR�rtj(x) = PrfR
�r
tj � xg =

R x
�1 fR�rtj(u)du of the random variable

R�rtj is as follows:

FR�rtj(x) =

8>>><>>>:
0; if x 2 (�1; �I)
x� �I
1� � ; if x 2 [�I; �I + 1� �)

1; if x 2 [�I + 1� �;1)

Therefore, the linear transformation of �tj keeps the same distribution type but

changes the interval of possible values, i.e. the distribution of rank R�rtj is a continuous

uniform in the interval [�I; �I + 1� �].
Given the probability density and the cumulative distribution functions, we are

now able to determine the conditional probabilities to marry. This is the probability

that both players i and j who met in period t accept to marry under the condition

that their choices are independent and they both use the same type of strategies. If

the meeting is assortative (s = �r), the conditional probability to marry is as follows:

Pr�rm (a
�r
t (I)) = Pr

��
R�rtj > a

�r
t (I)

�
\R�rti > a�rt (I)

	
=
�
Pr
�
R�rtj > a

�r
t (I)

	�2
;

where the events R�rtj > a�rt (I) and R
�r
ti > a�rt (I) are independent and symmetric.

Substituting and rearranging, we obtain the proposition.

The conditional probability in the random meeting state is summarised by the

following proposition.

Proposition 10 The conditional probability to marry in the random meeting state

is given by
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1. For � � 1

2
:

Prrm (a
r
t (I)) =

8>>>>>>>><>>>>>>>>:

 
1� (art (I))

2

2�(1� �)

!2
; if art (I) 2 [0; 1� �)�

1� 2a
r
t (I)� (1� �)

2�

�2
; if art (I) 2 [1� �; �)�

(1� art (I))2
2�(1� �)

�2
; if art (I) 2 [�; 1]

(18)

2. For � <
1

2
:

Prrm (a
r
t (I)) =

8>>>>>>>><>>>>>>>>:

 
1� (art (I))

2

2�(1� �)

!2
; if art (I) 2 [0; �)�

1� 2a
r
t (I)� �
2(1� �)

�2
; if art (I) 2 [�; 1� �)�

(1� art (I))2
2�(1� �)

�2
; if art (I) 2 [1� �; 1]

(19)

Proof. A player i ranks a potential partner j as follows: Rrtj = (1 � �)�tj + �Itj.
Here the random variables �tj and Itj, t = 1; : : : ; N are independent and have the

same uniform continuous distribution on the interval [0; 1]. The expression for the

probability density distribution function fRrtj(x) of a random variable Rrtj can be

found using the formula of consolidation of two continuous independent variables:

� Case � � 1
2
:

fRrtj(x) =

1Z
�1

f(1��)�tj(u)f�Itj(x� u)du = (20)
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=

8>>>>>>>><>>>>>>>>:

x

�(1� �) ; if x 2 [0; 1� �)
1

�
; if x 2 [1� �; �)
1� x
�(1� �) ; if x 2 [�; 1]

0; if x =2 [0; 1]

� Case � < 1
2
:

fRrtj(x) =

8>>>>>>>><>>>>>>>>:

x

�(1� �) ; if x 2 [0; �)
1

1� �; if x 2 [�; 1� �)
1� x
�(1� �) ; if x 2 [1� �; 1]

0; if x =2 [0; 1]

(21)

The cumulative distribution function FRrtj(x) of the random variable Rrtj ac-

cording to � is:

� Case � � 1
2
:

FRrtj(x) =

8>>>>>>>>>>><>>>>>>>>>>>:

0; if x 2 (�1; 0)
x2

2�(1� �) ; if x 2 [0; 1� �)
2x� (1� �)

2�
; if x 2 [1� �; �)

1� (1� x)2
2�(1� �) ; if x 2 [�; 1)

1; if x 2 [1;1)

(22)
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� Case � < 1
2
:

FRrtj(x) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

0; if x 2 (�1; 0)
x2

2�(1� �) ; if x 2 [0; �)
2x� �
2(1� �) ; if x 2 [�; 1� �)

1� (1� x)2
2�(1� �) ; if x 2 [1� �; 1)

1; if x 2 [1;1)

(23)

Notice that in the case of random meeting s = r the distribution of rank Rrtj
is not uniform.

Given the probability density and the cumulative distribution functions, we are

now able to determine the conditional probabilities to marry. We consider the two

cases according to � � 1
2
; � < 1

2
, and we �nd the expressions of probability to marry

Prrm (a
r
t (I)) under the condition that the state is s = r and a player i of universal

type I uses strategy art (I). This is the probability that both players i and j who met

in period t accept to marry under the condition that their choices are independent

and they both use the same type of strategies.

In the case of random meeting (s = r), this probability is given by:

Prrm (a
r
t (I)) =

�
Pr
�
Rrtj > a

r
t (I)

	�2
=
�
1� FRrti (a

r
t (I))

�2
:

Substituting and rearranging, we obtain the proposition.

8.1.2 Conditional expectations

The last step for deriving the Bellman equation is to determione the conditional

expectation of the expected rank of a person if the met players both agree to marriage.

This is summarised in the following proposition for the assortative meeting state.
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Proposition 11 The expected rank of a potential partner in the assortative meeting
state for any period t = 1; : : : ; N � 1 is given by

E
�
R�rtjjR�rtj > a�rti (I) ; R�rti > a�rtj (Ij)

�
(a�rti (I)) =

�I + 1� �+ a�rti (I)
2

;

Proof. We denote as E
�
R�rtjjR�rtj > a�rt (I) ; R�rti > a�rt (Ij)

�
the expectation of absolute

rank of the potential partner j chosen by a player�i; under the condition that the

marriage takes place in period t and E
�
R�rtjjR�rtj > a�rt (I) ; R�rti > a�rt (Ij)

�
is a function

of a player i�s strategy a�rt (I). For s = �r, the conditional expectation is given by:

E
�
R�rtjjR�rtj > a�rt (I) ; R�rti > a�rt (Ij)

�
=
E
�
R�rtjjR�rtj > a�rt (I)

�
Pr fR�rti > a�rt (Ij)g

Pr�rm (a
�r
t (I))

=
E
�
R�rtjjR�rtj > a�rt (I)

�
Pr fR�rti > a�rt (Ij)g

Pr
�
R�rtj > a

�r
t (I)

	
Pr fR�rti > a�rt (Ij)g

=
E
�
R�rtjjR�rtj > a�rt (I)

�
Pr
�
R�rtj > a

�r
t (I)

	
=

1R
a�rt (I)

ufR�rtj(u)du

1R
a�rt (I)

fR�rtj(u)du

=
�I + 1� �+ a�rt (I)

2
;

where a�rt (I) 2 [�I; �I + 1� �].
For random meeting, the conditional expectation is summarised as follows.

Proposition 12 The expected rank of a potential partner in the random meeting

state for any period t = 1; : : : ; N � 1 is given by
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1. For � � 1

2
:

E
�
RrtjjRrtj > arti (I) ; Rrti > artj (Ij)

�
(arti (I))

=

8>>>>><>>>>>:

2(arti (I))
3 � 3�(1� �)

3(arti (I))
2 � 6�(1� �) ; if arti (I) 2 [0; 1� �)

3(arti (I))
2 � (1 + �+ �2)

6arti (I)� 3(1 + �)
; if arti (I) 2 [1� �; �)

2arti (I) + 1

3
; if arti (I) 2 [�; 1]

2. For � <
1

2
:

E
�
RrtjjRrtj > arti (I) ; Rrti > artj (Ij)

�
(arti (I))

=

8>>>>><>>>>>:

2(arti (I))
3 � 3�(1� �)

3(arti (I))
2 � 6�(1� �) ; if arti (I) 2 [0; �)

3(arti (I))
2 � (3� 3�+ �2)

6arti (I)� 3(2� �)
; if arti (I) 2 [�; 1� �)

2arti (I) + 1

3
; if arti (I) 2 [1� �; 1]

:

Proof. We denote as E
�
RrtjjRrtj > art (I) ; Rrti > art (Ij)

�
the expectation of absolute

rank of the potential partner j chosen by a player�i; under the condition that the

marriage takes place in period t and E
�
RrtjjRrtj > art (I) ; Rrti > art (Ij)

�
is a function of

a player i�s strategy art (I). We make use of the analysis carried out for determining

the conditional expectation for s = �r using equations (20), (21), (18), (19). The

conditional expectation is given by:

E
�
RrtjjRrtj > art (I) ; Rrti > art (Ij)

�
=
E [RrtijRrti > art (I)] Pr fRrti > art (Ij)g

Prrm (a
r
t (I))

=
E [RrtijRrti > art (I)]
PrfRrtj > art (I)g

=

1R
art (I)

ufRrtj(u)du

1R
art (I)

fRrtj(u)du

: (24)

34



For � � 1
2
, equation (24) becomes:

E
�
RrtjjRrtj > art (I) ; Rrti > art (Ij)

�
=

8>>>>>><>>>>>>:

2art (I)
3 � 3�(1� �)

3 (art (Ij))
2 � 6�(1� �)

; if art (Ij) 2 [0; 1� �)

3 (art (Ij))
2 � (1 + �+ �2)

6art (Ij)� 3(1 + �)
; if art (Ij) 2 [1� �; �)

2art (Ij) + 1

3
; if art (Ij) 2 [�; 1]

(25)

whereas for � < 1
2
, equation (24) becomes:

E
�
RrtjjRrtj > art (I) ; Rrti > art (Ij)

�
=

8>>>>>><>>>>>>:

2 (art (Ij))
3 � 3�(1� �)

3 (art (Ij))
2 � 6�(1� �)

; if art (Ij) 2 [0; �)

3 (art (Ij))
2 � (3� 3�+ �2)

6art (Ij)� 3(2� �)
; if art (Ij) 2 [�; 1� �)

2art (Ij) + 1

3
; if art (Ij) 2 [1� �; 1]

(26)

8.1.3 Bellman Equations according to state

We are now in a position to determine a player�s optimal strategy through the analysis

of the Bellman equation (3). First, we examine separately the two states of the world

�r and r for each period t = 1; :::; N � 1: First, consider the assortative meeting state
s = �r. The Bellman equation (3) is:

V �r
t (I) = max

a�rt (I)

(�
1� a

�r
t (I)� �I
1� �

�2
�I + 1� �+ a�rt (I)

2

+

 
1�

�
1� a

�r
t (I)� �I
1� �

�2!
�Vt+1(I)

)
; (27)

where Vt+1(I) = �V �r
t+1(I)+(1��)V rt+1(I) and with boundary conditions (4) and (5).

Remember that men and women are symmetric, implying that opposites play the
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same strategies. All multipliers in the right hand side part of (27) are nonnegative,

so, for each period t from 1 to N � 1 we investigate a�rt (I) that yields V �r
t (I).

We turn now to the case of random meeting. In the case in which � � 1
2
, the

Bellman equation (3) is:

V rt (I) =

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

max
art (I)

8<:
 
1� (art (I))

2

2�(1� �)

!2
2 (art (I))

3 � 3�(1� �)
3 (art (I))

2 � 6�(1� �)

+

0@1� 1� (art (I))
2

2�(1� �)

!21A �Vt+1(I)
9=; ; if art (I) 2 [0; 1� �);

max
art (I)

(�
1� 2a

r
t (I)� 1 + �

2�

�2
3 (art (I))

2 � (1 + �+ �2)
6art (I)� 3(1 + �)

+

 
1�

�
1� 2a

r
t (I)� (1� �)

2�

�2!
�Vt+1(I)

)
; if art (I) 2 [1� �; �);

max
art (I)

(�
(1� art (I))2
2�(1� �)

�2
2art (I) + 1

3

+

 
1�

�
(1� art (I))2
2�(1� �)

�2!
�Vt+1(I)

)
; if art (I) 2 [�; 1]

(28)

Conversely if � < 1
2
; then the Bellman equation (3) becomes:
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V rt (I) =

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

max
art (I)

8<:
 
1� (art (I))

2

2�(1� �)

!2
2 (art (I))

3 � 3�(1� �)
3 (art (I))

2 � 6�(1� �)

+

0@1� 1� (art (I))
2

2�(1� �)

!21A �Vt+1(I)
9=; ; if art (I) 2 [0; �);

max
art (I)

(�
1� 2a

r
t (I)� �
2(1� �)

�2
3 (art (I))

2 � (3� 3�+ �2)
6art (I)� 3(2� �)

+

 
1�

�
1� 2a

r
t (I)� �
2(1� �)

�2!
�Vt+1(I)

)
; if art (I) 2 [�; 1� �);

max
art (I)

(�
(1� art (I))2
2�(1� �)

�2
2art (I) + 1

3

+

 
1�

�
(1� art (I))2
2�(1� �)

�2!
�Vt+1(I)

)
; if art (I) 2 [1� �; 1]:

(29)

with boundary conditions (4) and (5).

8.2 Proof of Proposition 1

To �nd the optimal strategy for period t and state s = �r we �rst di¤erentiate the

expression in the right part of (27) with respect to a, then we equate the di¤erential

with zero and solve it for a. We denote the solution as b�rt : There are two solutions:

b�rt1 =
4
3
�Vt+1 (I)� 1

3
[�I + 1� �] ;

b�rt2 = �I + 1� �:

Consider two possible cases for the value of expected rank Vt+1 (I): Vt+1 (I) < �I+1��
�

and Vt+1 (I) � �I+1��
�

:

1. Let Vt+1 (I) < �I+1��
�

, so that b�rt1 < b�rt2. In this case the second derivative

of the right part of (27) with respect to a calculated in b�rt1 (b
�r
t2) equals to

�2(�I+1����Vt+1(I))
(1��)2
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�
2(�I+1����Vt+1(I))

(1��)2

�
. Thus the strategy a�rt (I) = b

�r
t1 maximises the right part of

(27) whereas a�rt (I) = b
�r
t2 minimizes it. Hence the function in the right part of

(27) decreases in [b�rt1; b
�r
t2]. If additionally b

�r
t1 < �I, then the optimal strategy

is the minimum possible value for the strategy, i.e. a�r�N (I) = �I. For b
�r
t1 � �I,

the strategy a�r�N (I) = b
�r
t2 maximises the right part of (27).

2. Let Vt+1 (I) � �I+1��
�

. In this case b�rt2 < b
�r
t1 and a = b

�r
t1 minimizes the right

part of (27) while a = b�rt2 maximises it. Function in the right part of (27)

increases from a = �I to a = b�rt2 where obtains the maximum value.

8.3 Proof of Proposition 2

For brevity, we will consider the case � � 1
2
and omit the case � < 1

2
as it is very

similar.11 The problem is to �nd the maximum of the piecewise function in the right

part of (28) with respect to the strategy a = art (I). This function is continuous

with respect to art (I). When a
r
t (I) 2 [0; 1 � �); then it has a unique maximum at

art (I) = 0. The second derivative of the function in the right part of (28) calculated

in art (I) = 0 equals 4�Vt+1(I)�1
2�(1��) . If Vt+1 (I) < 1

4�
; then the strategy ar�N (I) = 0

maximises the right part of (28). Also, the right part of (28) is a decreasing function

with respect to art (I) in the interval of possible strategy values [0; 1]. This implies

that the optimal strategy is ar�N (I) = 0.

For Vt+1 (I) � 1
4�
; the right part of (28) increases in the interval art (I) 2 [0; 1��).

Consider the case in which art (I) 2 [1� �; �). Di¤erentiation of the function in the
right part of (28) yields:

brt1 =
1
6
(1 + �) + 2

3
�Vt+1 (I)

�1
6

q
16�2(Vt+1 (I))2 � 16(1 + �)�Vt+1 (I) + 5�2 + 6�+ 5;

brt2 =
1
6
(1 + �) + 2

3
�Vt+1 (I)

+1
6

q
16�2(Vt+1 (I))2 � 16(1 + �)�Vt+1 (I) + 5�2 + 6�+ 5;

11The complete proof can be provided upon request.
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where brt1 < b
r
t2. The second derivative of the function in the right part of (28) in b

r
t1

is negative, while the second derivative of it in brt2 is positive. Hence b
r
t1 maximises

the function in the right part of (28) and brt2 minimizes it, and function in the right

part of (28) decreases from brt1 to b
r
t2. Here we should consider three cases:

1. For brt1 < 1� �
�
, 1

4�
� Vt+1 (I) < 5�19�+11�2

6(1�3�)�

�
, the function in the right part

of (28) decreases on the interval [1 � �; 1]. Thus, the optimal strategy is

ar�N (I) = 1� �.

2. For 1�� � brt1 < �
�
, 5�19�+11�2

6(1�3�)� � Vt+1 (I) < 5�+1
6�

�
, the function in the right

part of (28) increases on [0; brt1) and decreases on (b
r
t1; 1], so that the optimal

strategy is art (I) = b
r
t1.

3. For brt1 � �, the function in the right part of (28) increases on [0; �). For [�; 1),
it has one extreme point art (I) = b

r
t3, where

brt3 = �
1

5
+
6

5
�Vt+1 (I) ;

and the second derivative shows that it maximises the function in the right

part of (28). Hence it increases on [0; bt;r3 ) and decreases on [b
t;r
3 ; 1], so that the

optimal strategy is ar�N (I) = b
r
t3 if and only if b

r
t3 2 [�; 1), i.e. Vt+1 (I) � 5�+1

6�
.

8.4 Proof of Proposition 4

First consider the case with assortative meeting, s = �r. For a�r�t (I) = �I, the payo¤

in equilibrium V �r
t (I) is an increasing function of the universal rank I as

@V �r
t (I)

@I
= �:

For a�r�t (I) = �I + 1� �, di¤erentiation of @V �r
t (I) with respect to I yields:

@V �r
t (I)

@I
=
@Vt+1 (I)

@I
:
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Given @V �r
N (I)

@I
= �� > 0, we can easily prove the positiveness of @V �r

N (I)

@I
for any

t = 1; : : : ; N�1. Consider next the case a� (t; �r) = 4�Vt+1(I)�(�I+1��)
3

when �I
�
+ 1��

4�
�

Vt+1 (I) <
�I+1��

�
, in which:

@V �r
t (I)

@I
=

16�

9(1� �)2 (�Vt+1 (I)� (1� �+ �I))
2

�16� (�Vt+1 (I)� (1� �+ �I))
2 � 9�(1� �)2

9(1� �)2
@Vt+1 (I)

@I
:

The right hand side is positive for any t = 1; : : : ; N; because �I
�
+ 1��

4�
� Vt+1 (I) <

�I+1��
�

and the fact that @V �r
N (I)

@I
= �� > 0. Therefore, in the assortative meeting

case, a player�s payo¤ in equilibrium is an increasing function of the universal rank

I.

Finally consider the case with random meeting, s = r, and suppose � � 1
2

(the case where � < 1
2
can be considered in the same way and leads to the same

results). We show the proof when ar�t (I) 2 [0; 1 � �), and omit the cases in which
ar�t (I) 2 [1��; �) and ar�t (I) 2 [�; 1]; as the algebra is very similar and leads to the
same results. Di¤erentiating V rt (I) w.r.t. I yields:

@V rt (I)

@I
=2

�
1� (ar�t (I))

2

2�(1� �)

� 
�
ar�t (I)

@ar�t (I)
@I

�(1� �)

!
� (30)�

2(ar�t (I))
3 � 3�(1� �)

3(ar�t (I))
2 � 6�(1� �) � �Vt+1 (I)

�
+

�
1� (ar�t (I))

2

2�(1� �)

�2
� 

18ar�t (I)
@ar�t (I)
@I

�(1� �)(1� 2ar�t (I))
(3(ar�t (I))

2 � 6�(1� �))2 � �@Vt+1 (I)
@I

!

+ �
@Vt+1 (I)

@I
:

For ar�t (I) = 0 and Vt+1 (I) < 1
4�
, we obtain V rt (I) =

1
2
, so that V rt (I) is a non-

decreasing function of I. The similar result can be obtained for the case ar�t (I) = 1��
and Vt+1 (I) 2 [ 14� ;

5�19�+11�2
6(1�3�)� ). For

5�19�+11�2
6(1�3�)� � Vt+1 (I) < 5�+1

6�
and Vt+1 (I) � 5�+1

6�
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we obtain @V rt (I)

@I
? 0 if @Vt+1(I)

@I
? 0. Given @V rN

@I
= �� > 0, we prove that for any

t = 1; : : : ; N; the player�s payo¤ in random meeting is an increasing function of I.

Therefore, in any possible case, a player�s optimal payo¤ in random meetings is a

non-decreasing function of the universal rank.

8.5 Proof of Proposition 5

Begin by examining the assortative meeting state. It is straightforward that for

Vt+1 (I) <
�I
�
+ 1��

4�
and Vt+1 (I) � �I+1��

�
; the optimal strategy is a constant, hence

@a�r�t (I)
dI

= � is a non-decreasing function of the universal rank I.

Consider next �I
�
+ 1��

4�
� Vt+1 (I) <

�I+1��
�

, for which the optimal strategy is

a�r�t (I) =
4�Vt+1(I)�(�I+1��)

3
. Here we obtain @a�r�t (I)

dI
= 4�

3
@Vt+1(I)

@I
� �

3
, where @Vt+1(I)

@I
=

�
@V �r

t+1(I)

@I
+(1� �)@V

r
t+1(I)

@I
. Thus @a

�r�
t (I)

dI
is non-negative during the whole game if and

only if @Vt+1(I)
@I

> �
4�
.

For t = N � 1, the player�s payo¤ @V �r
N (I)

@I
= ��, hence the condition of non-

negativity is � > 1
4�
. Now consider t = N � 2. Substituting the optimal strategy

a�r�N�2 (I) into expression (30) and writing down the condition
@V �r

N�1(I)

@I
> �

4�
yields:

[�Vt+1 (I)� (1� �+ �I)]2
16

9(1� �)2 (1� ��) � +
�
�2� � 1

4

�
> 0:

Given � > 1
4�2
we can easily prove that

@V �r
N�1(I)

@I
> �

4�
. Therefore a�r�N�2 (I) is a non-

decreasing function of universal rank I. By repeating the procedure recurrently for

all t we prove the result of the proposition.

Consider next the random meeting when � � 1
2
.12 The non-negativity of @a

r�
t (I)

@I

is straightforward for Vt+1 (I) < 5�19�+11�2
6(1�3�)� . The optimal strategy a

r�
t (I) is a non-

decreasing function for Vt+1 (I) � 5�+1
6�

i¤ @Vt+1(I)
@I

is non-negative, which is proved

by Proposition 4.

12The case with � < 1=2 yields the same results and it is omitted.
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Now consider 5�19�+11�
2

6(1�3�)� � Vt+1 (I) < 5�+1
6�
:

@ar�t (I)

@I
=
2�

3

@Vt+1 (I)

@I
�

0@1� 4�Vt+1 (I)� 2(1� �)q
16�2 (Vt+1 (I))

2 � 16 (1� �) �Vt+1 (I) + 5�2 + 6�+ 5

1A :
We can easily obtain @ar�t (I)

@I
? 0 when @Vt+1(I)

@I
? 0 since the right hand side is always

positive when 5�19�+11�2
6(1�3�)� � Vt+1 (I) < 5�+1

6�
. Therefore, given Propostion 4 we prove

Proposition 5.

8.6 Proof of Proposition 6

Begin by noticing that Vt+1 is a function of �; in particular

@Vt+1(I)

@�
Q 0 as V �r

t+1(I) Q V rt+1(I): (31)

Therefore the e¤ect of � on the optimal strategy in both assortative and random

meeting state depends on which future conditional expectation is higher.

Consider the conditions on parameters that gives the sign of the derivative of the

optimal strategy with respect to �. The derivative of a�r�t (I) with respect to � is zero

for Vt+1(I) < 4�I+1��
4�

and Vt+1(I) � �I+1��
�

. Conversely, for 4�I+1��
4�

� Vt+1(I) <
�I+1��

�
, we get

@a�r�t (I)

@�
=
4�

3

@Vt+1(I)

@�
Q 0 for @Vt+1(I)

@�
Q 0;

which holds if and only if (31) holds. Let us turn on the optimal strategy in the
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random meeting state. The derivative of ar�t (I) with respect to � when � � 1
2
is:

@ar�t (I)

@�
=

8>>>>>><>>>>>>:

0; if Vt+1(I) <
5� 19�+ 11�2
6(1� 3�)�

2�

3
�
@Vt+1(I)

@�
if
5� 19�+ 11�2
6(1� 3�)� � Vt+1(I) <

5�+ 1

6�
6�

5

@Vt+1(I)

@�
; if Vt+1(I) �

5�+ 1

6�

where:

� = 1� 4�Vt+1 � 2(1� �)q
([4�Vt+1 � 2(1� �)]2 + (�2 + 14�+ 1)

> 0:

Therefore
@ar�t (I)

@�
Q 0, @Vt+1(I)

@�
Q 0, V �r

t+1(I) Q V rt+1(I):

The same result applies when � < 1
2
:

@ar�t (I)

@�
=

8>>>>>><>>>>>>:

0; if Vt+1(I) <
11�2 � 3�� 3
6(3�� 2)�

2�

3
� 0
@Vt+1(I)

@�
if
11�2 � 3�� 3
6(3�� 2)� � Vt+1 <

6� 5�
6�

6�

5

@Vt+1(I)

@�
; if Vt+1(I) �

6� 5�
6�

where:

� 0 = 1� 4�Vt+1 � 2(2� �)p
(4�Vt+1 � 2(2� �))2 + (9�2 � 16�+ 32)

> 0;

8.7 Proof of Proposition 8

The Bellman equation in the vectorial form for the game with in�nite horizon is:

V (a�r (I) ; ar (I)) = A1 + �A2(�; 1� �)V (a�r (I) ; ar (I)) ; (32)
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By transforming equation (32) to obtain the explicit form of V (a�r (I) ; ar (I)), we get

(I� �A2(�; 1� �))V (a�r (I) ; ar (I)) = A1:

If the determinant of matrix (I� �A2(�; 1� �)) does not equal to zero, then the
solution of the last equation is vector V (a�r (I) ; ar (I)) that is determined by the
following expression:

V (a�r (I) ; ar (I)) = (I� �A2(�; 1� �))�1A1:

The determinant of matrix (I� �A2(�; 1� �)) equals to zero when � = 1 and, at

the same time, both elements of matrix A2 equal to zero. The elements A21, A22
equal to zero if and only if a player uses his/her highest possible strategy. Finally,

we compute the matrix (I� �A2(�; 1� �))�1 and obtain:

V (a�r (I) ; ar (I)) =

 
1� �(1� �)A22 �(1� �)A21

��A22 1� ��A21

!
A1

1� �(�A21 + (1� �)A22)
:
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