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Abstract

I explore the technological foundations of dynamic entry models à la Bilbiie-

Ghironi-Melitz where the endogenous creation of new inputs can generate either neo-

classical business cycle dynamics or long run growth. Under a general CRS technology

in labor and intermediate goods produced by monopolistic innovators, substitutability

between inputs drives markups and profitability of innovations as functions of the num-

ber of firms. Decreasing profitability tends to generate a stable steady state associated

with a propagation of shocks fostered by endogenous productivity. The decentralized

equilibrium is ineffi cient and I characterize the optimal policy to fix static and dynamic

ineffi ciencies.
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1 Introduction

Neoclassical models for the study of the propagation of business cycles are based

on investment in capital accumulation that depends on the marginal productiv-

ity of capital combined with shocks to exogenous productivity and mechanisms

of intertemporal substitution (Kydland and Prescott, 1982). Innovation-based

models for the study of long run growth are founded on investment in the cre-

ation of new inputs that depends on the (marginal) profitability of R&D activity

and leads to endogenous increase of productivity (Romer, 1987, 1990). Although

the aggregate technology for the production of final goods is at the basis of both

these major lines of research, the relation between them remains obscure in the

macroeconomic literature. A major step to integrate the two approaches and

develop a new framework for macroeconomic analysis was made possible by

dynamic entry models where endogenous business creation affects business cy-

cle fluctuations (Bilbiie et al., 2012). These models are based on monopolistic

competition in the market for final goods where homothetic preferences of con-

sumers generate demand of new consumption goods: in such an environment,

entry of new firms and products makes consumers better off and contributes to

amplify the propagation of exogenous productivity shocks, but neither affects

productivity nor generates long run growth.

In this work I translate dynamic entry models in terms of monopolistic com-

petition in the market for inputs, introduce a general constant returns to scale

(CRS) and symmetric technology for the production of final goods which de-

termines the demand of inputs, and show that this can give raise either to a
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neoclassical business cycle mechanism or to an endogenous growth mechanism.

What determines the evolution of the economy is the substitutability between

intermediate goods in the aggregate technology, which drives pricing and prof-

itability of the producers of inputs. When technology delivers a profitability

of innovations that is decreasing in the number of inputs used in production,

the destiny of the economy is typically a steady state where new inputs simply

replace obsolete ones, as in neoclassical models with decreasing marginal pro-

ductivity of capital (with a steady state where new capital replaces depreciated

capital). This is also the case in which aggregate shocks determine a business cy-

cle propagation analogous to the one of real business cycle models, but amplified

by entry that boosts the endogenous productivity. Only when the technological

conditions allow for an asymptotically constant (and large enough) profitabil-

ity of innovations due to independent inputs, the destiny of the economy is a

constant growth path fueled by continuous creation of new firms.

I study the dynamics of the deterministic equilibrium system showing that

this is saddle-path stable when the economy is dynamically effi cient in steady

state. However, the equilibrium is ineffi cient in the short run due markups vari-

able between labor and other inputs and over time, and I derive the optimal

taxation that fixes static and dynamic ineffi ciencies: this requires a positive

production subsidy and a dividend tax or subsidy that can vary over the busi-

ness cycle. All the results are exemplified through two examples that can be

used for quantitative investigations, based on technologies featuring a Constant

Elasticity of Substitution (CES) aggregator and a generalized linear aggregator
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(Diewert, 1971).

The analysis of dynamic entry models with monopolistic competition in fi-

nal goods and homothetic preferences is due to Bilbiie et al. (2012). However,

in that model and the subsequent applications entry cannot generate long run

growth and endogenous productivity. The present analysis of monopolistic com-

petition in inputs under a general CRS technology is based on recent advances

in the theory of monopolistic competition in final goods under general micro-

foundations by Bertoletti and Etro (2016).2 Other applications to business cycle

analysis with and without endogenous entry are in Etro (2016, 2018) and Cav-

allari and Etro (2020), while related dynamic entry models with oligopolistic

competition include work by Jaimovich and Floetotto (2008), Etro and Colci-

ago (2010), Savagar (2017), Dixon and Savagar (2020) and others. An analysis

of long run growth with population growth is investigated in Etro (2019) in a

model with an exogenous saving rate.

The rest of the work is organized as follows. Section 2 introduces the model

and exemplifies its implications with an example. Section 3 analyzes the gen-

eral model and the dynamics. Section 4 is about optimal taxation. Section 5

concludes.
2That work was focused on a demand system derived from a representative consumer with

general preferences over a discrete number of goods. See also subsequent works by Bertoletti

and Etro (2017, 2018) on specific classes of preferences, and Parenti et al. (2017) on the case

of a continuum of goods.
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2 The model

I consider a representative agent with the standard preferences:

U = E

 ∞∑
t=1

βt−1

logCt −
υl
1+ 1

ϕ

t

1 + 1
ϕ

 (1)

where E[·] is the expectations operator at time t = 0, β ∈ (0, 1) is the discount

factor, Ct is consumption of the final good, lt is labor supply, ϕ ≥ 0 is the Frisch

elasticity and υ ≥ 0 is a scale parameter for the disutility of labor. Consumers

save by investing in a mutual fund that finances the creation of new intermediate

goods. Given the return rate rt and the wage wt, the standard FOCs for utility

maximization are:

lt =

[
wt
υCt

]ϕ
and

1

Ct
= βE

{
1 + rt+1
Ct+1

}
(2)

The final good is the numeraire of the economy, and is produced by a per-

fectly competitive sector employing labor in quantity Lt and Nt intermediate

goods in quantity Xjt for j = 1, 2, ...Nt. The intermediate goods are produced

by monopolists with a linear technology transforming a unit of final good into

a unit of intermediate good. The creation of a firm able to produce a new vari-

ety of input requires a fixed investment η in units of the final good one period

ahead. The gross domestic product (GDP) of this closed economy is given by

the output of final goods Yt net of intermediate goods at factor cost
∑Nt
j=1Xjt,

and is destined to either consumption Ct or savings. In each period the num-

ber of new firms Ne
t must satisfy the equality of investment N

e
t η and savings
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according to the resource constraint:

Yt =
Nt∑
j=1

Xjt + Ct +Ne
t η (3)

Entry of producers of new intermediate goods is endogenous. However, these

goods become obsolete in each period with probability δ > 0, inducing the exit

of their producers. Therefore, the rate of change of the number of firms or

intermediate goods follows:

Nt+1 = Ne
t + (1− δ)Nt (4)

which drives the dynamics of the economy.3

The main novelty of the analysis is a general neoclassical technology for the

production of final goods, with the following CRS production function:

Yt = F (AtLt,Xt) (5)

where At represents exogenous labor productivity, Xt is the vector of interme-

diate goods, and the function F is increasing and concave in each input and

assumed symmetric in the intermediate goods.4

3The rest of the results would be marginally affected by considering the equation of motion

used by Ghironi and Melitz (2005) and the subsequent literature, where depreciation applies

also to the new varieties. I adopt a more standard formulation to emphasize similarities with

dynamic models of capital accumulation. The model could be also adapted to the use of labor

to create new varieties as in Bilbiie et al. (2012) without substantial changes in the results.
4More precisely, this can be seen as a reduced form of a symmetric production function

defined over an arbitrarily large number of potential intermediate goods, Nt of which are pro-

vided in positive quantity at time t. Relevant properties of symmetric functions are discussed

in Feenstra (2003) and Bertoletti and Etro (2016).
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The technology used by Romer (1990) to study product creation in a sim-

ilar framework was given by Yt = (AtLt)
1−α∑Nt

j=1X
α
jt
with α ∈ (0, 1). Re-

lated technologies satisfying additive separability between intermediate goods

(Romer, 1987) imply that the demand of each intermediate good is separable

from the demand of all the others. This excludes any form of substitutability

between these inputs (given the labor input), and is actually the root of the con-

stant growth path obtained by Romer (1990) in a deterministic environment.

Postponing the detailed analysis of general technologies to the next Section,

here I want to sketch a slight generalization of the Romer model which allows

to generate a rather different dynamic behavior and can be used for quantitative

applications in business cycle analysis.

2.1 CES technology

Consider the following CES technology:

Yt = (AtLt)
1−α

(∑Nt
j=1X

θ−1
θ

jt

) θα
θ−1

where θ > 1 is the elasticity of substitution between intermediate goods. One

can easily verify that when α = 1 − 1/θ we are back to the Romer case with

independent intermediate goods, but for α < 1−1/θ these inputs are substitutes

in the production of final goods, which is the neoclassical case I am interested in.

In each period, the competitive sector producing final goods demands interme-

diate goods and labor according to standard conditions equating their marginal

productivity to the prices pit for the intermediate goods i and to the wage wt for

labor. Given this CES technology, each producer of intermediate goods faces
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a demand with a constant elasticity θ in its price, but this demand depends

also on the prices of all the other inputs. Under monopolistic competition, how-

ever, each producer tends to ignore the interaction with the other producers and

sets the price of its input in every period as a constant markup on the unitary

marginal cost:

pt =
θ

θ − 1

This symmetry across producers and over time allows us to recover easily the

equilibrium demand of each input as X(Nt) = φN
1−θ(1−α)
(θ−1)(1−α)
t AtLt for a given

constant φ ≡ ((θ−1)α/θ)
1

1−α . In the Romer case (when α = 1−1/θ), the impact

of the number of inputs disappears and the production level grows with the scale

of the economy, but when the inputs are substitutable (when α < 1 − 1/θ), a

larger number of them is going to reduce the producton of each new input.

Since the profits of each producer are given by Π(Nt) = X(Nt)/(θ − 1), they

must follow the same relation with the number of firms. Endogenous entry of

firms implies that in every period the present discounted value of profits must

equate the entry cost, and the equilibrating variable is the interest rate, which

therefore will follow the same pattern of profits and production:

Π(Nt)

rt + δ
= η

I can also recover the aggregate output as Yt = φαAtLtN
α

(θ−1)(1−α)
t , which is

linear in the number of inputs in the Romer case, but is concave in the general

case: substitutability between inputs introduces a sort of decreasing marginal

productivity in the number of intermediate goods which is what insures conver-
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gence toward a steady state. And it is standard to verify that the equilibrium

wage is a constant fraction of output per capita:

wt = (1− α)φαAtN
α

(θ−1)(1−α)
t

which is also a function of the number of firms. Combining resource constraint

(3) and equation of motion (4) with the equilibrium production levels we obtain

the evolution of the stock variable represented by the endogenous number of

firms as:

Nt+1 =

(
1− α+ α

θ

)
φαAtLtN

α
(θ−1)(1−α)
t − Ct

η
+ (1− δ)Nt

and combining interest rate and wage with the behavioral rules (2) we have

a complete characterization of the evolution of aggregate consumption, labor

and number of firms. In a deterministic environment this produces a constant

endogenous growth when α = 1−1/θ and a saddle-path stable evolution toward

a steady state when α < 1 − 1/θ.5 In a stochastic environment, the last case

generates a business cycle dynamics that is magnified by the endogenous creation

of inputs which affects the effective productivity.

2.2 Other technologies

The CES example is by no means unique for its implications. As an illustration

of a more general class of production functions nested in (5), let us consider:

Yt = (AtLt)
1−αΨ(Xt)

α (6)
5 It is interesting to notice that in the case of a stable saddle-path, the growth effects of

market size expansions would be sterilized by firm’s entry and a constant population growth

would drive a constant endogenous growth rate (as in Jones, 1995).
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where Ψ(Xt) is a linearly homogeneous aggregator. The case of the CES aggre-

gator emerges when:

Ψ(Xt) =
(∑Nt

j=1X
θ−1
θ

jt

) θ
θ−1

(7)

Another useful example is based on a generalized linear aggregator à la Diewert

(1971) as:6

Ψ(Xt) =
∑Nt
j=1

(
γXjt +

∑Nt
k 6=j

√
XjtXkt

)
(8)

with γ > 0. I will return to these two examples repeatedly, but the general

analysis of the next Section will apply to any CRS technology represented by

(5). Other useful examples can be based on implicit additivity (Hanoch, 1975),7

generalized separability (Pollak, 1972),8 translog specifications (Feenstra, 2003)

and others taking into account the impact of the number of inputs on the func-

tional form. One can also consider production externalities that are positively

related to the number of intermediate goods since they preserve the CRS of the

technology.

6 I am thankful to Paolo Bertoletti for pointing out this example. See Bertoletti and

Etro (2016) for monopolistic competition in final goods under a generalized linear preference

aggregator.
7A production function à la Kimball (1995) implicitly defined by:

1 =

Nt∑
j=1

F̃ (AtLt/Yt, Xjt/Yt)

satisfies CRS and delivers a demand of each intermediate good that depends on the same

aggregate production and, therefore, on the quantity of the other inputs.
8See Matsuyama and Ushchev (2017) and Bertoletti and Etro (2018) for further applica-

tions.
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3 General analysis

In this Section I solve for the equilibrium of the general model and analyze its

dynamic behavior. It is convenient to analyze the model defining variables per

effective worker, denoted with lower case letters. Exploiting CRS, the general

production function (5) can be re-expressed in intensive form as Yt = AtLtf(xt),

where xit = Xit/AtLt is the production level of good i per effective worker and

f(x) ≡ F (1,x) is a symmetric function with f(u0) = 0, where u is a unit vector,

fi(x) ≡ ∂f(x)/∂xi > 0 and fii(x) ≡ ∂2f(x)/∂x2i < 0. I also assume that the

function under symmetric inputs f(ux) is differentiable and increasing in the

number of goods N for any constant x, and that the (production) gains from

variety are large enough that fN (ux) > x.9

3.1 Monopolistic competition and input prices

The inverse demand of each intermediate good i in period t satisfies pit = fi(xt),

which is decreasing in xit, and changes with the production level of the other

intermediate goods depending on the sign of fij(x) ≡ ∂2f(x)/∂xi∂xj . In par-

ticular, taking as given the labor input, the intermediate goods are independent

if fij(x) = 0, as under the separability assumed by Romer (1987, 1990), but

they are substitutes if fij(x) < 0, which holds for instance in the CES and

Diewert examples for a small enough α. The associated variable profits of firm

i in period t are Πit = πitAtLt, where the profits per effective worker πit are

9For instance, the Romer case implies f(ux) = Nxα, the CES case implies f(ux) =

N
αθ
θ−1 xα and the Diewert case implies f(ux) = [N(N + γ − 1)]αxα.
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defined as:

πit = fi (xt)xit − xit

These are maximized taking the labor force as given and chosing the produc-

tion level per effective worker xit under monopolistic competition (Dixit and

Stiglitz, 1977). Symmetry implies that the relevant demand elasticity ε(Nt, xt)

depends in each period either on the number of inputs Nt or the equilibrium

production per effective worker xt. Bertoletti and Etro (2016) have shown that

the equilibrium elasticity is the symmetric version of the Morishima elasticity

of complementarity between inputs, implying prices:

pt =
1

1− ε(Nt, xt)
with ε(N, x) =

fji(ux)x− fii(ux)x

fi(ux)
(9)

This allows one to compute price rules for any technology. For instance, in

the Romer case the monopolistic price is constant at p = 1
α . Also the CES

example delivers a constant price p = θ
θ−1 in spite of substitutability. Instead,

the Diewert example generates a price pt = 2 1+(γ−1)/Nt
1+2(γ−1)/Nt , which is constant only

for γ = 1 and otherwise can be either decreasing or increasing in the number of

firms: markups are countercyclical for γ < 1 and pro-cyclical for γ > 1. Finally,

departing from a homogenous aggregator of the intermediate goods, the price

would depend also on the scale of production x.10

10The mentioned implicit additivity delivers the following elasticity:

ε(N, x) = − F̃XX (1/y, x/y)x
F̃X (1/y, x/y) y

where the aggregator y is output per effective worker and satisfies 1 = NF̃ (1/y, x/y), which

clarifies how the price depends on both scale of production x and number of goods N . Explicit

additivity delivers an elasticity that depends on x only (Romer, 1987).
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To determine the equilibrium production of each intermediate good for a

given number of firms, I use the symmetric demand system pt = fi(uxt) and

(9) to obtain the following equilibrium condition:

fi(uxt)− fji(uxt)xt + fii(uxt)xt = 1 (10)

This condition implicitly defines the production of each input per effective

worker xt ≡ x(Nt) as a function of the number of firms only. I assume this

function to be unique and twice differentiable. It is actually a constant when

f(x) is separable in the inputs (Romer, 1987), since the left hand side of (10) is

independent from N : for instance, in the Romer (1990) case the production per

effective worker x = α
2

1−α remains constant. Otherwise, the production depends

on the number of firms in an ambiguous way due to the high order derivatives

obtained differentiating (10). The CES example implies x(N) = φN α̃−1 with

α̃ = α
(θ−1)(1−α) , and this production level is always decreasing in the number of

firms for α < θ−1
θ . The Diewert example has ambiguous comparative statics in

general, but the simple case where γ = 1 delivers the equilibrium production

x(N) = (α/2)
1+α̃

N α̃−1 with α̃ = α
1−α , that is decreasing in the number of

firms for α < 1/2, which insures input substitutability.11

Since the equilibrium elasticity ε(N, x(N)) is entirely determined by the

number of firms, also markups and profits depend only on the stock variable

of the economy represented by the number of firms. Notice that the profits of

the marginal firm active in the market are crucial for the entry analysis, but

11 In the general case x(N) =
(α
2
[N+2(γ−1)])

1
1−α

N(N+γ−1) is decreasing in the number of firms for

low enough α:
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symmetry implies that all firms make the same profits. The profit function per

effective worker is therefore:

π(Nt) =
ε(Nt, x(Nt))x(Nt)

1− ε(Nt, x(Nt))
(11)

and I assume that it is non-increasing to have a meaningful free entry equilib-

rium: a suffi cient condition for this is that both production x and the elasticity

ε are non-increasing in the number of firms. The Romer case delivers constant

profits, while the profits for the CES case and the Diewert case are both de-

creasing when the intermediate goods are substitutable enough.

The present discounted value of a new firm created at time t can be expressed

recursively as:

Vt =
π(Nt+1)At+1Lt+1 + (1− δ)Vt+1

1 + rt+1

and free entry in the market for innovation in each period constraints the return

rate and the number of firms such that this value equals the fixed entry cost.

This implies the equilibrium return rate:

rt =
π(Nt)AtLt

η
− δ (12)

which follows the pattern of profitability of the entrants.

In the final goods’sector, firms demand labor until its marginal productivity

equates the wage insuring zero profits with wtLt = AtLt [f(uxt)−Ntxtfi(uxt)].

Using the equilibrium production of intermediate goods, I can finally express

the wage per effective worker as a function of the number of firms:

w(Nt) = f(ux(Nt))−
Ntx(Nt)

1− ε(Nt, x(Nt))
(13)
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and aggregate output as Yt = AtLtf(ux(Nt)), where f(ux(Nt)) is an equilib-

rium relation between the output per effective worker and the number of inputs.

Finally, it is also convenient to express the GDP per effective worker as:

z(Nt) = f(ux(Nt))−Ntx(Nt) (14)

which must correspond to the sum of wage and total profits per effective worker,

and is assumed increasing and concave in the number of inputs. This holds in

our CES and Diewert examples.

3.2 General equilibrium

I can now derive the general equilibrium dynamics for (Nt, Ct, Lt). The equation

of motion for the number of firms (4), using the resource constraint (3) and the

net output (14), becomes:

Nt+1 =
AtLtz(Nt)− Ct

η
+ (1− δ)Nt (15)

The labor market equilibrium, using the labor supply in (2) and the labor de-

mand satisfying the wage in (13), implies Lt = lt satisfying:

Lt =

[
w(Nt)At
υCt

]ϕ
(16)

Finally, consumption follows the Euler equation in (2) with the interest rate

given by the free entry condition (12), which provides:

1

Ct
= βE

{
(1− δ)η + π(Nt+1)At+1Lt+1

ηCt+1

}
(17)

Under our assumptions, the dynamics of this system resemble those of an

RBC model (where the stock of capital is replaced by the number of firms)
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when net output and wages increase in the number of firms while profitabil-

ity decreases with them. One can also interpret Atf(ux(Nt)) as the effective

productivity which is endogenously augmented by investment. Accordingly, the

impact of a positive shock is amplified by the increased productivity. In case of

a shock to exogenous productivity At, this generates an investment in business

creation which endogenously increases productivity and magnifies the propaga-

tion of the shock.

3.3 Dynamics

It is useful to consider the dynamics of the deterministic environment obtained

from the system (15)-(17) after assuming constant productivity and labor force

and defining the relative market size as S ≡ AL/η. For instance, in our two

examples of a CES and Diewert technology, the equibrium systems can be rep-

resented as follows:

Nt+1 = z̃SN α̃
t − Ct/η + (1− δ)Nt

Ct+1 = β
{

1− δ + π̃SN α̃−1
t+1

}
Ct

where α̃ ∈ [0, 1] and the parameters z̃ and π̃ depend on the specification.12 In

either case, when α̃ = 1 this system gives raise to a constant growth rate for the

12 In the CES example one can compute α̃ = α
(θ−1)(1−α) , z̃ =

(
1− α+ α

θ

)
φα and π̃ = φ

θ−1 ,

and in the Diewert example with γ = 1 one can compute α̃ = α
1−α , z̃ =

1
2

(
α
2

) α
1−α , and

π̃ = 1
2

(
α
2

) 1
1−α . The CES example nests the Romer (1990) model with constant growth when

α = 1−1/θ, and provides a stable saddle-path converging to a steady state for any α < 1−1/θ.

The Diewert example provides constant growth when α = 1/2 (so that π̃ = 1/32) and a stable

saddle-path for α < 1/2.
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number of firms g = βSπ̃ − [1− β(1− δ)] if this is positive, and when α̃ < 1 it

generates a stable saddle-path converging to the steady state number of firms

N∗ =
[

βπ̃S
1−β(1−δ)

] 1
1−α̃

.

I will now show that these are qualitatively the same two outcomes that can

emerge in the general model. When a technology implies π(∞)S > 1/β− 1 + δ,

while the number of firms increases the Euler equation implies that the economy

approaches the constant rate of long run growth:

g = βSπ(∞)− [1− β(1− δ)] (18)

This applies to examples with a constant profitability à la Romer (1990) where

the economy remains always on a constant growth path. It also applies to more

general cases where profitability is only asymptotically constant and the growth

rate declines gradually toward its long run level.

In the alternative case where π(∞)S < 1/β − 1 + δ, the monotonicity of

profits implies a unique steady state which satisfies:

π(N∗) =
1− β(1− δ)

βS
(19)

and implies a number of firms increasing in the discount factor β and in the

market size S, and decreasing in the exit rate δ, while the consumption level in

steady state becomes:

C∗ = η [z(N∗)S − δN∗] (20)

The process of business creation is dynamically effi cient if the steady state does

not feature more firms than what maximizes consumption in the long run, that

is, if z′(N∗)S ≥ δ. This requires conditions on high order derivatives of the
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equilibrium production function without immediate interpretation, but it is easy

to verify that dynamic effi ciency always holds in our CES and Diewert examples

above. The important point is that saddle-path stability is insured in general by

dynamic effi ciency. To verify this, notice that the Jacobian of the equilibrium

system for number of firms and consumption is:

J =

 Sz′(N∗) + 1− δ −1/η

βSπ′(N∗)C∗ [Sz′(N∗) + 1− δ] 1− βSπ′(N∗)C∗/η


with trJ > 2 and det J > 1 for z′(N∗)S ≥ δ, which insures the existence of

two real positive eigenvalues one of which is larger than unity. However, beyond

this, I cannot exclude dynamic ineffi ciency or more complex dynamics.13

I conclude by mentioning the main difference with the dynamics of the model

of Bilbiie et al. (2012), where net entry is affected by the number of firms through

its impact on the consumption aggregator and not on the production function,

while profitability decreases due to the lower consumption of each good when

more goods are available. Moreover, departing from CES intratemporal pref-

erences, markup variability over time affects the mechanisms of intertemporal

substitution. This excludes mechanisms based on endogenous growth and pro-

ductivity.

13At the very least, the possibility of a technology featuring production externalities in the

number of inputs allows for complex dynamics.
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4 Market ineffi ciencies and optimal taxation

Contrary to what happens in the standard RBC model, the decentralized equi-

librium of this and similar models is suboptimal due to imperfect competition

(see Etro, 2018, and Bilbiie et al., 2019, for models with monopolistic com-

petition in final goods and endogenous entry).14 In our environment, a social

planner would solve the problem of maximizing utility (1) with respect to Nt+1,

Ct, Lt and Xt subject to the constraints (3), (4) and (5). After imposing sym-

metry on the production of inputs this problem simplifies to:

max
Nt+1,Lt,xt

E[

∞∑
t=1

βt−1{log[AtLt [f(uxt)−Ntxt]−ηNt+1+(1−δ)ηNt]−
υL

1+ 1
ϕ

t

1 + 1
ϕ

}]

The FOCs are respectively:

1

Ct
= βE

{
(1− δ)η + [fN (uxt+1)− xt+1]At+1Lt+1

ηCt+1

}

Lt =

{
At [f(uxt)−Ntxt]

υCt

}ϕ
Nt∑
j=1

fj(uxt) = Nt

The latter is equivalent to fi(uxt) = 1, and therefore to marginal cost pricing

for all goods, and implies a production depending on the number of inputs

xt ≡ xo(Nt),15 which is above the equilibrium production due to the absence of

14See also Lewis and Winkler (2015).

15The Romer (1990) case provides a constant xo = α
1

1−α of the optimal production, but

the more general CES case implies xo(N) = α
1

1−α N α̃−1, and the Diewert case with γ = 1

implies xo(N) = α
1

1−α N
1

1−α−2.
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a markup. Given this, the remaining optimality conditions become:16

Nt+1 =
AtLt [f(uxo(Nt))−Ntxo(Nt)]− Ct

η
+ (1− δ)Nt (21)

Lt =

{
At [f(uxo(Nt))−Ntxo(Nt)]

υCt

}ϕ
(22)

1

Ct
= βE

{
(1− δ)η + [fN (uxo(Nt+1))− xo(Nt+1)]At+1Lt+1

ηCt+1

}
(23)

As in other models with endogenous entry (Bilbiie et al., 2019), the decen-

tralized economy features 1) a static distortion, due to positive markups on

intermediate goods and not on labor, which delivers a suboptimal production of

inputs, and 2) a dynamic distortion, due to markup and profit variability over

time, which delivers a suboptimal investment in R&D. The optimal taxation

would require two variable tax rates to fix the problem. Introducing a produc-

tion subsidy st on the sales of each firm and a dividend tax τ t turns profits into

πit = [pit(1 + st)− 1]xit(1 − τ t) and it is easy to verify that the optimal tax

rates satisfy:

st =
ε(Nt, x

o(Nt))

1− ε(Nt, xo(Nt))
> 0 (24)

τ t =
1

ε(Nt, xo(Nt))

[
1− fN (uxo(Nt)) [1− ε(Nt, xo(Nt))]

xo(Nt)

]
(25)

When the markups are countercyclical the optimal production subsidy is also

countercyclical, but the cyclical properties of the dividend tax are more complex,

and the same sign of this tax is uncertain, since the decentralized equilibrium

may involve either excess or insuffi cient entry and therefore require either a

16Notice that under our assumption on the gains from variety (fN (ux) > x) the optimal

labor supply and GDP increase with the number of firms.
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tax or a subsidy on entry. The case of a CES technology (including the “plain

vanilla”Romer case) provides optimal taxes:

st =
1

θ − 1
and τ t = 0

In this case, a constant production subsidy is enough to restore optimality be-

cause the equilibrium markups are already optimally constant over time and

an appropriate constant wedge fixes the static ineffi ciency. Instead, the general

case of a Diewert technology provides the optimal taxes:

st =
Nt

Nt + 2(γ − 1)
and τ t =

1− γ
Nt + 2(γ − 1)

to fix both the static and dynamic distortions. Both of them are countercyclical,

and the optimal dividend tax is positive (negative) only when γ < (>)1.

5 Conclusion

I have presented a flexible price DSGE model with a general CRS technology in

intermediate goods and labor for the study of business cycle with endogenous

productivity. Under substitutability between inputs, the profitability of inno-

vation tends to decrease with the number of inputs, generating convergence to

a steady state. Augmented with aggregate shocks, the model can generate a

richer amplification mechanism than a basic neoclassical model without capital

because a positive temporary shock makes inputs more productive and incen-

tivizes investment and labor supply. While my purpose was methodological, a

quantitative analysis is a priority: the framework could be also used for further
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extensions with heterogeneous inputs, trade, price frictions in final goods, im-

perfections in the credit market à la Bernanke-Gertler, and in the labor market

à la Diamond-Mortensen-Pissarides.17

17See Poutineau and Vermandel (2015) and Colciago and Rossi (2015) for related applica-

tions with endogenous entry.
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