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Abstract

In this paper we study an endogenous growth model where investments are (generically) dis-

tributed over multi-period flexible projects leading to new capital once completed. Recently devel-

oped techniques in dynamic programming are adapted and used to unveil the global dynamics of

this model. Based on this analytical ground, several numerical exercises are performed to show the

quantitative relevance of the analytical findings with an emphasis on the relation between project

features and economic growth and speed of convergence toward the balanced growth path.
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1 Introduction

Motivation – The notion of investment project has been often used in the economic growth

literature (e.g. Asea and Zak [3], Bambi et al. [4], [5]) and in the real business cycle literature (e.g.

by Kydland and Prescott [37]) to introduce gestation lags in the production of capital goods. In

these contributions, a project has always three features. First, it requires several stages before its

completion and, once completed, leads to new productive capital; therefore, an (exogenously given)

lag of several periods exists between the beginning of a project and the formation of new productive

capital. Secondly, the amount of resources allocated to a project, as well as its objective, are decided

at its beginning and cannot be adjusted afterward. For this reason, we refer to this kind of projects as

fixed projects. 1 Lastly, the investment distribution over the fixed projects is exogenously given and,

furthermore, not generic. More precisely, it is often assumed that the investment is either spread

evenly over all the projects independently on their degree of completion (uniform distribution), or

concentrated on the project at its earliest stage (i.e. pure investment lag case). 2

While the first feature is confirmed by several empirical evidences (e.g. Koeva, [35]) the other two

features are less convincing and are often introduced to make the model more analytically tractable.

The assumption of fixed projects seems even more restrictive when capital is constructed broadly “to

encompass human capital, knowledge, public infrastructure, and so on" (see Barro and Sala-i-Martin

[7]) as it is usually the case with endogenous growth models having linear technology.

In fact, several empirical evidences point to projects with a certain degree of flexibility. Among

them, those on public infrastructures are probably the most popular. In the United Kingdom,

the government started in 2009, as a consequence of the recession, a public spending review which

comprehended 217 projects, totalling 34 billion pounds (The Independent 17 June 2010); following

the review, several of these projects were reduced or even axed as the building of new schools for

around 5 billion pounds (Guardian, 6 July 2010), or the building of new hospitals for more than 2.5

billion pounds (The Telegraph, 3 March 2009). 3

The third feature is also not confirmed by several recent contributions pointing out to alternative

distributions over the projects. In a model with projects lasting 4 quarters, Altug [2] estimates that

70 per cent of the resources are allocated in the first two quarters and strongly reject the hypothesis

1. It is worth noting that a project already started is fixed not because the investment is irreversible but because
the resources necessary to complete it are predetermined or committed at its beginning. This difference will result
plainly clear in Section 2.1 where we will formally define the projects.

2. Kydland and Prescott propose a model setup with a generic distribution but the equilibrium path is numerically
computed by assuming the two previously described distributions (i.e. uniform distribution or pure investment lag).

3. Evidences of opposite sign can be also found in the literature. Recently Flyvbjerg et al. [26], [25] have estimated
that additional resources were required to complete around 90% of a sample of 258 public transportation infrastructure
projects in the United States and that the additional resources added over time amount for the 20%-40% of the initially
planned investment. Modifications to public works are also contemplated and regulated by law in some European
Countries as shown, for example, by the Italian Law 109 approved in 1994.
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of uniform distribution in favor of a decreasing exponential distribution. Similar results are found

by Park [44] when the projects take three quarters to be completed. On the other hand, some

authors (e.g. Christiano and Todd [17] or Del Boca et al. [9]) have found evidences in support

of an increasing exponential distribution according to which a close to zero proportion of resources

is allocated in the first stage of the project (planning) and increasingly higher in the other stages

(construction). Other distributions identified by the literature are a U-shaped distribution (e.g. Zhou

[50], and Peeters [46]) and a hump-shaped distribution (e.g. Altug [2]). Interestingly, there is also

evidence that the heterogeneity in the distributions can be country-specific (e.g. Peeters [46]).

The heterogeneity in the project’s characteristics (i.e. investment distribution and project’s

length) seems even more compelling when we consider not only physical capital but also human

capital, public infrastructure, etc. For example, the realization of public infrastructures projects

varies significantly across countries with some reporting significant delays in their completion. 4

Of course, the heterogeneity in the project’s features becomes even more evident when we compare

developed with developing countries as emerges from a quite large literature on construction projects

showing that the actual project’s length is, on average, longer in developing countries where it can

arrive to be twice the estimated project duration. 5

Therefore, the aim of this paper is to develop an endogenous growth model characterized by

generically distributed investment over flexible multi-period projects to account for the empirical

evidences just described and to investigate how much the growth rate and transitional dynamics can

be affected both qualitatively and quantitatively by differences in the project’s characteristics. In

this extent, we depart from the standard assumptions used in the literature by modifying the second

and third feature of the investment projects.

Description of the Model – The engine of growth in our economy is the presence of constant

returns to scale in the capital stock which is the only accumulating factor of production. A linear

technology is a useful assumption for several reasons. First, because capital is then defined in a

broader sense, and our results can be related to the empirical evidences on investments in public

infrastructures, human capital formation, and construction mentioned before; second, because it lets

us investigate the global rather then the local dynamics of the economy and the welfare analysis can

be done without the usual problems related to the approximation errors.

Our analysis focuses on the centralized version of the model where a benevolent social planner

decides, as usual, how much to consume and save in each period; however, the aggregate net in-

4. A typical example is the list of the incomplete public projects recently published by the Italian Public Infrastruc-
ture and Transport Ministry (see “Elenco Anagrafe Opere Incompiute”, Ministero per le Infrastrutture e Transporti).

5. Koushki et al. [36] shows that the estimated residential construction project duration in Kuwait is on average
8.3 months (planning) plus 9.4 months (construction) while the actual is 8.3 plus 18.2 months. Similar results are
found in studies focusing on other developing countries such as Nigeria (Mansfield et al. [40]), Jordan (Al-Momani
[1]), etc.
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vestment contributes to the development of all the projects not yet completed (flexibility), each of

them leading to new capital at different dates in the future. Then new capital is obtained as the

weighted (Riemann) sum of all the investments undertaken over a given (finite) time interval, and

as its limit when we move to continuous time. The other departure from the existing literature is

to allow for a generic distribution of the investment over the (flexible) projects by keeping generic,

but still exogenous as in Kydland and Prescott, the weights in the previously mentioned (Riemann)

sum.

Before moving to our results, we stress that a project in our model is defined as flexible not

because the generic investment distributions is endogenous but rather because the resources to be

invested for its advancement or completion are not predetermined as in the fixed case explained at

the beginning of this introduction.

Main Results – The paper contributes to the existing literature in three ways. First, it provides

a full analytical characterization of the global dynamics of an endogenous growth model with in-

vestment generically distributed over flexible multi-period projects; this is done in the core part of

the paper where we use a dynamic programming approach to unveil the closed-form optimal path of

all the aggregate variables. This result is important also because constitutes the solid ground where

the quantitative analysis is built on.

Secondly, the dynamic programming approach used in this paper represents a methodological

contribution to the existing theoretical literature since it provides, for the first time, a strategy

to solve optimal control models where the state equation is an integral delay differential equation

(IDDE hereafter). Most importantly, our approach allows to find the optimal path of the aggregate

macroeconomic variables explicitly, something not achievable using the existing results on the Pon-

tryagin maximum principle. Moreover, the strategy developed in this paper can be easily adapted

and applied to other interesting economic problems such as those on optimal dynamic advertis-

ing whose solutions have been always obtained for specific distributions of the forgetting time (see

section Related Literature).

Thirdly, our analysis shows that economies with same interest rate, preference discount factor,

depreciation rate, and elasticity of intertemporal substitution but different projects’ characteristics

may grow at different rates and that the heterogeneity in the projects’ characteristics may imply

quantitatively relevant differences in output growth. For example, we show in one of our first

quantitative exercise that the income gap after 100 years between two economies, which are similar

but their investment’s distributions, is 9.4% when in both economies the length of a project, d, is

two years but the richest is characterized by time-to-plan (i.e. increasing exponential distribution)

while the poorest by a uniform distribution of the investment over the projects. The income gap
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changes to 37.02% when the poorest is characterized by pure investment lags in production (i.e.

Dirac’s Delta in −d). Even larger differentials are observed if the project length changes from 2 to

3, 4, and 5 years. In the latter, the income gap after 100 years is 109.6% when the poorest has

pure investment lags in production while there is time-to-plan in the richest. Crucially, the effect

of different investment distributions on economic growth has not been investigated before; in fact,

previous contributions have always focused on the effect of the project’s length on economic growth

for an exogenously given but specific distribution which assumed all the resource to be invested at

the beginning of a project (see Bambi et al. [5]). Based on our analytical findings we have also

performed some numerical exercises which show two interesting things: first, it is possible to rank

the investment distributions in term of their negative effect on economic growth if we exclude the

hump-shaped distribution; second, the effects of this distribution on economic growth becomes, as

expected, more and more negative as the length of the project increases but such change is milder

than that implied by other distribution (such as the uniform) for some choices of the project’s length

(see Table 2).

Lastly, we show how different projects’ features modify the transitional dynamics of the standard

AK model; again, this analysis generalizes existing results, such as Bambi et al. [5], which have

always focused on the role of the project’s length in a pure gestation lag environment (i.e. the

investment distribution is a Dirac delta δ−d). In fact, our analysis unveils how different choices of the

project’s length and of the investment distribution may affect the growth rate and the transitional

dynamics of an economy. Furthermore, we propose several quantitative exercises to assess how

different projects features affect the average and maximum absolute deviation of the optimal output

path from the balanced growth path as well as its speed of convergence. Most importantly, we find

that economies with projects’ features more detrimental for economic growth are also characterized

by a slower convergence to the balanced growth path. The speed of convergence differentials can be

quantitative relevant, ranging from 24% to 106% for different investment distributions, assuming a

project’s length of two years; such figures change to 56% and 252% when the project’s length is five

years.

The rest of the paper is organized as follows. Section 2 presents the related theoretical literature;

Section 3 explains the model setup with emphasis on the definition of the flexible multi-period

investment projects and the investment distributions. In Section 4, we state the problem formally

as an optimal control problem and we prove some important preliminary results. In Section 5 we

explain the methodological procedure to deal with this kind of problems and we prove the main

theoretical result of the paper. In Section 6 we use the results of Section 5 to describe the balanced

growth paths, while in Section 7, we study the transitional dynamics of the economy. Finally Section
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8 assesses numerically the quantitative implications of our model in term of economic growth and

transitional dynamics with an emphasis on the speed of convergence and welfare analysis. All proofs

are in Appendix while in the supplementary material the interesting reader may find the complete

procedure used to solve the optimal control problem.

2 Related Literature

Classical economists, such as Jevons [32, Ch.VII] and Bohn Bawerk [49], argued that the time

required to build new capital is a relevant dimension to be investigated to understand its role on the

accumulation of capital and, therefore, on the growth rate and business cycle of an economy. Since

then a quite large literature has followed.

Several contributions on economic growth and endogenous fluctuations (see, among others

Kalecki [34], Benhabib and Rustichini [8], example 7, page 332, Asea and Zak [3], Ferrara et al.

[24], Bambi [4]) have studied analytically the dynamics of economies with pure investment lags and

fixed projects. In a stochastic general equilibrium framework, Kydland and Prescott [37] showed

that time-to-build may enhance the persistence of fluctuations emerging from exogenous random

productivity shocks. As explained in the introduction, our paper differs from this existing literature

because we study an endogenous (deterministic) growth model where the investments are generically

distributed over flexible projects.

Interestingly, Lucas [39] is the contribution which probably shares more similarities with our

paper. In fact, Lucas [39] studies, in a partial equilibrium framework, the optimal investment policy

for a single firm whose objective is to maximize the discounted flow of profits by choosing the

number of projects to initiate taking into account that the limit of the weighted (Riemann) sum

of all the initiated projects undertaken over a given (finite) time interval generates new capital

stock. Therefore, the capital’s formation equation is an IDDE, closely resembling ours. 6 However,

there are three crucial differences with respect to his contribution. The first concerns the ownership

right of capital; in our model, the firms rent capital at each date from the households and then

their profit maximization problem is static while the households’ problem is dynamic and their

saving/investment is spread over the not yet completed projects. The second difference is the aim of

the analysis, since we are interested in understanding how different distributions and lengths of the

projects may affect the growth rate and transitional dynamics of the economy. The last difference is

that the main analytical results in Lucas (see [39], page 43) are obtained by restricting the analysis to

those distributions which allow the author to convert the original complicated problem to a classical

6. Lucas [39] represents a generalization of the results in Lucas [33] to the case of distributed delays.
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problem in the calculus of variations. On the other hand, our approach does not require restrictions

on the distributions of the investment over the projects. In this extent, we contribute also from a

methodological viewpoint by providing an approach which can be used to solve a broader class of

problems.

Similarly, our paper is related to the stream of literature on optimal dynamic advertising. In their

seminal contribution, Arrow and Nerlove [41] study the optimal decision of a monopolistic firm which

has to decide the stock of advertising goodwill which maximizes the discounted flow of profits taking

into account that advertising is a costly activity, and it has a positive, but decreasing over time,

effect on the revenue. As documented by the survey of Feichtinger et al. [23], several contributions

have generalized the Arrow and Nerlove’s model to account for two effects: the lag between the

investment in advertising and the corresponding increase of goodwill, and the distribution of the

forgetting time (for more details, Feichtinger et al. [23], page 200). The resulting law of motion of the

stock of advertising goodwill is similar to the capital’s formation used in our model. Also in this case,

our paper is different in the assumption on the ownership of the stock variable and on the scope

of the analysis. Moreover, all these contributions (e.g. Pauwels [45] and Hartl [29]) characterize

analytically the optimal investment decision for specific distributions using a modification of the

maximum principle, while in our paper we apply dynamic programming techniques to find the

optimal plan of the economy without imposing any restriction on the distribution of the investment

over the projects.

Finally, this paper belongs to the class of optimal control problems where the state equation

is a functional-differential equation. Vintage capital models are, clearly, an economic example of

such problems (see among others Boucekkine et al. [14], Feichtinger et al. [22], and the survey on

this literature by Boucekkine et al. [10]). From a methodological viewpoint, most of the papers

dealing with this kind of problems use maximum principle techniques. Recently, starting from

Fabbri and Gozzi [20], new techniques in dynamic programming have been developed to solve such

problems more explicitly; in particular it is possible to find the closed loop policy function and

unveiling economic mechanisms which were otherwise hidden (e.g., see Bambi et al. [5], Boucekkine

et al. [11, 12]). Before concluding this section, we also recognize that optimal control of functional

integro-differential equations has been also tackled in a partial equilibrium framework by Hritonenko

and Yatsenko [30], [31]. The novelty of their contributions is to consider economic problems with

no distributed lags but with the delay parameter (in our case, the gestation lag) to be endogenously

determined and not an exogenously given constant as almost always assumed in the literature.
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3 Model Setup

3.1 Description of the Flexible Multi-period Projects

We start with a description of the flexible multi-period projects, or investment plans, when time

is discrete and then we move to its continuous counterpart. 7 Let sj,t indicate a project at time t, j

stages from completion. 8 Once completed a project generates new capital:

s1,t = Δkt+1, (3.1)

no project requires more than d periods to be completed, sd+1,t = 0, and the initial capital stock,

k0, is exogenously given.

Flexibility is introduced by assuming that aggregate investment at time t is allocated over a

menu of d projects:
s1,t, s2,t, . . . sd,t

so that each project completed after j periods, receives an (exogenous) share, aj , of the aggregate

investments, it. Formally, an investment distribution is so defined:

Definition 3.1 (Investment’s Distribution). Given the (maximal) project’s length d ∈ N, an

investment distribution over the projects is a vector

(a1, a2, ..., ad) ∈ Rd
+ with

d�

j=1

aj = 1 and aj ≥ 0 ∀j

where, for every j and t, ajit is the share of the investment it over the projects j periods from

completion. 9

Therefore the dynamics of the projects is described by the following equation:

sj,t = sj+1,t−1 + ajit (3.2)

Clearly a project of period length d and started at date t can be modified at any date in the interval

(t, t+ d). Therefore, all the resources added to a project, even those at the very last stage, increase

the capital stock generated by completing it: this is the reason why the project is said to be flexible.

lexibility implies also that the total resources needed to complete a project are not determined at

its beginning but only at the end because a project can be modified at each stage. Therefore,

any investment decision taken at t = 0 influences, according to equation (3.2), all the projects not

7. The choice of continuous time has no relevant implications on the results found in this paper; we have decided
to study the problem in continuous time because it makes the analytical part more tractable.

8. It is worth noting that there is no relevant change in the analytical derivations and interpretation of the results
if sj,t indicates the group of projects at time t, j-stages from completion.

9. Observe that the investment distribution can be read as a probabilistic distribution with aj the probability of
investing in a project j stages from completion. Also N indicates as usual the set of all natural numbers and R+ the
set of all nonnegative real numbers.
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yet completed at that date. On the other hand, flexibility does not mean that the planner may

decide how much to invest in each single project since total net investments are distributed over

the existing projects according to the exogenously given distribution, a(·). It is also worth noting

that in the continuous-time counterpart, a completed project leads instantaneously to new capital

and, therefore, the investment decision at that date may modify its magnitude. Flexibility as just

described, is fully specified as long as the initial history of the investment it with t ∈ [−d, 0) and the

initial capital stock k0 are exogenously given; in fact, this information is essential to characterize

the projects to be completed in the interval [0, d). 10

Disinvestment from an existing project is also possible when the project is flexible. In fact,

investments are assumed reversible and, therefore, any project can be reduced or scrapped even

before its completion. 11

We are now ready to move to the continuous counterpart of (3.2) which is

−∂s

∂j
+

∂s

∂t
= a(j)i(t), j ∈ [0, d], t ≥ 0

while the boundary conditions become s(d, t) = 0 and s(0, t) = k�(t) for every t ≥ 0. Integrating the

last equation leads to

s(0, t)− s(d, t− d) =

� d

0

�
− ∂

∂j
+

∂

∂t

�
s(j, t− j)dj =

� d

0

a(j)i(t− j)dj

so, thanks to the boundary conditions, we have

k�(t) =
� d

0

a(j)i(t− j)dj.

Replacing j with −r and considering a as a function of r ∈ [−d, 0], the above equation becomes

k�(t) =
� 0

−d

a(r)i(t+ r)dr. (3.3)

Before moving to the next section, it is worth noting that (3.3) embeds all the specifications of time-

to-build used in the literature by choosing appropriately the investment’s distribution a(r), and, in

addition, it allows for flexibility. Among the possible distributions, we consider also the extreme

cases a = δ−d, the Dirac delta distribution concentrated at −d, corresponding to pure gestation

lags i(t − d) = k�(t), and a = δ0, the Dirac delta distribution concentrated at 0, which implies no

10. The interested reader is referred to the Appendix for a comparison with the case of fixed projects as used, for
example, by Kydland and Prescott.

11. It is also worth noting that the realization of “big" projects is possible in the sense that the capital added at
the end of the project can be higher than the total amount of resources available at its very beginning (in an example
with d = 3, and assuming linear technology, it could be that a3i0 + a2i1 + a1i2 = Δk3 > Ak0).
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time-to-build i(t) = k�(t). In these two cases a(r) can also be a measure. For sake of simplicity, the

theoretical part focuses only on the case where a is a function (see Assumption 4.1). However, a

straightforward generalization of the arguments presented in this paper can be done to include also

the case where a is a measure (e.g. Bambi et al. [5, 20]). For this reason, our quantitative analysis

(Section 8) considers also the pure gestation lag case a = δ−d and the one without time-to-build

a = δ0.

3.2 The social planner problem

We begin this section embedding the project’s structure just described in the centralized version

of an AK model. The social planner solves the following problem: 12

max

� ∞

0

c(t)1−σ

1− σ
e−ρtdt, σ > 0, σ �= 1, ρ > 0,

subject to

Ak(t) = c(t) + i(t)




k�(t) =
� 0

−d
a(r)i(t+ r)dr, t ≥ 0,

k(0) = k0, i(s) = i0(s), s ∈ [−d, 0).

(3.4)

(c1) k(t) > 0, ∀t ≥ 0; (c2) i(t) ≤ Ak(t), for a.e. t ≥ 0. 13 (3.5)

Observe that A
def
= R − δ > 0 is the interest rate (i.e. the rental rate of capital, R, minus the

depreciation rate, δ). The other two parameters introduced, namely σ, and ρ, indicate respectively

the inverse of the elasticity of substitution and the preference discount rate. Also the resource

constraint indicates that output is used for consumption and net investment. Net investment does

not lead immediately to new capital but contributes to the development of projects as described by

the state equation. In the problem above, k is the state variable and i the control variable. The

constraint (c1) is a constraint on the state variable imposing the nonnegativity of capital while the

constraint (c2) is a mixed state-control constraint imposing that net investment cannot exceed the

capital income. We note that in (3.4), i0(s) must be assigned for a.e. s ∈ [−d, 0) and it is an initial

datum together with k0. 14

The fact that the initial datum is a real number k0 together with a function i0 illustrates that the

12. Since there is no market distortions and markets are complete and competitive, the decentralized version of the
model coincides with the centralized version and, therefore, it is not presented here. It is also worth noting that the
case of logarithmic utility can be treated as well.

13. A property holds almost everywhere (a.e.) means, as usual in Measure Theory, that it holds out of a set of null
Lebesgue measure.

14. In this paper we have used “initial datum”, “initial condition” and “past history” as synonymous.

9



nature of the problem is infinite dimensional. Differently from Bambi et al. [5], the state equation

(3.4) is a IDDE in the control variable and investment are reversible, meaning that net investment

can be also negative.

4 The control problem: preliminary analysis

In this section, we briefly describe the notation on functional spaces used throughout the paper

and then we give a formal statement of the optimal control problem. A sufficient condition for the

finiteness of the value function is also found; this preliminary result is crucial to solve the problem

using the dynamic programming approach. 15

4.1 Notation

We adopt the notation proposed by Brezis [16]. L2([−d, 0];R) denotes the space of all functions

from [−d, 0] to R that are Lebesgue measurable and square integrable. L2
loc(R+;R) denotes the

space of all functions from R+ to R that are Lebesgue measurable and square integrable on all

bounded intervals. 16 W 1,2([−d, 0];R) (resp. W 1,2
loc (R+;R)) denotes the space of the functions in

L2([−d, 0];R) whose weak first derivative exists and belongs to L2([−d, 0];R) (L2
loc(R+;R) resp.)

too. C0(R+;R) and C1(R+;R) denote, respectively, the space of continuous and of continuously

differentiable functions from R+ to R. Similar definitions are given when R is replaced by R+:

simply, in this case, the functions take values in R+. 17

4.2 Formal statement of the control problem

Consistently with the Definition 3.1 of investment distribution, we assume, from now on, the

following.

Assumption 4.1. The share of investment a(·) is a function in the space L2([−d, 0];R+) with
� 0

−d
a(r)dr = 1.

We now begin to rewrite our optimal control problem. First of all, we write more formally the

state equation (3.4): given a control strategy i0 ∈ L2([−d, 0];R) and i ∈ L2
loc(R+;R), we denote by

15. This preliminary part would be also necessary to solve this problem using the maximum principle approach.
16. We recall that, loosely speaking, two functions in L2([−d, 0];R) or in L2

loc(R+;R) are equal if they coincide
almost everywhere (a.e.) with respect to the Lebesgue measure

17. We recall that functions in W 1,2
loc (R+;R) admit a (unique) continuous representative.
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ı̃ : [−d,+∞) −→ R the function in L2
loc([−d,+∞);R) defined as follows.

ı̃(s) =





i0(s), s ∈ [−d, 0)

i(s), s ∈ [0,+∞).
(4.1)

For every i0 ∈ L2([−d, 0];R), k0 ∈ R and i ∈ L2
loc(R+;R) there exists a unique continuously dif-

ferentiable solution to (3.4), i.e. a function of class C 1(R+;R), which will be denoted by k(k0,i0),i,

verifying pointwise (3.4) for each t ≥ 0. Using (4.1), this solution can be explicitly written in integral

form
k(k0,i0),i(t) = k0 +

� t

0

� 0

−d

a(r)̃ı(s+ r)dr ds, t ≥ 0 . (4.2)

The fact that k(k0,i0),i ∈ C1(R+;R) is due to the continuity of the function s �→
� 0

−d
a(r)̃ı(s+ r)dr.

The functional to maximize is

J((k0, i0); i)
def
=

� +∞

0

(Ak(k0,i0),i(t)− i(t))1−σ

1− σ
e−ρtdt, σ > 0, σ �= 1,

under the set

I(k0,i0)
def
= {i ∈ L2

loc(R+;R) : k(k0,i0),i(t) > 0 ∀t ≥ 0, and i(t) ≤ Ak(k0,i0),i(t) for a.e. t ≥ 0}.

We call (P) the problem of finding an optimal investment strategy i∗ ∈ I(k0,i0) such that

J((k0, i0); i
∗) = V (k0, i0)

def
= sup

i∈I(k0,i0)

J((k0, i0); i).

where V is the value function. Define now the Hilbert space H
def
= R× L2([−d, 0];R). The variable

(k0, i0) belongs to one of the following two subsets of H:

H+ def
= (0,+∞)× L2([−d, 0];R), H++ def

= (0,+∞)× L2([−d, 0];R+),

where the initial capital, k0, is always positive while the initial investment, i0, can be reversible

(H+), or irreversible (H++). 18 Nevertheless, it will be convenient to solve the problem at first

assuming (k0, i0) ∈ H and only later restricting its domain of existence to H+ or H++.

The condition for the value function to be finite depends on the maximal growth rate of the

capital stock at infinity. For this reason we first focus on the maximal growth rate of capital in the

next subsection and on the finiteness of V in subsection 4.4.
18. Observe that the inner product in H is defined, given two elements x = (x0, x1) and y = (y0, y1) ∈ H, as

�x, y�H
def
= x0y0 + �x1, y1�L2([−d,0];R).
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4.3 Maximal growth rate of capital

In this section we prove that the admissible state trajectories (capital paths) admit an upper

bound, denoted by kM(k0,i0)
, where the asymptotic growth rate of capital is maximum. To prove the

existence of this upper bound some preliminary results are necessary.

Equation (4.2), Assumption 4.1 and the structure of I(k0,i0) suggest that the highest accumulation

of capital, k, is when consumption is zero and output is fully reinvested at each date, i.e. i(t) = Ak(t)

for all t ≥ 0 (which implies that the constraint (c2) in (3.5) is binding). Substituting this constraint

into the state equation (3.4), we get the corresponding closed loop IDDE




k�(t) =
� (−d)∨(−t)

−d

a(r)i0(t+ r)dr +A

� 0

(−d)∨(−t)

a(r)k(t+ r)dr , t ≥ 0,

k(0) = k0, i0(s), s ∈ [−d, 0).

(4.3)

We notice that in (4.3) the delay is now in the state variable. 19

Proposition 4.2.

1. For every (k0, i0) ∈ H, the IDDE (4.3) has a unique continuously differentiable solution

denoted by kM
(k0,i0)

.

2. Let (k0, i0) ∈ H, i ∈ I(k0,i0). Then k(k0,i0),i(t) ≤ kM(k0,i0)
(t) for every t ≥ 0.

3. If kM(k0,i0)
(t) > 0 for every t ≥ 0, then I(k0,i0) �= ∅.

Now we want to study the IDDE (4.3), which becomes, for t ≥ d,

k�(t) = A

� 0

−d

a(r)k(t+ r)dr. (4.4)

The characteristic equation of (4.4), is the transcendental equation

z = A

� 0

−d

a(r) erzdr , z ∈ C . (4.5)

The characteristic equation associated to a linear IDDE have generically an infinite number of

complex conjugate roots (e.g. Diekmann et al [18, Ch. 1]). In the next proposition we study the

properties of the spectrum of roots of (4.5).

Proposition 4.3.

1. There exists a unique real root ξ of (4.5). It is simple and belongs to the interval (0, A).

2. If λ = µ+iν is a complex root of (4.5) (with ν > 0) then also the complex conjugate λ̄ = µ−iν

is a root of (4.5). The following inequalities also hold

19. Recall that given two real numbers a and b, by a ∨ b (respectively a ∧ b) we mean max{a, b} (respectively
min{a, b}).

12



−Ae−µd < µ < ξ,
ξ

d
< ν < A

�
1 ∨ e−µd

�
(4.6)

In particular, the real part of all the complex roots is strictly smaller than ξ. The real number

ξ is, therefore, called the maximal root associated to (4.5).

3. There exists a decreasing real sequence {µj} and a positive real sequence {νj} such that all

the complex and non real roots of (4.5) are given by the set

{λj = µj + iνj , λ̄j = µj − iνj}j∈N.

4. Let a1 and a2 be two functions in L2([−d, 0];R+) satisfying Assumption 4.1 and let ξ1 and

ξ2 be the corresponding maximal roots; then we have that

� s

−d

a1(r)dr ≤
� s

−d

a2(r)dr, ∀s ∈ [−d, 0] =⇒ ξ1 ≥ ξ2.

Since
� 0

−d
a1(r)dr =

� 0

−d
a2(r)dr = 1, this is true in particular if a1 is increasing and a2 is

decreasing. �

5. Let {a(·, d)}d>0 be a family of distributions, indexed by d > 0, satisfying Assumption 4.1 for

each d > 0, and such that a(·, ·) ∈ C1(T ;R) where

T := {(x, y) ∈ R2 : −y ≤ x < 0};

let ξ(d) be the unique real root to the characteristic equation (4.4) associated to the distribution

a(·, d). Then there exists ∂ξ
∂d (d) for every d > 0 and

∂ξ

∂d
(d) =

A
�� 0

−d
∂a(r,d)

∂d erξ(d)dr − a(−d, d)e−dξ(d)
�

1−A
� 0

−d
a(r, d)rerξ(d)80dr

. (4.7)

The real root ξ is the maximal long-run growth rate of capital, i.e. the growth rate of kM
(k0,i0)

.

This is formalized in the next proposition.

Proposition 4.4 (Maximal Growth of Capital). Assume (k0, i0) ∈ H. Then for every ε > 0,

we have that the upper bound of all the admissible state trajectories is

kM(k0,i0)
(t) = α0e

ξt + o(e(ξ−ε)t),

where ξ is the maximal log-run growth rate of capital, α0 is a coefficient depending on (k0, i0) and

limt→+∞
��� o(e

(ξ−ε)t)
e(ξ−ε)t

��� = 0.

13



Some considerations on Proposition 4.3 and 4.4 are in order. First, the existence of an infinite

number of complex roots, besides the real root ξ, strictly depends on the presence of the gestation lag

parameter, d. As it will result clear later, their existence will be crucial for the raising of fluctuations

in capital, investment and output. Second, the root with largest real part, i.e. ξ, is always positive as

long as the interest rate, A, remains strictly positive. Moreover, the maximal growth rate coincides

with the interest rate, i.e. ξ = A, when the gestation lag parameter, d goes to zero; this confirms what

happens in the standard AK model without delays. Intuitively, the maximal growth rate of capital

becomes ξ < A when the projects take time to be completed because a certain amount of resources

remains unproductive till the project is completed. As a consequence the accumulation of capital

will be slower as well as the maximal growth rate of capital. Moreover, Proposition 4.3 property 4

reveals that the distribution of the investment over the not yet completed projects plays a crucial

role in the determination of the maximal growth rate of capital. In particular, those investment

distributions characterized by a large allocation of resources in the early stages of the project (e.g.

pure investment lag in production or decreasing exponential distribution) and very few, if any, in the

latest stages imply a lower maximal growth rate of capital than the one obtained when the resources

are mainly invested in the latest stages of the project (e.g. time to plan). The intuition behind this

result is that in the first case a larger amount of resources remains unproductive for a longer period

of time. More generally, given two investment distributions and the associated maximal growth

rates of capital, Proposition 4 property 4 proves that the economy characterized by the investment

distribution with a larger area behind a(·) in any interval of time [−d, s] and s ∈ [−d, 0], will have

the lower maximal growth rate of capital. This is indeed true when we compare, for example, an

increasing exponential distribution with a decreasing exponential. It can be also shown numerically

that projects of length d = 3 years and characterized by time to plan such that between a 75%

and 95% of the investment is concentrated in the last two-years before being completed have a

maximal growth rate of capital higher than in the case of a uniform distribution since property 4

of Proposition 4.3 is indeed respected. This is shown in Figure 1 where on the left hand side the

distributions are drawn while in the right hand side we control numerically if the area behind the

increasing exponential distributions (i.e. time to plan) remains always lower than the area below

the uniform distribution as s changes from −d to 0. As it emerges clearly from the figure this is

indeed the case and, therefore, property 4 of Proposition 4.3 holds. 20 Assuming an interest rate, A,

to be equal to 0.077, the maximal growth rate of capital can be computed and it is equal to 0.031

and 0.0304 for the increasing exponential distributions and to 0.0301 for the uniform distribution. 21

20. The reader can find more details on the functional form of the distributions in Section 8.
21. The small difference in the growth rates is because the increasing exponential distribution is quite “close” to

the uniform distribution for the selected parameters. Of course, the difference in the growth rates become more
substantial when we consider different choices of the parameters as reported in Table 2.
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Figure 1 – Proposition 4.3 - Property 4 at work looking at different investment’s distributions.

Finally, some considerations need to be done on property 5 of Proposition 4.3. First of all, the

sign of ∂ξ
∂d depends on the sign of the numerator in (4.7), since the denominator is always positive

because h(r) = a(r)rerξ ≤ 0 for any r ∈ [−d, 0]. Therefore, the maximal growth rate of capital

can be positively or negatively affected by an increase in the length of the projects, d, depending

on the specification of the family of investment’s distributions {a(·, d)}d>0 and on its effect on the

sign of the numerator of the expression in (4.7). However, the most commonly used families of

used investment’s distributions are characterized by ∂ξ
∂d < 0. In particular, it can be proved that

the maximal growth is negatively affected when the family of investment distributions is uniform

a(r, d) = Unifd(r) ≡ 1
d1[−d,0](r) (see Section 8), since in this case 22

sgn
�
∂ξ

∂d
(d)

�
= sgn

�
−1

d

�
ξ(d) + e−dξ(d)

��
= −1. (4.8)

Similarly, one can show that ∂ξ
∂d is negative when the family investment’s distributions is exponential,

i.e a(r, d) = Expµ,d(r, d) :=
�

µ
1−e−µd

�
eµr (see again Section 8). In fact, in this case

sgn
�
∂ξ

∂d
(d)

�
= sgn

�
− µ2e−µd

(1− e−µd)2

� 0

−d

e−(ξ(d)+µ)rdr − µ

1− e−µd
e−(ξ(d)+µ)d

�
= −1 (4.9)

independently on specifying an increasing exponential distribution (µ > 0, time to plan) or a de-

creasing exponential distribution (µ < 0). The intuition behind this result is that shorter projects

imply a faster accumulation of capital and therefore a higher ξ.

All these considerations on the role of the project’s length, d, and the investment’s distribution,

a(·), in the determination of the maximal growth rate of capital, ξ, will be crucial later because the

growth rate of the economy, g, will be proved to depend on the maximal growth rate of capital.

22. Remember that the sign of a real number, x, is defined as sgn(x) and it is equal to −1, 0, or 1 when x is lower,
equal or greater than zero respectively.
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4.4 Finiteness and properties of the value function

We may now proceed to study the finiteness and properties of the value function, V . By conven-

tion, we have that V (k0, i0) = −∞ if I(k0,i0) = ∅. Clearly, any choice of k0 ≤ 0 implies that the set

of admissible strategies is trivially empty, so V = −∞ when (k0, i0) ∈ H −H+. On the other hand,

we will see that V > −∞ in H++. Hence, letting

dom(V )
def
= {(k0, i0) ∈ H | V (k0, i0) > −∞},

we have that
H++ ⊂ dom(V ) ⊂ H+.

The following results are proved.

Proposition 4.5 (Finiteness and homogeneity of the value function V ).

1. V (k0, i0) < +∞ for every (k0, i0) ∈ H and V (k0, i0) > −∞ for every (k0, i0) ∈ H++. In

particular dom(V ) ⊃ H++ and

a) if σ ∈ (0, 1) and ξ(1− σ) < ρ, then 0 ≤ V (k0, i0) < +∞ for every (k0, i0) ∈ H++;

b) If σ > 1, then −∞ < V (k0, i0) ≤ 0 for every (k0, i0) ∈ H++.

2. dom(V ) is a cone of H and V is homogeneous of degree (1− σ) therein:

V (λ(k0, i0)) = λ1−σV (k0, i0), ∀λ > 0.

3. V is concave on dom(V ).

Therefore, the value function is finite as long as the following assumption, which will be a standing

assumption from here on, holds true.

Assumption 4.6. The parameters are set such as ρ > ξ(1− σ) when σ ∈ (0, 1).

Another significant assumption, to be made to guarantee a positive economic growth rate, i.e.

g > 0, is the following.

Assumption 4.7. The parameters are set such as ξ > ρ.

It is worth to be noticed that when both Assumption 4.7 and 4.6 hold, this means that we are

considering the case ξ ∈ (ρ, ρ
1−σ ), when σ ∈ (0, 1), or the case ξ ∈ (ρ,+∞), when σ ∈ (1,+∞).

Interestingly, these two restrictions have a counterpart in the standard AK model. In fact, in

the case without delay we have ξ = A and then Assumption 4.6 leads to the usual condition for

bounded utility A < ρ
1−σ while Assumption 4.7 becomes A > ρ, which is the usual condition

for the interest rate to be higher than the intertemporal discount factor and, therefore, to have a

positive economic growth. Differently from the standard AK model, A > ρ is no more a sufficient
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condition to guarantee positive growth because now the length of the projects, d, and the investment

distribution, a(·) create a wedge between the maximal growth rate of capital, ξ, and the interest

rate, A. In particular, Proposition 4.3 shows that A > ξ implying that any form of time to build is,

not surprisingly, detrimental for the economic growth.

5 Solution of the Optimal Control Problem

5.1 Methodology

Our problem (P) is an optimal control problem with state constraints where the state equation

(3.4) is an integral differential distributed lags equation (IDDE). This kind of problems is usually

difficult to solve for two reasons. First, they are intrinsically infinite dimensional due to the fact that

the solution of the state equation (such as equation (3.4)) can be found only specifying an initial

condition which is not a point in Rn but a function, in our case, the initial capital stock and the

past history of the investment. Second, there are state/control inequality constraints, in our case

(c1) and (c2) in the social planner problem (3.5).

The dynamic programming approach can be used successfully to solve these problems if a “reg-

ular” (i.e. differentiable in a suitable sense) solution of the associated Hamilton-Jacobi-Bellman

(HJB) equation can be found and if such solution is indeed the value function V for, at least, a

subset of initial data. The first contribution in the economic literature which successfully dealt with

an infinite dimensional optimal control problem with state constraint was Fabbri and Gozzi [20],

while other more recent contributions are Bambi et al. [5], and Boucekkine et al. [11, 12].

Remark 5.1. The presence of a generic delay structure in the state equation and the absence of

the irreversibility constraint make our problem much more difficult than those faced in previous

contributions. The main problem does not concern the solution of the HJB equation in infinite

dimension (which can be obtained similarly to the aforementioned references), but rather the proof

of the admissibility of closed loop candidate optimal controls. Such a problem is solved by finding

a suitable good “natural" class of initial data (the set S defined below) — new in the literature —

and through a series of highly technical and not trivial results, which are the real new contribution of

this paper from a mathematical viewpoint. We are referring to the results contained in Subsections

A and B.6.

For the reasons described in the remark above, we have developed a specific strategy to solve

problem (P) which is fully described in Appendix B of the supplementary materials. This strategy

can be summarized in the following steps:
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1. We rewrite (P) as an equivalent infinite dimensional problem (PH) (with value function V H)

in order to apply the dynamic programming approach. This is done in Section B.2.

2. We write the HJB equation associated to (PH) and we find an explicit solution, v. This is

done in Section B.3.

3. We show that the explicit solution, v, is defined on a larger set of initial data than the one of

V H and, through a verification theorem, that v is equal to the value function Ṽ H of another

control problem (that we call (P̃H)) which is easier to solve. This is addressed in Section B.4.

4. We perform the inverse path with respect to item 1 of the present list and define a problem

(P̃) which is the optimal control problem with delay (in dimension one) equivalent to (P̃H).

Then we derive its solution through the one found for (P̃H). Section B.5 is dedicated to this,

in particular Proposition B.9.

5. We show, through a delicate analysis of the asymptotic behavior of admissible trajectories

that it exists an open set of initial data, S, where problem (P) and (P̃) are equivalent. Section

B.6 is devoted to prove this while Theorem 5.2 in the main text use such result to prove the

main analytical findings of the paper.

Most importantly, these steps can be applied to solve not only our problem but also other relevant

economic problems such as those on growth or optimal advertising mentioned in the review of the

literature when the state equation is an IDDE.

Interestingly enough, the dynamic programming approach is used instead of a more “familiar”

Pontryagin maximum principle for two reasons: first, there is no result in the literature on the

maximum principle which can be directly applied to our problem; second, even in similar cases

where some results exist (see e.g. Boucekkine et al. [15]) it is not possible to find explicitly the

optimal strategies, e.g. the value of C0
(k0,i0)

in (5.2).

In the next subsection we present the main result of our optimal control problem which will be

used later to study the properties of the optimal paths.

5.2 The main result

We want to address the question of solving (P) at least on the following subset of initial data

(i.e. initial stock of capital and initial history of the investment):

S
def
=

�
(k0, i0) ∈ H++ : i0 ∈ W 1,2([−d, 0);R), i�0(t)− gi0(t) ≥ 0 for a.e. t ∈ [−d, 0),

� 0

−d

a(s)i0(s)ds− gk0 ≥ 0, Ak0 − C0
(k0,i0)

≥ 0
�
⊂ H++.
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where
g

def
=

ξ − ρ

σ
, (5.1)

C0
(k0,i0)

def
= ν

�
k0 +

� 0

−d

eξr
�� r

−d

a(s)i0(s− r)ds

�
dr

�
, (5.2)

and

ν
def
= (ξ − g)

A

ξ
. (5.3)

Observe that ν > 0 by Assumption 4.6 and g > 0 if Assumption 4.7 holds. The set S, for which

we will be able to fully solve the problem, is nonempty as long as g > 0 — see Proposition 6.1 —

hence as long as Assumption 4.7 holds. For this reason, such an assumption will hold from now

on. It is also worth noting that S is not, a priori, the largest set of initial data where it is possible

to solve the model: we are only claiming that we are able to do it for this (quite meaningful) set

of initial data. Furthermore, we notice that taking the initial data in this set excludes an initial

history of disinvestments; on the other hand, the possibility of reversible (negative) investment is

not precluded for t > 0. As matter of fact, however, the optimal investment starting from S will be

proved to remain always positive.

We have the following explicit expression of the value function and complete characterization of

optimal paths when the initial data belong to S.

Theorem 5.2 (Value function and optimal paths). Let (k0, i0) ∈ S. Then

V (k0, i0) =

�
(ξ − g)

A

ξ

�−σ
A

ξ(1− σ)

�
k0 +

� 0

−d

eξr
�� r

−d

a(s)i0(s− r)ds

�
dr

�1−σ

.

Moreover, the optimal paths of the main aggregate variables are characterized as follows.

1. The optimal capital path, k∗
(k0,i0)

, is the unique continuously differentiable solution of the

IDDE:





k�(t) =
� (−d)∨(−t)

−d
a(r)i0(t+ r)dr

+A
� 0

(−d)∨(−t)
a(r)

�
k(t+ r)− C0

(k0,i0)
eg(t+r)

�
dr, t ≥ 0,

k(0) = k0, i0(s), s ∈ [−d, 0).

(5.4)

2. The optimal investment path, i∗(k0,i0)
, is the unique continuously differentiable solution of the

IDDE 23 



i�(t) = A
� 0

−d
a(r)i(t+ r)dr − gC0

(k0,i0)
egt, t ≥ 0

i(0) = Ak0 − C0
(k0,i0)

, i(s) = i0(s), s ∈ [−d, 0).

(5.5)

23. The existence and uniqueness of solutions to such DDE follows from Theorem 2.12 in [18].
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3. The optimal consumption path, c∗(k0,i0)
, is purely exponential:

c∗(k0,i0)
(t) = Ak∗(k0,i0)

(t)− i∗(k0,i0)
(t) = C0

(k0,i0)
egt, t ≥ 0. (5.6)

Some considerations are useful before moving to the next section. First, optimal detrended

consumption is always constant independently on the choice of the project’s structure and of the

initial conditions. However, when the projects takes time to be completed, optimal detrended capital

and investment will not remain constant for any initial datum as in the standard AK model.

Moreover, considering a family {a(·, d)}d>0 of investment’s distributions as in Proposition 4.3

(property 5) and indicating by C0
(k0,i0)

(d) the associated optimal initial consumption rate and by

ξ(d) the associated real root of the characteristc equation (4.4), we may consider the dependence of

the variation of the latter with respect to d, that is
∂C0

(k0,i0)

∂d (d). Indeed,

∂C0
(k0,i0)

∂d
(d) =

� 0

−d

eξ(d)r
�� r

−d

∂a

∂d
(r, d)i0(s− r)ds

�
dr

+

� 0

−d

eξ(d)rξ�(d)

�� r

−d

a(s, d)i0(s− r)ds

�
dr −

� 0

−d

eξ(d)ra(−d, d)i0(−d− r)dr.

Considering a uniform investment’s distribution, a(r, d) = Unifd(r) ≡ 1
d1[−d,0](r) (see Section 8), the

latter reduces to

∂C0
(k0,i0)

∂d
(d) = − 1

d2

� 0

−d

eξ(d)r
�� r

−d

i0(s− r)ds

�
dr

+

� 0

−d

eξ(d)rξ�(d)

�� r

−d

i0(s− r)ds

�
dr −

� 0

−d

eξ(d)ri0(−d− r)dr.

Hence, if (k0, i0) ∈ S (thus, i0 ≥ 0), from (4.8) we get
∂C0

(k0,i0)

∂d (d) < 0. Similarly, when we consider

exponential investment’s distributions, i.e a(r, d) = Expµ,d(r, d) :=
�

µ
1−e−µd

�
eµr, from (5.7) and

(4.9) we get
∂C0

(k0,i0)

∂d (d) < 0; this result holds for both the decreasing exponential distribution

(µ < 0) and for the increasing exponential (µ > 0).

Therefore, in theste cases, the initial consumption will decrease when the project length decreases

and the investment’s distribution is one of those commonly used (e.g. uniform distribution, expo-

nential distribution, etc.) because we have shown after Proposition 4.3 that the maximal growth rate

of capital will increase. Intuitively, the decrease in the project length makes the investment in the

projects more attractive because the return on an investment today will be paid earlier; therefore,

the representative agent has an incentive to invest more; since output is predetermined this can be

achieved only with a reduction in his initial consumption.
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In the next two sections we will provide conditions under which the economy is either immediately

on a balanced growth path or is characterized by transitional dynamics.

6 Balanced Growth Paths

A balanced growth path (BGP) is any optimal path such that k∗, i∗, c∗ are purely exponential

functions with the same growth rate. In this section we show that the set of initial conditions

consistent with a BGP solution is not empty. To do that, consider the couple of initial data Eb

defined as follows:

Eb = (k0, i0), where: i0(s)
def
= begs, for a.e. s ∈ [−d, 0); k0

def
=

b

g

� 0

−d

a(s)egsds,

where b > 0 is an exogenously given constant, describing the past history of investments of exponen-

tial form, with i0(0
−) = b. In the next proposition, we prove that the initial data Eb, where b > 0,

belong to S under the restriction on parameters imposed in Assumption 4.7.

Proposition 6.1. Eb ∈ S for every b > 0.

Moreover, the following result can be proved.

Proposition 6.2. The optimal capital, investment and consumption paths are purely exponential if

and only if (k0, i0) = Eb for some b > 0. More precisely we have

k∗(k0,i0)
(t) = k0e

gt, i∗(k0,i0)
(t) = begt, c∗(k0,i0)

(t) = C0
(k0,i0)

egt, t ≥ 0,

where C0
(k0,i0)

is the positive constant given in (5.2), which in the present case becomes

C0
(k0,i0)

= Ak0 − b. (6.1)

The growth rate of the economy, g, was indeed found to be equal to ξ−ρ
σ . Therefore, a change

in the project features modifies it indirectly through the maximal growth rate ξ. Therefore, all the

findings about the mechanisms which may affect ξ discussed in Section 4.3 can be now used. In

particular, it is immediate to observe that ∂g
∂d and ∂ξ

∂d have the same sign; furthermore, a change

in the investment distribution a(·) consistent with Proposition 4.3, property 4, (see also Figure 1)

implies a change of ξ and therefore of g.

As we have seen, the optimal consumption policy is always exponential. We may compare how

a change in the specification of the investment’s distribution over the projects affects the initial

optimal consumption rate when the initial paths lie in Eb. Indeed, by (6.1), in this case we have

C0
(k0,i0)

= k0

�
A− g� 0

−d
a(s)egsds

�
.
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In the case of exponential distributions, Expµ,d(r) :=
�

µ
1−e−µd

�
eµr, straightforward computations

and Proposition 4.3, Property 4, yield that the corresponding initial consumption C 0
(k0,i0)

(µ) is

increasing in µ.

This result is illustrated in Figure 2, where a decreasing and increasing exponential distributions

are compared. By moving from the decreasing to the increasing exponential distribution, the econ-

omy experiences a lower initial consumption, but a faster economic growth. Intuitively, this result

depends on the fact that investments on a time-to-plan project is seen more attractive, since the

amount of resources are unused for a shorter period of time once invested into a time-to-plan project.

0

Time

lo
g

 c
(t

)

 

 

Time−to−Plan (95%)
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log c(t)=log c
1
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1
 t

log c(t)=log c
2
(0) + g

2
 t

Figure 2 – From decreasing to increasing exponential distributions (left) and associated consumption
optimal paths (right; expressed in log) along balanced growth paths (see Section 6).

Moreover, Proposition 6.2 tells us that the economy is on a BGP from the very beginning, i.e.

from t ≥ 0, if and only if the initial history of the investment has already a purely exponential form

i0(s) = begs, where s ∈ [−d, 0), and the initial capital k0 is exactly b
g

� 0

−d
a(s)egsds. Differently

from the AK model with d = 0, the economy is on a BGP only for a very specific choice of the

initial condition of the state variable. In fact, an economy with a past history of the investment

i0(s) = begs, but with a capital stock different from b
g

� 0

−d
a(s)egsds and still in the feasible set

of initial condition S, will not be on a BGP from t = 0 on. Under these initial conditions, the

optimal path of investment and capital are no more purely exponential, and converge over time to

the balanced growth path. Therefore, the economy displays transitional dynamics. The next section

is dedicated to find the explicit form of these optimal paths and to prove that an economy which,

generically, is not on a BGP from t = 0 on, meaning that the initial conditions are in S but are not

Eb, will converge to it over time by damping fluctuations.
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7 Transitional Dynamics

In this section we characterize optimal trajectories besides the balanced growth paths just studied.

From now on we assume the following:

Assumption 7.1. All the complex roots of the characteristic equation (4.5)

(i) have real part smaller than g and

(ii) are simple.

It is indeed theoretically viable to provide restrictions on parameters and on the distribution a(·)
such that (i) and (ii) hold. However, we do not address this issue analytically but rather numerically

by checking Assumption 7.1 - case by case - in Section 8. Also, (ii) occurs generically and, while not

essential, it is useful to simplify the proof of Proposition 7.2. Taking into account Theorem 5.2, we

can now prove the following result.

Proposition 7.2. Consider an initial datum (k0, i0) ∈ S. Then the optimal paths are:

c∗(k0,i0)
(t) = C0

(k0,i0)
egt, t ≥ 0, (7.1)

k∗(k0,i0)
(t) =

1

A
(i∗(k0,i0)

(t) + c∗(k0,i0)
(t)), t ≥ 0,

i∗(k0,i0)
(t) =


αξC

0
(k0,i0)

g

ξ − g
+

∞�

j=1

pjbj


 egt

� �� �
trend component

+
∞�

j=1

pje
λjtaj

� �� �
oscillatory component

, t ≥ 0, (7.2)

where αξ > 0 is the real constant in (A.3), pj is the eigenvector associated to the eigenvalue λj while

aj and bj are the complex numbers

aj
def
= AΓj(k0, i0)− C0

(k0,i0)
+

gC0
(k0,i0)

g − λj
, bj

def
= −

gC0
(k0,i0)

g − λj
, (7.3)

and

Γj(k0, i0) := k0 +

� 0

−d

eλjr

� r

−d

a(s)i0(s− r)ds dr.

Moreover, defining for t ≥ 0 the optimal detrended paths as x∗
(k0,i0),g

(t)
def
= e−gtx∗

(k0,i0)
(t) with

x = k, i, c, we have that the optimal detrended consumption path is constant and equal to C 0
(k0,i0)

for

(7.1), while detrended capital and investment converges by damping oscillations respectively to the
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positive constants

kl =
C0

(k0,i0)

� 0

−d
egra(r)dr

A
� 0

−d
egra(r)dr − g

, and il =
gC0

(k0,i0)

A
� 0

−d
egra(r)dr − g

.

Several consideration can be done. First, unless the initial conditions (k0, i0) ∈ Eb, the economy

will not be on the BGP till the very beginning. In fact, some of the aggregate variables are now

characterized by transitional dynamics: detrended capital, investment and output will indeed con-

verge over time to a BGP by damping fluctuations since g > λj for any j > 1 by Assumption 7.1

(i). On the other hand, detrended consumption remains always constant even during the transition

of the other variables. Of course, this result is coherent with the assumption of risk adverse agents

(i.e. concavity in the utility function) who prefer smooth consumption profile to profile alternating

periods of high and low consumption. Interestingly, the agents are able in our model to smooth

perfectly consumption over time (i.e detrended consumption remains constant) by offsetting any

deviation from the BGP with changes in their investment decision. This result holds for any spec-

ification of the projects’ features. Furthermore, the perfect consumption smoothing can be found

also in other models with time to build where the technology is not necessarily linear as shown by

Bambi and Gori [6], Proposition 2. Perfect consumption smoothing emerges independently of the

projects features. This does not mean welfare equalization across different investment distributions

and/or projects’ lengths. In fact, these two features affect nontrivially the welfare by modifying ξ,

g, c∗(0) and therefore the economies will converge to different BGPs. Furthermore, we have already

appreciated in Section 6 and Figure 2 that ξ and g may go down while c∗(0) may go up when we

modify d and a(·). These opposite variations in the growth rate and the initial optimal consumption

level make the welfare evaluation worth to be studied. 24

Second, the amplitude and length of the fluctuations strictly depend on the projects’ features.

In particular, the project’s length, d, and the investment’s distribution, a(·), play a crucial role in

the shape of the spectrum of roots of the characteristic equation (4.5). Therefore, the value of the

roots λj and of the associated eigenvectors, pj , with j ∈ (1,∞) depend on them. It is analytically

very difficult to provide any insight on this relation and for this reason we have used Figure 3 to

illustrate how different is the shape of the damping fluctuations when we consider economies which

are exactly identical but the investment distributions over the projects. In particular, the figure on

the left show the different optimal output path while the figure on the right is simply a zoom to

emphasise the differences in the damping fluctuations. To compare more effectively the differences

in the transitional dynamics we have translated the optimal paths such that all of them converge to

24. A similar consideration has been recently done by Boucekkine et al. [13].
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Figure 3 – Optimal detrended paths (on the right: zoom on the vertical axis of the left figure) for
different distributions with d = 5 (see Section 8).

the same constant yL. Further quantitative considerations on the functional form of the investment

distributions used to draw such a Figure as well as on the deviations from the BGP and on the speed

of convergence are postponed in the next Section.

From this Proposition and from Figure 3, it clearly emerges that economies with the same past

history of investment and initial stock of capital behave very differently if they differ in the projects’

structure. In fact, different investment distributions over the projects and different projects’ length

across economies determine different asymptotic growth rates, different balance growth paths and

different transitional dynamics.

Finally, we conclude this section with a comment on the stability of the optimal paths. This

feature is not easy to address in its full generality; in fact, our analysis describes the dynamic

behaviour of solutions starting from the set S, which is not a nice set in the our framework Hilbert

space H of Subsection B.2 (indeed, it has empty interior part). Nevertheless, we can assert that

starting from close points (k0, i0), (k0, i0) of the set S (in the sense that Q(k0, i0) is close to Q(k0, i0)

with respect to the norm of the space H, see Subsection B.2), the (detrended) associated optimal

paths remain close. This is not difficult to see by using the explicit expressions of Proposition 7.2.

8 Quantitative Analysis

In this section, we perform two numerical exercises. The first evaluates how much the growth

rate, g, is affected by different assumptions on the projects’ structure while keeping all the other

parameters unchanged. In fact, the projects may be different in length and in term of the investment

distributions as defined in (the continuous-time counterpart of) Definition 3.1; the relevance of these
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two features in affecting the maximal growth rate of capital, ξ, and therefore the growth rate, g, was

indeed proved analytically in Propositions 4.3 and 5.1 but their quantitative relevance is assessed in

this first exercise.

The second numerical exercise consists in studying how the transitional dynamics are affected by

different choices of the projects’ length and of the investment’s distribution over the projects when

the initial condition (k0, i0) ∈ S but different from Eb, i.e. the economy does not begin on its BGP.

To do this assessment, we specify the parameters as in the first numerical exercise, but we also add

an initial exogenous shock which makes the economy deviate from its BGP by reducing the initial

capital stock of ten percentage points. As observed in Proposition 7.2 the economy converges to

the BGP by damping fluctuations; therefore, our objective is to quantitatively evaluate the speed of

convergence as well as the average and maximum absolute deviation of output from the BGP.

Both the numerical exercises are performed looking at a range of values for d, between two and

five years and considering the following investment’s distributions over the projects:

1. Dirac’s Delta concentrated at −d, i.e. pure gestation lag in investment; when d = 0 this

corresponds to no time to build. In this case d is the only parameter to choose.

2. Uniform distribution (e.g. Kydland and Prescott [37], among others), i.e. a(·) = Unifd(·) ≡
1
d1[−d,0]. Also here the only parameter is d.

3. Exponential distribution , i.e. a(·) = Expµ,d(·), where Expµ,d(r) :=
�

µ
1−e−µd

�
eµr, r ∈ [−d, 0].

Then we have a decreasing exponential distribution (e.g. Peeters [46]) or an increasing exponential

distribution (e.g. Koeva [35]) when µ < 0 or µ > 0 respectively. Clearly there are now two parameters

to be chosen: µ and d. In all these cases we have properly set the parameter µ to reproduce a specific

investment distribution over the projects: for example, in the case of a decreasing exponential

distribution, µ was set equal to either −0.3466 or −1.197 to have, respectively, a 75% and 95% of

the investment concentrated on the projects which need more than two-years to be completed when

the full length of a project is three years. Similarly, when the increasing exponential distribution has

been chosen, we have set µ equal to either 0.3466 or 1.197 to have, respectively, a 75% and 95% of

the investment concentrated on the projects which need less than two-years to be completed when

the full length of a project is three years. Moreover, we have adjusted accordingly the distribution

of the investment over the projects when the projects’ lengths is different from 3 years, in the sense

that whenever the projects’ lengths is different from 3 years we move up or down the considered

distribution such that Assumption 4.1 still holds.

4. U-shaped (e.g. Peeters [46] and Zhou [50]) and hump-shaped (e.g. Altug [2], and Palm

et al. [43])are modeled in this continuous time context using a parabola: a(·) = Pα,β,d(·), where

Pα,β,d(r) = αr2 + βr + γ, with r ∈ [−d, 0]. Here the parameters are α,β, γ and d. The U-shape or
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the hump-shape are obtained respectively for α > 0 and α < 0, while γ has been chosen in order to

satisfy the constraint
� 0

−d
Pα,β,d(r)dr = 1. In the U-shaped distribution the parameters have been

set to have 50% of the investment allocated to the projects which need more than 40% of the period

to be completed. In the hump-shaped the parameters have been set to have 70% of the investment

concentrated on the projects requiring less than 40% of the period to be completed. The values of

these parameters are reported in Table 1. 25

Table 1 – Parameters for U (hump)-shaped distributions.

d = 2 d = 3 d = 4 d = 5
α 1.3585 (−0.4898) 0.2924 (−0.1667) 0.1807 (−0.0807) 0.0653 (−0.0474)
β 2.8075 (−1.0041) 0.9128 (−0.5313) 0.7156 (−0.3185) 0.3654 (−0.2338)
γ 1.4962 (0.1490) 0.8254 (0.0365) 0.7174 (0.0435) 0.5693 (0.0104)

Finally, all the numerical computations have been done using MATLAB; the section on output

volatility has been performed using DDE-BIFTOOL, a MATLAB package developed by Engelborghs

and Roose [19].

Long Run Economic Growth

The parameters to be decided to perform the first numerical exercise are A, ρ, σ, and those in

the investment’s distribution. All these parameters enter in the characteristic equation (4.5) and

then are relevant to determine the growth rate of the economy, g, as proved in Propositions 4.3 and

5.1. We start considering an economy without time to build – a(·) is a Dirac’s Delta in 0 – and we

set ρ = 0.017 and 1
σ = 0.5 which are quite standard and non-controversial values for the preference

discount rate and the instantaneous intertemporal elasticity of substitution. Within this setting (no

time-to-build), a choice of the interest rate equal to R − δ = 0.077 with δ = 0.10 implies an annual

growth rate g = 0.03. Then, we consider how much the growth rate is affected by different choices

of the delay parameter, d, and of the investment’s distribution, a(·) while keeping unchanged all the

other parameters. These values of the growth rates for the different specifications of the projects’

features are reported in Table 2.

The maximum growth rate differentials are observed when we compare an economy with pure

investment lags in production – a(·) is a Dirac’s Delta in −d – with another economy characterized

by time-to-plan – a(·) is increasing exponential distribution with µ = 1.197. 26 According to our

computations the growth differential, due to the different resource distributions over the projects,

25. Our choices are consistent with the values appearing Peeters [46] and Zhou [50]. For example Netherlands for
hump-shaped and United states for U-shaped distribution and d = 2, 3.

26. Intuitively the increasing exponential distribution is the distribution “closest” to the Dirac’s Delta in 0 (i.e. no
time-to-build case), and it indeed converges to it as the resources tends to be concentrated in the last stage of the
project. This is the reason why the highest growth rate differential is observed when we compare the time-to-plan
economy with a pure-investment lag economy.

27



is around 12.5% when the length of the project is two years. Moreover, such differential enlarges

to 21.45% when the project’s length changes to three years. This sharp increase in the growth

differential can be immediately explained: the growth rate of the economy characterized by time-to-

plan is not affected significantly (just around -0.03 percentage points) by the increase in the length

of the project because the largest amount of the resources are concentrated on the last stages; on the

other hand, in the pure investment lag case all the resources are concentrated at the beginning of

the project and, therefore, a larger amount of resources remains “unproductive” for a longer period

of time when the length, d, increases, with a larger negative effect on the growth rate of the economy

(around -0.2 percentage points). The growth differentials for the case of d = 4 and d = 5 years are

also computed and they are respectively the 28.6% and the 36.3%.

Table 2 – Growth Rate (%) on the Balanced Growth Path.

Investment’s Distributions d = 2 d = 3 d = 4 d = 5
Dirac’s Delta in 0 3% 3% 3% 3%

Increasing Exponential (µ = 1.197) 2.83% 2.8% 2.79% 2.78%
Increasing Exponential (µ = 0.3466) 2.76% 2.68% 2.62% 2.57%

U-Shaped 2.75% 2.65% 2.52% 2.52%
Uniform 2.74% 2.63% 2.52% 2.43%

Hump-Shaped 2.73% 2.61% 2.53% 2.43%
Decreasing Exponential (µ = −0.3466) 2.71% 2.57% 2.44% 2.31%
Decreasing Exponential (µ = −1.197) 2.65% 2.47% 2.3% 2.15%

Dirac’s Delta in −d 2.515% 2.33% 2.17% 2.04%

Interestingly enough, a comparison of the growth rates when the investment’s distribution is

hump-shaped and when it is uniform, reveals that the first distribution pins down higher growth

rates only when the projects’ length is lower or equal than 3 years. Keeping aside this case, a

ranking of the distributions in term of the growth rates can be done: given A, ρ, σ, and d, the

increasing exponential distribution is characterized by the highest growth rates, followed by the

U-shaped distribution, the uniform distribution and the hump-shaped distribution to end with the

decreasing exponentials and the Dirac’s delta in −d, the latter characterized by the lowest growth

rate. The robustness of this ranking has been checked for different choices of the parameters σ, ρ,

and r.

Transitional Dynamics

To study the transitional dynamics from a quantitative viewpoint we proceed as follows. We

consider economies which are identical but the project characteristics. Each of them is assumed to

be on its respective balanced growth path, meaning that the initial conditions are exactly Eb where

b = 1 without loss of generality. At t = 0, we introduce an exogenous shock which makes each

economy deviate from its balanced growth path by destroying the 10% of the initial capital. Under
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our parametrization the past history of the investment and the capital stock after the negative

shock are still in the set S and therefore we know from Proposition 7.2 that each economy will

converge by damping fluctuations to its balanced growth path. The output dynamics is described

quatitatively by computing the maximum and average absolute deviation from the BGP and the

speed of convergence. 27 These three indicators have been computed by looking respectively at the

following quantities 28

sup
t∈[0,+∞)

|k∗(k0,i0),g
(t)− kle

gt|
klegt

,

� +∞

0

|k∗(k0,i0),g
(t)− kle

gt|
klegt

dt and |Re(λM )− g| .

These three indicators have been computed for different investment’s distributions a(·), and

projects’ length, d, and reported in Table 3 (the maximum and average absolute deviation from the

BGP) and Table 4 (speed of convergence). Output fluctuations are significant if characterized by a

high maximum and absolute deviation and a low speed of convergence. Keeping aside the U-shaped

and the hump-shaped distributions, we observe that the economy with the projects’ investment

distribution leading to higher growth rates are also those with more pronounced deviations from the

balanced growth path. In particular, the same ranking on the investment distributions proposed for

the growth rates, holds when we rank the economies from those with lowest to those with highest

output volatility.

Table 3 – Average and maximum absolute deviation from the BGP.

Investment’s Distributions d = 2 d = 3 d = 4 d = 5
Dirac’s Delta in 0 0 0 0 0

Incr. Exp. (µ = 1.197) 0.3% (0.5%) 0.5%(0.6%) 0.55% (0.6%) 0.6% (0.65%)
Incr. Exp. (µ = 0.3466) 0.5% (0.7%) 0.95% (0.95%) 1.4% (1.1%) 1.85% (1.3%)

Hump-Shaped 0.59% (0.8%) 1.22% (1.18%) 1.8% (1.44%) 2.6% (1.74%)
Uniform 0.6% (0.8%) 1.22% (1.12%) 1.97% (1.44%) 3% (1.75%)
U-Shaped 0.65% (0.72%) 1.27% (1.05%) 2.36% (1.05%) 2.6% (1.45%)

Decr. Exp. (µ = −0.3466) 0.75% (0.86%) 1.51% (1.3%) 2.58% (1.73%) 3.96% (2.16%)
Decr. Exp. (µ = −1.197) 0.9% (1%) 2.1% (1.6%) 3.7% (2.2%) 5.86% (2.75%)

Dirac’s Delta in −d 1.6% (1.5%) 3.3% (2%) 5.5% (2.7%) 8% (3.2%)
The values outside (inside) the parenthesis refer to the average (maximum) deviation.

Most importantly, large differences in the speed of convergence to the BGP can be appreciated

looking at Table 4. Comparing the speed of convergence between two economies with different

distributions, it emerges that those characterized by project features which are detrimental for the

economic growth are also characterized by a slower speed of convergence to the BGP. Therefore, not

27. Consistently with Ortigueira and Santos [42] and Bambi et al.[5] the speed of convergence has been measured
as the absolute value of the difference between the growth rate of the economy and the complex eigenvalue having
the highest real part. In fact, this is the term which drives the convergence as clearly emerges from the proof of
Proposition 7.2.

28. The first two values are computed in MATLAB, so their values in Table 3 are in truth finite approximations,
i.e. a max over a finite period [0, T ] instead of a sup over [0,+∞) and a finite sum instead of an integral.

29



Table 4 – Speed of convergence to the BGP.

Investment’s Distributions d = 2 d = 3 d = 4 d = 5
Dirac’s Delta in 0 ∞ ∞ ∞ ∞

Incr. Exp. (µ = 1.197) 3.69 2.61 2.13 1.87
Incr. Exp. (µ = 0.3466) 3.14 2.01 1.48 1.18

Hump-Shaped 3.14 1.91 1.43 1.11
Uniform 2.96 1.81 1.28 0.97

Decr. Exp. (µ = −0.3466) 2.79 1.66 1.13 0.83
U-Shaped 2.63 1.65 1.08 0.93

Decr. Exp. (µ = −1.197) 2.49 1.41 0.92 0.66
Dirac’s Delta in −d 1.79 1.05 0.71 0.53

only these economies will asymptotically grow at a lower rate but will experience longer transitional

dynamics.

9 Conclusion

In this paper we have used a dynamic programming approach to assess how the investment

project’s features may affect the growth rate and transitional dynamics of an endogenous growth

model. The analytical results are used in the quantitative analysis to evaluate the changes in output

growth and output dynamics due to different choices of the project’s length and of the investment

distributions over the projects. Relatively small differences in these features may induce significant

differences in output growth and in the speed of convergence toward the balanced growth path even

when all the other parameters of the economy are kept the same.
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Appendix

Comparison with the Kydland and Prescott’s specification

Flexibility is indeed the first main departure of our contribution from the Kydland and Prescott’s

specification. In fact, in their framework, the projects dynamics is given by sj,t = sj+1,t−1 and

aggregate investment is equal to it =
�d

j=1 bjsj,t with
�d

j=1 bj = 1 and bj ≥ 0 for all j. Moreover,

the exogenously given initial conditions are k0 and sj,0, with j ∈ [1, d−1] which, together with (3.1),

imply that Δkd−j are predetermined. Focusing on the case d = 3 and t = 0 we have that

i0 = b1s1,0 + b2s2,0 + b3s3,0 or
1

b3


i0 − b1Δk1 − b2Δk2� �� �

exog. given


 = Δk3

and, therefore, i0 determines completely s3,0 and then k3. For the same reason, it follows that

i1 ↑ and/or i2 ↑ ⇒ k3 unchanged

since these investments do not affect the project started at date t = 0. In Kydland and Prescott,

the resources to be allocated to the different projects are, therefore, decided at the very beginning

while, in our context, more resources can be added during the works in progress and crucially till

the last period before the projects’ completion.

Proofs

Proof of Proposition 4.2. 1. Within the setting proposed by Diekmann et al. [18], the DDE (4.3) is of

type k�(t) = Lkt + b(t) with L a linear operator and b(t) continuous. Hence, the existence and uniqueness of

solutions to such DDE follows from Theorem 2.12 in [18]. The continuous differentiability is a consequence

of the continuity of t �→ b(t).

2. By the admissibility constraint (c2), we have for t ∈ [0, d),

k(k0,i0),i(t) = k0 +

� t

0

�� −s

−d

a(r)i0(s+ r)dr +

� 0

−s

a(r)i(s+ r)dr

�
ds

≤ k0 +

� t

0

�� −s

−d

a(r)i0(s+ r)dr +A

� 0

−s

a(r)k(k0,i0),i(s+ r)dr

�
ds

while the function kM
(k0,i0)

(t) satisfies, for t ∈ [0, d)

kM
(k0,i0)(t) = k0 +

� t

0

�� −s

−d

a(r)i0(s+ r)dr +A

� 0

−s

a(r)kM
(k0,i0)(s+ r)dr

�
ds.

Then, by standard comparison results on DDEs (see, e.g. [21]), we get the claim in [0, d). Iterating this

argument we prove the result.

3. Setting iM (·) def
= kM

(k0,i0)
(·), we have iM ∈ I(k0,i0), so the claim follows. �
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Proof of Proposition 4.3. 1. Consider the function

h : R −→ R, h(x)
def
= x−A

� 0

−d

a(r)erxdr.

It is clear that all real solutions of the characteristic equation (4.5) are zeros of h and viceversa. We observe

that

h(0) = −A < 0, lim
x→+∞

h(x) = +∞, lim
x→−∞

h(x) = −∞.

Moreover, for all x ∈ R,

h�(x) = 1−A

� 0

−d

a(r)rerxdr > 1, h��(x) = −A

� 0

−d

a(r)r2erxdr < 0,

so h is strictly increasing and strictly concave. This implies that g admits only one real root ξ > 0 which is

the only real solution of (4.5). Such solution has multiplicity 1 since h�(z) is never 0.

2. Let λ = µ+ iν be a solution of (4.5). It is easy to check by direct substitution that, if λ = µ+ iν solves

(4.5), then also λ̄ = µ− iν solves it. Take the one with ν > 0. Then

µ+ iν = A

� 0

−d

a(r)er(µ+iν)dr = A

�� 0

−d

a(r)eµr cos(νr)dr + i

� 0

−d

a(r)eµr sin(νr)dr

�
.

This gives the following two equations:

µ = A

� 0

−d

a(r)eµr cos(νr)dr, ν = A

� 0

−d

a(r)eµr sin(νr)dr.

Then concerning the real part we clearly get

−A

� 0

−d

a(r)eµrdr < µ < A

� 0

−d

a(r)eµrdr = µ− g(µ).

So, from the second inequality we get g(µ) < 0 = g(ξ) which implies that µ < ξ since g is strictly increasing.

On the other hand, when µ < 0 we get, from the first inequality Ae−µd < µ, the first of (4.6). Similarly,

since ν > 0 we have

ν < A

� 0

−d

a(r)eµrdr < A
�
1 ∨ e−µd

�
.

On the other hand, since νr < 0 we have that sin(νr) < 0 for νr ∈ (−ξ, 0). So, to have ν > 0 in the equation

for ν we need to assume ν > ξ/d.

3. Recall that, by [18, Th. 4.4, Ch. I], all the solutions of (4.5) form a (countable) sequence. So complex

roots are at most countable and have the form λk = µk ± iνk for two sequences of real numbers {µk} and

{νk}.
4. It is enough to prove that

� 0

−d

a1(r)e
xrdr ≥

� 0

−d

a2(r)e
xrdr, ∀x > 0, (9.1)
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and then, calling h1, h2 the functions defined as h in the first item and associated respectively to a1, a2, we

get h1 ≥ h2 on R+ and the claim follows. (9.1) is obtained by integrating by parts:
� 0

−d

a1(r)e
xrdr = 1− x

� 0

−d

�� r

−d

a1(s)ds

�
exrdr

≥ 1− x

� 0

−d

�� r

−d

a2(s)ds

�
exrdr =

� 0

−d

a2(r)e
xrdr.

5. Setting F (z, d) := A
� 0

−d
a(r, d)erzdr − z, the result can be obtained from the equality F (d, ξ(d)) = 0,

provided by the definition of ξ(d), by using the Implicit Function Theorem. �

Proof of Proposition 4.4. The claim follows from [18, Th. 5.4, p. 34] and using the fact that ξ is the

solution to (4.4) with the highest real part (as proved Proposition 4.3). �

Proof of Proposition 4.5 1. We could prove this result directly (see e.g. [27]), but for sake of brevity we

omit the proof here. The result will be proved a posteriori on a suitable subset of H++.

2. Let (k0, i0) ∈ dom(V ). In particular i ∈ I(k0,i0) �= ∅. The linearity of the state equation yields, for every

λ > 0, i ∈ I(k0,i0) ⇐⇒ λi ∈ Iλ(k0,i0) and kλ(k0,i0),λi = λk(k0,i0),i. Then, the claim is a straightforward

consequence of the homogeneous structure of the functional.

3. This follows by usual arguments exploiting the linearity of the state equation and the concavity of the

objective functional. �

Proof of Theorem 5.2 Let (k0, i0) ∈ S. By Propositions B.9 and B.10, we have

V (k0, i0) ≥ J((k0, i0); i
∗
(k0,i0)) = Ṽ (k0, i0).

On the other hand, since we have the inequality V ≤ Ṽ (Proposition B.11), we deduce the optimality of

i∗(k0,i0)
for (P) starting at (k0, i0). Then, uniqueness is stated by Proposition B.1, and the other claims

follows from Proposition B.9. �

Proof of Proposition 6.2. First of all, we prove (6.1). Let (k0, i0) = Eb for some b > 0. We have

C0
(k0,i0) = νk0 + νb

� 0

−d

eξrdr

� r

−d

a(s)eg(s−r)ds = νk0 + νb

� 0

−d

a(s)egsds

� 0

s

e(ξ−g)rdr

= νk0 + νb

� 0

−d

a(s)egs
1− e(ξ−g)s

ξ − g
ds = νk0 + b

ν

ξ − g

� 0

−d

a(s)(egs − eξs)ds

= νk0 + b
ν

ξ − g

�
gk0
b

− ξ

A

�
= νk0

ξ

ξ − g
− b

νξ

A(ξ − g)
.

Since νξ
A(ξ−g)

= 1 (see (5.1) and (5.3)) the claim follows.

Now let us show the other claims. Using Theorem 5.2 by straightforward computations we get the “if” part.

To show the “only if” part, assume that the optimal paths k∗
(k0,i0)

, i∗(k0,i0)
, c∗(k0,i0)

are exponential. Then, the

common growth rate of k∗
(k0,i0)

, i∗(k0,i0)
is g since Ak∗

(k0,i0)
(t) − C0

(k0,i0)
egt = i∗(k0,i0)

(t). Hence, i∗(t) = begt,

for some b ∈ R and k∗
(k0,i0)

= k0e
gt, with k0 > 0. Defining the function λ as in the proof of Proposition

B.10, we see that λ ≡ 0 over R+. Since λ solves (B.28)-(B.29), we see that (k0, i0) = Eb, and finally b > 0

since k0 > 0. �

Proof of Proposition 6.1. Since b > 0 and g > 0, we have Eb ∈ H++. Moreover, by (6.1), we have
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Ak0 − C0
(k0,i0)

= b > 0. So, all the properties defining the set S are fulfilled by (k0, i0), which is what we

need to prove. �

Proof of Proposition 7.2 For simplicity of notation we set i(·) = i∗(k0,i0)
(·), k(·) = k∗

(k0,i0)
(·) and

Λ = C0
(k0,i0)

. The explicit expression of c is already provided by Theorem 5.2. The expression of k in terms

of c, i comes from definition of c. Let us prove (7.2).

First of all, we recall some standard facts from DDE’s theory. Let {λj}j∈N and {λ̄j}j∈N as in Proposition

4.3, item 3. Applying Corollary 6.4 in Diekmann et al. [18], the solution of (A.1) can be written as (here

the overline denotes the complex conjugate operation)

γ(t) = αξe
ξt +

∞�

j=1

�
eλjtpj(t) + eλ̄jtpj(t)

�
= αξe

ξt +
∞�

j=1

2Re
�
pj(t)e

λjt
�
,

since aeλ = āeλ̄ and where pj(t) are complex polynomial of degree mλj−1, with mλj denoting the multiplicity

of the root λj . Also, the series above converges uniformly on compact subsets of (0,+∞). Under Assumption

7.1(ii), the polynomials pj(·) are constants. With a slight abuse of notation we denote the corresponding

constants still by pj , so

γ(t) = αξe
ξt +

∞�

j=1

2Re(pje
λjt). (9.2)

From Theorem 5.2 we know that i solves (5.5). The solution to this DDE is the sum of the solutions of

the associated linear homogeneous DDE, i.e. without the forcing term, plus a convolution term (see [28],

Chapter 6, pag 170). This means that the solution of (5.5) can be rewritten as (see Example 1.5, pag. 168,

and formula (1.18), pag. 172, in [28]),

i(t) = γ(t)i(0) +

� 0

−d

� d+r

0

γ(t− s)Aa(r − s)ds i0(r) dr −
� t

0

γ(t− s)Λgegsds (9.3)

where γ is defined in series form in (9.2). By the change of variables s = −w, r = z −w in the second term

of (9.3), i can be rewritten as

i(t) = γ(t)i(0) +

� 0

−d

� w

−d

γ(t+ w)Aa(z)i0(z − w)dz dw −
� t

0

γ(t− s)Λgegsds . (9.4)

We observe that (A.1) is a special case (with special initial data) of (4.4). Plugging (9.2) into (9.4), in view

of the linearity of (9.4) with respect to γ, we can analyze the contribution of the real and the complex roots.

We start with αξe
ξt: its contribution to i(t) is

αξe
ξt (Ak0 − Λ) +

� 0

−d

αξe
ξ(t+w)

� w

−d

Aa(z)i0(z − w)dz dw −
� t

0

αξe
ξ(t−s)Λgegsds

= αξe
ξt

�
AΓ(x0)− Λ+

Λg

g − ξ

�
+ αξe

gt

�
− Λg

g − ξ

�

= αξe
ξt

�
ΛA

σ

ρ− ξ(1− σ)

ξ

A
− Λ+

Λ ξ−ρ
σ

ξ−ρ
σ

− ξ

�
+ αξe

gt

�
− Λg

g − ξ

�
= αξe

gt

�
− Λg

g − ξ

�

where the second equality is obtained using (5.2) and (5.1). Now, to analyze the contribution of the series,

we can use the dominated convergence theorem to exchange the series and the integral in (9.4). Then, for
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each term pje
λjt, we can develop the integrals as above, obtaining as contribution the sum of two terms:

pje
λjt

�
AΓj(k0, i0)− Λ+

Λg

g − λj

�
+ pje

gt

�
− Λg

g − λj

�
.

So by definition of aj , bj (7.3), we get (7.2).

Now let us show the second part of the claim, i.e. the existence of the limits for the detrended paths.

Let us set, for simplicity of notation,

kg(t)
def
= k∗

(k0,i0),g(t), ig(t)
def
= i∗(k0,i0),g(t), t ≥ 0,

Being i(·) real (7.2) can be rewritten as

i(t) = αξe
gt

�
− Λg

g − ξ

�
+

∞�

j=1

Re
�
pje

λjtaj + pje
gtbj

�

= αξe
gt

�
− Λg

g − ξ

�
+

∞�

j=1

eµjtRe
�
pje

iνjtaj

�
+ egtRe [pjbj ] .

By Assumption 7.1(i), we have

i(t) = C0e
gt + o(egt), where C0

def
= −Λg

�
αξ

g − ξ
+

∞�

j=1

Re

�
pj

g − λj

��
,

where it can be proved that the last series converges.

This proves that there exists a constant il such that limt→+∞ ig(t) = il. Of course by relation Akg(·)−ig(·) ≡
Λ this implies also that there exists a constant kl such that limt→+∞ kg(t) = kl. We now calculate explicitly

such il and kl using the explicit form of the optimal feedback provided by (5.2)-(B.25). We have

ig(t) = (A− ν)kg(t)− ν

� 0

−d

e(ξ−g)rdr

� r

−d

a(s)ig(t+ s− r)egsds,

and taking the limit for t → +∞ we obtain il = (A− ν)kl − νil
� 0

−d
e(ξ−g)rdr

� r

−d
a(s)egsds,

i.e. il

�
1 + ν

� 0

−d

e(ξ−g)rdr

� r

−d

a(s)egsds

�
= (A− ν)kl .

Exchanging the order of integration and using the definitions of ν and ξ, we get

il

�
A

ξ

� 0

−d

a(η)egηdη

�
= (A− ν)kl. (9.5)

Moreover, from the relation Akg(t)− ig(t) = Λ we have Akl − il = Λ. Using previous equation and (9.5) we

find the values il and kl and so the claim. �
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Supplementary material
This supplementary material explains in more details the strategy to solve the optimal control problem.

Section A provides some important information on the asymptotic behavior of capital paths. Section B

develops in details the methodology described in Subsection 5.1 of the main article.

A Asymptotic behavior of admissible capital paths
Let us recall some known facts from the theory of DDEs. Consider the so called fundamental solution

to the equation for the maximal growth, i.e. the function γ solving the DDE





γ�(t) = A
� 0

−d
a(r)γ(t+ r)dr, t ≥ 0,

γ(0) = 1, γ(s) = 0, s ∈ [−d, 0).
(A.1)

Notice that, since a(·) ≥ 0, we have

γ(t) > 0, ∀t ≥ 0. (A.2)

From Diekmann et al. [18, Th. 5.4, p. 34] and using the fact that ξ is the solution to (4.4) with the highest

real part (as proved in Proposition 4.3), we have, for some αξ > 0 and every ε > 0,

γ(t) = αξe
ξt + o(e(ξ−ε)t), (A.3)

where limt→∞
��� o(e

(ξ−ε)t)

e(ξ−ε)t

��� = 0. Let (k0, i0) ∈ H and i ∈ I(k0,i0), and consider the corresponding consumption

strategy

c(t) = Ak(k0,i0),i(t)− i(t) ≥ 0. (A.4)

Clearly we can rewrite the evolution of k(k0,i0),i in terms of c as

k�
(k0,i0),i(t) =

� (−d)∨(−t)

−d

a(r)i0(t+ r)dr +

� 0

(−d)∨(−t)

a(r)(Ak(k0,i0),i(t+ r)− c(t+ r))dr.

Hence

k�
(k0,i0),i(t) =

� 0

−d

a(r)(Ak(k0,i0),i(t+ r)− c(t+ r))dr, t ≥ d.

Then, setting

k̄0 := k(k0,i0),i(d), ı̄0(s) := i(s+ d), s ∈ [−d, 0], (A.5)

the variation of constants formula (see Hale and Lunel [28], Ch. 6, p. 170) allows to write k(k0,i0),i in terms

of kM
(k̄0,ı̄0)

(see the definition of kM in Proposition 4.2) and γ:

k(k0,i0),i(t) = kM
(k̄0,ı̄0)

(t− d)−
� t

d

γ(t− s)ds

� 0

−d

a(r)c(s+ r)dr, t ≥ d. (A.6)

Lemma A.1. Let (k0, i0) ∈ H, i ∈ I(k0,i0) and c as in (A.4). Then

∃ lim
t→+∞

e−ξt

� t

d

γ(t− s)ds

� 0

−d

a(r)c(s+ r)dr ∈ [0, ᾱ0],

i



where ᾱ0 is the constant of Proposition 4.4 related to the initial data (k̄0, ı̄0) defined in (A.5).

Proof. The fact that if the limit exists it is nonnegative is due to (A.2) and (A.4). The fact that if the

limit exists it is smaller than α0 is due to Proposition 4.4, to (A.6) and to (A.2) and (A.4).

Let us show now the existence of the limit. By (A.3) there exists T ≥ d such that

γ(t) ≥ αξ

2
eξt, ∀t ≥ T. (A.7)

Setting

f(s) :=

� 0

−d

a(r)c(s+ r)dr ≥ 0, s ≥ d,

and using (A.6) and the admissibility of i, we can write

e−ξt

� t

d

γ(t− s)f(s)ds ≤ e−ξtkM
(k̄0,ı̄0)

(t− d), t ≥ d. (A.8)

Now (A.7) and (A.8) yield

e−ξt

� t−T

d

αξ

2
eξ(t−s)f(s)ds+ e−ξt

� t

t−T

γ(t− s)f(s)ds ≤ e−ξtkM
(k̄0,ı̄0)

(t− d), t ≥ T.

Taking into account (A.2) we get

� t−T

d

αξ

2
e−ξsf(s)ds ≤ e−ξtkM

(k̄0,ı̄0)
(t− d), ∀t ≥ T.

Taking t → +∞ in the inequality above and considering the nonnegativity of f and Proposition 4.4, we see

that the function s �→ eξsf(s) belongs to L1([d,+∞);R) and

lim
t→+∞

� t

d

e−ξsf(s)ds = L :=

� +∞

d

e−ξsf(s)ds < +∞. (A.9)

Now, using (A.3) we write for some C1, C2 > 0

����e
−ξt

� t

d

γ(t− s)f(s)ds−
� t

d

αξe
−ξsf(s)ds

���� ≤ e−ξt

� t

d

(C1e
(ξ−ε)(t−s) + C2)f(s)ds

=

� +∞

d

gt(s)e
−ξsf(s)ds,

where

gt(s) := C1e
−ε(t−s) + C2e

−ξ(t−s), s, t ≥ d.

Now notice that |gt| ≤ C1 +C2 and gt(s) → 0 as t → +∞ for every s ≥ d. Hence, taking into account (A.9),

passing to the limit for t → +∞ in the inequality above, we get by dominated convergence in the right hand

side

lim
t→+∞

����e
−ξt

� t

d

γ(t− s)f(s)ds−
� t

d

αξe
−ξsf(s)ds

���� = 0.

ii



Taking again into account (A.9), we conclude. �

Proposition A.2. Let (k0, i0) ∈ H, i ∈ I(k0,i0), and let ᾱ0 be as in Lemma A.1.

1. There exists finite limt→+∞ e−ξtk(k0,i0),i(t) ∈ [0, ᾱ0],

2. Assume that limt→+∞ e−ξtk(k0,i0),i(t) = α > 0. Then, for every β ∈ (0,α) there exists iβ ∈ I(k0,i0)

such that :

— k(k0,i0),iβ (·) ≤ k(k0,i0),i(·),
— limt→+∞ e−ξtk(k0,i0),iβ (t) ≤ β;

— J((k0, i0); iβ) > J((k0, i0); i).

Proof. 1. This claim follows from Proposition 4.4, Lemma A.1 and (A.6).

2. Let limt→+∞ e−ξtk(k0,i0),i(t) = α ≥ β > 0. Then, given ζ ∈ (0,α) there exists T ≥ d such that

e−ξtk(k0,i0),i(t) ≥ α− ζ > 0, ∀t ≥ T. (A.11)

Let c be defined as in (A.4) and consider the consumption strategy

cη,δ(s) := c(s) + ηeδs1[T,+∞)(s), s ≥ 0, η > 0, δ ∈ (0, ξ).

Let kη,δ be the solution to





k�(t) =

� (−d)∨(−t)

−d

a(r)i0(t+ r)dr +

� 0

(−d)∨(−t)

(Aa(r)k(t+ r)− cη,δ(t+ r))dr, t ≥ 0,

k(0) = k0, i0(s), s ∈ [−d, 0).

Then, setting iη,δ(·) := Akη,δ(·) − cη,δ(·), we clearly have k(k0,i0),iη,δ
(·) ≡ kη,δ(·). Clearly, since η > 0, we

have k(k0,i0),iη,δ
(·) ≤ k(k0,i0),i(·) and J((k0, i0), iη,δ) > J((k0, i0); i). So, we need to show that for suitable

η, δ one has iη,δ ∈ I(k0,i0) and limt→+∞ e−ξtk(k0,i0),iη,δ
(t) ≤ β.

Set k(·) := k(k0,i0);i(·) and kη,δ(·) := k(k0,i0);iη,δ
(·). Since i ≡ iη,δ in [0, T ], from the admissibility of i we

get

kη,δ(t) = k(t) > 0, ∀t ∈ [0, T ]. (A.12)

On the other hand, from (A.6) we have

e−ξtk(t) = e−ξtkM
(k̄0,ı̄0)

(t− d)− e−ξt

� t

d

γ(t− s)ds

� 0

−d

a(r)c(s+ r)dr, t ≥ d

and

e−ξtkη,δ(t) = e−ξtkM
(k̄0,ı̄0)

(t− d)− e−ξt

� t

d

γ(t− s)ds

� 0

−d

a(r)cη,δ(s+ r)dr, t ≥ d.
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Combining the two equalities above and using (A.11) we get for t ≥ T

e−ξtkη,δ(t) = e−ξtk(t)− ηe−ξt

� t

d

γ(t− s)eδsds

� 0

−d

a(r)eδr1[T,+∞)(s+ r)dr.

Hence, setting Cδ :=
� 0

−d
a(r)eδrdr > 0, we have

e−ξtkη,δ(t) ≥ e−ξtk(t)− ηCδe
−ξt

� t

T

γ(t− s)eδsds, t ≥ T, (A.13)

e−ξtkη,δ(t) ≤ e−ξtk(t)− ηCδe
−ξt

� t

T+d

γ(t− s)eδsds, t ≥ T + d. (A.14)

Take χ ∈ (0, 1). Using (A.3) we can assume, without loss of generality, that for the same T fixed in the

current proof it holds true

(1− χ)αξe
ξt ≤ γ(t) ≤ (1 + χ)αξe

ξt, ∀t ≥ T. (A.15)

On the other hand there exists KT > 0 such that

γ(t) ≤ KT , ∀t ∈ [0, T ]. (A.16)

Then (A.13) combined to (A.15), (A.11) and (A.16) yields

e−ξtkη,δ(t) ≥ e−ξtk(t)− (1 + χ)αξηCδ

� t−T

T

e−(ξ−δ)sds− ηCδKT e
−ξt

� t

t−T

eδsds

≥ α− ζ − (1 + χ)αξηCδ

ξ − δ

�
e−(ξ−δ)T − e−(ξ−δ)(t−T )

�
− ηCδTKT e

−(ξ−δ)t 1− e−δT

δT

≥ α− ζ − (1 + χ)αξηCδ

ξ − δ
e−(ξ−δ)T − ηCδTKT e

−(ξ−δ)T

= α− ζ − e−(ξ−δ)TCδη

�
(1 + χ)αξ

ξ − δ
+ TKT

�
, t ≥ T.

Hence, if η, δ are such that

e−(ξ−δ)TCδη

�
(1 + χ)αξ

ξ − δ
+ TKT

�
< α− ζ, (A.17)

considering also (A.12), we see that iη,δ ∈ I(k0,i0). Now we notice that, for any given δ ∈ (0, ξ), the inequality

(A.17) is fulfilled by choosing

η = η(δ) := (α− ζ)e(ξ−δ)TC−1
δ

�
(1 + χ)αξ

ξ − δ
+ TKT

�−1

. (A.18)

On the other hand, using (A.14) and (A.15) , we can write

e−ξtkη,δ(t) ≤ e−ξtk(t)− ηCδ(1− χ)αξ

� t−T

T+d

e−(ξ−δ)sds, t ≥ T + d. (A.19)

Taking η = η(δ) as in (A.18), we can use part 1 of the present proposition and pass to the limit in (A.19)
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getting

lim
t→+∞

e−ξtkη(δ),δ(t) ≤ α− η(δ)Cδ(1− χ)αξ
e−(ξ−δ)(T+d)

ξ − δ

= α− (α− ζ)(1− χ)αξe
−(ξ−δ)d ((1 + χ)αξ + TKT (ξ − δ))−1 .

Then, setting

f(δ,χ, ζ) := α− (α− ζ)(1− χ)αξe
−(ξ−δ)d ((1 + χ)αξ + TKT (ξ − δ))−1 ,

since we have freedom in the choice of the parameters χ, ζ > 0 (they just affect the choice of T ), to complete

the proof we need to show that

∃ χ, ζ > 0 such that for suitable δ ∈ (0, ξ) it is f(δ,χ, ζ) ≤ β. (A.20)

Now notice that

lim
δ↑ξ

f(δ,χ, ζ) = α− (α− ζ)
1− χ

1 + χ
.

So, if χ, ζ are sufficiently close to 0, (A.20) can be obtained, and the proof is complete. �

The result of Proposition A.2(1) is a nontrivial generalization of a much easier result in the case without

delays. In fact, the case without delays has γ(t − s) = eξ(t−s) and so the function t �→ e−ξt
� t

0
γ(t − s)ds is

clearly monotone, whereas in the delay case this is not true anymore and one has to control the fluctuations

of such a function (see the proof of Lemma A.1). It is also worth noting that Proposition A.2(2) has an

immediate corollary: if the investment strategy i∗ ∈ I(k0,i0) is optimal, then limt→+∞ e−ξtk(k0,i0),i∗(t) = 0.

This will be crucial in Section B.5 to prove the main results in Theorem 5.2 and then find the solution of

problem (P).

B Solution of the control problem (P)
B.1 Uniqueness of Optimal Controls

The existence of optimal strategies is proved in Section 5 through the solution of the HJB equation. 29

Here we focus on uniqueness and precisely on proving that if an optimal control exists then it is unique.

Proposition B.1 (Uniqueness of Optimal Paths). Let (k0, i0) ∈ H and assume that V (k0, i0) is finite.

There exists at most one optimal control for the problem (P) with the initial data (k0, i0).

Proof . Let i1, i2 ∈ I(k0,i0) and set iλ = λi1 + (1 − λ)i2. Then, by linearity of the state equation, we

have

k(k0,i0),iλ(·) = λk(k0,i0),i1(·) + (1− λ)k(k0,i0),i2(·). (B.1)

First, this implies that the set I(k0,i0) is convex. Moreover, using (B.1) and the strict concavity of the real

function x �→ x1−σ

1−σ
, it is straightforward to show that the functional J((k0, i0); ·) is strictly concave on its

29. Alternatively, Convex and Functional Analysis tools could have been used to prove it.
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domain. So the claim follows. �

B.2 Rewriting (P) in Infinite Dimension
To rewrite our control problem with delay as a control problem without delay in infinite dimension we

define a new state variable (which we call structural state) and find the state equation that it satisfies. To

accomplish this task we first write the DDE (3.4) in a more formal way, defining suitable functions and

operators.

Our infinite dimensional setting is represented by the Hilbert space H
def
= R×L2([−d, 0];R). In order to

write an infinite dimensional differential abstract equation satisfied by the new state variable in the Hilbert

space H, we introduce some operators and their adjoints.

Let us define the linear functional C ∈ H∗ as

ψ �→ C(ψ0,ψ1)
def
=

� 0

−d

a(r)ψ1(r)dr = �a,ψ1�L2([−d,0];R), ψ ∈ H.

It can be immediately seen that the adjoint C∗ : R → H is the operator defined by

C∗(s) = (0, sa), s ∈ R,

since, for ψ ∈ H,
�s , Cψ�R = s�a,ψ1�L2([−d,0];R) = s

� 0

−d

a(r)ψ1(r)dr = �ψ, C∗s�H .

Let us D denote the derivative operator in the Sobolev space W 1,2([−d, 0];R). Let B : D(B) ⊂ H → H

be the closed densely defined unbounded linear operator on H defined by

(ψ0,ψ1) �→ B(ψ0,ψ1)
def
= (0,Dψ1),

where

D(B) def
= {(ψ0,ψ1) ∈ H : ψ1 ∈ W 1,2([−d, 0];R),ψ0 = ψ1(0)}.

It is well known that B generates a strongly continuous semigroup on H, whose explicit expression is

SB(t)ψ = (ψ0,ψ01R+(t+ ·) + ψ1(t+ ·)1(−∞,0)(t+ ·)), ψ = (ψ0,ψ1) ∈ H.

The adjoint of B is the operator (see e.g. Vinter [47] and Vinter and Kwong [48])

φ = (φ0,φ1) �→ B∗φ =
�
φ1(0),−Dφ1� , φ ∈ D(B∗).

where
D(B∗) = {φ = (φ0,φ1) ∈ H : φ1 ∈ W 1,2([−d, 0];R), φ1(−d) = 0} ⊂ H.

The operator B∗ generates the strongly continuous semigroup SB∗ on H, whose explicit expression, com-

putable starting from the expression of B, is given by

SB∗(t)ϕ =

�
ϕ0 +

� 0

(−t)∧(−d)

ϕ1(r)dr, ϕ1(·− t)1[−d,0](·− t)

�
, ϕ = (ϕ0,ϕ1) ∈ H.
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Given i ∈ L2
loc(R+;R), z0 ∈ H, we consider the abstract equation in H





Y �(t) = B∗Y (t) + C∗i(t), t > 0,

Y (0) = z0.
(B.2)

We will use two concepts of solution to (B.2), that in our case coincide. For details we refer to Li and Yong

[38, Ch. 2, Sec. 5].

Definition B.2. 1. We call mild solution of the evolution equation (B.2) the function Y ∈ C 0(R+;H)

defined as

Y (t)
def
= SB∗(t)z0 +

� t

0

SB∗(t− r) C∗i(r) dr , t ≥ 0,

where the integral above is understood as Bochner integral of H-valued functions.

2. We call weak solution of (B.2) a function Y ∈ C0(R+;H) such that for every t ≥ 0 and every

h ∈ D(B)
�Y (t), h�H = �z0, h�H +

� t

0

�Y (r),Bh�Hdr +

� t

0

�C∗i(r), h�Hdr. (B.3)

We notice that (B.3) can be rewritten as

�Y (t), h�H = �z0, h�H +

� t

0

�Y (r),Bh�Hdr + Ch
� t

0

i(r)dr. (B.4)

From now on we denote by Yz0,i(·) the mild solution of (B.2) in H. We notice that the definition of mild

solution is the infinite-dimensional version of the variation of constant formula and, by definition the mild

solution exists and it is unique. By a well-known result (see Li and Yong [38, Ch. 2, Prop. 5.2]), the mild

solution is also the (unique) weak solution.

Now we want to connect the infinite dimensional differential problem defined above with the original

problem in DDE form. For that, let us introduce now the bounded linear operator

F : L2([−d, 0];R) −→ L2([−d, 0];R),

acting on f ∈ L2([−d, 0];R) as

[Ff ](s)
def
=

� s

−d

a(r)f(r − s)dr, s ∈ [−d, 0].

By using Hölder’s inequality, straightforward computations show that

�f ∗ a�L2([−d,0];R) ≤ �a�L2([−d,0];R)�f�L2([−d,0];R),

which shows that F is bounded. Consider now the bounded linear operator

Q : H −→ H, (r, f) �→ (r, Ff).
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Given t ≥ 0, define

ı̃t : [−d, 0] → R; ı̃t(s)
def
= ı̃(t+ s), s ∈ [−d, 0].

The link between (3.4) and (B.2) is provided by the following.

Theorem B.3. Let (k0, i0) ∈ H, i ∈ L2
loc(R+;R). Set

z0
def
= Q(k0, i0) ∈ H; Y (t)

def
= Yz0,i(t), k(t)

def
= k(k0,i0),i(t), t ≥ 0.

Then

Y (t) = Q(Y 0(t), ı̃t) and Y 0(t) = k(t), ∀t ≥ 0.

Proof. See Vinter and Kwong [48, Sec. 5]. �.

We are now ready to reformulate our optimal control problem (P) in the space H. For a given z0 ∈ H, the

new set of admissible controls is

IH
z0

def
= {i ∈ L2

loc([0,+∞);R) : Y 0
z0(t) > 0 ∀t ≥ 0, i(t) ≤ AY 0

z0,i(t) for a.e. t ≥ 0}.

The objective functional over i ∈ IH
z0 is

JH(z0; i)
def
=

� ∞

0

e−ρt (AY 0
z0,i(t)− i(t))1−σ

1− σ
dt, (B.5)

and the value function in this setting is the function

V H : H −→ R, V H(z0)
def
= sup

i∈IH
z0

JH(z0; i),

with the convention sup ∅ = −∞. This problem will be called problem (PH).

Due to Theorem B.3 the connection between (P) and (PH) is the following: let (k0, i0) ∈ H and set

z0 = Q(k0, i0); then 



(i) I(k0,i0) = IH
z0 ;

(ii) JH(z0; i) = J((k0, i0); i), ∀i ∈ I(k0,i0) = IH
z0 ;

(iii) V H(z0) = V (k0, i0).

Remark B.4. The set Q(H) ⊂ H is the subset of initial data in the Hilbert setting corresponding to the

initial data in the DDE setting. We notice that it is possible to prove that Q(H) is dense, but not closed in

H. In particular Q(H) �= H, so the problem we have defined in H contains more initial data with respect to

the ones coming from the DDE setting, which are represented as points of Q(H).
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B.3 The HJB Equation associated to (PH)
We are going to study the problem by the dynamic programming approach in infinite dimension. The

core of the dynamic programming approach to control problems is represented by the so called HJB equation

that we are going to define for our problem.

Let y = (y0, y1) ∈ H. Define

E
def
= {(y, P, i) ∈ H ×D(B)× R : i ≤ Ay0}.

On the set E, we define the function current value Hamiltonian HCV : E −→ R, as

HCV (y, P, i)
def
= �y,BP �H + �i, CP �R +

(Ay0 − i)1−σ

1− σ
.

For σ ∈ (0, 1), the map HCV is well-defined on E. When σ > 1 the above is not defined in the points in

which Ay0 = i. In such points we set then HCV = −∞. Also we define the maximum value Hamiltonian

(or simply Hamiltonian) of the system as

H : H ×D(B) −→ R, H : (y, P ) �−→ sup
i≤Ay0

HCV (y, P, i).

The HJB equation of our infinite dimensional control problem is then

ρv(y)−H(y,∇v(y)) = 0, y ∈ H. (B.6)

Remark B.5. We notice that we have defined the HJB equation in a larger set than the natural set where

it should be defined. Indeed, from the state constraint, we know that V H(y0, y1) = −∞ when y0 ≤ 0, so it

does not make sense to associate an HJB equation to V H over the set where y0 ≤ 0. Nevertheless nothing

prevents us to consider the HJB equation to be defined over the whole H, and actually this makes sense: the

reason to do that is that in the infinite-dimensional setting the natural constraint for the control problem is

not y0 > 0, but a more involved one, which allows also the case y0 ≤ 0. What we shall do is to solve the HJB

equation above in a set containing also points where y0 ≤ 0, and associate to this equation another control

problem (with different constraints) with value function Ṽ H . Then we do the inverse path: we rephrase this

new infinite-dimensional problem in the DDE setting and state its equivalence with a DDE control problem

with a new constraint. This problem will have a value function Ṽ , which is in principle different from the

original value function V . But at the end we show that, for some initial data (the ones we are interested in),

we have actually the equality Ṽ = V . This will provide the solution of the original problem for such data.

Making more explicit the expression of H in a specific case, we notice that if (CP )−1/σ > 0, then the

unique maximum point of HCV (y, P ; ·) over (−∞, Ay0] is

iMAX = Ay0 − (CP )−1/σ > 0. (B.7)
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It follows that

(CP )−1/σ > 0 =⇒ H(y, P ) = �Y,BP �H +Ay0(CP ) +
σ

1− σ
(CP )

σ−1
σ , (B.8)

so the HJB equation (B.6) can be rewritten in this case as

ρv(y)− �y,B∇v(y)�H +Ay0(C∇v(y)) +
σ

1− σ
(C∇v(y))

σ−1
σ = 0. (B.9)

We introduce now some objects that will be used in the sequel:

w ∈ L2([−d, 0];R+), w(r)
def
= eξr, r ∈ [−d, 0],

where ξ the real positive solution of the characteristic equation (4.5);

ϕ
def
= (1, w) ∈ D(B) ⊂ H; (B.10)

We note that

Bϕ = (0, ξw), Cϕ =

� 0

−d

a(r)eξrdr = ξ/A. (B.11)

Moreover we define

Θ
def
= {y ∈ H : �ϕ, y�H > 0} ⊂ H.

It is now possible to present an explicit solution of the HJB equation (B.6) in Θ.

Proposition B.6. The function v : Θ → R, defined by

v(y)
def
= α�ϕ, y�1−σ

H , (B.12)

where ν is defined in (5.3) and α
def
= ν−σ 1

(1−σ)
A
ξ
, is continuously differentiable – with gradient taking values

in D(B) – and solves the HJB equation (B.6) in Θ.

Proof. Clearly v ∈ C1(Θ) and

∇v(y) =
�
α(1− σ)�ϕ, y�−σ

H ,α(1− σ)�ϕ, y�−σ
H w

�
,

so ∇v(y) ∈ D(B) for every y ∈ Θ. Moreover w� = ξw and ξ = A
� 0

−d
a(r)eξrdr = A�a, w�L2([−d,0];R) since ξ

is by definition the solution of the characteristic equation (4.5), and

B∇v(y) =
�
0, ξα(1− σ)w�ϕ, y�−σ

H

�
,

C∇v(y) = �a,α(1− σ)w�ϕ, y�−σ
H �L2([−d,0];R) = α(1− σ)�ϕ, y�−σ

H �a, w�L2([−d,0];R)

= α(1− σ)
ξ

A
�ϕ, y�−σ

H .

x



In particular (C∇v(y))−1/σ = ν�ϕ, y�H > 0. So, plugging these expressions into (B.6) and using (B.8) and

(B.9), we obtain the claim. �

In the standard AK optimal growth model without time-to-build, which is indeed the special case d → 0

of the problem studied in this paper, it is straightforward to show that the solution to the corresponding

HJB equation is v(k0) =
(A−g)−σ

1−σ
k1−σ
0 . With a finite strictly positive d, the problem is infinite dimensional

and the role of capital k is now played by �ϕ, y�H , which can be interpreted as the equivalent concept of

capital in the case with time-to-build 30. A similar equivalence was found and discussed extensively in Fabbri

and Gozzi [20] in a vintage capital model with linear technology.

The reason why we expect that the value function (and so the solution of the HJB equation) is of the

form of v above comes from the following considerations. Firstly the value function has to be (1 − σ)-

homogeneous in the state variable due to the structure of the problem, see Proposition 4.5; secondly �ϕ, y�H
must be connected linearly with the amount of capital.

To prove that v is the value function we need to prove that the closed loop strategies are admissible.

The next subsection is devoted to find parameter’s restrictions under which this is indeed the case. It is

worth noting untill now that the conditions we will be able to find, are sufficient but not necessary for the

closed loop strategies to be admissible.

B.4 Verification Theorem and Optimal Feedbacks for (P̃H)

The goal of this subsection is to show that the solution v found in Proposition B.6 coincides indeed with

the value function of the associated auxiliary control problem (P̃H). As usual this is done by a verification

theorem passing through the study of the so called closed loop equation. From expression (B.7) we see that

the candidate optimal feedback map is the linear map

Φ : Θ → R, Φy = Ay0 − (C∇v(y))−1/σ = Ay0 − ν�ϕ, y�H , (B.13)

and the associated closed loop equation is





Y �(t) = B∗Y (t) + C∗ΦY (t), t ≥ 0,

Y (0) = z0.
(B.14)

This equation in the space H admits a unique weak solution (see Li and Yong [38]) in the sense that there

exists a unique function Y ∗
z0 ∈ C0(R+;H) such that for every t ≥ 0 and h ∈ D(B),

�Y ∗
z0(t), h�H = �h, z0�H +

� t

0

�Bh, Y ∗
z0(r)�Hdr +

� t

0

�C∗ΦY ∗
z0(r), h�Hdr, (B.15)

i.e.

�Y ∗
z0(t), h�H = �h, z0�H +

� t

0

�Bh, Y ∗
z0(r)�Hdr + Ch

� t

0

ΦY ∗
z0(r), dr. (B.16)

30. See also Section B.5 where �ϕ, y�H is explicitly expressed in terms of the economic variables.
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Consider now this auxiliary problem that we call (P̃H). For a given z0 ∈ H, the new set of admissible

controls is

ĨH
z0

def
= {i ∈ L2

loc([0,+∞);R) : Yz0(t) ∈ Θ ∀t ≥ 0, i(t) ≤ AY 0
z0,i(t) for a.e. t ≥ 0}.

The objective functional over i ∈ ĨH
z0 is as in (B.5) and the value function is

Ṽ H : H −→ R, Ṽ H(z0)
def
= sup

i∈ ˜̃IH
z0

JH(z0; i),

with the convention sup ∅ = −∞.

Proposition B.7. Let z0 ∈ Θ.

1. For every i ∈ L2
loc(R+;R) be such that i(t) ≤ AY 0

z0,i(t) for a.e. t ≥ 0, we have

�ϕ, Yz0,i(t)�H ≤ �ϕ, z0�H eξt, ∀t ≥ 0.

2. For the weak solution Y ∗
z0 to the closed loop equation (B.13) we have

�ϕ, Y ∗
z0(t)�H = �ϕ, Y ∗

z0(0)�H egt = �ϕ, z0�H egt, ∀t ≥ 0,

In particular, the solution of (B.14) remains in Θ 31.

Proof. 1. We have, taking h = ϕ in (B.4), where ϕ is defined in (B.10),

d

dt
�ϕ, Yz0,i(t)�H = �Bϕ, Yz0,i(t)�H + (Cϕ)i(t), for a.e. t ≥ 0, ∀i ∈ L2

loc(R+;R). (B.17)

The right hand-side of (B.17) is

�Bϕ, Yz0,i(t)�H + (Cϕ)i(t) = ξ�w, (Y ∗
z0)

1(t)�L2([−d,0];R) +
ξ

A
i(t)

= ξ�ϕ, Yz0,i(t)�H − ξ

A
(AY 0

z0(t)− i(t)).

So, if i ∈ L2
loc(R+;R) is such that i(t) ≤ AY 0

z0,i(t) for a.e. t ≥ 0, we get from (B.17) and (B.18)

d

dt
�ϕ, Yz0,i(t)�H ≤ ξ�ϕ, Yz0,i(t)�H , for a.e. t ≥ 0.

The claim follows by standard comparison results for ODEs.

2. We have, taking h = ϕ in (B.16) where ϕ is defined in (B.10),

d

dt
�ϕ, Y ∗

z0(t)�H =
d

dt
�ϕ, Y ∗

z0(t)�H = �Bϕ, Y ∗
z0(t)�+ (Cϕ)ΦY ∗

z0(t) (B.19)

31. Note the analogy between the first claim of Proposition B.7 and the statement of Proposition 4.4: Proposition
B.7(1) estimates the maximal growth rate of �ϕ, Y (t)�H by ξ as well as Proposition 4.4 estimates the maximal growth
rate of k(t) by ξ.
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So, using (B.11), the right-hand side of (B.19) equals

ξ�w, (Y ∗
z0)

1(t)�L2([−d,0];R) +
�
A(Y ∗

z0)
0(t)− ν�ϕ, Y ∗

z0(t)�H
� ξ

A
= ξ

�
1− ν

A

�
�ϕ, Y ∗

z0(t)�H ,

and the claim follows. �

Theorem B.8 (Verification Theorem for (P̃H)). Let v be the function defined in Proposition B.6.

1. Ṽ H = v on Θ.

2. Given z0 ∈ Θ, the control i∗z0(t) := ΦY ∗
z0(t), t ≥ 0, is optimal for (P̃H) starting at z0, i.e.

JH(z0; i
∗
z0) = Ṽ H(z0).

Proof. First of all we notice that, by definition of i∗z0 , we have that Yz0,i∗z0
is a weak solution of (B.15).

By uniqueness of weak solution of (B.15), this implies Yz0,i∗z0
= Y ∗

z0 . So, using Proposition B.7, we see that

i∗z0 ∈ ĨH
z0 .

Defining, for i ∈ R, the differential operator Li acting on v as

[Liv](y) := �y,B∇v(y)�H + (Cϕ)i.

we have (see, e.g., [38, Ch. 2, Prop. 5.5]) the following chain’s rule:

e−ρtv(Yz0,i(t))− v(z0) =

� t

0

e−ρs(−ρv(Yz0,i(s)) + [Li(s)v](Yz0,i(s)))ds, ∀ t ≥ 0, ∀i ∈ ĨH
z0 .

Using the fact that v solves he HJB equation (B.6) in Θ, we can rewrite the equality above as

e−ρtv(Yz0,i(t))− v(z0) = −JH(z0; i)

+

� t

0

e−ρs[HCV (Yz0,i(s),∇v(Yz0,i(s); i(s))−H(Yz0,i(s),∇v(Yz0,i(s))]ds,

i.e.

v(z0) = JH(z0; i)

+

� t

0

e−ρs[H(Yz0,i(s),∇v(Yz0,i(s))−HCV (Yz0,i(s),∇v(Yz0,i(s); i(s))]ds+ e−ρtv(Yz0,i(t)), (B.20)

for every t ≥ 0 and every i ∈ ĨH
z0 . Now take t → +∞ in (B.20).

1. Using Assumption 4.6, (B.12), and Proposition B.7(1), we can get rid of the term e−ρtv(Yz0,i(t))

which converges to 0.

2. Since H ≥ HCV , we can use monotone convergence in the integral term.

So, we can write the equality, holding for every t ≥ 0 and every i ∈ ĨH
z0 ,

v(z0) = JH(z0; i) +

� ∞

0

e−ρs[H(Yz0,i(s),∇v(Yz0,i(s))−HCV (Yz0,i(s),∇v(Yz0,i(s); i(s))]ds.
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Now noticing that H(·) ≥ HCV (·; i), we get the inequality v(z0) ≥ Ṽ H(z0). On the other hand, by definition

of i∗z0 we also have

H(Yz0,i∗z0
(s),∇v(Yz0,i∗z0

(s))−HCV (Yz0,i∗z0
(s),∇v(Yz0,i∗z0

(s); i∗z0(s)) = 0, ∀s ≥ 0.

Hence Ṽ H(z0) ≤ v(z0) = JH(z0; i
∗
z0) ≤ Ṽ H(z0), getting both the claims. �

B.5 The Problem (P̃) and its Solution

In the previous subsection we have solved (P̃H) over Θ. The latter problem is an infinite dimensional

problem associated to a problem slightly different from our original problem (P). Indeed, let (k0, i0) ∈ H,

let z0 = Q(k0, i0), let i ∈ L2
loc(R+;R). Then, by Theorem B.3, we have the equality

�ϕ, Yz0,i(t)�H = k(k0,i0),i(t) +

� 0

−d

dreξr
� r

−d

a(s)ı̃(t+ s− r)ds, ∀t ≥ 0.

Thus, defining the variable equivalent capital as

keq
(k0,i0);i

(t)
def
= k(k0,i0),i(t) +

� 0

−d

dreξr
� r

−d

a(s)ı̃(t+ s− r)ds, t ≥ 0, (B.21)

we can rephrase (P̃H) in the DDE setting by modifying the set of admissible strategies as follows:

Ĩ(k0,i0)
def
= {i ∈ L2

loc([0,+∞);R) : keq
(k0,i0);i

(t) > 0 ∀t ≥ 0, i(t) ≤ Ak(k0,i0),i(t) for a.e. t ≥ 0}.

Indeed, denoting by (P̃) the control problem

Ṽ (k0, i0)
def
= sup

i∈Ĩ(k0,i0)

J((k0, i0); i),

with the usual convention sup ∅ = −∞, we have





(i) Ĩ(k0,i0) = ĨH
z0 ;

(ii) JH(z0; i) = J((k0, i0); i), ∀i ∈ Ĩ(k0,i0) = ĨH
z0 ;

(iii) Ṽ H(z0) = Ṽ (k0, i0).

(B.22)

Let (k0, i0) ∈ H and assume that z0
def
= Q(k0, i0) ∈ Θ. Given i ∈ Ĩ(k0,i0) we define the associated

consumption process

c(t)
def
= Ak(k0,i0),i(t)− i(t), t ≥ 0. (B.23)

We now use Theorem B.8 to deduce explicitly the closed loop formula and the closed loop equation for

problem (P̃) from the corresponding ones for (P̃H).

Let us consider also the optimal investment strategy i∗z0 ∈ ĨH
z0 = Ĩ(k0,i0) for (P̃H) provided by Theorem
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B.8. Calling

k∗
(k0,i0)(·)

def
= k(k0,i0),i∗z0

(·), (B.24)

by Theorem B.3, we have k∗
(k0,i0)

(·) = (Y ∗
z0)

0(·). So, due to (5.2), we see that i∗z0(t) can be rewritten as

i∗z0(t) = Ak∗
(k0,i0)(t)− C0

(k0,i0)e
gt def

= i∗(k0,i0)(t), t ≥ 0. (B.25)

Taking into account Theorem B.8, next Proposition can be proved.

Proposition B.9. Let (k0, i0) ∈ H and assume that z0
def
= Q(k0, i0) ∈ Θ. Then:

— Ṽ (k0, i0) = v(z0).

— i∗(k0,i0)
defined in (B.25) is an optimal investment strategy for (P̃) starting at (k0, i0), and the asso-

ciated optimal capital path is k∗
(k0,i0)

defined in (B.24).

Moreover the optimal investment strategy i∗(k0,i0)
and the optimal capital path k∗

(k0,i0)
can be characterized

as solutions of suitable DDEs as follows:

1. The optimal capital k∗
(k0,i0)

is the unique continuously differentiable solution to the DDE (5.4).

2. The optimal investment i∗(k0,i0)
is the unique continuously differentiable solution to the the DDE (5.5).

3. The optimal consumption path c∗(k0,i0)
is exponential and explicitly provided by (5.6).

Proof. The facts that Ṽ (k0, i0) = v(z0) and that the couple (i∗(k0,i0)
, k∗

(k0,i0)
) is an optimal investmen-

t/capital couple starting from (k0, i0) for (P̃) are consequence of Theorem B.8 and of (B.22). Let us show

the other claims.

1. This claim follows from (B.25).

2. Differentiating (B.25) and using 1. of the present proposition, the differential part of claim follows.

The structure of the initial datum i(0) comes from (B.25) as well.

3. It comes from (B.23) and (B.25). �

B.6 Solution of (P) in a Suitable Set of Initial Conditions

In the previous subsection we have solved (P̃) over the subset of initial data Q−1(Θ). Now we want to

address the question of solving (P), which is the original problem we began with, at least on a suitable set

of initial data (i.e. initial stock of capital and initial history of the investment).

To do that, we look for sufficient conditions which guarantee that, starting from (k0, i0) ∈ Q−1(Θ), the

optimal control i∗(k0,i0)
of (P̃) provided by Proposition B.9 belongs to I(k0,i0) and that V (k0, i0) = Ṽ (k0, i0).

The final result is contained in Theorem 5.2.

Proposition B.10. Let (k0, i0) ∈ S and consider the investment strategy i∗(k0,i0)
defined in Proposition B.9.

Then i∗(k0,i0)
∈ I(k0,i0).

xv



Proof. Let (k0, i0) ∈ S and i∗(k0,i0)
defined as in Proposition B.9. Consider the function

ı̃∗(s) =





i0(s), s ∈ [−d, 0),

i∗(k0,i0)
(s), s ∈ [0,+∞).

Define the function

λ(t)
def
= (̃ı∗)�(t)− gı̃∗(t), t ∈ [−d,+∞).

Differentiating in (B.25) yields for every t ≥ 0

(i∗(k0,i0))
�(t)− gi∗(k0,i0)(t) = A(k∗

(k0,i0)
�(t)− νC0

(k0,i0)ge
gt − gi∗(k0,i0)(t)

= A
�
(k∗

(k0,i0))
�(t)− gk∗

(k0,i0)(t)
�

+ g
�
Ak∗

(k0,i0)(t)− νC0
(k0,i0)e

gt�− gi∗(k0,i0)(t)

= A
�
(k∗

(k0,i0))
�(t)− gk∗

(k0,i0)(t)
�
.

(B.26)

On the other hand we have

(k∗
(k0,i0))

�(t) =

� 0

−d

a(r)̃ı∗(t+ r)dr, ∀t ≥ 0.

We then see, by definition of S, that (k∗
(k0,i0)

)� ∈ W 1,2
loc (R+;R), and we can differentiate the equality above

getting

(k∗
(k0,i0))

��(t)− g(k∗
(k0,i0))

�(t) =

� 0

−d

a(r)
�
(̃ı∗)�(t+ r)− gı̃∗(t+ r)

�
dr, for a.e. t ≥ 0. (B.27)

Hence, using (B.26) and (B.27) we see that λ ∈ W 1,2
loc (R+;R) and solves the DDE

λ�(t) = A

� 0

−d

a(r)λ(t+ r)dr, for a.e. t ≥ 0. (B.28)

The initial data for such DDE are





λ(s) = i�0(s)− gi0(s), for (a.e.) s ∈ [−d, 0),

λ(0) = (i∗(k0,i0)
)�(0)− gi∗(k0,i0)

(0)

= A
� 0

−d
a(r)i0(r)dr − gC0

(k0,i0)
− g(Ak0 − C0

(k0,i0)
)

= A
�� 0

−d
a(r)i0(r)dr − gk0

�
.

(B.29)

By the assumption (k0, i0) ∈ S, the initial data in the DDE above are nonnegative. Since also the constant

A and the function a(·) are nonnegative, we get λ(t) ≥ 0 for a.e. t ≥ 0, i.e. (i∗(k0,i0)
)�(t) ≥ gi∗(k0,i0)

(t) for

a.e. t ≥ 0. Using again the assumption (k0, i0) ∈ S, we also see that i∗(k0,i0)
(0) = Ak0 − C0

(k0,i0)
≥ 0, so we

conclude that i∗(k0,i0)
(t) ≥ 0 for every t ≥ 0 (the passage from a.e. t ≥ 0 to every t ≥ 0 is due to continuity
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of i∗(k0,i0)
). Now notice that, by (4.2),

i ∈ Ĩ(k0,i0), i(·) ≥ 0, (k0, i0) ∈ H++ =⇒ i ∈ I(k0,i0),

so the proof is complete. �

Proposition B.11. Let (k0, i0) ∈ H.

1. Let

ĨL
(k0,i0)

def
= {i ∈ L2

loc([0,+∞);R) : keq
(k0,i0);i

(t) ≥ 0 for every t ≥ 0,

i(t) ≤ Ak(k0,i0),i(t) for almost every t ≥ 0},

Then I(k0,i0) ⊂ ĨL
(k0,i0)

.

2. V (k0, i0) ≤ Ṽ (k0, i0).

Proof. 1. Let i ∈ I(k0,i0), assume, by contradiction, that i /∈ ĨL
(k0,i0)

, and set keq(·) := keq
(k0,i0);i

(·) and

k(·) := k(k0,i0),i(·). Since i ∈ I(k0,i0), it is k(·) > 0 everywhere, whereas, since i /∈ ĨL
(k0,i0)

, there exists t0

such that keq(t0) < 0. Notice that, by (B.17) and (B.18), we have for every i ∈ L2
loc([0,+∞);R)

d

dt
keq(t) = ξkeq(t)− ξ

A
(Ak(k0,i0),i(t)− i(t)), for a.e. t ≥ 0.

i.e.
d

dt
keq(t) = ξkeq(t)− ξ

A
c(t), for a.e. t ≥ 0, (B.30)

Then, by (B.30), we can deduce that

lim sup
t→+∞

e−ξtkeq(t) = e−ξt0keq(t0) =: −c0 < 0. (B.31)

Now, we distinguish two cases: I) limt→+∞ e−ξtk(t) = 0; II) limt→+∞ e−ξtk(t) = α > 0.
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Case I. From (B.21) and taking into account that i+(·) ≤ Ak(·), we get

e−ξtkeq(t) = e−ξtk(t) +

� t+d

t

e−ξudu

� t−u

−d

a(s)i(u+ s)ds

= e−ξtk(t) +

� t+d

t

e−ξudu

� t−u

−d

a(s)[i+(u+ s)− i−(u+ s)]ds

≥ e−ξtk(t) +

� t+d

t

e−ξudu

� 0

−d

a(s)[i+(u+ s)− i−(u+ s)]ds

−
� t+d

t

e−ξudu

� 0

t−u

a(s)i+(u+ s)ds

≥ e−ξtk(t) +

� t+d

t

e−ξuk�(u)du−
� t+d

t

e−ξudu

� 0

−d

a(s)i+(u+ s)ds

≥ e−ξtk(t) +

� t+d

t

e−ξuk�(u)du−
� t+d

t

e−ξudu

� 0

−d

Aa(s)k(u+ s)ds

= e−ξtk(t) +
�
e−ξuk(u)

�t+d

t
+ ξ

� t+d

t

e−ξuk(u)du

−
� t+d

t

e−ξudu

� 0

−d

Aa(s)k(u+ s)ds

= e−ξ(t+d)k(t+ d) + ξ

� t+d

t

e−ξuk(u)du−
� t+d

t

e−ξudu

� 0

−d

Aa(s)k(u+ s)ds−
� t+d

t

e−ξudu

� 0

−d

Aa(s)k(u+ s)ds.

Now consider the sequence (tn)n≥1, where tn := dn, and let

t̄n ∈ argmaxu∈[tn−1,tn+1]
k(u), n ≥ 2.

Then, from the inequality above we get

e−ξt̄nkeq(t̄n) ≥ −Ade−ξt̄nk(t̄n). (B.32)

Letting n → ∞, since t̄n → +∞, from (B.32) and (B.31) we get −c0 ≥ 0, absurd.

Case II. Let (βj)j∈N be a sequence in (0,α) such that βj → 0 when j → ∞. For each j ∈ N consider

an associated strategy ij ∈ I(k0,i0) satisfying the claim of Proposition A.2(2) with β = βj , and call kj(·) :=
k(k0,i0),ij (·), kj

eq(·) := keq
(k0,i0),ij

(·). By construction of ij
32 and considering (B.30), we see that kj

eq(·) ≤
keq(·), hence, from (B.31), we have

lim sup
t→+∞

e−ξtkj
eq(t) ≤ e−ξt0keq(t0) =: −c0 < 0, ∀j ∈ N. (B.33)

Now, arguing as above in case I, we end up with

e−ξt̄jnkeq(t̄
j
n) ≥ −Ade−ξt̄jnk(t̄jn), ∀j ∈ N. (B.34)

32. Better is to look at the associated consumption strategy cj .
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Letting n → ∞, from (B.33) and (B.34) we get

−c0 ≥ −Adβj , ∀j ∈ N. (B.35)

Letting j → ∞ in (B.35), we finally get −c0 ≥ 0, absurde.

2. From part 1 of the present proposition we get

V (k0, i0) = sup
i∈I(k0,i0)

J((k0, i0); i) ≤ sup
i∈ĨL

(k0,i0)

J((k0, i0); i). (B.36)

On the other hand, (P̃) (better, the infinite dimensional counterpart (P̃)) is a standard control problem, for

which it is straightforward to check that the solution with the strict and the large state constraint (k eq(·) > 0

and keq(·) ≥ 0, respectively) is the same when starting from keq(0) = keq
0 > 0. Hence

sup
i∈ĨL

(k0,i0)

J((k0, i0); i) = sup
i∈Ĩ(k0,i0)

J((k0, i0); i) = Ṽ (k0, i0).

Combining with (B.36), we get the claim. �
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