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Abstract.

We consider a pure exchange economy with a finite number of goods and households. Following
Kranich (1988), we introduce only two differences with respect to the standard model: i. each house-
hold utility function depends not only on her own consumption, but also on other households’ welfare,
measured by wealth; then, other regarding preferences are based on other households opportunities;
ii. households are allowed to promise transfers to other households (and promised are bound to be
honored).

We show existence of equilibria under the assumption of the presence of an upper bound on
transfers, taking care of some problems which are not addressed by the paper by Kranich (1988).

We present a robust example of non existence of equilibria if the bound on transfers is not imposed,
and we describe equilibria and their Pareto Optimality properties in a simple Cobb-Douglas economy.

Keywords: General Equilibrium; exchange economies; other regarding preferences; existence,
nonexistence and regularity of equilibria.

JEL classification: D50, D64.



1 Introduction

We consider a pure exchange economy with a finite number of goods and households. Following
Kranich (1988), we introduce only two differences with respect to the standard model: i. each house-
hold utility function depends not only on her own consumption, but also on other households’ welfare,
measured by wealth (then, other regarding preferences are based on other households opportunities);
ii. households are allowed to promise transfers to other households (and promised are bound to be
honored).

The main contributions of the paper are as follows.

First of all, we discuss some problems and flows contained in the proof of existence of equilbria
presented in Kranich (1988). Similar problems are contained in Mercier Ythier (2000) which analyzes
an analogous model. At the best of our knowledge, no other work available in the literature presents
a contribution similar to the one presented here. Then, we provide (two) sets of assumptions which
allow to get the existence result. Such assumptions are less general than those provided by Kranich
(1988) and Mercier Ythier (2000).

Moreover, we consider the example of a one-good-two household Cobb Douglas economy and we
analyze and discuss the non-existence problem under the reasonable assumption of absence of an
artificial bound on the amount of transfers households can provide. In the case in which the bound
is imposed, the example allows to get some conjectures about properties of equilibria in more general
cases.

Finally, as a by-product of our analysis, we present a result which gives very easy to check conditions
which are sufficient to guarantee crucial properties of constraint set-valued functions associated with
commonly studied maximization problems in economics - see Proposition 107.!

The paper is organized as follows. In Section 1, we first present the set up of the model as it was
introduced by Kranich (1988).2 Indeed, the very definition of the maximization problem under analysis
requires several observations related to the quasi-concavity of the utility function, the compactness of
the set of admissible transfers, a consistent definition of the maximization problem and the related
need of an extension of the utility function, the role of price normalizations. Each above problem is
discussed and a solution is proposed.

In Section 2, starting from the Definition of equilibrium obtained as a consequence of the above
discussion, we describe a further problem we face in showing existence: the possibility of empty
constraint set faced by households. That problem can be addressed using some extension theorem for
(quasi-)concave continuous utility function from a subset of an Euclidean space to the whole space.
Using those theorems, we do present two existence results under different assumptions on the utility
functions. As a consequence, we can say that the existence result claimed by Kranich (1988) can be
shown to be true under assumptions which are stronger than those he proposes.

In Section 3, we discuss in detail the nonexistence problem in the model without upper bound
on transfers. First of all, we present a simple Cobb-Douglas, two household, one good version of the
model and we do show that there is indeed an open, nonempty and “interesting” set of economies for
which equilibria do not exists if upper bounds on promises of transfers are not imposed. Intuition on
the nonexistence results is presented. We then consider the Cobb-Douglas, two household, one good
model, with an upper bound on transfer. In the case of endowments of both households equal to 1,
economies can be represented as points in the positive orthant, and it is possible to compute equilibria
for each economy. We verify that if an upper bound is added, the result of non-existence of equilibria is
substituted by the existence of equilibria in which the upper bound on transfer is binding. Moreover,
we analyze the Pareto Optimality of equilibria. The simple Cobb-Douglas economies allows to get
some results on the equilibria structure which are used to get conjectures we study in a companion
paper.Set up of the model

1.1 A first version

We describe an economy in which households exchange goods (or commodities) in order to maximize
their well-being. A commodity is denoted by ¢ € {1,...,C} := C. A household is denoted by h €

LA more detailed version of the present paper can be found in its working paper version at
https://www.disei.unifi.it/vp-110-working-papers-quantitative-methods-for-social-sciences.html

That version contains the proofs or precise references for the proofs of all results presented here.

2In a companion paper, we analyze a similar interesting model introduced by Mercier Ythier (2000).



{1,...,H} := H and she is described by the following objects:®

a consumption set X, C RY with generic element z;, = (zf)
consumption of good ¢ by household h;

an endowment vector e, = (€f,),.c € RY, where ef € R denotes the amount of good ¢ owned by
household h;

a transfer vector t, = (thn) e (ny € REH ™Y, where thpr = (£5,,1) ¢ and tf,;, denotes the trans-
R(H-1)C(H~1)

ccc» Where zi € R denotes the

fer of good ¢ from household A to household h'. We also define t\;, = (th’)h/eH\{h} €

Commodities can be exchanged with other commodities at exchange ratios described by a price
vector p belonging to a price set P C R€.

To describe households’ utility functions, we need some preliminary definitions. 6, € © C R is
household h’s wealth. We also define 6 = (64)),c4, and 6\, := (01);, 90 (- Household 7's wealth
function, which depends upon the value of her initial endowment and net transfers, is denoted and
defined as follows.*

wy, : P x RC(H—I)H — @’ (p, t) —p|en+ Z (th/h — thh’)

h'eH\{h}

Household A’s utility function depends upon her own consumption and anyone else’s wealth and
it is denoted and defined as follows.

up » Xp X ef-1 R, (xh,e\h) — Up (.’L‘h,e\h) .

For “physical/biological” reasons, we assume nonnegativity of consumption and endowment vec-
tors; for institutional reasons (households are not allowed to “steal” goods), we assume nonnegativity
of the transfer vectors. Moreover, since we are going to assume that households “like goods”, prices
are restricted to be nonnegative. Since wealth is going to be completely used to buy goods which are
consumed, wealth as well is going to be nonnegative. Finally, defined the vector of total resources
as 7 = ), €n, for the time being and following Kranich (1988), we consider the following set of
“normalized” prices:

S:{pERE:pr:I}.

Summarizing, we assume X, = RE, P =S, © = R, and then the utility function is specified as
follows.
Up, - Rg X Rfil — R, (xh,e\h) — Up (mh,ﬂ\h) .

A sort of naive version of household h € ‘H maximization problem is defined as follows.

C(H-1)(H-1)
RY

)

Definition 1 For given e € REJF, p*es, t’\‘h €

MAX(y, ¢, )€RCxRO(H-1)  Up (:ch, (p* (eh' + Zh"e?—(\{h’} (o — th’h“)>)h/€%\{h})

s.t.

PTh <P (eh + X nwerngny rrn — thh’))

Indeed, the Definition above requires careful discussion. In each of the three subsections below,
we present a problem related to it and a proposal on how to address that problem.

3Economically meaningful restrictions on the sets defined below will be presented in the remainder of the section.
4Conditions will be imposed below to get a well given definition of the function wy,.



1.2 A discussion of the set-up of the model
1.2.1 Compactness of the choice set at the economy level

In many proof of existence of equilibria, it is provisionally assumed that the consumption vectors of
each household is bounded above by (a vector bigger than) total resources. Using a standard trick, it
is then shown the upper bound is never reached in equilibrium. That procedure does not work in the
case of transfers, for which no natural, physical bound exists. Following Kranich (1988), we assume
that there exists an artificial bound on transfer. In Section 3 below, a discussion on that assumption
is presented. Formally, we assume that for any h € H, there exists kp, = (khh’)h'eH\{h} € Ri(ffl)
such that t;, < k.

Remark 2 The value of the bound ky plays a role in the proof of existence of equilibria. If each
household h has to satisfy the constraint
kh S €Ep, (1)

using the strategy proposed in Section 2, it is possible to prove that result under more general assump-
tion than those presented inTheorem 84.° On the other hand, the constraint ky < ey, is really strong
and it is more natural to look for equilibria in which ky is “as large as possible”, say, pippo

kh > Z Ep’. (2)

h'eH

We do provide an existence result for arbitary positive values of kp,.

A natural conjecture is that any equilibrium with constraint (1) is allocation equivalent to an
equilibrium with constraint (2). That conjecture turns out to be true in the one good, two household,
Cobb-Douglas economy presented in Section 3.2. For the more general case presented in Section 2,
the conjecture is easy to be proved if in equilibriuim the constraints hold with all strict inequalities,
the proof being very similar to the one presented in Proposition 33. If that is not the case, the proof
of the conjecture remains an open problem.

1.2.2 The role of quasi-concavity

To discuss the role of quasi-concavity of the utility function, we proceed as follows.

1. We explain why quasi-concavity and envy are somehow inconsistent. 2. We propose a different
set of assumptions on households’ utility functions. 3. Given those assumptions, we show that there
is no loss of generality in assuming away the part of the utility function related to households who are
disliked. The basic idea of the presented argument is based on the following simple observation: “If
household A is maximizing and she does not like household A/, i.e., uy, is decreasing in 0;,, then she
will transfer nothing to that household, i.e., tpy = 07.

Remark 3 Kranich (1988) does assume quasi-concavity.

1. Quasi-concavity, goods and bads Consider a simple “Econ 1”7 example, in which the utility
function is as follows. For any a € R, 4,

u:RE, — R, (z,y)—In(z)—aln(y).

Then u is a function of a good (whose quantity is ) and a bad (whose quantity is y). As a simple
application of the Implicit Function Theorem, it is easy to verify that associated indifference curves
are (increasing) and strictly concave if a > 1 and strictly convex if a € (0,1), as verified below.

Defined as g : Ry — Ry, 2 — g () the function whose graph is an indifference curve associated
to an arbitrary level of the utility,we have

5See Remark 36.
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Then ¢g” (z) < 0, i.e., the utility function is quasi-concave iff a > 1. Observe also that for any
(7,9) € R%L, , -
Clgz {(2,y) € R, 1 u(w,y) > u(@,7)}

(. . . 2
is not contained in R , .

2. Different assumptions on the utility function We are now in the following situation.

a. the assumption of convex preferences, i.e., quasi-concavity of the utility function, is somehow
unreasonable if households strongly dislike some other households;

b. most of the results used to prove existence of equilibria do assume quasi-concavity.

There are then two possibilities:

1. try to apply some known results in the case of arbitrary (not necessarily convex) preferences;
this is the path we try to follow in a parallel research program;

2. show that, under some conditions, we can “restore quasi-concavity”, which is the path we follow
below.

For any h € H, let B, C H\ {h} be the set of housecholds such that “household h conceives to
transfer some wealth to”, i.e., “the set of households that household h potentially likes”. Define
also B = (Bn) ey € XnenP (H\{h}), where P (H\ {h}) is the family of all subsets of H\ {h}; B) =
(H\ {h})\Bn, By = #Bn, B := 3", cs; Bn, B) = #B,.

We define household A utility function as follows.

B\
w, RS X RE X RY R, (w0, On)nes, + 0n)cs) ) = us (2hs On)nes,) +0n (00)c5) ) -

We make the following provisional assumption on wu, .

ul. upg, is continuous;

u2. up, is strictly increasing in xj; increasing in 6y,;

u3. upg, is quasi concave;

v4. vy, is continuous and decreasing.

For any By, C H\ {h}, let Ug, and Vg, the sets of functions satisfying Assumptions u.1.,u.2., u.3.
and v4, respectively.

3. Ignoring people we dislike
Definition 4 For anyn € N, and any a,b € R™ such that a < b, we define [a,b] = {x € R" : a <z < b}.

An economy is
& = ((Bu sy v, ns ki) € Xnew (P (HA{RY) x xUs, x Vi, x R, x REYV) =B

We can then write household h’s maximization problem as follows. For any h € H, for given & €
E, pe S and t\,, € [0,k;], (z,t5) € RE x REMH 1) golves problem



MAaX (), t7,)ERC xRC(H-1)

ug, <xh, (p (eh' + 2 wrenfry (Errne = t/h”)))h’eBh> *

+up, <(P (eh' + 2 nrerfnry (Bnn — t/h”)))h'eB,\,)

s.t. 3)
prn <p (eh + Xwern iy v = th"'))

zp >0

0<ty Sk’;b

For any h € H, define B, ={h' € H : h € Bp/}, i.e., the set of households who are potential donors
to household h.
An economy is

€ i= (Buyusy s ens ke € (xnen (P (H\{h}) x Us, xRS, xR{PH)) =E.
Define for any h € H,
T = [0,kn] CROPr . T = xpeyTh, and T = Xprep ny Ti-

We can then define the B-problem for household h € H as follows. For given £ € E, p € S and
t\n € T\p, (7,17) € R x REBr solves

max(“,th)echRCBh up,, (xh’ (p* (eh/ + Zh"GB,‘,h/ th”h’ — Zh”GBh/ th,h”))}L/GBh)
s.t. (4)
(xn,tn) € By, (p*,t’\‘h) )
where
Bp: 8 x T\, —— RY x RYBn,
(p*,t(h) = {0 (zh,ty) € R x REBr . prgy < p* (eh + Zh'elﬁ_ﬁh i, — Zh’eBh thh/)
Tp Z 0
tp, >0
th < kn }

We now present an informal statement of the desired result of the section; a precise statement and
its proof are provided in Appendix 4.4.

Proposition 5 There is no loss of generality in proving existence of equilibria for the case in which
households solve problem (4) and markets clear.

1.2.3 The need of an extension of the utility function

An economically sound assumption we made about the economy under analysis is the non-negativity
of wealth of household h' € By as an argument of the utility function of household h. Then, it
is immediate to observe that household h ’s maximization problem presented in the definition of



equilibrium (without or with upper bound on consumption) may have no solution for arbitrary values
of variables which are taken for given by household h. That is the case if the value of the transfers
from household A’ to other households are very large and household h budget constraint does not
allow her to choose a transfer large enough in order to compensate that fact. Take for example C' = 3
H = 3, €1 = €3 = €3 = (1,1) , P (3,3) = 1, kh = (3,3), to1] = t31 = 132 = 0 and tog = (2.5,2.5).
Consider household 1. Her budget constraint is

p(z1 +t12 + t13) < pey and then pt1o < p(1,1). (5)
Non-negativity of household 2’s wealth requires
0 S P (62 -+ t12 + t32 — tgl - t23) = ptlg —p (1515) and then ptlg Z p (1515) (6)

(5) and (6) cannot both hold. Kranich (1988) does not acknowledge the problem described above.

Some ways out are possible.

1. Assume that “by law”, households cannot transfer more than the value of their endowment.
That approach has been followed in a previous version of the paper, but, first of all, it uses an
assumption which is not consistent with basic competitive behavior, which requires that households
can behave freely as long as they satisfy a budget constraint. Moreover, that approach does have the
same problem related to the need of extending the utility function as described below.

2. Observe that to show existence of an equilibrium does not require to show existence of a solution
to households’ maximization problem for any value of the variables which are taken for given by that
household - as often done in existing general equilibrium models. Indeed, it is enough to show existence
of a solution to the equilibrium values of the variables taken for given by households. On the other
hand, as shown above, assuming that other households can choose transfers in an exogenously given
compact set leads to the possibility of negative values of some households’ wealths, a fact which is
inconsistent with the very definition of the utility function and therefore with a correct formulation
of the maximization problem. Since dispensing the compactness assumption prevents the use of the
main tool in showing existence - i.e., Debreu’s Theorem 19 below - we decided to introduce a fictitious
utility function which extends the true one, in order to allow negative wealth (and consumption). We
then construct a game associated with “the original economy with the extended utility function” ;
we show that game has an equilibrium and finally that equilibrium is an equilibrium of the “true”
economy.

Remark 6 If the upper bound kj, is equal to the endowment ey, then the possibility of negative wealth
does not arise and there is no need to extend the original utility function.

1.2.4 Indeterminacy: price normalization matters

Following the paper by Kranich (1988), in the model we presented in the previous sections, we assumed
that the utility function of household h depends upon other households’ nominal wealth. Then, “nor-
malizing prices” , or multiplying prices by a strictly positive real number, does affect the value of uy,
(unless uy, is homogenous of degree zero in prices). In other words, different choices of normalizations
of prices give rise to different equilibria and there is no natural choice of normalization.

To avoid the fact that equilibrium allocations are normalization dependent, we propose a simple
change in the model: we substitute wealth of other households in the utility function with “relative
wealth”. There is indeed a vast literature in partial equilibrium, game theory and behavioral economic
analysis which follows this approach - see Dhami (2006), Chapter 6 and references quoted there.
Indeed, what is important in the analysis of other regarding preferences which are opportunity based
is not (the value of) the amount of goods other households own, but those amounts compared with
what is generally available in the economy.

We can then write household h’s utility function as

p (eh’ + ZhHEB,A,hI th”h/ - Zh/'GBh/ th/h//)
p-r

up;, | Th,
h'eBy,

Under the above specification of the utility function, price normalizations do not affect households
maximizing choices.



Remark 7 To show existence of equilibrium in the relative wealth model, we proceed as follows.
a. We show existence of an “equilibrium in Kranich (1988) model” in the following sections;
b. we use that result to show existence an “equilibrium in the relative wealth model” in Section

2.4.

2 Existence of equilibria

2.1 The definition of equilibrium

Definition 8 The vector (z*,t*,p*) € RgH X Rfc x S is an equilibrium for the economy &£ =

(Bus us, s ens kn)per € (%ner (P (H\{R}) x Us, x RS, x RPH)) = B. if
1. for any h € ‘H, household h mazimizes, i.e., for given £ € B, p* € S, t’\‘h € N\ p,
(z5,t5) € RY x REBr solves

MaX (g, t,)ERCxRCEL  UB), (xha (p* (eh' +thn + s N\ hy thw — 2onres,, tz'”’))h'ez% >
h
s.t.

(e tn) € By (17,85,

where B* is defined in (35) .
2.

Markets clear, i.e.,

> (x —en) =0.

heH

Remark 9 The following Proposition simply says that “if households maximize, supply and demand
of transfer are equal”.

Proposition 10 If the vector (z*,t*,p*) € REH X REC x S is such that for any h € H, household
h solves the mazimization problem in Definition 8, then

* *
D 2 tw=2 2t (7)
heH h'€By heH heB__n

Proof. Recall that B__,;, := {h' € H\ {h}: h € B/} and then also B := {h € H\{I'} : W € By}.
Then, by definition of B__,}/, we have

heB_.y < h € By (8)

Defined
S={(h,W)eH?: N € B},

T ={(W,h) eH?: W € B_,},
we want to show that S = 7. Indeed,

S={(n)eH2: W eByE{(h1)eH? heB )t ={W h)eH2: W €B_,} =T,

as desired. m
We can also give the definition of equilibrium with upper bound on consumption, which is
the same as the one above apart from the fact that the constraint set is

Bp:SxT\ —— RE x REBn,

(9)
(p*,t(h) —— B} (p*,tih) N {(zh,th) € REC x REBn : ), < k'm}

10



Our (standard) strategy of proof to show existence of equilibria is to use the definition and a
main result associated with a so-called generalized game. We present both definition and result in the
section below.

More precisely, following also what said in Section 1.2, our strategy of proof goes through the
following steps - each of which is the content of a subsection of Section 2.2.

1. We prove some preliminary results;

2. We present conditions which insure existence of the needed extension of the utility function.

3. We describe a generalized game associated with the economy under analysis and verify that
game satisfies the sufficient conditions stated in Theorem 19 and therefore has an equilibrium.

4. We show equilibria of the generalized game are such that the associated wealth is positive and
therefore they are equilibria with upper bound on consumption of the economic model under analysis.

5. Using a standard trick, we show that an equilibrium with upper bound on consumption is an
equilibrium.

2.2 Existence of equilibria for concave, Lipschitz utility functions

2.2.1 Preliminary results

For reasons explained in the proofs of Lemma 12, Proposition 27 and Lemma 24, we are going to
introduce the upper bounds k;, on consumption.

Definition 11

where it is used

r™ =min{r°:ceC}, rM = max {r¢:ceC}
ke = - Yece Zonen (€6 + Xpen_, ki) +1€Ry . Remark 13

E,i = max {%L, ¢+ 1,%1. . rc} eRyy, Proposition 33 and 29; Proposition 27

ky = (%g'i) ¢ € RY,. Proposition 27
ce

Lemma 12 For anyp € S,
1. forany ceC, p° < %,
2. there exists ¢ € C such that p© > ﬁ, and
3. for any ey € R$+, pep > CLT—’;‘?M, where €)' := min {e§ : c € C}.

Proof. 1.

Since pr = 1, then for any ¢ € C, p°r¢ + ZC’GC\{C} pere <1, pfr¢ < 1— ZC,EC\{C} p°r¢ < 1 and
p¢ < 1< 1

2.

Suppose otherwise, i.e., for any ¢ € C, p® < ﬁ Then,

1=chrc<2é7z;gzcé=l,
ce

ceC ceC

which is the desired contradiction.
3.
From 2. above, we have that for any p € S and any e; € ]Rg+

(>0)
there exists ¢ € C such that pen = p°ef, + 3., pes > ples > Sl > il

11



Remark 13 Foranyp € S, anyh € H, anyh’ € By, anyt = ((thh’)h’eBh)heH € Xnen (Xnes, [0, knn]) C

REEnenBr b € H, wy, (p,t) < k. Indeed, using the facts p < T% -1 and for any h,h' with b/ # h,
thn < kpp and tpp > 0, we have

Lemma 12.1
wp, (p,t) :==p (eh + Zh'eB,ﬂh thih — Zh’eBh thh') <p (eh + Zh’eBHh kh’h)

-1 (eh + Zh’eBH;L kh’h) = r% : Zcec (62 + Zh’eBﬂn kz’h) <

< 1

rm

< i Yonen 2ece (€ + Xwen_, ki) < ke

2.2.2 Extension of the utility function

It is usually assumed that for any h € H,
ug, : RE X RE}‘ — R, (zn,08,) — un (2n,08,)

is continuous and quasi-concave. We would like to extend ug, to a function U, : RC x RH¥=1 —
R, which is still continuous and quasi-concave. From what said in Appendix 4.9.1 with respect to
Conjecture 120, that extension is not guaranteed to exist. Indeed, stronger assumptions on ug, have
to be added. We repeat below the main result presented in the appendix to reach the desired goal.

Proposition 14 Let A be a convex subset of a normed space X. If g : A — R is an L-Lipschitz
concave function then it admits an L-Lipschitz concave extension G to the whole X ; moreover, such
an extension G can be defined by the formula

G(z) =supyealgy) — Lz —yl], zeX.

We can apply the above result to our case identifying X, A, g with RC,RE and u respectively.
Observe that L-Lipschitz implies continuity.
Therefore, our existence result is going to be proved under the following assumption on the utility
function.
For any h € H,
ug,, - Ri X th — R, (th, 93}1) — Uug, (wh,agh/)

is concave and Lipschitz.

Remark 15 The above assumption are quite strong. Definition and sufficient conditions for a func-
tion to be Lipschitz are presented in Corollary 15. Roughly speaking, we need to assume that the utility
function has slopes in points close to zero which are bounded above.

Using Proposition 14 and the above Assumption, we can give the following definition.
Definition 16 U, is a concave Lipschitz extension of up, on the whole Fuclidean space, i.e.,
U, R xRB» R

s a concave Lipschitz function and for any (Jch, Q\h) € REXRE’I we have U, (:Eh, G\h) =ug, (mh, G\h).

2.2.3 The generalized game associated with the economy

For the definition below see for example Kreps (2013), page 339, and the simple discussion following
the definition proposed there.

Definition 17 Given n € N, an n-player generalized game is a triple G = {A;,Ci,u;};—_,, where for
any i € {1,...,n},

1. A; is a set of strategies or actions with generic element a;;

2. Cy: Ay = Xjeq, oty —— 4, a:= (a;)i_, —r Ci(a) is a constraint set-valued
function;

8. ui A= Xieqr,. npAi — R, a v u; (a) is a utility or payoff function.

12



Definition 18 A Nash equilibrium for the generalized game G = {A;,C;,u;};—, is an n-tuple of
actions a* := (aj)?zl € A such that for any i € {1,...,n}, af solves the following problem. For given

% = (99) je gy € AV

arfleaz U; (ai,aii) s.t. a; € C; (a§i> .
Theorem 19 Let a generalized game G = {A;, Cy,u; };_, be given. If for any i € {1,...,n},

1. there exists m; € N such that A; is a nonempty, compact, convex subset of R ;

2. C; is a non-empty valued, convexr valued, lower hemicontinuous and upper hemicontinuous
set-valued function;

3. wu; is a continuous function and for any a\; € Ay;, the function u; (~,a\i) A — R, a; —
Us; (ai,a\i) 18 quasi-concave,

then G has a Nash equilibrium.

The standard reference for the above theorem is Debreu (1952). Indeed, exactly the same statement
and a proof of the above theorem can be found in Kreps (2013), page 340 .
We now define the generalized game associated with an economy £ we are going to use.

Definition 20 There are n = 1+ H players. For each player h € {0,1..., H}, we describe below the
appropriate definition of the triple of 1. set of actions, 2. constraint set-valued functions and 3. utility
functions.

1.

Ay = SCRC

Ay Xp x Ty C RCE+Br-C for any h € H

where for any h € H,

Xh:{thRCZOS.’IJSkz} andTh:{theRBh'C:Ogthgkh}.

Co : XpenAp —— Ao

Co: (Xpen (Xp xTp)) —— S (z,t) —»— S

Ch : Ao X (Xprer gy An) —— Ay,

By : 8 x (Xpernqny (X X Tr)) —— Xpp x Ty, ( 7($h',th')h/eu\{h}) — By, (p,t\s)

Uug - A() X (XheHAh) — R
U : S x (XhGH (Xh X Th)) — R
(p, (@, th)hen) — D D hen (Tn —en)

up : Ag X (XpenAp) — R
up 2 S X (Xpen (Xpn x Tp)) — R

(p, (xh’th)hEH) — Uh (l‘h, (p (eh’ + Zhuegiﬂhz th”h’ - Zh“EBhI th/h//))’leB )
3 v h

Definition 21 A Nash equilibrium for the Generalized Game associated with an economy & :=
(B,us,,en, kn)pern € B, as presented in Definition 20, is a vector (p*7 (x5, t’;l)heH) € SX(Xper (Xn X Ty))
such that

for given (z},,t})

heH
p* solves

maxXpes P ZheH (z}, —en)

13



and for any h € 'H,
for given p*, (3t ) e »

(x5, t5)  solves

* *
MAX (), 1,)€(Xp xT)  Uh <xh, (p (eh' + 2 ey thow = 2onres,, th’h”))h,eg )
h
s.1.

(zh,tn) € By (p*v (f;:'?t;)h'e?-t\{h}) =By (P*»tZ) ;
Proposition 22 For any economy & := (B, up, ,en, kn) ey € B, the generalized game

(S, (X x Th)) , (Co, (Br)ner) » (w0, (Un)pen))

presented above has a Nash equilibrium (p*, z*,t*).

Proof. We show that the Assumptions of Theorem 19 are verified.

1. there exists n; € N such that A; is a nonempty, compact, convex subset of R™:.

Ag=S5:= {p € Rg Cpr= 1} satisfies the needed assumptions.

For any h € H, X}, x T}, satisfies the needed assumptions by definition.

3. wu; is continuous and for any ay; € Ay;, the function u; (~, a\i) A — R, a; — oy (ai,a\i) is
quasi-concave.

For given ()¢5 uo is linear in p and therefore concave and quasi-concave. For h € H, observe
what follows. Defined

ot S X (Xnew (Xn x Tp)) — RY x RBn,

(p, (xmth)he?{) e (zhv (p [6h’ + 2 hren. W\ {hy TR — Zh”eB;/ 75h’h”} +pthh’) ) = (10)
— h h h/GBh

= (xh, (ap +pthh’)h'68h) ’

we have
-UBh = Uh o (ph.

Then, .up, is continuous because U}, is Lipschitz continuous and ¢ is affine. We are going to show
that

Vp 1= .UB, (.; (p, (xh«,th/)h,eH\{h})) X x T — R,

(zh,tn) — (Un o o) (0, (Ths th) pen)

is concave and therefore quasi-concave. Indeed, for any (x4},¢,), (z},t) and any X € [0, 1], we have

o (1= A) (&, 8) + A (27, t4) Def. v
Un ((1 =Ny + Ay, (aw +p((1—=A)th, + )\tgh,))h,eBh) =

Uy, concave

On (1= ) (2 (o + Pl des, ) + A (5 (@n + i wes, ) ) >

Def. vy,
(=N U (2 (aw + Pli)es, ) ) + A0 (o5 (aw + Pt )es,) ="

(1= A)on (@, t,) + Avn (23, 87) »

as desired.

2. C; is a non-empty value, convex valued, lower hemicontinuous and upper hemicontinuous set-
valued function.

14



By definition of S and since Cy : (Xpewn (Xp X Th)) — S, (z,t) —+ S, the desired results follow.
Indeed, Cp is the constant set valued function and S is a compact nonempty set.

Verification of the needed properties for By, goes through two steps: 1. If Bj has the desired
properties, then B, has the desired properties - see Lemma 23; 2. Bj, has the desired properties - see
Lemma 24. m

Lemma 23 Let X1,X2 and Y be metric spaces and ¢ : X1 —— Y, 21 —+— ¢ (x1) and ¢ :
X1 X Xo ==Y, (w1, 22) —r— @ (x1) be set valued functions.

Then if ¢ satisfies any of the properties listed below, then v does as well: 1. non-empty valued; 2.
convex valued; 3. closed; 4. compact valued; 5. lower hemi-continuous; 6. upper hemi-continuous.

Proof. Statements about properties 1. 2. and 4. are obvious. The proof of the other results are of
the type: “write what you assume and what you have to prove”.

3.

By assumption, for every sequence (1,),,cy € (X1)™ such that z1,, — =1, and for every sequence
(Yn)pen € Y such that y, € ¢ (21,) and y, — y, it is the case that y € ¢ (7).

We want to show that for every sequence (Z1n,%2,),cy € (X1 X X3)% such that (z1,,%2,) —
(z1,72), and for every sequence (yn), oy € Y™ such that y, € ¢ (T1,,22,) and y, — ¥, it is the case
that y € ¢ (21, 22).

Take a sequence (Zin,®2n),cny € (X1 X X3)™ such that (21n,22,) — (x1,22), and a sequence
(Un)pen € Y™ such that y, € ¢ (21,,72,) = ¢ (21,) and y, — y. Then, by assumption, y €
o (x1) =1 (x1,22), as desired.

5.

By assumption, for any z; € X; and for any open set V in Y such that ¢ (z1) NV # @, there
exists an open neighborhood U of z1 such that for every z} € U, ¢ (z]) NV # @.

We want to show that for any (x1,x2) € X7 x X3 and for any open set V in Y such that ¢ (z1,z2)N
V # @, there exists an open neighborhood W of (z1,z2) such that for every for every (z},z5) € W,
b (2,25 NV £ 0.

Take (21, z2) € X7 X X2 and an open set V in Y such that ¢ (z1,22) NV = ¢ (1) NV # &. Then,
by assumption, there exists an open neighborhood U of 1 such that for every 2} € U, ¢ (z])NV # @.
Take W = U x Xa. Then, for any (2}, z5) € W, ¢ (z],25) NV = ¢ (z]) NV # &, as desired.

6.

By assumption, for any ;1 € X; and for every open neighborhood V of ¢ (1), there exists an
open neighborhood U of z; such that for every z} € U, ¢ (z}) C V.

We want to show that for any (x1,z2) € X1 X Xa and for every open neighborhood V of ¢ (z1, z2) ,
there exists an open neighborhood W of (z1,x2) such that for every (a},2%) € W, ¢ (2}, 25) C V.

Take (z1,22) € X1 X X2 and an open neighborhood V' of ¥ (z1,22) := @ (x1). Then, by as-
sumption,there exists an open neighborhood U of z; such that for every 2} € U, ¢ (z}) C V. Take
W =U x Xs. Then, for every (z},2)) € W, ¢ (2}, 2}) := ¢ (z}) CV, as desired. m

Lemma 24 For any h e H
1. By, is non-empty valued;
2. By, is convex valued;
3. By, is closed;
4. By is compact valued and Im By, C Xp, X Tj;
5. By, is lower hemi-continuous;
6. By, is upper hemi-continuous.

Proof. Define

Eh S X —— RE x RE Bn

Eh (p, t\h) = {(zp,tn) € RC x R Bn . —-p (l'h + Zh’EBh thh’) +p (eh + Zh’EB,ﬂ;I, th’h) >0,

xp >>0

ky —xp >>0

tp, >>0

kp —tp, >>0 }
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and
f:18x8xT, — RY x REBn

I ((wh,th), (p, t\h)) +—— Left Hand Side of inequalities in (11).

To get the desired result, we have to check that the Assumptions of Proposition 107 about the function
f used to define By, and B}, are indeed satisfied. More precisely, we have to check that

1. By is nonempty valued,

2. f is continuous and for any j = 1,..m and for any 7 € I, fj(} is Locally NonSatiated and
quasi-concave,

3. By, is compact valued or b. Im By, is contained in a compact set. Indeed, both results hold true.
1

Take

~ €h 1 Jc . kiczh’ 62 c
Tp = — > 0 and for any ¢ € C, for any h' € By, t7,, = min — 5 € (0,k5p)-
h =5 y y h hh {272}[ (0, k5pr)
Then,
_ _ . . Bn<H-1

P (T + X, thn) SP5H +P e, sl =<

< HHdpe, = 1pey, < pep, < p(en + DoheB_, thn) -
2.

f is clearly continuous and any component function of f for fixed (p, 12\ h) is affine and not constant
a fact which implies the desired assumptions. Indeed, for example,

g: RC x R¢Br —; R, (xhath) = —p (-Th + Zh’GBh thh’) +p (eh + Zh’EB,ﬂh th’h)
can be written as

g (zn,tn) = ( (paév"w%h) (zn, (thn ) prep, ) +1 <€h + Z th/h)) .

h'eB__p

3.
Since By, is defined in terms of weak inequalities via continuous function, it is closed valued.
Moreover, Im (By,) C X}, x T, where

Xh::{whERc:nghgkgg}
Th = {th S RC'B}L :0 S ty, S kh}

and Xj x Ty is a compact set. Since closed subsets of compact sets are compact, the desired result
follows. m

2.2.4 Equilibria of the game and equilibria with upper bound on consumption
Using Definition 10, we introduce a related function.

Definition 25 For any ((IZ’)h'eH\{h} ’p*,tih) € RE(HJ) x 8 x T\,

o . * * ok . C By
Soh|<p*7t”<h) = Ph ('1 (xh')h’eH\{h} P 7t\h) . Xh X Th - RJ,— x R= )

(Th,th) = ¢p ((xhvth) ) ($Z')h’eH\{h} 7p*’t<h)
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Lemma 26 If (z*,t*,p*) is a Nash equilibrium as presented in Definition 21, then for any h € H,
1. for any b/ € By,

ny <p*’t;,t§h) = p* (eh/ + Z o — Z ch') > 0.

heB_n h'€By

U, = .
< hO Pl (p*,tih)) |By, (p ) (ugh gl (”*’tih)) |By, (p*7t<h>

*’t;\‘h

Proof. 1.
Observe that for any h € H, by definition of By, we have x} > 0; by definition of S, we have
p* > 0. Then,

0 S p*l’;; S p* Epr — E t;kl/h// + E t;;//h/ s
h' €By, h'eB__

where the second inequality follows again from the definition of Bj,.
2.
Observe that

U

h|RY fo’L =up,,

and from 1. above, we have
* gk C CB
wh\(p*,t’<h) (Bh (p 7t\h)) - IR+ X IR+ hv

and then

. _ .
< he Wh(P*vt(h))an (7 13) <UBh ’ Lph(p*’tih)> LAGEY)

*’tih

Proposition 27 If (x*,p*,t*) is a Nash equilibrium for the generalized game presented above, then

p* (Z (zj, — eh)) =0.

heH

Proof. Using the strict monotonicity of .ug, with respect to z; and the fact that p* € S, it is easy
to claim that budget constraint holds as equalities. Then summing up with respect to households and
using Proposition 10, we get the desired result. Suppose our claim does not hold, i.e., that budget
constraint holds with a strict inquality:

pra;, <p* (€h+ St > t;;h,> = wy, (p*, 7). (12)

h'eB__p h'€By

Since p* € S, then we can define CT = {c € C: p° > 0} # &. We then distinguish the following
two cases. _

Case a. There exists ¢ € CT such that z}¢ < kS;

Case b. For any ¢ € Ct, 3¢ = kt.

Case a.

Define z}* = (73%¢) .. such that

e if cecCt\{c}
~ _ N ~ . -
T = T+ %mm{ wn (P ) —pTa p*% T } >apf if c=¢
*C : 0
xj if ceC
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where the strictly inequality follows from the fact that wy, (p*,t*) —p*x} (1>2) 0 and %;C; —21°> 0.
Below we show that (z}*,t) € By, (p t\h) a fact that contradicts the assumption that (z},t}) is a
solution to household / maximization problem.

L 0<ap <k,

it is enough to verify that :x}*l*z < %g

N L e Ve o« L (e, 77\ _7@
o<t (kth ):7(kx+xh) 7(k +k ) = k°.
2 2 2
ii. affordability:
Recalling the definition of wy, (p,t) presented in Remark 13, we get

prap = prag +pThmin { OO R e < prap 4 L (w07, 80) - pe]) =
(12)

=3 (wn (P, ") +px}) < & (wn (p", %) + wy (p*, 7)) = wp, (P, 7).

Case b.

This case cannot hold. Assume it does. Then,

~ Remark 13 ~ Def. 11 ~ ~ 1~
N R W i e S
ceC ceC

which is the desired contradiction. m

Remark 28 If the upper bound on consumption is not big enough, then Walras’ law does not hold,
because the consumption vector hits the corner of the box [0, upper bound vector].

y 37

257

157

057

!
3

X

Kranich (1988) uses Walras law on page 377, last paragraph in the proof of Proposition 3.4., but
he does not seem to consider that possibility.

Proposition 29 If (z*,p*,t*) is a Nash equilibrium for the generalized game presented above, then
it is an equilibrium with upper bound on consumption and p* > 0.

Proof. By definition of Nash equilibrium, each player is maximizing. Therefore, for player h = 0, we
have that

foranype S, p*- Z(mi—eh)Zp- Z(mi—eh). (13)
heH heH
We want to show that

for given p* € S and 85 € Xwer\(ny [0, kp/],

(x3,t}) solves

MAX (), t,) € (X X Th) <uBh Phi (17 )) (hth)
s.t.
(-rhvth) S Bh (p*vtih) .
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By assumption, for any h € H, we have that

for given p* € § and (x;,, t;;/) € XnpreH\{h} (Xh/ X Th/)
(x5, t5) solves
MAX (2, ,t5) €(Xn X Th) (Uh o (ph\ (p*’ti% )) (zh,th)

s.t.
(xn,tn) € By (p*, %)),

Observe that from Lemma 26.2 we have

U = ’
( lowh(p*,t’\‘h)>|3h(p " ) <uzsh owh(p*,t(n)>|3h(p t\h)

Then, the desired result holds true simply because constraint sets and objective functions restricted
to the constraint sets of the two problems are the same. Then, households maximize. We are left with
checking market clearing. From (14), we get that for any h € H

0>p*xy —p* (eh + Z trn — Z t;;h,> .

h'eB__p h'€By,

\h

Summing up with respect to h € H, we get

0> Zp*(xZ—e;L)-i-Z( St - Zt;h,> > pt () —en), (15)

heH heH \heB__, h'€Bp, heH

where last equality follows from Proposition 10. From (15) and (13), we then get
for any p € S, 02>p" D pen (@h —en) 2P e () —en). (16)

For any ¢ € C, define p(c) = (p (c)cl) c such that
c'e

Loif d=c

0 otherwise.

Clearly, p (¢) € S. Then from (16), we get

>*Z($ eha

heH

and therefore,

> (z} —en) 0. (17)

heH

Let’s now show that p* > 0. Suppose our claim is false and without loss of generality, assume
that p*! = 0. Then, from strict monotonicity of ug, in zj (and since z} € dom ug, ), we would have

for any h € H, zj, —kl

Then,

1Def 11
Zw =Hk > Hrl> ot ,
heH

contradicting (17).
From Proposition 27.2, we have p* ), ., (z} —e) = 0. Since p* >> 0, from (17), we also have

donen (@ —epn) =0. m
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2.2.5 Equilibria with upper bound on consumption and equilibria

Definition 30 Let a nonempty, convex subset X of R™ and a function f : X — R be given. f is
semistrictly quasi-concave if for any x,y € X and any A € (0,1), f(z) > f(y) = f (1 =N x+ \y) >
f).

Proposition 31 If X is a convexr metric space and u : X — R is continuous, then
u is semistrictly quasi-concave and Non-Satiated < w is quasi-concave and Locally NonSatiated.
Proof. See, for example, Villanacci (2022), Corollary 42, page 15. m

Remark 32 Since .up, strictly increasing in xn, then .up, s Locally NonSatiated. Therefore, .ug,,
is semistrictly quasi-concave.

Proposition 33 For any economy, an equilibrium with upper bound on consumption is an equilibrium
(without the upper bound on consumption).

Proof. The proof is quite standard. See for example, Donato and Villanacci (2023), Theorem 49.
Let (x*,t*,p*) be an equilibrium with upper bound on consumption. We want to show that
if

(a) (x,t5) € By, (p*,t<h) , and

(b) for any (wntn) € Ba (p*85,) us, (whw (9%, 65,80,) ) = s, (wnsw (7 t085,) )
(18)
then

(1) (@it7) € Bi (p7.87,) » and

(2) for any (zp,tn) € By, (p*,tih) , o ug, (:Jc;;,w (p*,tﬁ,t(h)) > up, (mh,w (p*,th,z‘{h)) .

(19)
Observe that
@ (2)
forany he H, 0<ax; < Z ep << kg, (20)
h'eH
where (1) follows from market clearing and (2) from the definition of k,. Since
{(ZL‘}L,th) € R x RB»C . T << kl}
is an open set which contains (z}, ¢} ), then there exists 6* € R4 such that
B((:L’;;,t;i) ,5*) = {(:L’h,th) € RC x RErC ;. d((l‘;;,t;;) R (xh,th)) < 5*}
-
{(xh,th) € RC x RERC rhp << km} .
Then,
B((z,t),87) N (RS x [0, kn]) € [0, ke] x [0, kn] (21)

Since By (p*7 t<h) C By (p*, t’\‘h), conclusion (19.1) follows from assumption (18.a). Now suppose
conclusion (19.2) does not hold, i.e.,
3 (%h,fh) € B;, (p*,tih) \ B (p’ﬂtih) such that .ug,, (,%h,w (p*,fh,tth» > .ug, (:c;’;,w <p*,t27t§h)) .
(22)

Then B
(iha th) 7é (x}kw t;;) . (23)

20



Since (z7,,t}) , (Eh,fh) € By (p*,t?h) and Bj; (p*,tih) is convex, then

YAE(0,1), (Fndn) (V) = (1= \) (@} t]) + A (@, 1n) € By (p*,tih) : (24)

insert picture from equilibrium with bound with equilibrium without bound.pdf
From semistrict quasi-concavity of up, (see Definition 30), (22) and (24), we have

e 1), s, (3O, (00 (N 8)) > s, (o (565 8) ) - (25)
o~ . Def. (JA"/}“tAh) . o~ .. . 5*
Now, (xh,th)f(:xmth) = )\«H(xh,th) — (xh,th)H < ¢ ifand only if A < [CEREEEDII €
hotp s Uh
R, where ||(ac;:,t;§) — (5h,ﬂ) H > 0 from (23). Then, for any A € (O, MM)’ and using
holh s

(24), we have that
(@n ) V) € Bi (07, 80) N B (@i 1),87) 1 (RS x [0, ka)) (26)

where the last intersection follow from the fact that the constraints z; > 0 and ¢, € [0, k] are
part of the definition of B} (p*, tih ) Observe that

By (p*.80) = Bi (17 34) N1 (0. ko] x [0,k (27)

Then,

(21)
Bi, (v, 04) N B (w5, 13),6) 0 (RS x [0, ka]) © By (97,804 0 (10, ka] % 0, ka]) 2 By (07,8, ) -

(28)
From (26) and (28), we have
(fh,%\h) € By (p*,tih) . (29)
(29) and (25) contradict assumption (18.b). m
Summarizing, we did prove the following results.
Generalized Nash equilibria exist | (Proposition 22);
Generalized Nash equilibria exist Fropg 29 cquilibria with upper Prop; 33

bound on consumption exists

equilibria exist

We can then get the desired result of the section.

Theorem 34 For any economy & := (en, ug, , kn),cqq, such that for any h € H,
up, s Lipschitz continuous and concave,
ug, 18 strictly increasing in xp and increasing in 0p,, ,
en € Rg_,_,
an equilibrium (x*,p*,t*) € REH x 8 x T exists and p* >> 0.5

Remark 35 From Corollary 119, the above result holds true if h € 'H, ug, s continuous and con-

cave, strictly increasing in xp, increasing in 6p,, and 3L € R4y such that defined y = (zp,0p,) €
C+CB . C+CBp—1

R+i "for any i€ {1,..C+CBy}, y; € R++ T U/B"ri{y\q:} (07) < L.

Remark 36 If the upper bound ky, is equal to ey, consistently with Remark 6, it is enough to assume
that up, 1is continuous, quasi-concave,

Theorem 37 strictly increasing in xp, and increasing in 6p, .

6The existence theorem presented by Kranich (1988) is as follows. For any h € H, assume that: the consumption
set is RS{; the set of admissible transfer contains the origin and it is convex and compact; the utility function Uy is

continuous, quasi-concave, strictly increasing in xp; and ep € R$+. Then an equilibrium exists for any economy.
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2.3 Existence under some other assumptions on the utility functions

In this section, we show existence of equilibria under different assumptions on the utility functions.
The strategy of proof is the same as the one presented in the above section. Below, we provide the
proofs of the steps which are peculiar to the chosen specification of the utility function. We proceed
as follows. We first state the theorem we want to prove. Then, 1. we state the extension theorem we
use; 2. we check the assumptions of that theorem are satisfied; 3. we check the desired properties of
the specific choice of the newly defined budget correspondence. Observe that, by construction, the
equilibrium value of the arguments of the extended utility function are in the domain of the function
before the extension - as done in detail in Proposition 26 for the model presented in the previous
section.
We study the case of the utility function of the form

Up: RS, xRE: SR,
(30)
(xh,08,) = un (Tn) + X pep, Bun - vnn (Onr) -

sis ; "o._ By, CBy, C .
Definition 38 An economy is £" := (un, van B, kh,eh)heH ,E <Z/{h x R7A x RYP" x R++)heH :
E”, where properties describing up, and vpys, are presented below.

Definition 39 The vector (z*,t*,p*) € R{# xREC x S is an equilibrium for the economy " € B
if

1. for any h € ‘H, household h mazimizes, i.e., for given £ € B, p* € S, t<h € N\ p,

(z5,t;) € R x REBr solves

MaX (g, 4,)eROxROPn  Uh (Th) + Dpep, Brw - Vhns (p* (eh’ +Xhres_,, thw = Xpes,, th’h"))
s.t.

(LE’h,th) € B; (p*7t§h) )

2.

Markets clear.

Theorem 40 For for any economy E", if for any h € H,
up, R$+ — R s continuous, strictly increasing, concave and
for any a € R, Clye {xh S R£+ sup (zh) > a} CRY., and it is unbounded below;
vpne ¢ (0,1) — R is (continuous,) increasing, concave and satisfies the condition

Je > 0 and k > 0 such that ¥Vt € (0,¢), v' (t7) <k, (31)

ep € REJF,
then an equilibrium (z*,p*,t*) € REH x S x T exists and p* >> 0.

Proposition 41 If v : (0,1) — R, ¢t — v (t) is (continuous,) increasing, concave and satisfies
Condition 31, then there exists a continuous, concave, increasing function V.: R — R, t — V (t)
which is an extension of v.

The proof of this result is presented in Proposition 142.

[2. ]

Since 8 >> 0, uy, is concave and vy,j,/is concave, then uy, —i—Zh,eBh Uppe is concave. Indeed, what is
needed in the proof is that a. uy is quasi-concave, b. vy are concave, and c. uy + Eh’eBh Bhn - Vhi
is quasi-concave. Then we can apply Debreu’s Theorem.

We present here the main idea in the construction of the budget correspondence, following for
example Section 8.9 in Villanacci and others (2022). To get compactness, we have to add a u () > u (e)
type constraint, which has the following properties:
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1. it is satisfied at a maximizing choice. The idea is that since ey, is affordable, then the solution to
the maximization problem does not change if you add a constraint which the solution has to satisfy.

2. In defining the set-valued function which is analogous to Bj, we have to be sure that it is not
empty; then the added constraint should be of the type u (z) > u (ﬁ) Then, clearly £ satisfies all the
constraints defining B,

3. The added constraint should allow to use the assumption Clgc {xh S R£+ tup (xp) > a} -
RE o which is used to show compactness.

Let’s apply the above general procedure to our problem.

Below, Vi denotes the extension of vy and it is therefore continuous, increasing and concave
on all R. Observe that if (x5, ) is a solution to household h maximization problem, then

Uh (CL‘h) + Zh'EBh, ﬁhh/ ) ‘/}Lh' (p* (eh’ + thh/ + Z}LHEB,A,M\{}L} t;kL//h/ - Zh”EBh/ tZ/hn)) Z
(32)

Up, (%) + Zh’EB;L th/ . th/ (p* (Eh’ + 0+ Zh”EBfﬂh/\{h} t;;”h’ - Zh”EBh/ tZ/h//))

where the inequality follows from the fact that (z,ty,/) = (2,0) belongs to the constraint set
By (9,83,

Remark 42 If inequality (32) holds, then we have

(32)
up (zn) >
un () + Ypen, Bun - Van (p* (eh/ FO0+men,\fn) B = Znies,, t;;,h,,)) (1)
~ s, Bune - Vine (07 (e + b + Sioes gy b — Soves,, ton) ) B
w (%) +
min(p*,t’{)ESxT\h Z}L’GBh th/ . th/ (p* (eh/ + 0 + Zh”EB,ﬂh/\{h} t;:uh/ - Zh”eBh/ tz’h”)) + =
= Swes, Bue Vine (07 (en ke + Sy tions ~ hoes, tionr))
Eh (ﬂ? 6) ’
(33)

where (1) follows from the Extreme Value Theorem, the fact that the involved functions are continuous
and S x T}, is a compact set.

Then the new constraint to be added to the constraint set is the one presented in (32).

Then,

1. from (32), the solutions to the (old problem) and the (problem with the added constraint in
the constraint set) are the same.

2. from (32) and the fact that the function uy is strictly increasing and the functions Vjp are

increasing, we do have that the™ version of the new constraint set is non-empty because (%, 3e§H

satisfies the old constraints and the new constraint with strict inequalities.
3. from (33) and the assumption on uyp, we are able to put xj in a compact set.
Summarizing, the constraint for household h’s maximization problem is

By Sx T\, —— R$+ x RECBn

(p*’tih) —— { (xp,tn) € RC x RCBn .

prx, < p* (eh + ZhleBiﬂh Ly — Zh'eBh thh’)
xp < ke, th>0, tp < Ep,

Up (.’Iﬁh) + Zh/EBh ﬂhhl . th/ (p* (eh/ + thh’ + Zh”eg_ﬁh/\{h} tTL”h/ - Zh”EBh/ t;;/h//))

Up (%) + Zh/egh 5]1]1/ : ‘/hh’ (p* (eh/ + 0 + Zh”GB__,h/\{h} t;;//h/ - Zh”EBh/ t;;/hu))

and _
Bj - S x T\, —— RY, x ROBx
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is defined as B with weak inequalities substituted by strict inequalities.

We now want to check that B} and é; satisfy the conditions stated in Proposition 107, a fact
which is verified below, where we denote by f the function which is naturally defined using the left
hand sides of the constraints used in the definition of B}.

Proposition 43 1. B is non-empty valued,
2. f is continuous,
3. for any j =1,..m and for any w € I, fj(x}is a. Locally NonSatiated and b. quasi-concave,
4. B is compact valued (Im B is contained in a compact set).

Proof. 1. Take (xfr,t,f,f) = (e;,k:;: = % (min{kzh,.%})cec h'eBh) Then

n )\ o k2e
p* (" + Dwes, thi) <D (% + 2 wes, ;T}h) =p* = <pren <pTen+ D pep_, thin

ot <<ep<<r+1<<k,
ot >>0

tHt .= 1 (min{kc . 3 }) =0
i 5 hh'* 3By, ceC,h’'€By,

th << kj << ky

un (%) + Xes, Bun - Vin (P* (eh’ T Ey+ e\ ny thew = 2ones,, tfuhn))
>

’LL}L (%) + Zh’EBh 6)1}1/ : th/ (p* (eh/ + 0 + Zh”GBfﬂh/\{h} tZ"h’ - Zh”EBh/ tZ/h//)) .

2.

Obvious.

3. All the constraints apart from the last are affine and not constant and u is (quasi-)concave by
assumption and u quasi-concave and k constant imply u + k£ quasi-concave

4.

First of all, observe that

B} <p*, t<h> := B is bounded below by Ocy and above by k := (ks, krn) € REICB”'. (34)

We want to show that B is sequentially compact, i.e., any sequence in B admits a convergent
subsequence converging in B. From (34), up to a subsequence, (x},t}) — (Eh,fh) € [0,k] C
RE“LCB". We are then left with showing that z, € RY,. For any n € N, (z7,¢}) € B satisfies the
added constraint (32). Then, from Remark 42, 2} € {z), € R¢H :uy, (z1,) > u;, (B,e)}. Since 2} —
Ty, then T; € Clge ({xh IS Rgf sup (zh) > gh}) which is contained in Rgf by the Assumption on
the utility functions contained in the statement of existence Theorem 40. m

2.4 The relative wealth model

We are going to call the equilibrium studied in Section 1.1 as “equilibrium in the Kranich (1988)’s
model”.

Definition 44 p\ = (p°) ¢\ (1) € RO

Definition 45 The vector (:c*,t*,p*\) € REH x RE x RE? is a Relative Wealth equilibrium
for the economy & := (Bn, us, , en, kn) ey € (XheH (P (H\{h}) x Up, x RY, x Rf’;)) =E. if
1. for any h € ‘H, household h mazimizes, i.e., for given £ € B, p* € RE;I, tih € Na,
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¥, ) € RE x RBr solves
h?“h

max(mh’th)echRsh Up,, (l‘h, ( or

s.t.

P*eh/‘*‘(thh/ +Zh”€874>h/\(h} thrrp _Zh"esh, t:’h,”) ) )
h'eBy,

(o) € Bi (17,85,
where

B :R{T x Iy, —— RO x RPr,

(p*,tih> = { (:L'h,th) e RC x RCBn . przy < prep + (Zh’erah tZ’h - Zh'eBh thh’)
Th 2 0
tp, >0

Y owes, thn < kn }
(35)
2.

Markets clear, 1i.e.,

> (z; —en) =0.

heH

Proposition 46 If (x,t,p) is an equilibrium in Kranich (1988)’s model, then (J:,t, p% = 7'5) it is an

equilibrium in the Relative Wealth model.

Proof. First of all observe that p = 1, as required by the definition of RW model. Drop h and denote
by Bk (p,t), ux (z,t,p) and Brw (p,t), urw (x,t,p) the (budget set and the objective function) in
Kranich (1988) and Relative Wealth models, respectively, i.e., for simplicity dropping constraint not
containing prices

Bk (p.t) ={(@n,tn) :p(zn +th—) < plen +t—n)} with  pr =1

Brw (B:t) = {(xn,tn) 1D (xh +th—) <Plen +t—p),} with 51 =1

uk (z,t,p) = up (l’h, (p (ens + thn + T(—\h),h’))h/#h)
urw (7,t,p) = up (xh, (I% (en + thw + T(ﬁh),h’))}/#}>

Step L. A (1,8) = Brw (%1 -
Indeed, the budget equations are the same. In Kranich (1988)’s model, we have

p(xn+th—) <plen +t—n)

In the Relative Wealth model, we have

p

p
F (.'L'h +th—>) S —_

pl (eh + tg,h)

Similar argument applies to the other inequalities.
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Step 2. For any (z,t,p) such that p € S, we have ugpw (:mt, ;%) =ug (z,t,p) .

P
URW (!E,IZ z%) = Up (wh: <511r (eh’ + thw +T(ﬁh),h/)> ) =
h'£h

h~]

pr=1

= Up (.Z'h7 (pll (eh/ + thh/ + T(_‘h)7h/))h/¢h> =

= up, (fb‘h, (p (eh’ + thn + T(ﬂh),h/))h,;ﬁh) = uk (v,t,p).

Step 3. Desired result.
Let (z,t,p) be an equilibrium in Kranich (1988)’s model. For any (1,t},) € Bx (p,t\n)

Brw (p%,t\h), we have

is Kranich equilibrium
D\ Step 2 (@t,p) is q , .\ Step 2 , D
URW (watapl) = Ug (xvtap) > Uk (x,t,p) = URW xatvﬁ y

i.e., households maximize. Clearly markets clear. m

Step 1

Corollary 47 For for any economy & := (en, un, kn) e if for any h € H,
either
ug, 15 Lipschitz continuous and concave,
up, 1s strictly increasing in xj, and increasing in 0p, ,
or
ug, s continuous;
up, s strictly increasing in xp; increasing in Op ;
ug, 1S quasi concave in (:rh, (Qh/)h,egh);

By,
for any ey, € R€+, QBh € R7A

CIRCJrB,L {(l’h,ogh) € RiiBh Lup, (:rh, egh) Z Up,, (eh,QBh)} g RgiBh,

and
ep € REJF,
then an equilibrium (z*,p*,t*) € REH X S x T in the Relative Wealth model exists and p* >> 0.

Proof. It follows from Proposition 46, Theorems 34 and the analysis presented in the previous section.
[

3 Discussion of the Equilibrium set properties

In this section, we want to address a quite reasonable question about equilibria. In the version of
the model presented above, could we get existence without imposing an upper bound on transfers?
The answer is negative, as the analysis of the following Cobb-Douglas economy shows. Indeed, a first
simple intuitive explanation is as follows.

Consider the following informally described game. There are two players: each player chooses one
real number, i.e., her strategy set is R. The player who chooses a bigger number than the one chosen
by the other player wins 1 euro; player who chooses smaller number gets 0 euros. If both players
choose the same number, they both get 0 euro. Since a best response against ¢ € Ris z + 1 € R,
then the game has no Nash equilibria - not even in mixed strategies. Indeed, if the level of altruism of
households is sufficiently high, then each of them overbids the other one transfers. We will come back
to this statement after the description of the main results in the Cobb-Douglas economy we analyze
below.

We present an analysis in the model without and with an upper bound on transfers. The main
results are what follows.
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1. In the model without upper bounds on transfers, there is a set AN of economies such that
N has nonempty interior and for which equilibria do not exist - see Proposition 51; indeed, N =
{(B1,B2) €RE, 1 By - By > 1}

2. in the model with upper bounds on transfers,

a. in the set NV, equilibria exists (transfer are equal to the upper bound for at least one household)
- see regions 2, 8 and 4 in picture equilibrium transfers in betal-2 plane.pdf.

b. an infinite number of equilibria arise only for a closed and measure zero set D of economies - see
regions 5 and 6; indeed, equilibria associated with a given economy in D are different one from another
just for transfers, while consumption allocations are constant; indeed, D = {(61, Bs) € Ri LB By = 1}.

c. there is a set A/ of economies such that A/ has nonempty interior and for which only one (or
none) of the two households chooses a strictly positive transfer - see - see regions 1 and 3; indeed,

N'={(B1,8) ERY, : By - By <1}

3.1 A Cobb-Douglas economy with no bound on transfers

In this section we describe the problem of nonexistence of equilibria in a 2 household- one good -
Cobb-Douglas economy. For given, (e1,e2,8;5) € RY, and ¢5; € Ry, the utility function of household
1is
e —to1 +t
v RE, X Ry — R, (21,t12) — logz1 + 5 log <227¢112> .
Symmetric definition applies to household 2.

Definition 48 A vector (z*,t*) € R2, x R? is an equilibrium associated with the economy (j3,€) €
Ri, xR, if

1. (x7,t]5) solve the following problem:

for given (e1,e2,B15) € RY, and ts; € Ry,

MAX (4, ¢15)€R 4 X (—enttar,+o0) 108T1 + Bialog (e2 — tar +t12) s.t. —r1—tigter+ita >0
t12 >0,
(36)

and similar condition holds for (x3,t5,), and
2. markets clear, i.e.,
] + x5 =e1 +es.

Remark 49 The proposition below gives conditions under which equilibria do not exist. It is in-
teresting to compare that result with what said by Mercier Ythier (2000) - see the discussion below
Assumption 2, page 10, and beginning of Section 4.

Proposition 50 A vector (z*,t*) € RZ | x R? is an equilibrium associated with the economy (B, ¢) €
R2 | x R2, iff there exists (\*,7*) € R? such that (z*,t*,\*.v*) is a solution to the following system
in the exogenous variables (B, ¢).

1 _

SN =0

Progfge; ~ Mt =0

—z1 —tiz+ter+in =

min {79, t12} =0

eg —to1 + 112 >0

1 _

Lo —0 (37)
Borem—iy; Mty =0

—xp —ta1 + €2 +T12 =0

min {75y, 21} =0

ey +to1 —t1o >0

Zhe?—t (zn —en) =0
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Proof. Tt is easy to verify that the set of maximizers to maximization problem (36) is characterized
by the associated Kuhn-Tucker conditions. Indeed, the choice set Ry x (—ea + 21, +00) is open and

convex, the objective function is strictly concave, constraint functions are linear and (mfﬂti‘;’) =
(%, to1 + %) satisfies the constraints with strict inequalities and belongs to the choice set:
—z1—tiztert+tan=—F —ta—Ftert+ta=%>0
tie — (—ea+to1) =to1 + F +e2—tor =F +e2>0

Existence of a solution is not insured due to the possibility of, say, ea — to; < 0. Uniqueness follows
from strict concavity of the objective function. m

Proposition 51 If 5,5 84, > 1, then there is no equilibrium.

Proof. Observe that To = —to1+eo+t1o = eo+t10—1o1. Then, ﬂlQé = )\1—’}/12 and Al—ﬁIQ)\g = Y12-
Then, using again the symmetry of the problems and observing that Ay = 9712 > 0, we have

A1 = B12A2 = V1o
—Bor A1+ A2 =9
BarA1 — B1aBar A2 = Barv12

—Bar A1+ A2 =9y

(<0) >0 CO00) (>0
0> (1—B19821) X2 = Bor V12 + 721 >0,

which shows there is no solution to system (37). m

Remark 52 Below, we provide some intuition on the nonezistence result. The above analysis says
that there is no equilibrium if

B1B2 > 1, (38)

Since the objective functions of households 1 is uy + S,v1, then we can interpret
B1 as how much 1 cares about 2

and

B1 > 1 means 1 cares about 2 more than
1 cares about 1,

and
0 < By <1 means 1 cares about 2 less than
1 cares about 1.

Then, equilibria do not exist if both household care too much about the other household.

3.2 A Cobb Douglas economy with an upper bound on transfers
3.2.1 Equilibria

Proposition 53 Let the following equations be given.
—x1 —tig+er+tar =0
—xg —tor +ea+tia =0
T1+x9 —e1 — ey =0

If two equations among the above ones hold true, then the third one holds true as well.
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Proof. Just add up the two equations you are assuming hold true. m
In this section, we analyze the case in which we impose an institutional constraint on transfers.
The bound is going to be larger than total resource, i.e., equal to e + k, with k£ > 0.

Definition 54 A vector (z*,t*) € RZ | x R? is an equilibrium associated with the economy (3, e, k) €

R3, xRY, xRy if

1. (x7,t75) solve the following problem:

for given (e1, €2, 15, k) € RY | and to1 € Ry,

MAX (z1,t12)ER4 4 X (—ea4t21,+00)

and similar condition holds for (x3,t3,), and

2. markets clear, i.e.,

] + x5 =e1 +ea.

log x1 + B1510g (€2 — to1 + t12)

s.t.

—x1 —ti12 + e+ toy
t12
€1 + I{? — t12

>0

>0,

>0
(39)

Proposition 55 A vector (z*,t*) € R% | XR? is an equilibrium associated with the economy (3,¢e,k) €
R? | x R, x Ry iff there exists (\*,7*,8") € R® such that (z*,t*,\",v*,8") is a solution to the
following system in the exogenous variables (3, ¢).

L\

T1

Brocmngis — M+ 7
—T1 —ti2 +ep + o
min {75, %12}

min {(512, e1 +k— tlg}
ey — to1 + 112

Lo
Borerrn—iy — A2+ 21
—Zg —to1 + €2+ t12
min {751, 21}

min {521, eo + k — t21}
e; +1to1 —t12

Zhe?—t (zn —en)

(40)

Existence of a solution is not insured. It is easy to verify that the set of maximizers of the above
maximization problem is characterized by the associated Kuhn-Tucker conditions and the solution is
unique. Indeed, the choice set Ry 4 X (—eg + to1,400) is open and convex, the objective function is
strictly concave, constraint functions are linear and (xf+,tf'2+) = 1 (e1,€1) belongs to the choice set
and satisfies the constraints with strict inequalities:

t=1

-1 —tip+ e +ia1 = —%61 +e1 + 21

e1 >0

e1+k—tio>0
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Proposition 56 The equilibrium values are described in the Table below.

1 P 3 y

B18s <1, B18y > 1, B162 <1, B182 > 1,

81 <1, By<1 B1>1,8,>1 B1>1, 8, <1 B1>1, 8y <1

2 28, 2085 2

xz 1 1 1 1 5 THA 148, +8, (41)
t 0 0 1+k 14k 25 0 L4k Lk 1582
v 1-=p6; 1-5 0 0 (P1+1)(1=5,52) 0 0

(5 0 0 ﬁl -1 62 —1 O 0 ! (1+B2)2(B313271) O

2

5 6 7 8

B1Bs =1, B,=1=4 B1B2 < 1, B18s > 1,
Bi>LBy<1 ' ? Bi=18,<1 | B1>1,8,=1

T 13g 148, 1 1 1 1 1 1

B1—1

boems € [0,171%} ta €[0,1+k | 0 1+k 14k
V0 0 0 0 0 1-5, 0 0

- 0 0 0 0 0 By—1 0

Only in Cases 5 and 6 in, which 3,8y = 1,there is an infinite number of equilibria; in all other
cases, there exists a unique equilibrium. FEven in the case of infinite equilibria, both households’
allocations (and then utility levels) are constant.

We consider the case B, > B4, the case B4 > B, being perfectly symmetric.

Proof. The main idea to prove the above results is to proceed as follows.

1. Find the best response function of household 1 in the cases 5; < 1, f; =1 and ; > 1; in each
case, construction a conjecture, starting from the observation that gy > 1 =t =1+ kand g; <1
= t; = 0; symmetrically, construct the reaction function for household 2;

2. Assuming, without loss of generality, 8; > 5, combine the different best response functions;
that procedure allows to find the equilibrium valued of (¢1,t2);

3. Then equilibrium is as follows.

t1 = ...

Ty =1—11 + 1t

st d

51:’)/1"'5*;_L

T

to = ...

To=1—1+1

(42)
’72:52—&4-;12

x

52:’)/2_"5*3_L

T2

Recall that either v; = 0 or §; = 0 (or both). We use the equilibrium system below.

focl 711 — )\1 =0
foc2 612m — )\1 + Y12 — (512 =
bc —x1 —tig + 1419 =0
minl  min {¢12, 75} =0
min2 min {1l — ¢;2,d12} =0
ineq X2 = ey — tog + t12 >0
focl 1—12 — X2 =0
foc2 ﬂmm - )\2 + Y91 — 521 =
be —x2 —ta1+ 1+ 112 =
minl  min {21,797} =0
min2 mln{l — tgl,égl}
ineq x1 =e; —tio+ o1 >0
1+ a9 — 2 =0
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Best response function for household 1 .
A B <L
We preliminary conjecture that ¢; = 0, which implies §; = 0 and «; > 0. Then,

_ 51 1 _*ﬁ1fﬁ1t2+1*t2_(1*51)7(1+51)t2
Osm= 17t2+1+t2_ (1—ta) (1 4+ta) (1 —ta)(1+ts)

(43)

Observe if the denominator is positive, then the above inequality (43) is satisfied iff

ty < 17”31.
1+ 5,

Observe that L__gi > 0 iff 5; < 1, which is true in the present case;

1-5;
1+ 8,

iff 1 -8, <1+ p, iff 5, > 0, which is true by assumption.
Then, we come up with the following conjecture:

<1 (44)

. 1-54
if t5 € |0, , then t; = 0.
? [ 1‘*‘51} !
Observe that
1 =1—t1+to =141t >0, and
1-p, (Y

$2=1+t1—t2:1—t2>1—1+51

Moreover, 61 = 0 and, using (43), 0 <, = M, from the values of x1, x> and the fact

(1—t2)(1+t2)
1-5
that £5 € [0, wﬂ.

If to € (igi , 1+ k}, we preliminary conjecture that ¢, € (0,1) and then §; = v; = 0. Then,

0=6 = B1 . 1 _ BitBita—piti—1+ta—ty
1 T—to+iy R — (I—ta+t1)(1+ta—t1)

— Bi=D)=(B1 D)t + (B, +1)to
- (A—tottr)(I+ta—t1) -

Then, if the denominator is positive we have t; = to + % Then, we come up with the following
conjecture:
. 1-5, py—1
if t5 € ,14+ k|, then t; =ts + .
’ <1 + 6, } PR+

Observe that
t1 > 0iff ty + 5121 5 0 which we are indeed assuming. Then, v; =0

By+1
t1 <1+kiff to+ gi__& <l+korty <l+4+k+ Efiwhich is true because we are assuming to < 1+k
. 1-3
and, since ; < 1, ﬁ1+i > 0.
Then, 5 5
_ _ -1 -1 2 .
$1—1+t2—t1—1+t2—t2—[31+1 _1_[31-‘-1 = 175 > 0;

$2:1—t2+t1:1—t2+t2+’8171:1+’8171: 28, > 0.

B1+1 B1+1 1+6;
Moreover,
ozdlz_x—iljtx%:zzﬂfnt%:o.
1+, 1+6,
Summarizing,
0 ity e [0, %}

t1 =

-1 . 1—
to + §1+1 it ty € (Tgi,l-l-k}
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All the reaction functions picture are presented at the end of the proof.

B. g, =1.

If to = 0, then we conjecture t; = 0 and ; > 0 (indeed, we are going to show v, = 0) and §; = 0.

Then,xlzl—i—tg—tl:landmgzl—t2+t1zlandylzél—%—i—x—i:—%—i—%:&

If to = 1 + k, then we conjecture t; = 1+ k and d; > 0 (indeed, we are going to show d; = 0) and
71 =0.

Then,a:l:1+t27t1:1andx2:17t2+t1zland51:71+%fx—11:f%+%:0.

If to € (0,1 + k), then we conjecture ¢t = to and 61 =y, = 0. Then, 1 =22 = 1 and §; =, =0.

C. B, >1.

First of all, observe that since 5; > 1, we have 1+ k+ 1 Bl < 14 k. We conjecture that t; = 1+k.

1+8
Then,

j— /31 _ 1 — ﬂl _ 1 —
0<0, = T—ty+1+k Ttta—1—k — 2—tat+k  ta—F

_ Bate—fBik=24ta—k _ (B1+1)ta—(81+1)k=2
- (27t2+k’)(t27k) (2 t2)t2

Then, if the denominator is positive we have to > k + 1+ﬁ =14+k+ (1+5 1) =14+k+ igi .

Observe that since we are assuming 3; > 1, we have 1+gl € (—1,0) and then

1,
0<1l+k+ by

<14k
1+ 8,

Then, we come up with the following conjecture:

-5
+ 5,

1
iftr € [1+k+ 1+Fk|,thent; =1+k.
Then v; = 0. Observe that
r1=14to—t1=1+to—1—k=1ts—k>0if ty > k, as we are assuming. o = 1 -ty +1; =
2—to+k>0ift < k—+ 2, which we are assuming.
Then,

=6 _ 1 __B 1 _
0 S 51 T oxg r1  2—to+k to—k

_ Bita—B1k—24t2—k (51+1)t2 (B1+1)E—2
T (2—tatk)(ta—k) (2—t2)t2

which is true if £ > k+ 25 = 1+ k + 1755,

It0 <t < ﬁ + k, then the conjecture is ¢; € (0,1 + k), which implies 67 = 0 and 7, = 0.
Then,

as we are assuming.

0= B1 _ 1 _ BitBita—Biti—1+ta—t1 —
T 1—tottq 14+to—t; (1—t2+t1)(1+t2—t1)

_ B1=1)—(Bi+Dti+ (B +1)t2
(1 t2+t1)(1+t2 tl)

al’ldtl—t2+5+l
: 1-5, By —
iftoe [0, 1+Kk+ , then t; = t5 + .
? 1"'51) S A
Observe that t; = t9 +8 5 +1 il o4k i;gl + glﬂ =1+ k. Then,
21 =14 (tg—t;) = = BJrl>0andm2—1—(t2—t1)f1—|—§1j&:ﬁzlill>0.
Moreover,
e BB L
0*71*51*;2—;1*?—7—0.

B1+1 B1+1

Then, household 1 and, by symmetry, household 2 reaction functions are presented below.
insert picture reaction function hl h2.pdf
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To compute equilibria it is enough to find the intersection between the graphs of the two reaction
functions and it is done below. It is crucial to observe that

Bi—1_1-5,
B1+1 7~ 148,

— (6 <1

Then equilibrium values of ¢; and ¢5 and all other variables can be compute easily using the pictures
below and Table (42) .
insert picture reaction functions and equilibria.pdf
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= 2,




Observe that v, = J; implies v, = d§;, = 0.
Case 1. 8,85, <1, 3; <1landf, <1

t1 =0
.’rl:l
’71:51_%+;11:1_ﬂ1

01 =0
Case 2. 8,85 >1, 8, > 1 and B, > 1.

ti=1+k%

r1 =1

71 =0
51:’)’1"‘%—?11:51_1

Case 3. 8,085 <1, 8; > 1 and B, < 1.

b =55
— B1—1 2
11 =1-557 =55
71 =0
61:&_L:L_%:0
T2 x [521ﬁ+11 T

Case 4. 8,085 > 1, 8; > 1 and B, < 1.

ti=1+k
_ 1-B, _ 28
r=1-1752 = 775,
71 =0
61 — ﬂzl _ 21 — (1-8185)(B2+1)
5 oA 252

Case 5. 8,8, =1, 3, >1and 8, < L.

Observe that gi;i = ;gg
_ Bi1—1
t1 =t + ﬁ1+1
T, = 1— Bi—1 2 285

B+l — Bi+1  Botl

71 =0
= By 1 _ B 1
LT

Case 6. B, =1 and f, = 1.

34

112:].

72:52_%4‘%:1_52

6o =0
to=1+k
T = 1
Y2 =0
52:’72"‘%—;12:52_1
ta =0
_ Bi—1 _ 2B
r2=1+55 =5
— B 1 _ (1=B4B85)(B1+1)
— + =
T2 o 26,
02 =0
ty=1+k— 17
_ 1-8, _ 2
T2 =1+ 1352 = 175,
Y2 =0
§g= 22— 1 =0
T+82 1482
to € [0,1+k— P
_ Bi—1 _ 2By _ _2
=145 =511~ 5
’72252—%4-%:— 2/3522 +—
Ba+1 Ba+1

02 =0

=0



t1 =12
.7}121
71:61—%4—%1:51:0

51:71"‘%—L 71 =0

1

Case 7. 81085 <1, f; =1 and B, < 1.

71:61_%+i20
01 =0

Case 8. f,85 > 1,3, > 1 and 8, = 1.

th=1+4+k
Il—].
71 =0

h=m+ =g =F—

xro T

1

to € 0,1+ K]
o =1

Yy =02=0
522’72"‘%_

to=14+k

xo =1

Y2 =0
522’72+%_

1 _p

T2

The equilibrium values of transfer are summarized in the following picture.
insert picture equilibrium transfers in betal-2 plane.pdf m
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3.2.2 Pareto optimality of equilibria

In general, the main difficulty of the analysis of the present model is that prices are an argument of
the utility function, which is not the case if there is only one good as in the version of the model we
are analyzing.

Below, we present the, obvious, definition of Pareto Optimality, see Definition 59. Then, we present
two different approaches to study Pareto optimality of equilibria. The first one seems to be applicable
to more general cases and it allows to show Pareto Optimality only in some of the presented cases of
our Cobb-Douglas example. The second approach deals with the specific example we are analyzing and
it allows to show Pareto optimality of equilibria for any economy - parametrized by (3, 8,) € R%,.

Definition 57 Utility function of household 1 is
Up:RY, — R, (z1,32) — logz; + B logzs.

Symmetric definition applies for household 2’s utility function. Define U = (Uh)h:1,2’ An economy
is (e,U), where e € R2 .

Definition 58 The set of feasible allocations associated with an endowment e € IR?H is denoted and
defined as follows
Fo = {$€Ri+ T+ X2 §61+62}.

Definition 59 Given an economy (e,U), an allocation z* € R2 | is (e,U)-Pareto optimal if
1. x* € Fo, and
2. for any x' € F. either U (x*) = U (2) or there exists h € H such that Up, (z*) > Uy, (/).

Remark 60 Observe that z* € R% | is not (e, U)-Pareto optimal if either

1. z* ¢ Fe, or

2. there exists ' € Fe such that (U (z*) # U (2') and for any h € H, Uy, (z*) < Uy (2') ), i.e.,
U(z') > U (z*).

A more general approach A simple, well-known result relates Pareto Optimal allocations to
solutions of well chosen maximization problems.

Proposition 61 An allocation (x7,23) € R, is (e,U)-Pareto optimal
54
(z7,x%) € R, solves both the following problems.

(M1)  for given (e,U), max(;, z,)erz, Ui (x1,22)
s.1.
Uz (z1,22) — Uz (21, 23) 2 0
—x1—22+e+ex >0

(45)

(M2)  for given (e,U), max(;, ,)er?, Uz (x1,22)
s.t.
Up (z1,@2) — Ur (2, 25) =2 0
—r1—xo+e;+e2 >0

Proof. [=]

Suppose otherwise. Then, say, (z7,x5) does not solve (M1). Then, there exists a feasible allocation
2’ € R% | such that Uy (2,2%) > Uy (a7, 23) and Us (2, 25) > Us (xf, x3), contradicting the Pareto
Optimality (z7,z3).

[«

Suppose otherwise. Then there exists z’ € Rﬁ_ . which is feasible and such that

(Ul (x/hx/Z) Uz (mllvxlz)) > (Ul (xi‘vx;) Uz (ITJ;)) :
Then, say, Uy (2}, 25) > Uy (x5, 23), and Us (2], x%) > Us (27, z3), which contradicts the fact that

(3, 23) solves (M1). m
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Remark 62 Since utility functions are strictly increasing, the solution set to each problem in (45)
coincides with the solution set to the corresponding problem with equalities in the place of inequalities.

Under our specification of the utility functions, Problem in (45) are as follows.

(M1) for given (e,3) € RY ., MaX(y, 1,)er? , 10gT1 + B log s

s.t. (46)
log xa + By logxy — logal + Bylogay >0 xq
—x1 —T2+e;+ex >0 Y1
(M2) for given (e,8) € R, , MaX (g, 4,)eR? | log x2 + B4 log 21
s.t.
logz1 + B, logxge — logxt + B logas >0 xy
—x1 —T2+e+ex >0 Yo
Kuhn-Tucker conditions associated with problems in (46) are presented below.
1 1 _ 1 1 _
(K1) Ef?@ﬂz@*’h =0 (K2) gi’)ﬁﬁl?*’h =0
Blg‘FXQg_’h =0 and 52?1"‘9615—72 =0
min {..., x5} =0 min {..., x1} =0
min {...,y;} =0 min {...,v,} =0

Lemma 63 The following statements on problem (M1) and Kuhn-Tucker conditions (K1) hold true.
Symmetric results hold true for (M2) and (K2).

1. For any given (e,U), if (z},x%) € RE, is feasible, then there exists a unique solution to problem

(M1);
2. If there exists (x5,7}) € R? such that (x, 25, X5,7;) solves (K1), then (a3, x%) solves (M1);

3. If (x7, %) solves (M1) and , then there exists (x3,77) such that (x5, x5, x5,77) solves
(K1).

Proof. 1.

Existence. Let C; be the constraint set of problem (M1). Since (z},z3) € R2, is feasible, then
(x7,x3) belongs to C1, which is not empty. From the extreme value theorem, we are left with showing
that Cy is compact. From the first constraint in problem (M1) and from the definition of the log
functions, we conclude that Cy is contained in a closed subset of R®. Moreover, from the fact that the
consumption set is R, , C; is bounded from below by zero. From constraint (2) in problem (M2),
we have that C is bounded from above. Hence C; is compact.

Uniqueness. Since the constraint functions are quasi-concave, the constraint set is convex. The
objective function is strictly concave.

2.

Sufficiency of Kuhn-Tucker conditions follows from the fact that the objective function is strictly
concave and the constraint functions are quasi-concave.

3.

From Remark 62, necessity of Kuhn-Tucker conditions follows from the fact that the Jacobian
matrix of the constraint function has full row rank. The computation of that matrix is described
below.

X1 X9
1 1 b L
ogxz + fBylogxy z1 z2
-1 — T2+ -1 -1

Then, the full rank condition is satisfied iff it is not the case that

B2 L 1
det{ 111 w21 } :—&—F—:O, or z1 = fByx2.

Observe that ~y, is strictly positive. m
We can summarize what said above in the following result.
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Corollary 64 If (z7,23) is such that ‘x’{ # Byxy and xi # B}
equivalent.

1. (27, z3%) is Pareto Optimal;

2. (z3,2%) solves (M1) and (M2);

3. There exist (x3,71) and (x3,7v3) such that (x7, x5, x5,7%) solves (K1) and (x5, x5, xT,v3)solves
(K2).

, then the following statements are

Using Corollary 64, we can analyze the Pareto optimality of equilibrium allocations if z7 # Sy25
and x5 # [,27.

Proposition 65 . In cases 1 and 2 of Proposition 77, the equilibrium allocation (1,1) is Pareto
Optimal.

Proof. As an application of Corollary 64, we have check if the equilibrium allocations under analysis
do or do not satisfy the appropriate Kuhn-Tucker conditions. Observe that since we are assuming
81 # 1 and B, # 1, it suffices to check that (x7,x3) = (1,1) does satisfy both sets of Kuhn-Tucker
conditions below.

(K1) ?11+X252%1—71 =0 (K2) 95172+X1/81T12_72 =0
51%“‘)(2?12_71 =0 and 52%1+X1i—72 =0
min {..., x5} =0 min {..., x1} =0
min {...,v;} =0 min {...,v,} =0

First of all, observe that (1, 1) satisfies both inequality constraints in (K1) and (K2). Moreover,
just by substitution, we have

<1+X2/32_’71 :0> and <1+X1/31—72 :0)
fr+x2—711 =0 Batx1—72 =0
or
<%x252 =1 > and (wxlﬁl =1 )
71— X2 =5 Y2 — X1 = By
About (K1), observe that
Br—1
Xo = >0
2 ﬁQil

because in the Cases under analysis we have either both 8; and /3, greater than one or both of
them smaller than one. Moreover,

Y1 =14 X282 >0.

About (K2), observe that
_fBp—1
X1 Bl -1

because in the Cases under analysis we have either both 5, and 3, greater than one or both of
them smaller than one. Moreover,

>0

Yo =14 x16; > 0.
m

A specific approach
Proposition 66 Equilibrium allocations are Pareto Optimal.

Proof. We proceed as follows.
1. We write Maximization Problems (M1) and (M2) without the constraint on the utility and
incorporate the constraint about feasibility into the objective function, i.e.,

( (M1—1) for given f; € Ry, maxg,c,2) log(2—x2)+ [;logzs )
( (M2—2) forgiven By € Ryp, max,,ec(2) logzs+ fBylog(2—xz3) )
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]

A simple analysis allows to find the global maximum in each case.

2. Using the above analysis, we use show Pareto Optimality of each equilibria.
Proof. 1.

Since 3, > 0, the possible utility levels for household 1 which are compatible with feasibility are
described by the following function of the value of household 2’s consumption.

Up:(0,2) — R, Ui (z2) =log (2 — x2) + (4 log zs.
Then,
Uj(2) = -5 + 2
_ 1 B
Then, solution z* to the equation U7 (z) = — 51—+ % = 0 is the solution to the maximization problem

if z* € (0,2). Indeed, the solution is

*1 Bl
x5 =2 € (0,2).
2 Bl ¥ 1 ( )
Observe that z3' is the value of the consumption of household 2 which maximizes the utility of
household 1.
Given (5 > 0, the possible utility levels for household 2 which are compatible with feasibility are
described by the following function of the value of household 2’s consumption.

Us:(0,2) — R, Us (x2) = logxa + By log (2 — x3) .
Then 5
U (@) = & -
U//( ) _ 1 B <0
2\ x? (r—x)?
Then, solution z* to the equation [’ (z) = % — fizx = 0 is the solution to the maximization problem
if * € (0,2). Indeed, the solution is
2
*2
5" = €(0,2).
2 B+l ’

232 is the value of the consumption of household 2 which maximizes the utility of household 2
herself.

2.
Observe that

B 2

2/31i‘1 2 Ba+1

<~

0<28,(Bo+1)—2(B,+1)=2(8; -1 (B, +1)

<~

B =1

which is true in all cases we are analyzing but Case 1. Then in all but that case we have
*2 __ 2 _ 1 _ 2By _
0 L™ = 1+8, $21 - 1.1.511 - 2
_________ (max forh=2) ) ======\ (maxforh=1) | ————==— ———

Observe that by definition of global maximum point,
U; is increasing and Us is increasing on (0,:632];
U, is increasing and U, is decreasing on [z3%, 23] ;

U, is decreasing and Us is decreasing on [:1031,2)‘
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Then, by definition of Pareto Optimality,

any s € (0, x§2) is not Pareto Optimal: any x4 € (:102, x’2‘2] gives a higher utility to both house-
holds;

any ra € (ac’2“172) is not Pareto Optimal: any zf € (acgl,x%) gives a higher utility to both
households;

any xp € [23%, 23'] is Pareto Optimal: for any z < x3, we have U; (z4) < Uj (z2) and for any
xh > w9, we have Us (z5) > Uz (x2).

Symmetric situation arises in Case 1.

Then, to verify Pareto Optimality in the five Cases we presented, we have to check

2 28 :
% € [$§2:1+ﬁ2,x;1:1+é1} it B >1
(47)
2 .
x;E{xglzlfﬁll,x§2:7lfﬁ2,} if B, <1

From Table (41), the values of =3 are the ones presented below.

Case 1 2 3 4 5 6 7 8
" 28 23 2 28
T2 L1 95 5, 14 L 135

Checking conditions presented in (47) is immediate apart for Cases 1 and 2 which are analyzed
below.

Case 1. 8; <1, 8y <landz5 =1

Indeed, 23 =1 > 124?51 S 1+p,>28 @B <landaj=1< 5 & 145, <268, <1.

Case2. 8, >1,6,>1landz; =1. m

Remark 67 The results presented in Table 41 allow to make some observations, which could be used
to get conjectures about a more general framework. If an artificial upper bound on transfers is imposed,
then pippo

1. All equilibrium allocations are Pareto Optimal; this conjecture is false as shown by Kranich
(1988);

2. An infinite number of equilibria occurs only in a closed measure zero subset of the set of
economies, but equilibrium allocations are constant across equilibria.

3. If 818y > 1, then equilibria exist (in contrast to the case presented in Proposition 51) and at
least one household chooses her transfer to be equal to the upper bound.

4 Appendices

4.1 The set-up of the model by Mercier Ythier

Another paper which studies a model somehow similar to the one introduced by Kranich (1988)
is that one presented in Mercier Ythier (2000). Below, we present the definition of equilibrium.
In a companion paper (in progress), we discuss that model. Here we want only to underline that
a basic observation about Kranich (1988)’s model applies to Mercier Ythier ’s model as well: in
the maximization problem of each household there is an inconsistency about the assumption that
consumption vectors have to be nonnegative and the possibility that consumption vectors of other
household may be negative consistently with other households admissible choices. In what follows, we
try to make clear the above statement.

The model by Mercier Ythier is presented in terms of excess demand vectors instead of consumption
vectors; to make his model more understandable, we rewrite the standard exchange economy model
in terms of excess demand vectors.

Definition 68 (z*,p*) € RCH x ]R$+ is an allocation-price equilibrium for an economy (e,u) if
(i) households mazimize, i.e., Vh € H, for given p*, ey, un, we have that zj, solves the problem

max,, cgc  Up (Th) s.t. pren, —p*x, >0 (48)
Tp Z 0
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(i1) x* satisfies the following (market clearing) conditions (at e)

To better understand the model in terms of excess demand vectors define and denote it as follows

Zh = Th — €,
and then
Th = 2h + €ep.-

We can then give the following definition.

Deﬁnition 69 (z*,p*) € REH XR$+ is an excess—demand-price equilibrium for an economy (e, u)

if
(i) households mazimize, i.e., Yh € H, for given p*,en,un, we have that zj; solves the problem
max;, ecpc up (2n +e€n) st —pTzn =20 (49)
zp +ep >0

(ii) z* satisfies the following (market clearing) conditions (at e)

H
Zz;:()

h=1

Proposition 70 1. (z*,p*) € REH x ]R%_ is an allocation-price equilibrium for an economy (e, u)
(:;* —e,p*) € REH x Rf+ is an excess—demand-price equilibrium for an economy (e,u).
(i*,p*) € REH x REJF is an excess—demand-price equilibrium for an economy (e,u)

(::* +e,p*) e ROH x R$+ is an allocation-price equilibrium for an economy (e,u).

Proof. 1.
Clearly market clearing is satisfied.
We want to show that
a. p*z; < 0and 2z +ep, > 0;
b. if p*zp, <0 and zp, + e, > 0, then wup, (2} + ep) > up (21 + €n)-
Indeed,

Assu. Assu.

a. pzp i=p (af —en) < 0;5zp +epi=x; —eptep=x; > 0.

b. Suppose otherwise, i.e., there exists 2z, € R such that p*Z, < 0 and Z, + e, > 0 and
Up, (Eh + eh) > up (Z;fb + eh).

Define Zj, =z, + ep. Then p*z, < 0= p* (T, —ep) <0; 2 + e, >0 =T, >0 and

un (Zn +en) > up (2 +en) = up (Tn) > up (), contradicting the definition of 2}, as a maximizing
choice.

2.

Exercise. m

We can now write the definition of equilibrium in terms of excess demand as done in M-Y (2000).

Let the functions below be given:

up, Rg — R, xp — up (Th)
wy : RT — R Y = wr(Yn, Y\n)

Definition 71 (z*,t*,p*) € ROH x REH-DH » RY js an excess demand-transfer-price equilibrium
for the economy (e, u, w) if
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(i) households mazimize, i.e., YVh € M, for given z{) € REH 1) ¢ RE,,tih e RH(C-1C ¢ ¢
REH  w, wy, we have that (z};,t}) solves the problem

InaX(thh)e]Rc xRC(H—-1)

wp, | up (zn +en + L, - th—), (up (2’;/ +en Fthn ot — tTL'—») )h’e\{h} )
s.t.

—p*zp >0
chO
zntep+tt_, —th— >0

(i1) z* satisfies the following (market clearing) conditions (at e)

H
E zp =0
h=1

Observe that consumption is xp, =z, +ep +t_p —th—..

In the above model as in Kranich (1988) model, the problem is not well written simply because
we have the same problem presented in Remark ?7.

Let’s rewrite the budget constraint, keeping into account that consumption has to be nonnegative
for any household different from h as well:

—p*zp >0

tn, >0

zptept+tt , —th— 20

2 Fep Fitpn 0 o —th_, >0 N #h

or since for any h € H, x, = zp, +ep +t__p, — th_., we have

—p*(zp, —ep —t—p+th—) >0

tp >0

zp >0

Z;:’ +en +thn + t:ath—»h’ - t;kz’—> =0 W 7é h

Observe that the very definition of the maximization problem allows z’\*h € RCU=1 " Then use
exactly the same numerical example provided in Remark adding only 25 = 0 and again you get the
constraint set to be empty. The main equations above for household 1 are

x1 — 14t +t13 <1 and then t15 <1,

22+62+t12+t32_t21_t2320 and then 0+1+t12+0—0—32001‘1+t12—320 or t1222
and again the budget set is empty.

Remark 72 Observe that imposing the “legal constraint” ptn,_. < pep does not seems to solve the
problem, differently from what happens in Kranich (1988)’s model. Indeed, by Walras law pzp, = 0;

then
>0 >0

—0 >
prn =p(zn +en+t—n —th—) =pzn +p(en —th—) +pt_—p >0,

which is consistent with xp > 0, but does not imply it.

Remark 73 Of course, the problem described above does not arise if the utility function is assumed
to be defined for negative value of the consumption vector as well. Indeed, on page 47, line 3, Mercier
Ythier says that the consumption vector is an element of RC (using our notation). We believe the
assumption that the utility function is defined for negative values of consumption is economically
1nconsistent.
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4.2 Kranich (1988)’s definition and our definition of equilibrium

Our definition.

Definition 74 The vector (z*,t*,p*) € X x T x RE is an equilibrium vector for the economy
(thTh7ehauh)he'H S g Zf

1.

For any h € H, household h mazimizes, i.e., for given (Xp,Th,en,un)pey € €, P* € Rg,tih €
T\p,(x,,ty,) € X x Ty, solves

max(zh,th)EX;«bXTh Up, (-Thaw (p*vthat<h))
s.t.

prap < p* (eh + 2w ny G — thh'))

2.
Markets clear, 1i.e.,

H H
S ai=Ya
h=1 h=1
Kranich’s definition.
Let (e,u) be given.
Definition 75
w:XhXThXT\h—>RH,

(pa tha t\hv) = (wh (p7 tha t\h)h’EH) = (P (eh + Zh’e?{\{h} (th’h - thh’)))heH .

Definition 76 The set of feasible outcome at r € R% is denoted and defined as follows

H
H(r)= {(w,&) e X xRE: ZIZ <r and for any h € H, there exists p € S such that 0}, —pmh}
h=1

Definition 77 The vector (z*,t*,p*) € X x T X RE is an equilibrium vector for the economy
(Xln Th» €h, uh)hEH €& Zf
1.
For any h € H, household h maximizes, i.e., for given (Xp, Th, en, un)
(x5, t5) € X x Ty, solves

* C x*
hew €&, p" € R, € Ty,

ma‘X(ZEh,,th,)EXh/XTh/ Up (l‘h,w (p*7th7t§h))
s.t.

prap < p* (eh + 2wy Chon = thh'))
27.

(xf“w (p*’tmtih))he?-t cH <Z eh>

heH

Remark 78 The two concepts are equivalent.

Proposition 79 Given an economy (Xn, Th, en,un),cpy € €,

a. (z*,t5,p*) e X XTXRE is an equilibrium = (z*,t*,p*) € X x TXRE 18 a Kranich equilibrium,
and

b. if up, is Locally Nonsatiated and p € ng then the opposite implication hods true.

43



Proof. a.
We have to show that Zthl z; <r and for any h € H, there exists p € S such that

w (p*, th, t<h> = pzj. The first inequality follows from 2. and the second equality from the definition
of w (p*,th, t§h>.
b

The two assumptions are needed to get weak inequality in the budget constraints and in the market
clearing conditions to hold as equalities. m

4.3 The generalized game proposed by Rosen (1964)

Another attempt to show existence of equilibria using a generalize game is to follow the approach
proposed by Rosen (1965), an approach which fails to work as described below.

Below,

we present the objects describing the “Rosen generalized game”;

2. | we list the assumption introduced by Rosen and we state the existence theorem;

3. | we show that a (crucial) assumption is not satisfied in the version of the Rosen generalized
game applied to our model.

1.

There are n € N players denoted by ¢ € {1,...,n} := N. For any ¢ € N, the strategy vector of
player 7 is a subset of R™i. Define m = Y- ; m;. Indeed, the set of “allowed” (see page 522) strategies
for all players is

RCR™.
Moreover, define the projection function pr; : R — R™, (xx),cn + @i, P; = pri (R) and
P = XpenP;

See simple picture on page 522 in Rosen (1965).
Then the strategy set of player ¢ € {1,...,n} is

A; = {x? € R : there exists (xo

mj 0
j)jeN\{i} € Xjen\{i}R™ such that (ack)keN €ER }

Define z\; = (xj)jeN\{i} and with innocuous abuse of notation we do not distinguish between

(74);cn and (xi,m\i). The definition of utility function presented by Rosen has some ambiguity.
My understanding is what follows (and maybe the proof of Theorem 1 should be read carefully to
understand what in that proof is needed).

For any 7 € N, the utility function is

u;: P— R, x— u; (x)
A Rosen generalized game is a pair G* = {R, (u;);_, }

Definition 80 A Nash equilibrium for the generalized game G* = {R, (u;);_,} is 2° € A such that
for any i € {1,....,n}, 2? solves the following problem.

0 0
glg})g{i u; (zi,x\i) s.t. (xi,x\i) € R.

Theorem 81 Let G* = {R, (u;);_,} be given. If for anyi € N,
1. R is a nonempty, compact, convex subset of R™;

2. . 1s continuous and
for any (acj)jeN\{i} € XjeN\(i}R™, Ui | o, t Pi — R, x> (zi,2\;) is concave,

then G has a Nash equilibrium.
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Remark 82 The assumption of concavity cannot be weakened in the approach followed by Rosen: his
proof is based on the fact Y, w; (z) is concave which follows from the fact that each term in the sum
is concave and the sum of concave functions is concave (a fact which is not true for quasi-concave
functions).

We are now going to define a “Rosen generalized” game for our model and to show the set R which
seems to be the only possible choice consistent with the model we are analyzing is not convex.
Indeed, we define R as follows. For any economy e € Rgf , Ris

{(p,z,t) e R x RYH x RYB :  for any h € H,
p(@n+ Y e, th) —p(en+Xpep, twn) <0
zp >0
z <k,
tp, >0
th < kn

P wep, thhr < Pen

p=>0

the’H eh - 1 }

For H = 2, we have what follows.

R:={(p,z1,t1,m2,t2) € RE x R*® x R*¢  p(x1 +t12) —p(e1 +t21) <0
0 S x1 S km
0<t1 <k
pt1 < pey

p(r2+1t21) —plea+t12) <0
0< zqy Sk:c

0<1ty <ks

pta < pea

p=>0
theH ep =1 }
Observe that

A; = {x? € R™ : there exists (xo € Xjen{i}R™ such that (m%)keN eER },

J)jeN\{i}
see also Definition (2) page 462 in Ausell and Dutta (2008) - is indeed for A = 0,

Aoz{pERC:pZOandeehzl}::S
heH

and for any h € H, in the simpler case H = 2, we have
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{($1,t1) S RQC

there exists p € RC such that p > 0 and P perh =1,
there exists 2o € RY and t € R such that p(zo + t21) — p(e2 + t12) <0

0 <ty < ko
pta < pea
such that
p(z1+t12) —pler +1t21) <0
0<2 <k
0<t <k
pt1 < peq

We claim that R is not convex.

Consider the inequalities pt; < pe; and pta < pes. Then, we have p (t1 +t2) < p(e1 + €2) P

or pt < 1. Then if C =2 and r = (1,1) and then p; + py = 1,take

Observe that
1
(4 H(;

Then, we want to show that for any A

(a-% (5

(L1 '
P —(2,2 and ' = (1,1)

19 5
f= (=, =) and ' = (5,2
P (10’10> o (5’9>
5
_ 1 9 _
€ (0,1), we have

Sle

)

sl-

)
)) <(1—)\)(1,1)+>\<5,3> >>1,

N | —
N
+
>
7N

as verified below;

(1) (5 1) 2 (3. 1))

(—1) (16A2 —16A—9) = 16\ — 1632 1 1 >

for any A € (0,1).

057
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4.4 Assuming away the loss of quasi-concavity

The goal of this section is to show Proposition 5. Let’s recall the following definitions.

Bn, C H\{h}, set of households h likes (exogenous)
B,\L = (H\{h}) \ Bn, set of households A dislikes
(a) B_n={h € H\{h}: he B}, set of households who like h
(b) B\, =(H\{h}) \ B, = {h’ e H\{h}: h € B), set of households who dislike
(50)

Observe that from the definition of BL > We have that
for any h,h’ € H such that h #h', h'€e BLh & he B,}L/. (51)

We are now going to prove the following intuitive result: if households give nothing to households
they dislike, then households get nothing from people they dislike them. We present a formal statement
and a proof of that result and also an example verifying the statement itself.

Lemma 83 Assume that
for any h € H, h' € H\ {h} and h" € B,\L,, we have tppr = 0. (52)
Then for any he H, ' € H and h" € B\*W\ {h}, tpp =0.

Proof. Assumption (52) says

heH
W e H\{h}
W' € B), (53)
U
th,’h” = 0.
Case 1. b/ # h.
Take b/ € H and h” € B\ _,\{h}; then ” € B\ _,, and from (51), we have that &’ € B),,.
Therefore,
heH
W e H\{h}
(54)
n e B,\L,,
n'e B\, \{h} = 1" cH\{h}

Then, h” and h’ described in (54) satisfy the preliminary conditions in (53) (identifying h’, h”
there with A", h' here) and then, we get

for any h € H, ' € H\{h} and h" € B\ _, \ {h}, thn =0,
as desired.
Case 2. h/ = h.
We want to show that

W' eB\ \{h}=B'_, = twn=0.
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From (51), we have that for any h,h” € H such that h # h”, we have h” € B\—m, < hoe 82,,.
Then, it is enough to show that

h e B}\l// = tprp =0,
which is true by Assumption (52). m
Example 84 Let present an example in which we verify the statement in the Lemma above.

Assume that there are 4 households and that for any h € H, By, is exogenously given as described
in the first column of the table below. Then we have what follows.

By ={2,3,4} B) = B, ={2} B\ | ={3,4}
By = {1,4} By = {3} B_.o=1{1,3,4} B ,=0
Bs = {2,4} By = {1} B_.={1} B\ =1{2,4}
By = {2} B) = {1,3} B_.,=1{1,2,3} B =0

The assumption of the Lemma is: for any h € H, k' € H\ {h} and h" € B,\z,, we have tppr = 0.

Choose h = 1.

Then, h' € {2,3,4} and then since B; = {3}, B; = {1} and Bz} = {1,3}, we have toz = t31 =
ta1 = t43 = 0.

The conclusion of the Lemma is: for any h € H, h' € H and b’ € BL>h,\ {h}, tpr =0.

Again, of course, we choose h = 1.

Then, since 8\4,1 = {3,4}, BLa = @,8\4,3 = {2,4} and BL,4 = &, we must have tz; =ty =
tog = ty3 = 0, as assumed.

Example 85 Let’s also verify that the statement of Proposition 10 is verified in the above case.
Indeed,
§=1{(1,2),(1,3),(1,4) (2,1),(2,4), (3.2),(3,4) (4,2)}:

7T={(21), (1,2),(3,2),(4,2), (1,3), (1,4),(2,4),(3,4)}.

Definition 86 (%,t,p) € R{H x ]Rf(Hfl)C x S is an equilibrium for the economy &' € &' if

a. for any h € H, , for given € € B,p € S,
Ftv\h S T\h (f); eh) = {t\h S RC(Hil)(Hil) .'fO?" any hl S H\ {h} 5 ﬁzh”e”‘l\{h'} th’h” S ﬁeh/} s
(Th, tn) € RE x REE=D soyes

MAaX(z), t),)ERC xRCH-1)

UBy | Ths (17 (eh/ +tan + Zh”eBHh/\{h} thons + Zh”eB\ W \{1} thrn = Zh”esh/ thinr — ZMGB;/ th'h”))h/eg ) +
- h

(7 (ew + e+ S\ Fow + ey T~ S e~ ey, ), )
h

1%

s.t.
ﬁ(zhlegh b + 2 ep) thh') < pen

prp < ﬁ(eh + 2 wes, tn 2 ep , thh — > hen, thiv — Zh/€B> thh/)
Th > 0
0<ty, <k,

(55)

b. markets clear.
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Definition 87 (z,7,p) € RgH X Riz*‘ Bry Sisa B-equilibrium for the economy £ € E if a. for
any h € H, for given £ € B, p€ S and

T\ € f\h (p,e,B) == {(th’)h'eH\{h} € RO 2w B for any ' € H\ {h}, IBZ}L”EBM thin < ﬁeh'},
(Zh,7) € RY x REBr solves

mMax;, r,)eRC xRCBr ug,, (xh,ﬁ(eh/ + Thi + Zh”EBHh/\{h} Thiht — Zh”eB,,,, Fh/h//)h'68h>
s.t.

ﬁ(Zh'eBh T’L’L’) < pen

prn <Plen+ Y e, Th'h — Yopiep, Thir)

Tp Z 0

0 <7 < (knn)picp, = kns

(56)
and
b. markets clear
Proposition 88 Let &'€E and p € S given. N R N
1. If (Th, tn) € RC x RE~L solves problem (55) at t\n € Th (p,e), then (th=h’)h'es\ =0.
- h
2. If (Tp,tn) € R x RE1 solves problem (55) at
f\h € Ty (p, €) such that for any ' € H\{h} and h" € B,\L,\ {h} we have typn =0, (57)

then (Tn, (Thi')piep,) € RE x RBr with (Thh wes, = G{hh’)h'eBh solves problem (56) at T\p, :=

(th/h“)h’EH\{h}, hEBy, € Th (p,e,B).

5. 1 (3 (7).,
h
R x RE=Y with for any h € H\ {h'}

€ RY x RB" solves problem (56) at T\n € T (p, e, B), then (Tn,tn) €

N Fuaw if h € By,
thi = (58)
0 if WeB),
solves problem (55) at t~\h € Tr (p, e) such that for any b’ € H\ {h} and for any b # I/,
Twne if B € B,
th'h” = (59)
0 if heB),

Proof. 1.
We want to show that for any b’ € B,\z, we have f;%h/ =0. If B,\L = &, then we are done. Suppose

now that B}\L +# @ and that our claim is false, i.e.,”
(?hvh/)h/eB,\l > 0. (60)

Then, the simple idea of the proof is to use those transfers as consumption of household h to get
the desired contradiction.

For lighter notation, define U}, as the objective function of the maximization problem under analy-
sis. We are going to show that (Zy,%) does not solve problem (55) at t~\h € Ty (p,e), verifying
that

I (2, t5) € RE x RCU=1) such that [a.| Uy (25, 5) > Un(al, t5) and [b.] (27,]) € By (p7 tih) .

"We use the “standard” definitions for >, >, >> between vectors in R™.
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Take

and t7 = (t* ,) such that
h W ) s,

:Eh,h’ it n S Bh

thow = (61)
0 if W eB).

* * .
Un ((z},, ) =
up, <<5h+2h165}\1 th,h’) , (ﬁeh/ T T hren N\ (ry +Zh/’€BL;1/\{h} thint = nren,, th'h”*zhuegh/ th'h”) h’eBh> +

v (( e % H'Zh” B h,’\{h} th"h’+ E nt B\ ) \{h} thz/nl—z:h/legh, th,/hll— E nit ’\1, th/hl') , \>
+ pe € € h'eB
hnd — h

L/
)
>
uBg,, Th, (176’1’+t;/h,'+2h,”65ﬂh/ \{r} fh”h/+zh”eﬁ\ \{hr} ;h//h/ _Z’LNGB"/ ;h/h// _Zh”eg\ ;h/h”) i
ANy h! h'eBy,
+op, ((5€h,’+th,h’+2h”68_,h/\{h} th//h"+zh”eBLh,\{h} th//hlfzhuEBh, th/hufzh,,%}\ﬂ th/hu> h/68\> .
h
or defined my, = Zh”eBﬁh/\{h} thrn + Zh”GBLh/\{h} tpip — Zh”EBh' thip — Zh”EB}\L, thipe,

Un (@}, 1)) = v, ((Eh + Xwes) zh’h/) > (pens + L + mh/)h’EBh) tUh ((ﬁeh’ +0+ mh')h/esh)
m
>
B (ih’ (Pens + thy + mh/)h’EBn) o ((56” + e + mh')h’EB;\L)
where (1) follows from the facts that up, is strictly increasing in zp; vy, is decreasing in 6, and
h

0< (,tvh’h/)h’EB,\L .

The constraint z7 > 0 and 0 < ¢} < k;l are clearly satisfied. Moreover,

~ def. (zj,t5) ~

5 (Z}L'eBh t;;h/ + Zh,eB}\z t?m’) — P€Ep Z}L"EB;I, thn + Z}L/EB}\I 0) - ﬁeh <

~ ~ def. (Zn,tn)
p (Zh'GBh thi + Zh’EB,\,L thh’) — PEp < O7

~ ~ ~ ~ def. (zj,,t})
* * \Z,
pTp —p (eh + D hens, thin + Zh/eBLh thn = Dnes, i — Zh,egb ch/) =

5(@ + Zh/eg}\L fhﬁ') - 5(6h + e, thrn + Zh,eg\ , thrn — Y owes, thi — Eh,eg}\L 0) =
~ - - _ def. (Fn,tn)
pTh — P (eh + D e, i 2 cp b — > owes, thhr — Zh/eB)L th,h/) < 0

2.
Let B1 and B2 be the constraint sets presented in Definitions 86 of equilibrium and 87 of B-
equilibrium, respectively.
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Suppose our claim is false, i.e., there exists (30;;, (T;"L h,) > € RY x RB» such that
N weB

(l‘;, (T;;’h/>h/65h) S 32
and

o (x;;, <pe’“ + i + Lwres_ ) TR~ L), Thh”)h’eB ) g
h

e ("%h’ (Pews +Fae + Snoes_ i Fow — Zves, ?hh”)h,es > '
h
Now choose
T i R € By,
fh = x;; and th,h’ =
0 e B).

(62)

(63)

(64)

We want to show that (Zj,%) belongs to Bl and gives a higher utility than (%,¢,) which

contradicts the fact that (5;“%) is assumed to be a maximizer.
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Observe that

o (i\h’ (§eh/+thh,+zh//65—vh'\{h} th”h/+zh”65\ h/\{h) th”h/izh”egh’\{h} th/h”izh”eﬁl\,/ \{hr} th/h”) r'en ) ’
—h g €By

o (peh/+7hh'+2h”55 1'\{"}t’l/’h'+2}z”eBL;L/\{’L} th”’l’_Zh”EBh/\{h}th'h"_zh”es\ \(h} h/h”>h/e5 >+
h

~ - P - W
o ((peh'+0+zh”emm\w e\ gy B TR ey B T g th’h”) \) )
—h h h'eB

uB, <x B (5€h/ + Thir + 2nres i\ fny b = Lnies,, th’h”)h,e > +

~ ~ ~ dc
o ((p e + 0+ hnen_, gy e = Les,, ton ) eB\>

o (x ’(peh’ +Thwe Lo\ TH = L), T ) )
v h

i i - (63)
+up, (peh' 0+ X s\ n} TR~ Z’L”GB;L/ Th/h“)h'elf\> g

. ~ ~ (€9)
th (peh/ +0+ Zh”GB‘,h/\{h} Th'h — Zh“GB;\I/ Th/h”) h -

o ( o (ﬁeh’ +Thn + DonreB_\(ny THW T D), th”)}/elﬂ ) i
g h

'eB)

Th, Peh’+7hh/+2h”68 o\ thwhf+2h,,€3\ (R th”h’_zh”eBh,\{h,}th’h”_zhu 5\ ALk} h”z”)} . >+
— heByp,

~ ~ ~ 1. above
( Peh'+0+z;we3 o \nY 2y, T en o MY bttt =2 nireB, A\ (kY tmh"*Zh,,egi\“\{h} th’h”) \) =
- h'eB

Th, peh’+7—hh/+zh”gb">h/\{h} th//h/+zh”65\ AR th”h’_zhr”EBh/ th/h//_zh”eli\, th’h”) +
—h h h'enB
h

—+vp ((5611,’+thh’ J’»Zh”EB_‘h/\{h} th”hl+zh”68\ An th”hlizh”EBh, th/huizh”es\, th’h”) \)
—h h h'eB

(65)
where (1) follows from Assumption (57) and Lemma 83.
Clearly, every constraint in Bl is satisfied because the consumption is the same and the chosen
transfers are smaller, as formalized below.

(62)

P ZtAhh'-Fthh’—eh deLbn ZThh’_ < 0

h'eBy, h’GBh h'eBy
[~ =~ T 7 7 (€]
P(Zn—en+Dpep, thn + Zh/GBLh thih = D e, thiv — Zh/eB) hh' ) =

(66)
~ ~ (62)
=P (Tn—en+ Xpen_, thn — Y owes, thw) <0

where (1) follows from the following facts:
Zh’GB}\L tpne = 0 from the definition of (L/t’\h,lfh) and Zh’

—h

B\, thn, = 0, from what said below.
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From Assumption (57), we have that the assumptions of Lemma 83 are satisfied. Then, in that

Lemma, identifying A” with A’ , A’ with h and h with h, we have that for any b’ € B\_,h\ {h} def B\_)h ,
we get thn = 0, as desired.

Eh :x;; > 07

0B = ((B)es, » Bw)yes,) =" (Thnncs, B =0)ycs,)

Then,

(s (@) 4) € B (67)
(65) and (67) contradicts the fact that (Z,%y) solves problem (55) .
3.

Suppose otherwise, i.e., there exists (Eh,tAh) € B1 and such that
Uh (?f\ha?h) > Uh (%h,fh) . (68)

Then, from Statement 1 above, we have

(Zn.tn) = (@u (E\hh’)hzegh , (thw = O)h,egz) - (69)
Then, we go through two steps (a. and b.).

a.
Roughly speaking, we are going to show that

Uh (.’/L‘\h,?h) = UBh (fh, (Z\hh/)h/EBh) +(a constant) > Uh (@,fh) = UBh (fh, (?hh/)h’eB;) +(same
constant).”

~ \ def.Zp,thand T\h

Un (T, th) =

uB, mh’ﬁ<eh’+thh’+zh”68*}h,\{h} :Fh”h,+zh”eb’\ N :’:h”h’izh”EBh, ?h/h”izh”es\ :’:h’h”> +
—h! h! n'eBy,
+op, §<eh'+thh,’+Zh”€5ﬂh/\{h) Lt g\ TR T 2w e, thn T s th’h")
—n! n’ hIEB}\
g3
Lemma 83 and (59)

ug, (mlnﬁ(eh' Fthh + Dopren_, \(h) ThR ~ DopreB,, ?}L'}L")h/e& ) +

_ ~ ~ (69)
+vn <p (eh' T 0+ hren, \fny thrn = Xpres,, th/h”)h’EB\> >
h

—h

Un (T, th) =

uB,, <zh’ﬁ<eh’+thh’+2h“68‘>h/\(h} :Fh”h,+zh”66\ h,\{h} ?h”h’fzh”eﬁh, ?h/h”izh”EBl\l, ?h’h”> . >+
- h'eBy,

_ - - ~ ~ ~ Lemma 83 and (59)
o (p (eh/+t"'h/+zh”65~h’\{h} b 2 e M0 Enrn =2 sy, t”"h”_zh"es;\u th'lh//) h! 5\> B
— S
h

UB,, (xh,ﬁ(eh/ +thn + D opren_ \(h} ThR — Dopren,, ?h’h")h/es ) "
h

“+vp <ﬁ (eh' +0+ Zh”EB‘,h/\{h} th//h' — Zh"EBh/ th/h”)hleg\ .
h
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Then,

Up,;, Ih,ﬁ (eh/ + thh’ + Z}L”GBH;L/\{h} ;h”h’ — Zh“EBh/ Fh/h”)h/elg >
" (70)
B xh,ﬁ (eh/ T thn + Zh”GBﬂh/\{h} Thi'h = Zh“elﬁm Fh/h”)} 'eB
3 h

b. (i‘\h, (%\hh/)h'EBh) € B2.

We want to show that if (fﬁ\h,tAh) = (i’\h, (?hh/)h’eBh , (i\hh’ = 0) h’eB\) € Bl1, then (i’\h, (?hh’)
B2. "

Indeed,

h’eBh) €

0> ﬁ(Zh,elgh thn + 2hreB) tAhh') —Pen =D (X pep, thn) — Den

IO ~ ~ ~ ~ \ ()
0=>pzp—p (Gh + 2 wes, tn 2 ep , thh = Y owes, thir — Zh/eg’\l thh/) =
= 5‘%\}7‘ - 5(6}7, + Zh/EBﬂh th'h - Zh/GBh thh/) (71)

Th > 0
0 < (i\hh')h’eb’h ) (/t\hh’ = O)h'EB;\L < kha

where (1) follows from said below. From (69), for any h' € B,\l, thi = 0. Moreover, from Definition
(59) and Lemma 83, we get >, .\t (following the same strategy using to show condition (66),
—h

using Assumption (57) and Lemma 83.
(70) and (71) contradict the definition of (Zp, (Tan')cp, ) as a maximum. m

Proposition 89 1. If (%,f,ﬁ) is an equilibrium, then for any h € H and any h' € B,\Z, we have
Zhh’ =0.
2. (5,?,17) is an equilibrium < (fi, (tNhh/)h'eBh ,;17) is a B-equilibrium.

Proof. 1.
It follows from Proposition 88.1.
2.
[=] It follows from Proposition 88.1 and 2.
[«<] It follows from Proposition 88.3. m

4.5 Some basic facts on set valued functions, convex analysis, topology
and measure theory

Definition 90 Given two topological spaces (X,Tx) and (Z,Tz), then
B={UxV:UeTx andV € T}
18 a basis for a topology on X XY, called the box or product topology Tx «z -

Remark 91 Therefore if (x,2) € S € Txxz, then there exist U, € Tx and V, € Tz such that
(,2) e U, xV, CS.

Proposition 92 Given a topological space (X, Tx) and sets B,Y, if
1. BCYCX,
2. B is Y-closed, and
then B is X -closed.

Proof. See page 7 in my handwritten notes “basic product-relative topologies.pdf’. m
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Remark 93 In the case analyzed in the paper, we have

B={zeRY, 1u(z)>a},

Y = R§+, X =RC,

Cl(B) C ]R$+.
Definition 94 Given a topological space (X,Tx) and x € X, the family of neighborhoods of = is
denoted and defined as follows.

Nxzo(@)={UCX:zecUandU € Tx}.

Definition 95 Given a set A C (X, 7x),the set of adherent points to A is denoted and defined as
follows.
Ad(x,7y) (A) = {x €X: foranyU € Nix 1) (x), UNA# @} .

Proposition 96

Ad(x,7y) (A) = Clix7y) (4) -
Proof. See Math 2 notes. The proof is presented there for metric space, but it does generalize. m
Proposition 97 The intersection of a finite number of open and dense sets is open and dense.

Proposition 98 The intersection of a finite (in fact countable) number of full measure sets has full
measure.

Proof. Let {4, :n € N} be a family of sets with full measure, i.e., such that for any n € N,
1 (AS) = 0. We want to show that N,enA, has full measure, i.e., u ((ﬁneNAn)C> = 0. Indeed,

I ((ﬂneNAn)C) =u (UnENA,C;) <D nen (A,C;) = 0, where the weak inequality follows from countable
subadditivity of measure. m

Proposition 99 (Corollary 2.5.9, page 64, in Webster (1984 )[33])If K is a conver subset of R"
such that Int (K') # @, then Cl(Int K) = Cl K.

Proposition 100 (Proposition 2.38, page 50 in Hu and Papageorgiou (1997) [18]) A set-valued func-
tion ¢ : X =Y is lower hemi-continuous if and only if Cl(p) is lower hemi-continuous.

Proposition 101 ([12], bottom page 23) If ¢ : X =Y is a set valued function which is closed graph
and if ¢ (X) is contained in a compact set, then @ is upper hemi-continuous.

Proposition 102 (Lemma 1, page 33, in Hildebrand (1974) [12]) If a set-valued function ¢ of a met-
ric space in R™ is non-empty valued, compact valued, convex valued, closed and lower hemi-continuous
Then ¢ is upper hemi-continuous.

4.6 Sets-valued functions defined using function inequalities

Preliminary definitions and results taken from Villanacci (2022).

Definition 103 Given (an wutility) function f: X — R, we say that f is
Locally NonSatiated, or LNS, if Yo € X and Ve >0, 32’ € B (z,e) N X such that u(z') > u (z);
NonSatiated, or NS, if Yo € X I’ € X such that u (') > u ().

Proposition 104 If X is a convex metric space and u : X — R is continuous, then
u is semistrictly quasi-concave and Non-Satiated < u is quasi-concave and Locally NonSatiated.
Proof. See, for example, Villanacci (2022), Corollary 42, page 15. m

Definition 105 Let the following objects be given:
for any j € {1,...,m}, functions f; : R® — R, z — f; (x), and

the function f:RC — R™, x+— (f; (x));=, , and

the sets B = {z € RY : f (z) > 0} andé:{meRC:f(a:)>>0}.

Proposition 106 If B # & and for any j € {1,...m}, either
f; is continuous, NonSatiated and semistrictly quasi-concave, or
f; is continuous, Locally NonSatiated and quasi-concave,®

8Keep in mind that from Proposition 104, assuming any of the two lists of conditions implies the other list.
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then
1. B=1Int(B), and
2. B=Cl (E).

Proof. For any j € {1,...,m}, define B; := {x eRY: fj () > 0} and Ej = {ﬂc eRY: fj(z) > 0};
observe that B = N, B; and B = N, B;.
1.

First of all observe that if f; is is semistrictly quasi-concave, continuous and nonsatiated, then

@ +# B; = jnt (B;). (72)

The above result is relatively well-known and obvious - see for example Lemma 11 page 7 in Border
(2017) or Proposition 38 in Villanacci 2022. Therefore,

B=nm, B Yo it (B;) 2 Int (N7, (B;)) = Int (B),
where (1) follows from (72), and

and (2) follows from Exercise 78, page 85, Lipschutz (1965) or see the file interior of intersection.pdf.
2

Since it is false that N7, Cl(B;) = Cl (N7, (B;)), we cannot use an approach similar to the above
one.
By assumption, B is closed and B C B; then Cl (B) C Cl(B) = B.

We are left with showing that B C C1 (E) We want to show that: © € B = Ve >0, B(z,e)NB #
&. Suppose otherwise, i.e.,
x € B,or f(z) >0
and
Je > 0 such that B(z,e) N B = &,

or
f(z)=0
and
Je > 0 such that B(z,¢) C BY,
or
forany j=1,...m, fj(z)>0
and
Je > 0 such that Yy € B (z,¢) we have ~(Vij=1,...,m, f;(y)>0),
or
forany j=1,...,m, fj(z)>0
and
Je > 0 such that Vy € B(z,¢), 3j* € {1,...,m} such that f;- (y) <0
Then,

Jr € BCRY, 3j* € {l,..,m}, 3e € Ry, such that
Vy € B(z,e) we have fj« () > 0> f;- (y).
Then z is a local maximum point for f;« which contradicts the fact that f;- is Locally Nonsatiated.

Proposition 107 Let a subset I1 of RP and a function f : II x RY — R™, x — (f; (77,1:));.”:1 be
gwen (with f; : II x RC — R). Let also the following set valued function be given.

B:T —— RS,
7o {z €RY: f (m,2) > 0}
E:H—>—>RC7
T {z €RY: f (m,2) >> 0} .
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Ifé is non-empty valued, f is continuous and for any j = 1,..m and for any ™ € I, either
fil{x) is NonSatiated and semistrictly quasi-concave, or

fil{xyis Locally NonSatiated and quasi-concave,

then B is non-empty valued convexr valued, closed graph and lower hemicontinuous.

If in addition either a. B is compact valued or b. Im B is contained in a compact set, then
B is upper hemicontinuous.

Proof.

1. B is non-empty valued. _

Since B C B by definition, and B # @&, by assumption, then the desired result follows.

2. B is convex valued.

Since for any j = 1,...m and for any 7w € II, f}|{x}is quasi-concave, then {x €ER™: fljiny (w) > 0}
is convex and then B (7) = N7, {z € R": fjj(x} (z) > 0} is convex as well.

3. B is closed graph.

We want to show that for and (7",2"), oy € (II x R®)™ such that for any n € N, z,, € B (7")
and such that (7", 2") — (7, z), then z € B ().

Since for any n € N, z,, € B (7™), we do have that for any n € N, f (7", 2"™) > 0. Taking limits of
both sides of that inequality and using the continuity of f, we do have f (z,7) > 0, i.e., z € B (w), as
desired.

4. B is lower hemicontinuous. B

First of all observe that from Proposition 100, it is enough to show that a. B is lower hemicontin-

uous, and b. B = Cl (E)
a

First proof.

Recall the definition of lower hemi-continuity for set valued functions: ¢ : X —— Y is lower
hemi-continuous at € X if ¢ (z) # @ and for any open set V in Y such that ¢ (z) NV # &, there
exists an open neighborhood U of x such that for every '’ € U, ¢ (') NV # 2.

B is not empty valued by assumption. Suppose our Claim is false. Then, taking the negation of
the main statement in the definition of lower hemi-continuity, we have

there exists m € II and an open set V in RS such that B (7) NV # @ and

~ 73
for any m € N there exists 7 € B (, =) such that B (™) NV = @. (73)

Since B (m)NV # @ | we can take x € B (m)NV. Observe that V is open by assumption and B (m)
is open because it is defined in terms of continuous functions and strict inequalities (here we are using
the very definition of B in terms of strict inequalities).Then B (7) NV is open as well. Therefore,

3 \* € (0,1) such that for any A € (A\*,1), we have Az € B (7)N V. (74)

From (73), we do have that for any m € N, 7™ € B (7r, %) and therefore 7™ — 7 and

77

f(@™ ax) = f (7, Ax) >>) 0

Then, for m large enough, (here we are using the very definition of B in terms of strict inequali-
ties,again),
3 A" € (0,1) such that for any A € (\*,1), Ax € B(7™). (75)

Then (74) and (75) contradict the fact that B (7™) NV = @, as stated in (73).

Second proof.

We now want to use a well known characterization of lower hemicontinuity®. Indeed, we want to
show that _

for any sequence (7"), o € II* such that 7" — 7 and any z € B (),

there exists a sequence (2"),, .y € (RC)OO such that Vn € N, (z"") € B (") and 2" — z.

9See Proposition 4, page 229 in Ok (2007) and Theorem ATII.2, page 197 in Hildebrand and Kirman (1976).
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Observe that
f@"x) — f(mz)>>0

where strict inequalities follows from the fact that z € B (r). Then, there exists N € N such that
for any n > N,
f(@" x)>>0.

Then, for any n > N, € B (n™) and taking ™ = z for any n > N (and arbitrary values of "
for n < N) completes the proof.

b.

First proof.

We go through three substeps:

i. for any m € II

- Assumption

Int (B(m) = B(r) # & (76)
ii. Cl(Int(B (7))) = CL(B (7)) ;
iii. desired result.
i.
It is the content of Proposition 106.
ii.
Since Int (B (7)) is nonempty from (76) and since B (7) is convex, we can apply Proposition 99,

to get the desired result.

iii.
Observe that B () is a closed set and B () is an open set. Then

(76) ~ ~
@ # Int(B () = B (r) = Int (B (ﬂ))7 (77)

and
cl (E (71)) @ O (B (r)) ™ 27 CU(B (r)) = B (n).

Second proof.
It is the content of Proposition 106, identifying f there with f{;) here.

Conclusion a. and b. follow from the four results contained in I. above and Proposition 102 and
101, respectively. m

4.7 Price normalization in the case of separable utility functions

The goal of this section is to support the statement that “price normalizations do matter” in a
relatively simple example.

Consider the case of an economy with only one good. Then, household 1’s maximization problem
is as follows. For given, 31, 08,,e1,e2 € Ry, and ty € [0, e3], and the price is expressed in units of
account.

max(z, ¢,)eRz U1 (171) + B1v1 (p (62 —to + tl)) s.t. p(—azl —t1+e+ tg) >0

t1 >0
t1 <e
X Z 0

It is natural to conjecture that solutions to the above problem and equilibria as well are affected by
price normalization. To be more precise, it is easy to conjecture that the set of equilibria allocations
does contain the image of open interval in R via a one-to-one function, i.e., the set of equilibria exhibits
a degree equal to one of real indeterminacy - see Villanacci and others (2002), page 343, for further
details.'?

10 A general equilibrium model exhibits real indeterminacy or allocation indeterminacy if the following condition holds.

There exists an open and full measure subset O of the set of economies such that if e € O, then the set of equilibrium
allocations associated with e contains the image of an open subset of R?% via a C! one-to-one function, with d > 0. d is
called the degree of real or allocation indeterminacy.
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Instead of presenting a heavy proof of that very reasonable result under some sort of general
assumptions, we present the desired result in a simple specification of the above model: the case
of a two household-one good-CARA economy for a specific choice of the exogenous variables, as
explained in detail in what follows. The utility function of household 1 is defined as follows: for any
B1,€e1,€e2,a,p € Ryt and 5 € [0, €3]

U7 - R+ X R+ — R, ($17t1) i —eiaml — 616*P(627t2+t1).

Then household 1’s maximization problem is as follows (with multipliers of the associated con-
straints)

mMaxX(z, t,)cR? —e %1 — ﬂlefp(ezitertl) s.t. —x1—t1+e+ta >0 A1
131 >0 71
er —t >0 01
x >0 Hq

Observe that the constraint set is compact and therefore a solution exists. The objective function
has the following Hessian matrix

2 _ —axy

—a“e 0
0 _61p26*p(62*t2+t1)

which negative semidefinite and therefore the objective function is strictly concave; the constraint
functions are affine; (xir+, t]ur) = (%, 64—1) satisfies each constraint with strict inequality. Therefore,
the solution to the maximization problem is unique and characterized by the associated Kuhn-Tucker

conditions. Therefore, we can present the following Definition of equilibrium.

Definition 108 ((x7,t1, A1, 75, 13), (@5, t2, A5, 75, 143)) is an equilibrium for the economy (81, Bo, €1, €2) €
R‘_‘H if it is a solution to the following system.

g‘%l = A1+ =0

= — M =6 =0

min{—xl—t1+el+t2,)\1} =0

min{tlaVI} =0
min{el—tl,él} =0
min{xlmu‘l} =0
P%zﬁ— A2 + fig =0
E—P(Clzzi)l-%—tz) — A2+ 7 — 02 =

min{—xzy —ta +ea +t1, A2} =

min {t2, v, } =0
min {eg — t2,02}

min {xa, ts} =0
ZhGH (mh — eh) =0

Conjecture. If 8; > 1 > 35, then 1 > 0, A1 > 0,4y = 0,41 > 0,7, = 0,61 = 0; x2 > 0, 2 =
0a/~£2 =0,t2 = 0772 > 0752 = 0.
Then, the system becomes

7 =N =0
ep(czlfh) - )\1 =0

=0
w7~ =0
eP(Elzftl) Aty =0
—T2 —|— €9 + tl = 0
Shen (@n—en) =0
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Then,

a —
cazy )\1 =0
ary — a
(& =N
axy = loga — log A\
x = loga;log)\l
Bip A =0

eplea+ty) =
epleat+t1) — B1p
A

1
ey 4+t = log(B8,p)—log A4

p
t = log(Bip)—loghr
1= » €2
xl—i—tl—el:()
_ 1 —log A
log a—log \1 4 og(B1p)—log M\ —ey—e; =0

a P
ploga — plog A1 + alog (8,p) — alog A\ —apr =0

__ plogatalog(8,p)—apr
log A1 = ip
Then,
T = loga _ ploga+talog(B8,p)—apr __
L= "a a(a+p) -
__ alogatploga—ploga—alog(B,p)tapr _ loga—log(B;p)+pr
- a(a+p) - a+p
t = log(B,p)—log A1 ey = log(81p) _ plogatalog(Byp)—apr _ ey =
p P p(a+p)
_ alog(Byp)t+plog(Byp)—ploga—alog(yp)tapr _ log(Byp)—logatar =~
= 9 = eg =
platp) atp
_ log(B,p)—logatae;+aez—aex—pes _ log(B,p)—loga+ae; —pes
- a+p - a+p
Sciword check: log(’Bm) _ plogatalog(B8,p)—aper—apes _ ey = log(f,p)—logataei—pez ;400

p(a+p) a+p

We are going to assume that
a=1, 61:2>%=62and61262:1.

Let’s check that x1 > 0.

loga — log (8,p) + pr o=t —log (Byp) +pr >0

r=2=p

[ (p) = —log(2p) +2p
frio)=2-3
f(z)=1

307
257
207
157

107

_—

o
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Then z; > 0 for any value of p > 0.

Let’s check that ¢; > 0.

log (81p) —loga + aey —pea =log (2p) +1—p
log(2p) +1—p=0
f(z):=1—x+In(2z) =0, Solution are = ~ 0.231960952986534...z ~ 2.67834699001666...

y

-1.257

-2.57

-3.757

Then ¢, > 0if p € (0.23 , 2.67).

Let’s check that ¢t; < 1.

Observe that ¢; < 1 iff = EPHI=P 1 iff In 2p)+1—p—1—p =1In2p — 2p < 0. Defined
1+p 1

f(p) =1In(2p) — 2p, we have [’ (p) = % — 2. Then the function has a global maximum in p = 5
since f (%) = —1, we do have f (p) < 0 for any p € Ry, as desired.

and

0

X

1.25 25 3.75 5

L 4 4 |

r \

-107

&

-157

-207

-257

-307

.25 0.375 0.5 0.625 0.75
' ' '
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Let’s check that x9 > 0.

Using Proposition 53, we can compute xo using market clearing:

_loga —log (Byp) +pr _ ar+pr—loga+log(Byp) —pr _ ar —loga +log (B1p)

Ty =T
a+p a-+p a+p

ar —loga +log (8,p) = 2 + log (2p)
2+ log (2p) = 0, Solution is: {[p =6.7668 x 1072] }

-107

-157

-207]

-257

-307

Then z; > 0 if p > 0.06.

Let’s check that v, > 0.

_ Bap _ Bap a 1 p 1 _ 1 —px z1—2
V2= Tt T A= TG tam = e b = —gpe P et
2y — loga—log(Bp)tpr _ —log(2p)+2p
1= a+p - 1+p
T — 9 = — log(2p)+2p—2—2p _ — log(2p)—2
1 I+p 1+p
1 plog(2p)—2p — log(2p)—2
fy2 = —§pe 1+p +e 1+p
y 17 y 0017
057 0.005T
0 0 + + + i
0 125 25 3.75 5 0.75 0.875 1 1.125 1.2
X
05T -0.005T
a7t -0.01

Then 74 > 0 for any value of p.
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Summarizing

if a=1, 51:2>%:52 and e; = e =1,
then for any p € (0.23 , 2.67) the following vector is an equilibrium:
— log(2p)+2p >0

xr, = 1
_ log(2p)+1—p
t1 = tp >0
71 =0
0, =0
py =0 1og(20)
_ 2+4log(2p
T2 =—p, >0
to =0
plog(Qp)—?p — log(2p)—2
Yo = —3zpe” o fe  I¥p >0
02 =0
py =10
. _ —log(2p)+2p
Then, since z; = %p),
y 15

0\/

057

L L L
+ + + + +
0.5 1 15 2 25

then there is indeterminacy of x; with respect to prices. !

4.8 Extension of continuous quasi-concave and concave functions

We want to analyze the problem of extending a quasi-concave or concave, continuous function. We

consider three cases.!?

4.8.1 The case of Lipschitz and concave functions

Let’s start the section with the definition and some properties of Lipschitz function.

Definition 109 A function f : S C R™ — R" is said to be L-Lipschitz (continuous) on S or to
satisfy a Lipschitz condition on S if

3L € Ry, such that Va' 2? €S, | f (z') - f (1:2)H <L- Hxl - :102H (78)

Remark 110 A continuous function f : [0,1] — R is not necessarily Lipschitz, the standard counter-
example being f (x) = \/z. Below we present some sufficient conditions for a function to be Lipschitz.

Proposition 111 Let an open, convex set S in R™and a function f : S — R™ be given. If f is
differentiable and 3y > 0 such that Ve € AC S, ||Df (x)|| <=, then f is Lipschitz on A.

11n the version of the paper ge-prosocial-2023-08-14-existence-with-wrong sections.tex
we provide another, less convincing, definition of “normalizations do matter” and we prove that it is the case.
12The present section could not be written without Carlo De Bernardi’s help.
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Proof. Take x1,z2 € A and without loss of generality take x; # x2. Denote by [z1, z2] the segment
from z1 to zo. From the Multivariate Mean Value Theorem, for any a € R™, there exists ¢ € [z1, 2]
such that

a-[f(z2) = f(z2)] =a Df(c) (x2 —z1).
Then,
If (z2) — f (@)

=||Df (o) <,

as desired. m

Proposition 112 If A is an open subset of R™ and f : A — R is a C' function, then f is Lipschitz
on any non-empty compact subset C' of A.

Proof. We are going to use the following results.

a. Given f: (X,dx) — (Y,dy), if S is a compact subset of X and f is continuous, then f (5) is
a compact subset (of V).

b. Let an open set S in R™and a function f : § — R” be given. If f is differentiable and 3y > 0
such that Vo € S, ||Df ()| < 7, then f is Lipschitz;

Since f is C!, from result a. applied to the continuous function!'?

g:A—R, z—|Df ()

on the non-empty compact set C, we have that g (C) is a compact set and therefore bounded.
Then the desired result follows from result b. m
We can now present an important result about extension of convex, Lipschitz functions.

Proposition 113 Let A be a convex subset of a normed space X. If g : A — R is an L-Lipschitz
conver function then it admits an L-Lipschitz convex extension G to the whole X ; moreover, such an
extension G can be defined by the infimal-convolution formula

G(z) =infyealg(y) + Lz —yl], zeX.

For a proof of the above result, see McShane (1934). A more recent reference is Borwein and
Vanderwerff (2020), Exercise 8.3.4, page 399.

As usual, it simple to go from results on convex functions to those ones on concave functions:

If f: A — R is an L-Lipschitz concave function then ¢ = —f is an L-Lipschitz convex function.
Our formula

G(x) =infyealg(w) + Lllz — yl] = infyea[-f() + LIz —yl], ze€X.

gives an L-Lipschitz convex extension of g to the whole X. Now, consider the function F' := —G.
Then,

Fle) = ~Glo) = = inf [~f(y) + Lllz ~yl] = sup[/ () = Ll —ll], @€ X,

and F'is an L-Lipschitz concave extension of f to the whole X. We then have the following result.

Proposition 114 Let A be a convex subset of a normed space X. If f : A — R is an L-Lipschitz
concave function, then it admits an L-Lipschitz convex extension G to the whole X ; moreover, such
an extension F' can be defined by the supremal convolution formula

F(z)= sup [fw)—Llz—yl], =zeX.

We can apply the above result to our case identifying X, A, g with R, RE and u respectively. Let’s
present an example of utility function does satisfy the conditions assumed in the above Proposition.
Let the function v : R2 — R, v (z1,22) = log (z1 + 1) + log (z2 + 1) be given. A level curve of that
function is presented below.

BDFf(x):= (ddfix))zlzl is the gradient at = € A.
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Observe that V : (=1, 400)> — R, V (x1,22) = log (z1 + 1) + log (z2 + 1) is C™ and its Hessian
is negative definite and therefore V' and v are strictly concave. The fact that v is Lipschitz is shown
in Proposition 115 which follows from the well known result stated in Proposition 111.

Proposition 115 v:R2 — R, v (z1,22) = log (z1 + 1) + log (22 + 1) is Lipschitz.

Proof. Let ¢ > 0 be given; from Proposition 111, it suffices to show that ||[Dv (z)|| is bounded

above on R?2 _ := { r1,22) € R? 2y > —¢ and 9 > —5}. Indeed, Dv (x) = ljxl’ﬁ
z € R_., since 1~ is strictly decreasing, we have 1~ < 2. Since for any (a,b) € R?, ||(a,b)|| =
I(a,0) + (0,b)]| < ||(a,0)|| + ||(0,b)|| = |a| + |b|, then the desired result follows. m

. For any

4.9 A sufficient condition for Lipschitz continuity
Remark 116 For any z = (z;);_, € R", we have Y., |z;| < v/n-|z| and ||z|| < D1, |2i]. Indeed,

n (1)
Yo lzil = (L D (el s leal) = 11 s 1) (2] s )] < Ly, D 2] < V- 2]
i=1

where (1) follows from Cauchy-Schwarz inequality. The other inequality is a well known result.

Proposition 117 Let a function f : R — R, @ = (z;);_, — f(z) be given. Then, f is Lipschitz
continuous <

3L € Ry such that for any i € {1,..n}, x\; := (xj)j€{17‘_‘n}\{i} € Riﬁl,
f{x\,} R— R, z;— f (xi,x\i) 18 L-Lipschitz continuous.

Proof. We want to show that

( 3L’ € R4y such that for any z,y € R, |f (x) — f (y)| < Ly - |z — yl|)

<~

< 3L € Ry such that for any i € {1,...,n}, z\; € Riﬁl, i,y € Ry, >
|f (zis2\i) = f (yir )| < L+ | — wil '

(79)

(=]
Take L = L'.Then, by assumption,

for any i € {1,...,n}, z\; € ]Rffl, iy € Ry,

|f (@is2vi) = fF (yisws) | S L || (w6, 200) = (wis @) || = L - [[(@5 — 93, Opn—) || = L'+ |2 — ] -
[<]

We show the desired result by (the complete version) of the principle of mathematical induction:

Let P be a proposition defined on N such that (i) P(1) is true, and (ii) P(k) is true for any k €
{1,...,n =1} = P(n) is true. Then, P is true for any n € N.
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To get a better understanding of the main idea of the proof, let’s prove the desired result for n = 2.
Take L' = L - /2. Then for any (x1,22), (y1,y2) € R?,

1 @122) — £ (92| < 1 (@1 22) — F a2 + 1f @oz2) — £ (go)] S Lo fay — ] + L+ [e2 — g =

(1)
=L-(lz1 —w|+|za—92|) < L-V2-|(x1 —y1, 22 — )| =L- V2 ||z -y,

where (1) follows from Remark 116.

Now we are going to assume that (79) holds true for k € {1,...,n — 1} and we show it holds for n.
Take L' = Lv/2n. For any x,y € R},

|f($1,...,l‘n) 7f(y177yn)‘ S

S |f (xla '~~7In71;xn) - f (xla ~-~7$n71ayn)| + |f (xla '~~7‘T’nflayn) - f (yla "~7yn715yn)| )
or
Define g;,,, : R — R, z, = f (sc\n, :rn); by assumption of the induction argument for k = 1, we have
that for any x,,y, € R, |g$\n (Tn) = Gav,, (yn)| < L - |2y — yu| and by definitionn of 9a\,,» We have
‘f (I’\n,ﬂin) —f (ir\nyyn)’ <L-: |xn - yn' . (81)
Define h,,, : R — R, T\ — f (:x\n,yn); by assumption of the induction argument for k =

n—1, we have that for any z\,, )\, € R, |hy" (m\n) — hy,, (y\n)| <L {x\n - y\n| and by definitionn
of hy, , we have

Then, from (80),(81) and (82), we get

1) (2)
= (L, L) - (Jon =yl s [2in = pn]) < ML D[ (2 = il s 2vn = an]) ]| <

®) . @
< LV2(Jzn =yl + |20 —9al) < LV2(ZL |2 —wil) < Lv2n(lz = y])) .
where (1) follows from Cauchy-Schwarz inequality, (2), (3) and (4) from Remark 116. m

Proposition 118 Let a concave, continuous and increasing function f : Ry — R, z — f(z) be
given. If f'(07) is finite, then f is f' (0%) - Lipschitz continuous.

Proof. Using Proposition 135, it is easy to show that for any s € R, the function
t —
vy R\ (s} — R, £ [T
—5
is decreasing. Then from basic analysis, see for example Lebl (2023), page 149, lim; o+ 9 (¢)

exists (finite or infinite) and indeed

lim ¢, (t) = lim FO-JO _ f(0%) eR.

t—s0+ t—s0+ t

Observe that for any u > 0, f/ (07) > f’ (u™); indeed, from the proof of Lemma 134 (which applies
also if ¢ is defined on a closed interval), for A > 0 and sufficiently small 0 < h < u — h < u and

() = F(0) _ )= fu=h)
h - h
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and taking limits (which do exist), we get

P00 = g LW TO T feh)

h—s0+ h ~ h—0+ h

J(u7);

indeed, f' (u™) := lim, - L@=/w) h=uzz>0 eI iy,

pra— hmh_,o
Then, for any =,y > 0 with = < y, we have

fuw)—f(u—h)
+ h .

f/ (O+) > f’ (33*) LcmmZa 137 f (y; : i: ($) f incgasing f (y; : i: (.T) 7
fy) = f (@) < (0+) ) (83)

y—x
We are left with showing that for any y > 0, f (y) — f(0) > f’ (07) - y; indeed, from (83)

foranyneN,f(y)f@) > 1 (0%) (y;)

Taking limits for n — +o00 and using the assumption of continuity of f, we get the desired result.
]

Corollary 119 Let a function f : RY — R, x = (z;);_; — [ (x) be given. If

[ is continuous, concave, increasing and 3L € Ry | such that for any i € {1,..n}, z\; € Riﬁl, f~/{z\,} (0M)y <L
84

(

then f is Lipschitz continuous.

Proof. From (84) and Proposition 118, we do have that 3L € R, such that for any i € {1,..n}, z\; €
Riﬁl, f{z\} is L-Lipschitz continuous. Then from Proposition 117, the desired result follows.

We are of course also using the fact that concavity, monotniciy and continuity are preserved by
the functions f{T\} ]

4.9.1 The case of uniformly convex sets and uniformly continuous quasi-concave func-
tions

The following statement is false - see De Bernardi and Vesely (2023), page 7.

Conjecture 120 Let the following objects be given.

1. A convex set S C R™;

2. a (Lipschitz) continuous, quasi-convex function f: S — R.

Then there exists a function F': R" — R such that 1. F' is an extension of f (i.e., Fig = f), 2.
F is quasi-convex and 3. F is continuous.

Let’s present some intuition about the above statement, following Example 2.10, page 7 in De
Bernardi and Vesely (2023). Consider the function f : A — R, where A := {(x,y) ERZ:y> —1},
and f is defined in terms of the following lower contour sets: for any n € N are

(f<nhi= ) €4 J@) <np= Dy = An{ @) ety - T

n2
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It is possible to show that f is quasi-convex, Lipschitz and such that for any extension F' of f,
we have {F <n} C { (z,y) ER* 1y > Lz — "2+1} := K,,.Then take (zo,y0) = (0, —1 —&). Then,

n?2

there exists ng € N such that for any n > ng, (zo,y0) ¢ K, and therefore (zo,y0) ¢ {F <n}.
Summarizing, for any n > ng, F (2o, yo) > n, which contradicts the fact the codomain of F is R.

We are going to use the following result (again, see De Bernardi and Vesely (2023) ).

(on what follows, see also the file most complete account of extension 2023-11-22.tex)

Proposition 121 Let the following objects be given.
1. A normed space (X, |||);
2. a bounded, (open or) closed and uniformly convex subset S of X ;
8. a uniformly continuous, quasi-convex function f:S — R.
Then f can be extended to a uniformly continuous, quasi-convex function on X.

Before proceeding to state a useful corollary of the above Proposition, let’s define and discuss the
concept of uniformly convex set.

Definition 122 S C (X, ||||) is uniformly convex if
Ve € (0,diam (S)), 30 > 0 such that (z,y € F(S), |z -yl >¢) = dy (x;_y,f(S)) > 4.

Remark 123 R2++ and Ri are not uniformly convex: take € = 1; then for any § > 0 and any
z,y € F(S), we do have ¥ € F (S) and therefore dy (252, F (S)) = 0 < 6. Indeed the following
results hold.

1. If S CR"” is a bounded, closed with nonempty interior set then

S is strictly convex < S is uniformly convez.

2. If S CR"™ is not bounded, it is false that “S is strictly convex = S is uniformly convex.”
3. If S C R"™ is uniformly convex, then S is bounded.

For the first result, which is the most important one,
see the handwritten file by Carlo: uniformly and strictly convedz-debernardi.pdf

On the basis of the above discussion, we have the following result.

Proposition 124 Let the following objects be given.
1. a bounded, R™—closed with nonempty interior and strictly convex subset A of R™;
2. a (uniformly) continuous'*, quasi-convex function f : A — R.
Then f can be extended to a uniformly continuous, quasi-convexr function on R™.

14 A bounded, R™-closed set is a compact set.
A continuous function on a compact set is uniformly continuous.
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Proof. It follows from Proposition 121 and Remark 123.1. m
We still need a further result (see Proposition 125 below), whose proof requires Lemma 127 and
related Proposition 128.

Proposition 125 Let the following objects be given.
1. a bounded, R€ —closed and with nonempty interior subset A of Rir;
2. a continuous, quasi-concave function f : R$+ — R.
Then fia can be extended to a uniformly continuous, quasi-concave function on RC.

We now introduce the needed results to show the above Proposition
Definition 126 A body in RS is a convex, compact with nonempty interior set.
Lemma 127 Let Q be a closed hyperrectangle in RC, i.e., a set of the form

Q =la1,b1] X ... X [ac,bc],

where a; < b;, whenever 1 <i < C. Then there exists a sequence (By),cy of strictly convex bodies in
RY such that
(i) for any k € N, By, C Q;

(ii) UkeN By = int(Q);
(ii1) for any k € N, By, C int(Bj41).-

Proof. The proof goes through six main steps : each of them is proved in detail in the Appendix.
By considering a translation, if necessary, we can assume without any loss of generality that

E—o)
Hence, @ is the closed unit ball of a norm || - || on

RC. Let us denote by || - ||2 the euclidean norm on RY and, for k € N, define a norm | - ||, on RY
by

1
lzlle = llzll + Lllzll2, @ € RS
By the strict convexity of || - ||2,
it is easy to see that || - ||x is a strictly convex norm (see also [9, Fact 7.7]). For k € N, let us
denote by By, the closed unit ball with respect to || - ||&

(hich is clearly a strictly convex body). By definition, it is clear that
6. | conditions (i)-(iii) are satisfied. m

Proposition 128 For each compact set S C R%r, there exists a strictly conver body S’ such that
Scs cRY,.

Proof. For n € N, define Q,, = [1,n]¢ = [1,n] x... x [%,n} Then {Q,} is a sequence of hyperrec-

tangles in R$+ such that
1. foranyn € N, Q,, C R$+;

2. Upen@n = R$+;

3. forany n € N, @, C Int(Qpnt1)-

Since S is compact, there exists ng € N such that S C Q,,,. By Lemma 127, there exists a sequence
{By} of strictly convex bodies in R® such that

(i) for any k € N, By, C Qno+1;

(ii) UkeN By = Int(Qno+1)§
(iii) for any k € N, By, C Int(Bj1).
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We now claim that there exists ko € N such that By, 2 Qn, C By,, as explained below.
Observe from 3.,

for any no € N, @Qpny C Int (Qng+1) (85)
from (ii) above
U Br = Int(Qny11), (86)
keN
from (iii)
for any k € N, By, C Int(Bgt+1) C Bpy1. (87)
Then,
(85) 86 (87)
Qo € It (Ques1) = | B € | Int(Bisn)-

keN keN
Since @, is compact, then there exists A’ C N such that #N = n € N such that

(87) (87)
Qno C U Int(B;4+1) C U Biyo C By,
ieN keN

where ko := max{i +2:i € N}.
Define S” = By, and observe that S’ is a compact strictly convex body, from the previous propo-
sition, such that
S C Qno - S = Bko c Qn0+1 - R$+

The proof is concluded. =

We can now present the desired result.
Proof. of Proposition 125. Given A satisfying Assumptions 1, from Proposition 128, there exists
a compact strictly convex with nonempty interior set S’ such that A C S’ C ]Rg 4. Then, from
Proposition 124, the desired result follows. m

4.9.2 The case of a function of a real variable

As a Corollary of Proposition 114, we have the following result.

Proposition 129 Let I be an interval in R. If g : I — R is an L-Lipschitz concave function, then
it admits an L-Lipschitz concave extension G to the whole R, such an extension G : R — R can be
defined by the supremal-convolution formula

G(z) = sup [9(y) — Lllz — yll]. (88)

Observe that the above formula coincides with some simple intuition on how to extend a Lipschitz
concave function from R to R, as explained in details below. Consider the function v : Ry — R|
x + v (x) which is continuous, concave and increasing!® and such that the derivative in zero exists
and it finite. Then, v is clearly v’ (0)-Lipschitz and the “obvious” concave, LIpschitz extension is

v(0)+v (0)-z if <0
V:R—R z—
v (z) it >0

15 A similar argument follows if v is decrasing.
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Then we want to check that the above intuitive extension coincides with the supremal-convolution
formula (88), i.e.,
v(0)4+v (0)-z if <0
sup {v(y) —v'(0) - [z —y[} =
YyER v () if >0
Observe that since v is v’ (0)-Lipschitz, by definition,
for any 2,y € Ry, [ (y) — v (2)] < v/ (0) - o — yl. (89)

Recall that s = sup A iff a. for any a € A, s > a, and b. for any € > 0, Jda € A such that s — e < a.
Assume that z < 0. We want to show that for any x < 0, v (0)+v' (0)-z = sup,cp, {v(y) —v'(0) - |2 — yl}.
a. we want to show that for any y € Ry, v (0) + ' (0) -z > v(y) — ' (0) - |z — y|.

v (0) + 0/ (0) -z > o(y) — v/ (0) - |z — y| =" 0(y) — v/ (0) - (y — z) = v(y) =/ (0) -y + 0/ (0) -z iff

v(0) > v(y) —v' (0) -y iff

v (y) —v(0) <0 (0)-y.

If y = 0, then the inequality holds in the form 0 < 0; if ¥ > 0, then, since v is increasing by
assumption, and v is Lipschitz, using (89) we do have v (y) — v (0) < v’ (0) - y, as desired.

b. we want to show that for any ¢ > 0 there exists y € Ry such that v(0) + v/ (0) -z — ¢ <
v(y) — 0" (0) - | — y|. Taking y = 0, we have v (0) + v’ (0) -z —e < v(0) + v’ (0) -  or —e < 0.

Assume that z > 0. We want to show that for any z > 0, v (2) = sup,cg, {v(y) —v'(0) - [z —y[}.

a. we want to show that for any y € Ry, v (z) > v(y) — v’ (0) - |z — y].

v(z) = o(y) =o' (0) - |z —y iff
v(z) —v(y) =2 =" (0) - [z —y].
Since v is v’ (0)-Lipschitz, then |v (z) — v(y)| < v’ (0) - | — y| and then, by definition of absolute
value, v (x) — v(y) > —v’ (0) - |x — yl, as desired.
b. we want to show that for any ¢ > 0 there exists y € Ry such that v (z)—e < v(y)—v’ (0)-|z — y|.
Taking y = x, we have v (z) —e < v(z) — v’ (0) - | — x| or —e < 0.

Conjecture 130 Given the function v : (0,1) - R, v (z) = —z (z + 1),
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4.9.3 Extending the real function of real variable v

In this section we present some result on extending the function v : (0,1) — R, first in the case in
which we assume v is differentiable and then in the case in which v is only continuous. Of course,
the second result is stronger than the first one, but 1. the first result is what we really need in future
analysis and 2. the first result is easier and then the probability of mistakes is lower.

The differentiable case

Proposition 131 Ifv: (0,1) — R, t — v (t) is a differentiable, concave, increasing function such
that
Je > 0 and k > 0 such that ¥t € (0,¢), V' (t) < k,

then there exists a differentiable, concave, increasing function V : R — R, t — V (t) which is an
extension of v.
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Remark 132 Using Theorem 502 and Corollary 507 in my notes on “Measure, abstract measure and
probability”, we should be able to eliminate the word differentiable (indeed, concave on an open set
implies continuous) and substitute the additional assumption with something like the following one

Je > 0 and k € Ry such that ¥t € (0,¢), v/ (t7) < k.

Then the way to change the proof below is as follows:

1. substitute v’ (t) with v' () and use the result in Theorem 502 which says that, since v is
concave, then v' (t7) < wv (7).

2. Instead of using the characterization of concave functions in terms of derivative, use the “sup-
porting line result”, i.e., Corollary 506 that says you can substitute v’ (t) with p; € [v' (¢T),v (t7)].

Proof. of Proposition 131.
We need to go through several steps.
Step 1. v’ is bounded.
By assumption,

Vit e (0, %) ' (t) < k. (90)

From Calculus 1 - see for example Marcellini and Sbordone, Calcolo 1, page ... or Salsa and
Squellati page 264 - we have that, since v is concave and differentiable, then V¢ € (%, 1), v s
decreasing and

€ , (€
— < — .
Vt€(4,1),v(t)7v(4)<k (91)
Then, from (90) and (91), we do have

Vt € (0,%) u (Z,l) —(0,1), v (t) < k.

By assumption, v is increasing and therefore v’ is bounded below by 0.
Step 2. v is bounded below.
Suppose otherwise, i.e.,

not (3In € N such that Vz € (0,1), f(z) > —n) ,

ie. Yn € N 3z, € (0,1) such that f(z,) < —n. Since v is increasing, then for any = € (0, z,),
f(z) < f(xn) < —n. We can then construct a sequence in (0,1) as follows.

Y1 =21

y2 = min {z2, 3y1, 5 } = fy2) <2, y2<uy, Y2 < 3 y2 >0

Yo =min{zn, 5Un-1,2} = fUn) <=1 Yn<Yn-1, Un<y Yo >0

Now applying the mean value theorem for differentiable function to v on [y,, y1] for any n € N\ {1},

we that
Vn € N, 3y1n € (Yn, y1) such that M = f (y1n) -
Y1 — Yn
Then, since, by construction of the above sequence, lim, 1o f (yn) = —00 and limy,— 4 o0 yn, = 0,
we have
lim M = +00. (92)

n—+400 Y1 — Yn

Since for any n € N, v/ (y1,) < k, then'¢ limsup,, ., f’ (y1») < k, contradicting (92).
Step 3. v is bounded above.

16Gee file limsup of a bdd fen.doc for details.
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Since v is concave, increasing and differentiable on (0, 1), then for any ¢ € (0,1)

(>0)
1 1 1 Step 1, t<1 1 1
<v(= = _ = < - =
as desired.

Step 4. There exists vo € R such that lim; g+ v () = vo.

Since v is increasing and bounded, then (v (ﬁ)) is a decreasing bounded below sequence!”.
neN

Then,
. 1 . 1
. hnioov<n+1> —mf{v <n—|—1> .nEN} = yp. (93)

Then, from (93) and the definition of inf, we have

1
Vn € N, v (m) > Vo, (94)

from (93) and the definition of limit, we have

1 1
Ve > 0 dN. € Nsuch that if n > N, v | —— | —vg == | v — 9| < e. (95)
n+1 n+1
We want to show that lim,__ o+ v (t) = vp, i.e.,
Ve >0 3d. > 0 such that if z € (0,8;), then |v(z) — vo| < €.
Take 6. = ﬁ; since v is increasing, then
vre (0, (@) < ! (96)
x —_— v(z)<wv .
"N.+1)’ - N.+1
Moreover, for any x € (0, 1), there exists n, € N such that ﬁ < x. Since v is increasing, then
> 1 (9>4) 97
v(x) >w P > . (97)
Then,
97 (96) 1 94 1 (95) with n=N.
v (@) = vol E v (@) — v <U<Ng+1> 0()U(N5+1>UO < g,

as desired.
Step 5. There exists v1 € R such that lim, ;- v (¢) = v;.
The proof is quite similar to the proof of Step 4.

1
n+1

Since v is increasing and bounded above, then (v (1 — )) is an increasing bounded above
neN

sequence'®. Then,

1 1
I 1-—— ) = 1-— = €R.
. 112wv< n—|—1> sup{v( n—|—1> nEN} v € (98)

Then, from (127) and the definition of sup, we have

1
VneN,v(l— 1) < vy (99)

n+

n+1
18We have to take v

17We have to take v ( — ) because v is defined on (0,1).
1
-3

1) because v is defined on (0, 1).
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from (98) and the definition of limit, we have

1 ?7?
Ve > 0 N, € N such that if n > N, v1 —v <> (Z9)

n+1

We want to show that lim;__,;- v (t) = vy, i.e.,

Ve >0 3. > 0 such that if x € (1 —d,,1), then |v(x) —v1] <e.

Take §. = ﬁ; since v is increasing, then

vee (0, (@) >0 (1-—2 d —v(2)<—v(1-— (101)

f —_— v(z)>v|1l-— and — v (z —v(1-— .
"N.+1)’ = N.+1 - N.+1
Moreover, for any = € (0, 1), there exists n, € N such that 1 — n,1+1 > x. Since v is increasing,
then
@ <vf1-— )% (102)
v(z) <o i) S V1.
Then,
(101) 1 1 (100) with n=N,

|U($)7’(}1|(122)1)1*’U(1‘) < U1U<1N8+1> (9:9) 'U<N€+1)v1 g,
as desired.

Step 6. The function v defined below is continuous.
Define v: [0,1] — R,

Vo if t=0
() =4 v(t) if te(0,1)
V1 if t=1

It follows from Steps 4 and 5.

Step 7. There exists v, € R such that lim; g+ v’ () = v{.

Observe that v:(0,1) — R is bounded (from Step 1) and decreasing (by assumption). We can
then mimic the argument presented in Steps 4 or 5 - observe that there we did NOT use the concavity
of v.

Since v’ is decreasing and bounded, then (v’ (nil)) is an increasing bounded above se-
neN

quence'®. Then,

1 1
li ! = "——): = vj. 1
dim v <n+1> sup{v <n+1> nEN} v (103)
Then, from (103) and the definition of sup, we have
Vn eN, v b < v (104)
’ n+1) ="

from (103) and the definition of limit, we have

1
Ve > 0 N, € N such that if n > N, vy — o' <) o _
n+1

vé—v’( ! >‘<5. (105)

n+1
We want to show that lim; g+ v’ (t) = vy, i.e.,
Ve >0 3. > 0 such that if z € (0,8;), then |v' (z) — vg] < e.

Take 5, = ﬁ; since v’ is decreasing, then

1 , , 1
_— < .
V$€<O’NE+1>’ v(m)_v(NE+1> (106)

19We have to take v (%4—1) because v is defined on (0, 1).
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Moreover, for any x € (0, 1), there exists n, € N such that < z. Since v’ is decreasing, then

o+l
v (x) < (nxl—i- 1> (1%4) Vg (107)
Then,
[v' (z) — v{| (107) vy — v (x) (1%6) vy — v <N51+ 1> (104) v — v <N51+ 1> (10%) Wiéh ne e g,
as desired.

Step 8. There exists v} € R such that lim,__,;- v’ (t) = v].
It is quite similar to the proof of Step 4.

Since v’ is decreasing and bounded below, then (v/ (1 — ﬁ)) is a decreasing bounded below
neN

sequence®’. Then,

1 1
lim o (1- =inf{v' (11— ——):neN; :=v] eR. (108)
n—+oo n+1 n+1

Then, from (108) and the definition of inf, we have

1
/ 1 > - 1
VneN v < - 1> V13 (109)

from (108) and the definition of limit, we have

1 1
Ve > 0 3N, € N such that if n > N, v/ <1 — +1> -] (104) v <1 - +1> —vi| <e. (110)
n n
We want to show that lim, ;- v’ () = v}, i.e,,
Ve >0 30. > 0 such that if z € (1 — d., 1), then |0/ () —v}| <e.
Take 6, = ﬁ; since v’ is decreasing, then
vre (01— 1 @y <o (1- 1 (111)
T , Noi1) v (z) <w N1
Moreover, for any = € (0, 1), there exists n, € N such that 1 — nml+1 > x. Since v’ is decreasing,
then
1 (109)
v (x) >0 <1n +1> > ol (112)
xT
Then,
(111) 1 (109) 1 (110) with n=N.
o' (@) | " (@)= < v'(l— )—v’ = | (1- — v g,
v @) ~f] o @) o < ) )
as desired.

Step 9. v is differentiable in 0 and ¥’ (0) = vy,

From Step 6, we have that i)\l [0,3] is continuous; by assumption, ﬁ‘ [0.1] is differentiable on (0, %)
From Step 7, lim;__o+ v’ (t) = v{. Then, from, for example Theorem 103.5, page 408 in Marcellini
and Sbordone (), we get the desired result. Keep also in mind the definition of left and right derivative
presented on page 351 in Marcellini and Sbordone ().

Step 10. 7 is differentiable in 1 and v’ (1) = vj.

Same proof as in Step 9.

Step 11. The function V' defined below is the desired extension.

20We have to take v (1 - r%i—l) because v is defined on (0,1).
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V:R— R,
v(0)+2' (0)-t if t<0
VE)=<¢ 9(t) if ¢te]0,1]
v(l)+v (1)t if t>1.
a. V is differentiable.
V is continuous from the Pasting Lemma. Below, we state a version of that theorem (see Munkres
(1975)) and we apply it to our case.
(The pasting lemma) Let X and Y be topological spaces. Let X = AU B, where A and B are
closedin X and f: A—Y, g: B — Y be continuous functions. If Vz € AN B, f(z) = g (z), then “f
and g combine to give a continuous function”, i.e., h: X — Y,

f(x) if z€A
h(z) =
g(z) if z€B

is a continuous function.
We can apply the above lemma identifying

X with R
A with  (=00,0] U[1,400)
B with [0, 1]

. v(0)+7(0)-¢ if t<0
! with {v(1)+6’(1)~t it t>1.
g with v

ANB with {0,1}

Then, the desired result follows again from Theorem 103.5, page 408 in Marcellini and Sbordone
() and

the facts that lim,__o- (v (0) + 2’ (0) - ) =2’ (0) and Step 9.

Similar proof applies to show differentiability in 1.

b. V is increasing.

Observe that
v(0)>0 if t<0

Vit)y=<¢ v (@) >0 if te€]0,1]
7(1)>0 if t>1.

c. V is concave.

We are going to use the following result - see, for example, Theorem 3.3.a, page 290 in Pagani
and Salsa, or Marcellini and Sbordone, page 387: given a differentiable function defined on an open
interval, we have that f’ decreasing < f concave.

Indeed, V’is decreasing from Lemma 133 below. Let’s check the assumptions. Identify ¢ and u
there with V' and ¥'. Indeed, ¥ is decreasing on [0, 1] as an application of the Lagrange theorem; V'is
continuous from a. above. m

Lemma 133 If the function u: [0,1] — R is decreasing and the function p : R — R
w(0) i t<0
e(t)=9 u(t) if tel0,1]
w(l) o t>1

is continuous (and then bounded), then ¢ is decreasing.
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Proof. We have to show that for any g, t; € R such that tg < t1, we have ¢ (tg) > ¢ (t1). The case to
be analyzed more carefully is the case in which ¢y < 0 and ¢; € (0,1). Suppose our claim is false and
¢ (to) < ¢ (t1), i-e., u(0) < u(t1). Choose n; € N such that n% € (0,t1). Then, since ¢ is bounded,

then (u (l

n))n>n1,n cn 18 an increasing sequence converging to its sup. Then,

Vi > i, u<111) > u(ty) > u(0), (113)

. 1 1
nlr&@u(ﬂ) :sup{u <n> :nan,nEN} >u(t), (114)

and, since ¢ is continuous
1
lim w <) =u(0). (115)
Then,
(114) 1 (113)
u(t) < lim u< ) (liS)u(O) < u(ty),

which is the desired contradiction. m

The continuous case We first of all present some important results about concave functions we are
going to use in our analysis. The proof all results stated below are presented in my notes on measure
theory.

Proposition 134 Let ¢ be a concave function on (a,b) and
a<s<t<u<b. (116)
Then

p(t) —o(s) o o) —¢(s)  pu) —¢(t)
t—s - u—S - u—t

Proposition 135 The function

a2\ {(s\t)eR?: s’ =t'} = R, ¢;(57t)HM

t—s

is componentwise increasing, i.e., Vs,t such that s # t and s,t € [a,b], both Y5y and Py are
mcreasing.

Theorem 136 Let ¢ : (a,b) — R be a concave function. Then
1. ¥Vt € (a,b), the following limits exist and are finite:

by g P R) — () ey e Pt h) —o(t)
P(E7) = lim, h witr) = lim h

2. ¢ is continuous on (a,b).
3.Vt € (a,b), ¢'(t7) = &' (tF).

4. ¢ is defined everywhere in (a,b) except at most a countable set of points. Moreover ¢ is
decreasing.

Lemma 137 If ¢ : (a,b) — R is a concave function and a < u < v < b, then

o) 2 (o) > B oy s ).

Corollary 138 Let the concave function ¢ : [a,b] — R be given, then
1. ¢ is Lipschitz, and 2. absolutely continuous on any interval [c,d] C (a,b).
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Definition 139 Given the convex function ¢ : (a,b) — R and t € (a,b), then the line with equation
y=¢ @) +m(t-s)
is called a supporting line at t for the graph of ¢ if

VSG(a,b), cp(s)ggo(t)—}—m(t—s).

y 25T

1257

<1257

Remark 140 The following result says that if ¢ is convez, then its graph admits a supporting line at
any point of its domain.

Corollary 141 Given a concave function ¢ : (a,b) — R and s,t € (a,b) such that s # t, then for any
pe €@ (tT, ¢ (t7))] we have
@(s) < o(t) +pi(s —t).

Proposition 142 Ifv: (0,1) — R, t — v (t) is (continuous,) increasing, concave and satisfies the

condition
Je > 0 and k > 0 such that Vt € (0,¢), v' (t7) < k, (117)

then there exists a continuous, concave, increasing function V : R — R, t — V (t) which is an
extension of v.

Proof. We need to go through several steps.
Step 0. v is continuous.
We present three supporting statements.
1. Exercise 23, page 101, in Rudin (1976) : Any convex function f : (a,b) — R is continuous.
2. Theorem 5 in de Barra (1981), page 112.

3. a complete proof is obtained as follows. a. Ui[2.2] is concave and then, from Theorem 136,
'3

ol

Ui(1,2) is continuous.

b. (see Lemma 2.13, page 16, in Jahn (2007) and my handwritten notes on it). If S C (X, ||||) is
open and convex, f : S — R is concave and there exists T € S such that f is continuous at 7, then
f is continuous (on 5).

Then the desired result follows from a. and b.

Step 1. (Left and right derivatives are bounded) For any ¢ € (a,b), v’ (), (¢7) € [0, k].

Boundedness above.

Thm. 136

ve (0.2),  w() L () A (118)
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Thm. 136 Lemma 137 -
Vit € (Z, 1) () < V() < (6 ) <k. (119)
Then, from (118) and (119), we do have

Vit € (0,%) U (2,1) —(0,1), o' (t) < k.

Boundedness below by 0.
Suppose otherwise, i.e., there exists ¢ € (0,1) such that either v’ (t7) < 0 or v/ (£7) < 0. Then, in
both cases we get a contradiction, as verified below.

050 (¢) = lim CEEM U0 S
h—01 h

where the weak inequality follows from the fact that h > 0 and, since v is increasing, we have

v (t+ h) — v (t) > 0; similarly,

0> (t_) -— lim w >0,
h—0— h

where the weak inequality follows from the fact that h < 0 and, since v is increasing, we have
v(t+h)—v(t) <O0.

Step 2. v is bounded below.

Suppose otherwise, i.e.,

not (In € N such that V¢t € (0,1), v (t) > —n) ,

ie. Yn € N 3t, € (0,1) such that v(t,) < —n. Since v is increasing, then for any ¢ € (0,t,),
v (t) <wv(t,) < —n. We can then construct a sequence in (0, 1) as follows.

y1="1t

IN
Nl

1o = min {tQ, %yl, %} and then v (y2) < =2, y2 <y, Yo y2 >0

Yn = min {trn %yn—la %} and then v (yn) < -1, Yn <Yn-1, Yn < % Yn >0

Now, since y,, < y1, from Lemma 137, we have

_ v (Y1) — vy
o (m) > ) e ),
Y1 — Yn
and from Step 1,
VneN, k> (yo) > LW vl (120)
Y1 — Yn
Since, by construction of the above sequence, lim, 400 v (y,) = —00 and lim, 1o yn = 0, we
have
lim v(y) —v(yn) _ +00. (121)

n— -4o00 Y1 — Yn

(120) and (121) are the desired contradiction.
Step 3. v is bounded above.
Since v is concave and increasing, using Corollary 507, we have that for any ¢ € (0,1) and any

pye v (3).w (7)) clo.n,
v (t) SU(;) +%§) (t—i) Step%t<lv<;) —|—kz-%,
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as desired.

Step 4. There exists vo € R such that lim,__+ v () = vg.2!

Since v is increasing and bounded, then (v (ﬁ)) is a decreasing bounded below sequence??.

neN

Then,

1 1
li = inf — ) =g 122
ninloov<n+1> in {v (n—i—l) neN} Vg (122)

Then, from (122) and the definition of inf, we have

1
— | > vp; 12
VneN,v(n+1>_v0, (123)

from (122) and the definition of limit, we have

1 1
Ve >03N. € Nsuch that if n > N, v [ —— ) —wp 2 | v — | < e (124)
n+1 n+1
We want to show that lim;__g+ v (t) = vo, i.e.,
Ve >0 3. > 0 such that if ¢ € (0,d.), then |v(t) —vo| < e.
Take 6. = ﬁ; since v is increasing, then
vee (0,— ) < 1 (125)
—_— v v .
"N.+1)/’ — \N.+1

Moreover, for any ¢ € (0,1), there exists ns € N such that ﬁ < t. Since v is increasing, then

1 (123) 196
t) > > .
00z () (126)
Then,
(126) (125) 1 (123) 1 (124) with n=N.
t) — = t) — < — = S
[v (t) — vo v(t)—ve < w N1 Vg v N1 Vo g,
as desired.
Step 5. There exists v1 € R such that lim;,__,1- v (¢) = v;.
The proof is quite similar to the proof of Step 4.
Since v is increasing and bounded above, then (v (1 - ml-l)) is an increasing bounded above
neN
sequence?®. Then,
li 1 1 1 1 eN eR (127)
im -— ) = - = .
n—»Jroov n+1 Sup v n+1 n vl
Then, from (127) and the definition of sup, we have
Ve, v(1-——) < (128)
n , U nri) S v1;
from (127) and the definition of limit, we have
. 1 (27) 1
Ve >0 3dN. € Nsuch that if n > N,, v —v | —— | = | vy —v <e. (129)
n+1 n+1

21See also Theorem 4.5.1, page 200, in Zakon (2020).

22We have to take v %ﬂ) because v is defined on (0,1).

23We have to take v (1 — r%i—l) because v is defined on (0, 1).
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We want to show that lim;__,;- v (t) = vy, i.e.,

Ve >0 3. > 0 such that if ¢t € (1 —J.,1), then |v () —v1] <e.

Take 5. = ﬁ; since v is increasing, then
Vte 0 ! B >v(1 ! d (t) < 1 ! (130)
N.11) v(t) >wv N1 an v(t) < —v N1/
Moreover, for any ¢ € (0,1), there exists n; € N such that 1 — ﬁ > t. Since v is increasing, then
1 1 = 131
t) < — < .
R e e (131)
Then,
- (130) 1 1 (129) with n=N.
|’U(t)*1)1|(1i1) ’Ulf’U(t) < ’U1U<]_NE+1> (128) v(]\]EH)vl W n .
as desired.
Step 6. The function v : [0,1] — R,
Vo if t=0
v(t)=1< v(t) if te(0,1)
(%1 if t=1

is continuous.

It follows from Steps 0, 4 and 5.

Step 7. Defined v" :(0,1) — R ¢t +— v’ (t7) 1= limy,__o- M7 i.e., the left derivative in ¢,
then there exists v, € Ry such that lim; g+ v (¢) = v).

Observe that v/ :(0,1) — R ¢t — o' (¢7) is bounded (from Step 1) and decreasing (by Lemma
137). We can then mimic the argument presented in Steps 4 or 5 - observe that there we did NOT

use the concavity of v.

Since, from Lemma 137, v’ is decreasing and bounded, then ('UL (n%rl)) is an increasing
neN

bounded above sequence?*. Then,

1 1
ninioov/_ <n+ 1> = sup {’U/_ <n+1> ‘n € N} =) € R. (132)

Then, from (132) and the definition of sup, we have

1
/ < ol
Vn e N, v_ <n+ 1) < g; (133)

from (132) and the definition of limit, we have

1
Ve > 0 3N, € N such that ifnZNe,vf)—v’_< +1> (133)
n

1
vy — vl <n+1)‘<5' (134)

We want to show that lim; g+ v" (t) = [, i.e.,

Ve >0 30, > 0 such that if ¢ € (0,6.), then [v/ (t) —vj| <e.

Iake 55 = AN: 1 N since 'U/ is decreasing, then
v t v .
’ INg + 1 ’ N - NE + 1
24We have to take v (71 1) because v is defined on (0, 1).
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1

Moreover, for any ¢ € (0,1), there exists ny € N such that < t. Since v’ is decreasing, then

ng+1
1 (133)
ol (t) <ol <nt n 1) < . (136)
Then,
(136) (135) 1 (133) 1 (134) with n=N.
P — ot Y2 () < o — o O I

v (t) — v vy —v_ (t) < wvy—ol N1 vy — vl N1 g,
as desired.

Step 8. Defined v/,:(0,1) — R ¢ — ¢’ (t1), there exists v] € R such that lim, ;- o' (tT) = v].
Observe that v/, :(0,1) — R ¢t +— ¢/ (tT) is bounded (from Step 1) and decreasing (by Lemma
503). We can then mimic the argument presented in Steps 4 or 5 or 7.

Since v/, is decreasing and bounded below, then (v’+ (1 — %ﬂ)) . is a decreasing bounded below
ne

sequence?®. Then,

. 1 , 1
nlr{l‘_oovg_ <1 - n+1> :1nf{vg_ <1 - M) :nGN} =] €R. (137)

Then, from (137) and the definition of inf, we have

1

from (137) and the definition of limit, we have

. 1 (133) 1
Ve > 0 IN. € N such that if n > N,, v/, (1_n+1> —vp = |V} <1_n+1> —vy| <e. (139)
We want to show that lim, - v/, (t) = v1, i.e.,
Ve >0 34, > 0 such that if t € (1 — 5., 1), then |0/, (t) —v}| <e.
Take 6. = ﬁ; since v/, is decreasing, then
wre (01— 1 vty <ol (1— 2 (140)
N A1) Y= N.+1)°
Moreover, for any ¢t € (0, 1), there exists n; € N such that 1 — m1+1 > t. Since v/, is decreasing,
then /
, , 1 (138) ,
vl () > vl 1—nt+1 > 0. (141)
Then,

(139) with n=N,

(141) (140) 1 (138)
[V (8) —vi| =" ()—vp < 17Ne+1 —v = g,

o (1 - ! —
+ N.+1 !
as desired.

Step 9. The function V' defined below is the desired extension.
vo+vp-t if <0
V:R-—R, Vt)={ 5(t) if telo,1]
vy ot if > 1.

a. V is continuous.

25We have to take v (1 — r%i—l) because v is defined on (0, 1).
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V is continuous from the Pasting Lemma. Below, we state a version of that theorem (see Theorem
18.3, page 108, in Munkres (1975)) and we apply it to our case.

(The pasting lemma) Let X and Y be topological spaces. Let X = AU B, where A and B are
closedin X and f: A—>Y, g: B — Y be continuous functions. If Vz € AN B, f (z) = g (z), then “f

and g combine to give a continuous function”, i.e., h: X — Y,

f(x) if z€A
h(z) =
g(x) if z€B

is a continuous function.
We can apply the above lemma identifying

X with R

A with (—00,0] U[1, +00)

B with  [0,1]

f with {vo—i-vé-t %f t<0
vi ot i > 1

g with v

ANB  with  {0,1}

b. V is increasing.

We want to show that for any ¢1,to € R, if t; < tg, then V (t1) < V (t2). We distinguish the
following cases. The other cases follow from the facts that vy, v1 € [0, k] and that v is increasing by
assumption.

Case 1. t; <0 and t2 € (0,1); Case 2. t; € (0,1) and t3 > 1; Case 3. t; <0 and t3 > 1.

Case 1.

We want to show that V (1) < V (t2) or vg + vj - t1 < v (t2). Indeed,

vg4 >0, £1<0
V(tl) :’()0+’()6~t1 S Vo-

Then, it is enough to show that for any t5 € (0,1), vo < v (t2), or, from Step 4, by deﬁnition of vy,
v (t2) > infpenv <”+1) Indeed, for any t; € (0,1), there exists ny € N such that 5 > 1+n Then,

since v is increasing on (0, 1), we have v (t2) > v (1+ ) > infpenwv (n+1) as desired.
Case 2.
We want to show that V (t1) <V (t2) or v (t1) < vy + v} (t2 — 1). Indeed,

V(t B , B v _>0, ta>1
2) =1 + Uy (tz 1) > V1.

Then, it is enough to show that for any ¢; € (0,1), v (¢1) < v1, or, from Step 5, by definition of vl,
v (t1) < sup,eynv (1 — n+1) Indeed, for any t; € (0,1), there exists ny € N such that t; < 1 — 1+n1

Then, since v is increasing on (0, 1), we have v (t1) < (1 - 1 1) > SUP,en ¥ (1 - Tﬂ)’ as desired.
Case 3.
It is enough to observe that

Case 1 1\ Case 2
Vi) < V<2> < V().

c. V is concave.
It is showed in Lemma 149 below, which requires some other Lemmas. =
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Lemma 143 If ¢4, ¢, : [a,b] — R are concave functions, then ¢ := min{p;, v} is concave.

Proof. For any t1, t3 € [a,b], A € (0,1),

@, concave

@ (L= Aty + M) = min{, (1= Nt + Ma), g (L= Aty +At2)} >

min {(1— A) gy (1) + Apy (£2) (1— N g (1) + Agp (1)} >
(1~ Ny min {oy (1) 0 (1)} + Amin (i, (£2) .5 (12)} 1=

(L= @ (t) +Ap(t2),
as desired and where (1) follows from the facts that

(1 =X @y (t1) + Ay (t2) = (1= X)min {py (t1) , 95 (t1)} + Amin {p; (t2) , 5 (t2)},
(1= XA) o (t1) + Ay (t2) = (1 — A)min {epy (t1), 05 (t1)} + Amin {¢; (t2), s (t2)}

and ot
{(a>cAb>c) S min{a,b} > c

| |
Lemma 144 Given (zo,v0), (71,71) € R? and ag, a1 € Ry such that

(zo,90) << (21,51) and ag > o,

defined gog,g1 : R — R,
9o (¥) = yo + ap (v — x0),

g1 (z) =y1 + a1 (v —21),

if
ap > Y1~ Y% > a,

then 1. g :== min{go, g1} is concave, and
2. there exists x* € R such that a. go (z*) = g1 (z*), b. z* € [xg,x1] and c.
go(z) if z<az*
g(z) =

*

a1 (z) T >t

see also picture for extension of v.pdf

Proof. 1. Since gg and g; are linear, then the desired result follows from Lemma 143.

2. a. z* solves
Yo + ap (v —x0) = y1 + a1 (v — 71)

or
(ao — al) =Y — 1T — (yo - 040960)
and then

o = y1—a121—(yo—0To)

apg—oq

y1—a121—(Yo—oZo) > 0
apg—Q

Y1 — Q1T — Yo + QoTo — Qpxo + a1 Tg > 0
Y1 —a1T1 — Yo +a1xg > 0

ar < Y1—Yo
1> T1—0
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as assumed. N
Y1—1T1 —YoT x0T
P <z

Y1 — 121 — Yo + aoxo — a1 + a1z <0
Y1 — Yo + apxo — apry <0

Y1—Yo
(&%) 2 T1—0
as assumed.
C

We verify that = < 2* iff go (x) < g1 (z). Indeed,
Yo+ ao (z — o) <1+ o (z—21)

(>0)
Y1 — Yo — o111 + oo > (o — a1)x

—1T1— —QoT
¥ = Y1 (yo—aowo) > 7,
Qp—a1

as desired. Similar proof applies to the other case. m

Remark 145 Under the assumptions of Lemma 144, we have what follows.

go(z1)>y1 & ytaw@i—z) >y © ag(zr—z0) >y —yo & o> L=

= Z1—x0’

gz >y & mta(wo—2)>y © y1—yo> a1z —3) & LTL >

Tr1—xo —

The above analysis allows to give the definition of the following derivative set-valued function.

Definition 146 The derivative set-valued function associated with V is denoted and defined as fol-
lows:

p:R——R,
{vy} if t<0
te o [l (), v ()] if te(0,1)
{v{} if t>1.

Lemma 147 For any to,t1 € R, if to < t1, then for any po € p(to) and any p1 € p(t1), we have
Do = p1-

Proof. We want to show that for any ¢ € (0,1),

Proof of (1).
From Step 7, we have

vy = sup {v/ (nil) in € N} . (142)

For any t € (0, 1), there exists n; € N such that Tlﬂ < t and since v’ is decreasing, we do have

/ 1 /
> . 14
v<n+1 >’ (t) (143)
(142) and (143) imply the desired result.

Proof of (2).
vi:inf{vf,_(l— i1>:n€N}. (144)
n

From Step 8, we have
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1
ne+1

v (1 o 1 1) < (t7). (145)

(144) and (145) imply the desired result. m

For any ¢t € (0,1), there exists n; € N such that 1 — > t and since v’ is decreasing, we do

have

Lemma 148 For any tg,t; € R, for any py, € p (to)
Vi (t1) <V (to) +pto (t1 — to) -

Proof. The strategy of the proof is as follows. We distinguish several cases; in each of them,

a. compute the equation of the line going through (¢, V (¢o)) and slope p:, € p(to); call go the
associated function.

b. compute the equation of the line going through (¢1,V (¢1)) and slope p:, € p(t1); call g1 the
associated function.

c. choose “simple values of” (zo,y0) and (z1,y1).

d. verify assumptions of Lemma 144 are satisfied if y; > yg and ag > aq; verify the desired result
also in the case in which some equalities hold true.

e. apply Corollary 141 to g := min {gg, g1} with ¢,¢p in the place of s, ¢, which is just the desired
result.

We distinguish the following results.

Case 1. tg € (—00,0]. a. t; € (—o0,0];

Case 2. tg € (0,1). a. t1 € (—00,0]; b.

Case 3. tp € [1,400). a. t; € (—o0,0];

Case 1.a.

Obvious.

Case 1.b. . ty € (—0,0] and t; € (0,1)

a. go(t) =vo+vy-t;b. g1 (t) =v(t1) +pe, (t —t1); c.

b. t; € (O, ].), c. t) € [1,+OO)
t1 € (0, 1); c. 11 € [1,-‘1-00).
b. t; € (O, 1), c. €t [1,+OO)

Zo Yo z Y1 Qo aq

0 Vo t1 v (tl) U6 Pty

d.1.
gg(xl)zylz 1}0+?}6't12’0(t1).

Indeed, since V is concave on (0,1), we have that for any n > 2,
1 1 1

! (tl) S ! <> + ,UL () . <t1 - )
n n n

U(tl) S ’UQ+’06 ~t1.

and taking limits, we get
d.2.

g1 (zo) >yo: v(t1) —pe, -t1 > vo.

Indeed, since V' is concave on (0,1), we have that for any n > 2,

(2 <ot ()

vo < v (t1) — Py, - b1

and taking limits, we get

The equality cases. yo = y1.-
Then, V is constant on [0,%1] - recall that V' is increasing from Step 9.b - and since t; € (0,1),
v (t1) =0 and p(t1) = {0} - using Corollary 141. We want to show

V(t1) <V (to) +pe, (b1 —to),
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or
Yo <yo+0-(t1 —to),

which is true.

The equality cases. yo < y1 and py, = P, -

Since to < 0, then for any t € [to, 1), Pt, = V) > Pt > pr, and then for any ¢ € [to,t1), p (t) = vy.
Then, the desired result follows from the Claim below.

Claim. If ¢y < t; and for any t € [to,t1), we have V' (t) = vy = pt,, then V (t1) < V (to) +
pe, (1 — o).

Proof of the Claim. By Assumption, there exists k& € R such that for any ¢ € [tg,t1), V (¢) = vy-t+k.
Then, we want to show

vyt +k<vy-to+k+vy(t—t),

which is true as an equality.

End of the proof of the Claim.

Case l.c. tp € (—00,0] and t € [1,+00).

a. go(t)=vo+vy-t;b. g1 (t) =v1 +v] (t—1); c.

Zo Yo T Y1 (7] o
0 Vo 1 U1 v v)
d.1.
go (1) >y1: vo+ vy > vy,

Indeed, since V' is concave on (0,1), we have that for any n > 2,

ORI

and taking limits, we get
v1 < vg + v}-
d.2.
g1 (z0) = yo: v1— V] > o

Indeed, since V' is concave on (0, 1), we have that for any n > 2,

()22 2) (- -2)

and taking limits, we get
vy < v — 1/1.
The equality cases. yo = y1-
Then, V is constant on [0, 1] ,then V is constant on R, because v = vjand we are done.
The equality cases. yo < y1 and py, = Py, .
Since tp < 0 and #; > 1, we have v{ = v} then for any ¢t € (0,1), pt, = v, > pt > pr, = v} and then
for any t € R, p(t) = vj. Then, V is an affine function.

Case 2.b.

Obvious.

Case 2.a. tg € (0,1) and ¢ € (—o0, 0].

a. go(t) =vo+vy-t;b. g1 (t) =v (o) +pi, (t —to); C.

Zo Yo z Y1 Qo aq

0 Vo to v (to) v Dto

d.1.
go (1) >y1: vo+vp-to > (lo).
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Indeed, since V' is concave on (0, 1), we have that for any n > 2,
(to) < ! + v ! fo —

v vl = v [ =) - - =

)= n t\n "

U(to) S Vo +’06 'to.

and taking limits, we get

d.2.
g1 (z0) > yo: v (to) — proto > vo.

Indeed, since V' is concave on (0,1), we have that for any n > 2,

and taking limits, we get
Vo S v (to) — pto . t().

The equality cases. yo = y1.
Then, V' is constant on [0, ] - recall that V is increasing from Step ... - and since ty € (0,1),
v" (t1) = 0 and p (to) = {0} - using Corollary 141. We want to show

V(t1) <V (to) + pi, (to — t1),

or
U(tQ)S’UO-‘-O'(tl—to),

which is true.

The equality cases. yo < y1 and p, = Py, .

Since t9 € (0,1) and t; < 0, then for any t € [t1,t0), P, = v) > Pt > pt, and then for any
t € [to,t1), p(t) = v). Then, the desired result follows from the Claim above.

Case 2.c. tp € (0,1). and t € [1, +00).

a. go(t) =vo+pe, - (t—to); b. g1 (¢) = v (t1) + ) (¢ —1); c.

Zo Yo z Y1 Qo (€51
!
to o 1 V1 Ptg U1

d.1.

go(x1) >y1: wvo+ps, - (1—tg) > 0.

Indeed, since V' is concave on (0,1), we have that for any n > 2,

(1= <ot ((1-2) 1)

V1 < ’U(to) +pt0 . (1 — to)

and taking limits, we get

d.2.
g1 (.’ﬂo)zygi 'Z)1+'Ui (to—l)Z'U(t()).

Indeed, since V' is concave on (0,1), we have that for any n > 2,

v <o(1- D) v (1-1) (0= (1- 1))

and taking limits, we get
v(tg) <vi 40" (tg—1)

The equality cases. yo = y1.
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Then, V is constant on [tg,?1] - recall that V is increasing from Step ... - and since to € (0,1),
v', (to) = 0 and p (tp) = {0} - using Corollary 507. We want to show

V(t1) <V (to) + pt, (t1 — to)
or
1 <wy1+0-(t1 —to),

which is true.

The equality cases. yo < y1 and py, = Py, .

Since tg € (0,1), then for any ¢ € [to,t1), pr, = V) > pt > pt, = v} and then for any ¢ € [to, 1),
p(t) = vj. Then, the desired result follows from the Claim above. .

Case 3. c. tg € [1,+00).and t € [1,+00).
Obvious.

Case 3. a. tg € [1,+00) and t € (—o0,0].

a. go(t)=vo+vy-t;b. g1 (1) =v1 +v1 (t—1);c.

To Yo z U1 Qo aq

! !
0 Vo 1 U1 Vg v]

d.1.
go(z1) >y wvo+vp >0

Indeed, since V' is concave on (0, 1), we have that for any n > 2,
1 1 1 1
D)5 (-2
n n n n

01§v0+116

and taking limits, we get

d.2.
g1 (o) > yo: v1—v) > .

Indeed, since V is concave on (0, 1), we have that for any n > 2,

1 1 , 1 1 1
v - ) <v|ll-=)+v, (1-=) - (1—-—=——
n n n n o on
and taking limits, we get

vo < w1 + vy

The equality cases. yo = Y.

Then, V is constant on [0, 1] ,then V is constant on R, and we are done.
The equality cases. yo < y1 and py, = P, -

The V is an affine function.

Case 3.c. tp € [1,400) and t € (0,1).

a. go(t) =v(t1) +pe, - —t1); b. g1 () =v1 + vy (- 1); c.

Zo Yo T U1 Qo (€51

t1 v (t1) 1 U1 Dty v
d.1.

go(z1) 2 y1: v(t1) +p - (1—t1) > 01

Indeed, since V' is concave on (0,1), we have that for any n > 2,

v<1_711) < v (ty) + pr, - ((1—i> —t1>
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and taking limits, we get
v()<v(t)+pn - (1-t)
d.2.
gl(.fo)zyoi U1+Ui(t1*1)21}(t1).

Indeed, since V' is concave on (0,1), we have that for any n > 2,

(t)<11+’ - (1=
v =Y n V- n ! n
and taking limits, we get

v(ty) <v(l)+ov_-(t1—1)

The equality cases. yo = y1.
Then, V is constant on [t1,1] and p;, = 0 = v] and then V is constant on [t1,+00). We want to
show
V(t1) <V (to) + pt, (1 —to)

. U(tl)SV(to)-l-O'(tl—to),

which is true because tg > t1.

The equality cases. yo < y1 and py, = Py, -

From Corollary 141, for any ¢t € [t1,t0) and then for any ¢ € [t;,+00), we have V' (t) = v} and
then V is affine on [t1, +00) and we are done. m

Lemma 149 V is concave.

Proof. We are going to use Lemma 148 and then mimic the proof on page 263 in my Math 2 Notes.
Lemma 148 says that

for any to,t € R, for any p:, € p(to), V (t) <V (to) + pt, (t — to)-
For any #',#" € R and \ € (0,1). Define t* = (1 — \)# + Az'". We want to show that
VN >Q-NVE)+AV ().

From Lemma 148,we have
V") = V() <pp - (¢ — ) and

V(') = V() <pp - (t —Y)
Multiplying the first expression by A, the second one by (1 — A) and summing up, we get
AVE") = V(M) + (1 =NV () = V(EN) < peor - A" =) + (L= A = Y))

Since
Mt =t + (1 =N -t =t -t =0,

we get
AVEY+ (1 =NV(EH) <V(Y),

i.e., the desired result. m

91



4.9.4 On some probably useless results on extending the function v : R — R

Proposition 150 If a function ¢ : (0,1) — R is concave and increasing and

Je > 0 and 3k € Ry such that for any x,y € R such that 0 < z < y < € we have that M <k,
Yy—x
(146)

then ¢ is k-Lipschitz.

Proof. We want to show that Vo, € (0,1),a # 3, we have W < k. Without loss of

generality, assume a < (3; then, since @ is increasing, we have to show that w < k. The key
ingredient of the proof is the following result.
Let the function ¢ : (a,b) — R be a concave function and assume that

a<s<t<u<b. (147)

Then

olt) —os) o) — pls) () — (1)
t—s - u—Ss - u—t

see picture debarra prop.pdf
For a proof of the above result see, for example, de Barra (2003), Theorem 2, page 111.
We distinguish the following three cases.
Case . 0<a<f<eg Case2. 0<a<e<f;Cased. 0<e<a<f.
Case 1. The desired result is true by assumption.
Case 2. Take o/ € (a,¢); then,

kAS>S11. QD(O/) *(,O(Oé) (127) @(5) — @(a),
o —a f—a

or
Take o € (0, c); then,

kAS>S11. @(Oé) — QO(O/) (127) @(5) — @(a),
oa—ao f—a

Case 3.
A 9) — 9 (@) MY o) — o) 14D ¢(B)-p(0)
y—c - a—y - p—a

4.10 On quasi-concavity of the utility function

We want to find conditions under which the utility function is quasi-concave in both z; and 6/. That
for sure it is the case in which 8 > 0. In that case, we utility function is strictly concave, since the

Hessian matrix is
v’ 0
0 ﬂ'U//

and u” < 0,v"” <0 and 8 > 0.
If B < 0, we have the following proposition.

Proposition 151 Consider a one-good economies (B,u,v) with 8 < 0. Define
ViRY, — R, (z,9) — u()+pv(y).
1. A sufficient condition for quasi-concavity of V is

) B0 ) @)
VW) + B d Y >0,

or, denoted the coefficient of absolute risk aversion associated with function f by Ra(y),
(=B) Ra(u) <u'-Ra(v)

2. There exist economies for which 5 <0 and V is quasi-concave.
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Proof. Preliminary observation. Below, we present two approaches to find sufficient conditions for

quasi-concavity.

After the preliminary observation, we present the proof of the desired results.

Approach 1. Implicit Function Theorem.
Let the following equation be given.

Vi,y) = u(z)+Bu(y) -k =0,

with

u>0, u'<0, B<0, >0 v <0
From the Implicit Function Theorem, we have
oV (z,y
9 () = - _ W
dy Vizy u' () '
xr

We now want to give conditions under which ¢” (y) > 0.

df — B2 W)
g// (y) _ ( uc’l;y(y)))

1 ) " ! 1,01 / 1
e P (” vt f '?)

Then

=)+ &)

sign ¢" (y) = sign | v - u +

=) =)

.u/l. ﬂ

+) 1
. v/ .

(+)

ul

= — oy (B () (g (9) — B+ (9) - " (9 () o' (4)

For example for large |3|, the indifference curve is convex and “therefore” V' is quasi-concave.

Approach 2. The bordered Hessian.

We are using the following result. If n > 2 and Vz € X, for any k € {3,...,n + 1},

sign (k — leading principal minor of Bf (x)) = sign (—1)1671 ,

then f is pseudo concave and, therefore, quasi-concave.

DV = [/ (x), 5V (y)]

Ty
u(z) W 0
0 B

B’ (y) v
0 o pv
u u 0
Bv 0 bBv"
row and column 1
u’ 0
det 0 B’UH :| = BU”UII <0
rc2 /
0 v
det ﬂvl g@” :| = _62(1}/)2 <0
rci3 /
det | VY, ] — (W) <0.
0 o B )
det u’ / w0 } — _/B(U/)QU// _ 2u//(v/)2 — (—ﬁ) i
gy 0 pu
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(+) (=)
. (u

/!

Y+ 8

=)

"

U

- v

/

>0

(148)

(149)



if
) B () )@ (,07/) ) (=) uu) u'
’UN-(’U/) +B'u”-v/ <0, ~u+ . (6)(

Observe that (149) has a structure similar to the expression in (148).
2.
Consider f (z) = —e™%%;

Observe that the above assumption does satisfy our existence maintained assumptions, but not
our regularity maintained assumption: closure of the upper level set is not closed in R: take k& > 0.

k
{zeRy;:—e* > -k} = (ea,—ﬁ—oo)

—e
X
1.25 y 0 1.25 25 3.75 5
1 O 1 1 1 l

T T T

-057T
. . 26 @) . —aPem® _
Observe also that*® Ry (z) := Ty = ace = G

The higher a, the more concave the function is (graphs below correspond to a € {%, 1, 2})

y 17

26See Mas Colell, page 191.
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Then assuming u (z) = —e~% and v () = —e =%, condition (150) becomes
—Ba <ae b or —f<e b

Now, observe that v12 (pea + t12 — to1) and pes + t12 — to1 < pes + k1 < pr+k; =1+ k1. Then
we can express condition (150) as
_5 < 6*0«(1+k1)b7

i.e., in terms of exogenous variables. That show the nonemptyness statement. m

Remark 152 As discussed below, it is not easy to say something as in the above proposition is the
utility function are log.
Assume v =u = log. Then,

= B o =) W 2
v - (u/)2 + B u ] = (—12> <1> +p (—12> 1 >0
x Yy

14+ Py <0

By < -1

(—8) > 5

y>

5 <y indeed y = pes + 12 — ta =" pey — by
<pr+k=1+ k.Then, we must have

1
— k
= <1+

In the relative wealth model, we have

pes + tio — to1 Py in equiibrium pr 1

pr pr N pr

4.11 Simple facts on maximization problems
4.11.1 Fact 1

Definition 153 Let f : S CR* — R, z — f(z) and g : T C R" — R™, z — g (x) be given.
Define C:={x €T :g(xz)>0}. To solve

max f (z) s.t. g(z) >0
means to find the set
(z* €R":2* € SNTNC and for anyz € SNTNC, f(z*) > f(z)} =
—{z*€SNC:foranyz e SNC, f(z*) > f(z)}.

4.11.2 Fact 2

Preliminary Observation.
Let the following sets and functions be given.

S C R™, W CR™,  TCR! II C R,

and

f:SxWxII— R, (z,0,7m) — f(z,0,m),
v:T xII — R™ (t,m) — v (t,m),

g:SxT xII — R, (z,t, ) — g (2, t,m).
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For any 7 € TI, define C' (w) = {(z,t) € S € T : g (z,t,7) > 0}. Let the following problem be given.

For any 7 € I, max, ) f (z,v (t.7),7) s.t. g(z,t,m) >0 (151)
To solve problem (151) at = € II means to find the set
{ (@t eR*" xR : 1. (z*,t*) € C(n),

2. v(z*,t*) € W, and

3. for any (x,t) € R” x R! such that (z,t) € C (7) and v (x,t) € W,
flas v m),m) > f(z,v(t,7),n) }

Defined for any 7 € II, C’(n) ={(z,t) e SeT:g(z,t,m) >0 and v (z,t) € W}, then to solve
problem (151) at m € II means to find the set

{(@*,t)eR" xR : 1. (a*,t*) € C(n),

2. for any (z,t) € R" x R! such that (z,t) € C (r),
f* vt m),m) > f(z,v(t,n),n) }

If 7 € IT is such that C (%) = @, then problem (151) at 7 € II has no solution.

The need to have a well defined maximization problem.

The Preliminary observation wants to stress that compositions of functions have to be well defined:
in the case described in the Preliminary observation, it needs to be checked that g (¢,7) € W, i.e., in
our model, beliefs of household h about other individuals’ wealth have to positive, irrespectively of
the choices of household h.

In our model, a drastic way of avoiding the problem above is to make the following “legal” as-
sumption:

Assumption 1. For any h € H, any e € REJF, any p* € S, the choice of ¢, € T}, has to satisfy
the constraint

p* Z thi < pep.
h'eH\{h}

For simplicity, consider the case H = 2. Then, it must be the case
p*tar < prea,

and then
p* (e2 — to1 + t12) > 0.

!
Since uq : Rf xRy — R, if 1 > 0, then
for any t12 € R+, w1 ($17p* (62 —to1 + tlg)) is well defined. (152)

Remark 154 Consider the following milder Assumption.
Assumption 1°. For any h € H, any e € Rir, p* €8, t\p € I\p, the choice of ty, € T}, has to

satisfy the constraint
P Z thw < pen + Z th'h-
h'eH\{h} h'eH\{h}
Could we substitute Assumption 1 with the above milder assumption?
The answer is negative. Again, for simplicity, take H = 2. Then, consistently with Assumption
1., we have
ptar < p” (e2 +t12),
and then
p* (e2 —t21 +112) > 0,

and it can be
p* (62 — tgl) < 0.
Therefore, condition (152) does not hold true.
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