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Abstract

We study the dynamic behavior of heterogeneous markets with many agents’ types. In particular this
paper aims at studying the effects of a change in the number n of agents, who are possibly different in terms
of the rule they employ to forecast, on the long run value of a relevant state variable. On the one hand we show
that a heterogeneous-agents model cannot be by and large traced back to an equivalent average-representative-
agent model thus having a negative impact on the possibility of easily reducing large and complex models to
simpler and analytically tractable ones. On the other hand, under fairly general conditions, we characterize
a class of models in which the probability of convergence to the steady state becomes either one or zero as
n grows. This fact has positive implications from the point of view of a policy maker willing to take action
toward the goal of stabilizing the economy.

JEL Classification: C02, C62, D83, D84.
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1 Introduction

In the economic literature, heterogeneity in behaviour or capacity to forecast used to be frequently overlooked
by claiming (implicitly or explicitly) a sort of equivalence between the full model with heterogeneous agents and
a corresponding model with an average representative agent. Over the last twenty years, however, this approach
has raised a lot of criticism in many contexts: for example [17, 45] within macroeconomic modelling, [30] in the
field of choice under risk, [25] in the context of measures of social welfare, to name only a few. In particular,
from the point of view of out-of-equilibrium dynamics, it is now widely accepted that such a simplified (average)
model may generate different dynamic outcomes with respect to those attained when heterogeneous agents are
explicitly introduced. On the contrary, when the focus of the analysis is on local dynamics, the representative
agent assumption is still considered to be a good compromise granting analytical tractability at the cost of minor
shortcomings. This point of view has been epitomized by Grandmont who, studying local stability conditions of
the self-fulfilling equilibrium in an adaptive learning economy in [29], reckoned that

”... the methods described below [regarding a representative agent economy] can nevertheless be made to bear upon the

case of heterogeneous beliefs. The forecast tx
e
t+1 can then be reinterpreted as an average forecast, each individual

forecast being weighted by its relative local contribution to the dynamics of the system ...”.

This equivalence however only holds under suitable assumptions. For example, [20] shows that local stability
conditions under heterogeneity differ from those with a representative agent even in the standard cobweb model
with adaptive expectations.1

There is indeed a large body of literature showing evidence of heterogeneity in expectations, both in empirical
contexts, e.g. [15], and in the lab, e.g. [35]. From the point of view of modelling markets with heterogeneous
agents and expectations it has been pointed out that there is a risk of falling in the “wilderness” of bounded
rationality, characterized by an excess of degrees of freedom and parameters. Brock et al. [13] address the issue
of dimensionality reduction in a fairly general theoretical framework with many types and develop an analytical

1The problem of variables/data aggregation to the purpose of simplification is common to various economics fields, especially
Macroeconomics and Econometrics. For example the issue of aggregation over heterogeneous individuals when their composition
is dynamically changing has been addressed in [28] and [46]. The representativeness of the representative agent, both in economic
theory and econometrics has been extensively discussed in [37] and [31]. Finally, the relevance of using agent-based computational
economics models as a tool to address the aggregation problem and the analogy principle has been discussed, among others in [27].
[16] is recent survey on this subject.
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result, namely the notion of Large Type Limit, based on the idea of substituting the (large) array of stochastic
parameters describing the populations of agents with the (small) parameter vector defining their joint probability
distribution, hence reducing the model complexity. In particular individual types are sampled at the beginning
of the market, heterogeneity is aggregated linearly in the function defining the dynamics of the state variable,
and agents are allowed to switch over time among types (see [11, 12]): in this setup, the Large Type Limit entails
replacing sample moments with population moments, which for particular distributions of characteristics yield
closed form expressions. The result in [13] has been applied in several papers2 among which [2], [1] and [40],
in order to analyze monetary policy issues, taking advantage of the assumption that the forecasting rules are
actually constants.

Building on [13], Diks and van der Weide [24] assume the distribution of beliefs among agents is updated using
a Continuous Choice Model,3 which leads to price dynamics in which the beliefs’ distribution evolves together
with realized prices. They call this setup Continuous Belief Systems, which give rise to random dynamical
systems, containing deterministic dynamics as a special case (and therefore generalizing the Large Type Limit
setup). The issue of reducing complex agent-based economic models to analytically tractable small-scale ones
has also been addressed, among others in [26], and more recently in [42].

This paper studies a class of models in which there is a significant interplay between uncertainty about
behavioural parameters of agents, which pertains to an observer (e.g. a policy maker), and how heterogeneous
such agents are. It appears natural to expect that, as more heterogeneity affects the system, the task of predicting
its fate (for example computing the probability that the system eventually converges to a steady state) becomes
ever more difficult. However, a mildly surprising asymptotic result contradicts such intuition in a variety of
contexts: it may in fact happen that when the amount of heterogeneity goes to infinity (in a sense to be
specified) the probability of convergence becomes either one or zero depending on the value of crucial structural
parameters of the economy. We describe this phenomenon as polarization. The amount of the heterogeneity and
its possible variations hence play a critical role in shaping the range of possible long-run outcomes of the model.
Various implications seem to be the result of polarization. Policy-wise, knowing that such an effect is in place and
that heterogeneity is relatively high may encourage policy makers to take action towards stabilizing the system.
Similar types of implications have been reached in contexts close to the present one e.g. [14] and [21].

The present work rests on a number of simplifying assumptions which need to be briefly discussed in order
to lay out the perimeter of this paper. One aspect is the fact that the possibility of agents switching between
alternative forecast rules is precluded. In other words we are assuming that agents stick to forecasting rules,
which is certainly oversimplifying. Learning to forecast lab experiments have in fact shown that individuals use a
variety of simple heuristics (see [35], [4]) but the evidence in favor of evolutionary switching among rules does not
appear to be overwhelming.4 However our main reason to relinquish this mechanism here, lies in the fact that
doing so allows us “... to derive an analytically tractable system with a unique equilibrium, which is desirable
from a policy maker view point ...”.5 Our perspective in this paper is indeed that of an observer or a policy
maker whose main interest is that of deriving conditions favouring long run stability of the economy. On one
hand therefore our results here are of a more limited nature with respect to, e.g. [13], where large expectations
heterogeneity is coupled with endogenous switching between forecast rules. At the same time however, the core
of this paper, namely Section 3, explores a model in which the explicit dependence of expectations at time t on
previous expectations is outside the range of a key assumption in [13].6 Our approach to expectations, which
are assumed to have some degree of inertia, is supported by evidence that in complex environments observable
behaviour is, loosely speaking, adaptive (see e.g. [32, 35]).

The paper is organized as follows. Section 2 introduces the baseline model for a scalar state variable and in
particular delineates how it is stochastic and shows the conditions for local stability and polarization (i.e. what
happens to probability of stability in the long run when heterogeneity goes to infinity). The model is generalized
in Subsection 2.1 to allow for vector state variables and vector stochastic parameters. Section 3 adds inertia in
expectations and studies how results change (given the explosion in the dimension of the random matrix whose
spectral radius governs stability) as a consequence. Various generalizations as to the types of laws of motion

2[13] itself applies the Large Type Limit to a generalization of the asset pricing model introduced in [12], assuming agents who
are choosing beliefs from a class of linear auto-regressive functions with several lagged variables.

3A generalization of the Discrete Choice Model used in [11]. See [38] for more details.
4Several authors have specifically estimated nonlinear switching mechanisms. For example, [10], [22], [41] and [7] do so using

S&P 500 data, various commodities markets data, US inflation rate data and gold market data respectively, finding some evidence
of switching.

5Quoted from [40]. The need for simplifying assumptions for the sake of analytical tractability is common in the literature. For
example, while [13] shows that an equivalence exists between the dynamics of the large heterogeneous economy and the simpler
corresponding Large Type Limit, it does not automatically imply the simpler limit model being analytically tractable. Indeed, to get
a manageable model, [1], [2] and [40], assume that the forecasting rules are constants, matching in spirit our assumption of constant
fractions.

6We are referring to assumption B3 in [13] in particular.
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permitted and examples are presented in Subsection 3.1. Some discussion and directions in which to extend and
further develop the present work are indicated in Section 4. Concluding remarks are offered in Section 5. The
Appendix gathers all the proofs.

2 The baseline model

The general model we have in mind is one in which the dynamic evolution of a state variable of interest depends
on two sets of elements: past values of the st ate variable itself and past and present values of another variable,
typically (but not necessarily) describing expectations on the state (see, for example, [23] where the same approach
is adopted). We’ll move towards such general form starting from a relatively simple model and building up its
complexity in various steps. In what follows we will refer to the x variable(s) as the state variable and to the y
variable(s) as to expectations.

Consider the (random) discrete-time dynamical system
{
xt+1 = f(yt+1)
yt+1 = g(xt, α)

(1)

where f ∈ C1(R;R), g ∈ C1(R2;R) and α : Ω → A ⊂ R a random variable, with mean E[α] and variance V(α)
on a given probability space (Ω,F,P). System (1) describes a single-agent model where y is the expectation
on the state x, the function f is the law of motion whereas g represents the way expectations are computed,
depending on the random parameter α. Replacing yt+1 in the first equation of (1) gives a difference equation
which completely describes the system.7 Assume (x∗, y∗) ∈ R2 is the unique steady state irrespective of α, i.e.,
x∗ = f(y∗) and y∗ = g(x∗, α) for all α ∈ A. In equilibrium, stability for the deterministic skeleton of (1) (i.e. for
the degenerate case V(α) = 0) obtains if:

−1 < fy(y∗)gx(x∗, α) < 1 (2)

where the subscripts denote partial derivatives. In what follows, we will assume fy(y∗) 6= 0 to avoid trivial cases.
Generally, (2) results in a condition on α.

In general, the uncertainty on α reflects the difficulties in its estimation. The stability of (1) will depend on
the particular realization of α. Let the set

S1 = {ω ∈ Ω : fy(y∗)gx(x∗, α(ω)) ∈ (−1, 1)} ⊂ Ω, (3)

so the probability of obtaining a stable system can be computed as P(S1).
We ask the following question. What happens if there are heterogeneous agents in the economy whose

characterizing parameters must be estimated? To this end let {αi}ni=1 a discrete stochastic process on (Ω,F,P).
Agent heterogeneity lies in the fact that they use different prediction rules indexed by αi. For any given n, we
consider

yit+1 = g(xt, αi), i = 1, . . . , n (4)

ignoring the αi for i > n. Assume that heterogeneity is aggregated through linear combination:

yt+1 =
n∑

i=1

φi y
i
t+1, (5)

where the family of weights {φi}ni=1 satisfies 0 ≤ φi ≤ 1,
∑n
i=1 φi = 1 for all n ∈ N and φi = 0 for i > n.8 In

other words, for any fixed n we consider as given the random variables (α1, . . . , αn) and the weights (φ1, . . . , φn)
summing up to 1. Substituting (4) in (5) and then in turn in (1), we obtain the dynamical system

{
xt+1 = f(yt+1)
yt+1 =

∑n
i=1 φi g(xt, αi)

(6)

The unique steady state of (6) is again (x∗, y∗) ∈ R2 and the probability of stability of (6) becomes P(Sn), where

Sn = {ω ∈ Ω : fy(y∗)
n∑

i=1

φi gx(x∗, αi(ω)) ∈ (−1, 1)}. (7)

7Indeed, the y variable could be dropped altogether in this Section. However, in order to maintain consistency in the notation
with the next Section (where such reduction is not possible) and to understand in what sense the model is progressively enriched, it
is more suitable to keep the variable y, which, by the way, also has a relevant semantic interpretation (it represents expectations).

8Observe that the weights are not in general independent of n: so they should really be thought of as φi(n). We have relinquished
such heavier notation for simplicity.
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Remark 1 The condition for stability of (6) and its probability P(Sn) remain the same under a different ag-
gregation policy, such as xt+1 =

∑n
i=1 φi f(yit+1) instead of (5). Therefore aggregation can be done as a linear

combination of the law of motion f instead of mixing the variables yi, without compromising the results.

We are interested in the study of P(Sn), especially when n grows and tends to infinity. Beside explicit
computations when f , g, φi and the exact distribution of the αi are known, we wish to give general results
concerning the asymptotic behavior of P(Sn). Let C := {ω ∈ Ω : limn

∑n
i=1 φigx(x∗, αi)(ω) exists and is finite}.

Proposition 2 Assume the random variables αi are independent. Then:

(i) P(C) = 0 or 1.

(ii) If both limn

∑n
i=1 E[φigx(x∗, αi)] and limn

∑n
i=1 V(φigx(x∗, αi)) converge, then P(C) = 1.

(iii) If limn

∑n
i=1 φ

2
i = 0 and αi are identically distributed, then

lim
n

P(Sn) =

{
1 if fy(y∗)E[gx(x∗, α1)] ∈ (−1, 1),
0 otherwise.

(8)

Proposition 2, (iii), gives a precise result about the chances of obtaining a stable steady state for (6).9 However,
the polarization exhibited in (8) implies restrictions on the weights φi and the αi. In particular, the assumption
on φi, which for instance holds if φi = 1

n , demands that in the limit with a huge number of agents, each of
them has a negligible impact over the aggregation of the expectations. Besides, αi identically and independently
distributed is also rather binding. Relaxing these hypotheses causes two main problems. First, we could have
P(C) = 0 (see Example 3). Second, we can have P(C) = 1 but the almost sure limit limn

∑n
i=1 φigx(x∗, αi) is

a non-degenerate random variable: in fact, our limit can be any infinitely divisible random variable10. In such
cases, the polarization shown in (8) is no longer granted (see Example 4 and Example 6).

Example 3 We show that P(C) can be zero. For instance, this happens when the series
∑
i φigx(x∗, αi) diverges

to infinity almost surely. If φi = 1
n ∀i ≤ n, gx(x∗, α) = α and

αi =

{
i with probability 1

2

i2 with probability 1
2

(9)

then P(limn

∑n
i=1 φigx(x∗, αi) = +∞) = 1 since limn

1
n

∑n
i=1 αi ≥ limn

1
n

∑n
i=1 i = limn

n+1
2 = +∞. Similarly,

we can have divergence to −∞. However, for our purposes these situations are easily handled because we have
limn P(Sn) = 0 irrespective of fy(y∗). Finally, we note that the existence of limn

∑n
i=1 φigx(x∗, αi) is not assured

(e.g. when the summation is oscillatory).

Example 4 Suppose gx(x∗, αi) are independent with mean mi and variance σ2
i . Consider a sequence of weights

φi for which the assumption
∑∞
i=1 φ

2
i = 0 does not hold: this rules out the case of equal weights φi = 1/n and

can arise for example when a single agent has a non-vanishing weight (we deal with this case in Section 2.1).
Assuming that m =

∑∞
i=1 φimi and σ2 =

∑∞
i=1 φ

2
iσ

2
i we have P(C) = 1 due to Proposition 2 (i) and (ii). Also,

as a consequence of the (Lyapunov) Central Limit Theorem, the almost sure limit for
∑
i=1 φigx(x∗, αi) exists

and is distributed as N(m,σ2). If fy(y∗) > 0 we have

lim
n

P(Sn) =

∫ 1/fy(y∗)

−1/fy(y∗)

1√
2πσ2

e−
(y−m)2

2σ2 dy (10)

hence limn P(Sn) can take on any value between 0 and 1 and there is therefore no polarization in this case.

2.1 Some generalizations and examples

We now extend the previous analysis to more general specifications of the problem.

9The convergence result in (8) still holds if the assumptions on the weights φi are weakened provided those on the random
variables φigx(x∗, αi) are suitably strengthened.

10See [43], III.§6 for definition and characterizations.
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1. To begin with, consider m-dimensional state variables in (6):

{
xt+1 = f(yt+1),
yt+1 =

∑n
i=1 φig(xt, αi),

(11)

where f ∈ C1(Rm;Rm), g ∈ C1(Rm+1;Rm). Assume (x∗,y∗) ∈ R2m is the unique steady state of (11)
irrespective of the αi. Now, letting ρ(·) be the spectral radius of a square matrix, the stability of (11)
depends on

ρn := ρ

(
Jf (y∗)

n∑

i=1

φiJg(x
∗, αi)

)
, (12)

where Jf (y∗) is the m×m Jacobian of f computed at y∗ and Jg(x
∗, αi) is an m×m random matrix whose

entries are the partial derivatives of g computed at (x∗, αi). Note that ρn is a random variable and one
could (with some effort) compute the probability P({ω ∈ Ω : ρn(ω) < 1}) and analyze its limit.

2. Consider random vectors αi , i.e. we are given a stochastic process where αi : Ω→ A ⊂ Rk. The aggregated
dynamical system appears the same as in (6). The stability sets Sn are as in (7) and the analysis goes along
the same lines, bearing in mind that we have to use convergence results for random vectors. For example,
Proposition 2, (i) and (iii), still hold with straightforward changes.

3. Suppose the (scalar) state variable x evolves according to a law of motion which depends both on x and y.
Specifically, system (6) becomes {

xt+1 = f(xt, yt+1)
yt+1 =

∑n
i=1 φig(xt, αi)

(13)

with the usual assumptions on the functions and the steady state. Aggregating, we study the one dimen-
sional equation

xt+1 = f(xt,
n∑

i=1

φig(xt, αi)) (14)

whose stability reduces to

−1 < fx(x∗, y∗) + fy(x∗, y∗)
n∑

i=1

φigx(x∗, αi) < 1 (15)

So we obtain the stability sets

Sn = {ω ∈ Ω : fy(x∗, y∗)
n∑

i=1

φigx(x∗, αi(ω)) ∈ (−1− fx(x∗, y∗), 1− fx(x∗, y∗))} (16)

and we can perform the same asymptotic analysis we did in Section 2, simply adapting the endpoints of
the convergence interval.

4. Consider the situation in which there are two distinct sets of state variables or, alternatively, distinct
expectations of two pools of agents, described by the system





xt+1 = f(xt, yt+1, zt+1)
yt+1 =

∑n
i=1 φiy

i
t+1

zt+1 =
∑m
j=1 ψjz

j
t+1

yit+1 = g(xt, αi) i = 1, . . . , n

zjt+1 = h(xt, βj) j = 1, . . . ,m

(17)

with scalar variables x, yi, zj and a unique steady state (x∗, y∗, z∗) ∈ R3. The stability analysis for (17)
proceeds as above, aggregating heterogeneity through two sets of weights φi and ψj summing up to 1. Some
details are provided in Example 5.

5. Finally, we focus on an interesting special case in which a particular agent has a significance superior to
the others. Consider the problem

{
xt+1 = f(yt+1)
yt+1 = φ0g(xt, α0) +

∑n
i=1 φig(xt, αi)

(18)
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where the weights satisfy 0 � φ0 < 1, 0 ≤ φi ≤ 1 − φ0, φ0 +
∑n
i=1 φi = 1 for n ≥ 1, φi = 0 for i > n

and limn→+∞ φ0 = φ̂0 > 0. This situation, whereby agent 0 has special influence in the economy, is in
fact already encompassed in the analysis of Section 2. In addition, the presence of any finite number of
influential agents can be easily accommodated. Assuming a unique steady state (x∗, y∗), we have

Sn = {ω ∈ Ω : fy(y∗)[φ0gx(x∗, α0(ω)) +

n∑

i=1

φigx(x∗, αi)(ω)] ∈ (−1, 1)}. (19)

The asymptotic analysis for the probabilities of Sn readily follows. For instance, suppose α0, α1, α2, . . . are
independent with αi i.i.d. for i ≥ 1 and φi = 1

n (1− φ0) for 1 ≤ i ≤ n. Setting

Ω̂ = {ω ∈ Ω :

n∑

i=1

φigx(x∗, αi)(ω) −→ (1− φ̂0)E[gx(x∗, α1)]}, (20)

the SLLN implies P(Ω̂) = 1. Now assume fy(y∗) > 0 to fix ideas. Then

lim
n

P(Sn ∩ Ω̂) = P{ω ∈ Ω̂ : α0(ω) ∈ gx(x∗, ·)−1(S)} (21)

where
S =

(
1
φ̂0

[− 1
fy(y∗) − (1− φ̂0)E[gx(x∗, α1)]] , 1

φ̂0
[ 1
fy(y∗) − (1− φ̂0)E[gx(x∗, α1)]]

)
(22)

Thus we can observe that polarization does not necessarily hold.

Example 5 Inspired by the empirical literature devoted to estimating processes for the formation of households’
stock market beliefs (see e.g. [47]) let us consider a financial market populated by two groups of traders, namely
the mean-extrapolators and the mean-reverters. Let xt be the current price of the traded asset and yit+1, zjt+1

its expected price at time t+ 1 (computed at time t) by the i-th and the j-th agent respectively. Suppose that the
pricing rule as well as the expectation are (trivially) given by





xt+1 = axt + (1− a)τ
∑n
i=1 φiy

i
t+1 + (1− a)(1− τ)

∑m
j=1 ψjz

j
t+1

yit+1 = x∗ + αi(xt − x∗) i = 1 . . . , n

zjt+1 = x∗ + βj(xt − x∗) j = 1 . . . ,m

(23)

where a ∈ (0, 1) is a constant market parameter, τ ∈ (0, 1) measures the relative strength of the pools, x∗ is the
fundamental value of the asset, αi > 1 and βj < 0 are the uncertain parameters which drive the expectations.
With one trader per group, the probability of stability is P(S1) ≡ P({ω ∈ Ω : τα1(ω)+(1−τ)β1(ω) ∈ (− 1+a

1−a , 1)}).
Instead, assume an arbitrary number of investors and set n = m, φi = ψj = 1

n to fix ideas. Moreover, we shall
suppose αi i.i.d. and βj i.i.d., the two processes being independent each other. Now, when n tends to infinity
we recover a polarization effect with almost sure stability if and only if τE[α1] + (1 − τ)E[β1] ∈ (− 1+a

1−a , 1). For

instance, fix a = 1
4 , τ = 0.8, α1 ∼ U(1, 2) and β1 ∼ U(−1, 0). Then, P(S1) = 3

8 , whereas in the limit we get
instability since E[α1] = 3

2 and E[β1] = − 1
2 . Ceteris paribus, setting τ = 0.6 we have P(S1) = 11

12 and stability in
the limit.11 More in general, τ = 3

4 implies a 50-50 probability of stability when there is one trader per group, and
discriminates the asymptotic outcome when n becomes large. So, with this parameter specification, asymptotic
convergence to the fundamental value requires a not too large weight of mean-extrapolators with respect to the
mean-reverters.

In the following example we revisit and expand the stylized financial market model originally introduced by
[23] and make use of the results above.

Example 6 Building on [23], active investors are segregated into two distinct pools, namely the α-investors (or
fundamentalists) and the β-investors (or sheep). Fundamentalists tend to stabilize the market, whereas sheep
amplify price oscillations. Each group is supposed to contribute to the price dynamics via an excess demand
function, which in turn depends on several parameters. Once the aggregated excess demand Zt is established,
market makers clear the market and price adjusts in order to ensure equilibrium. The adjustment mechanism
can be explicitly formalized as follows:

xt+1 = xt + λZt(yt+1, xt),

11Observe that the same outcome continues to hold with more elaborate non-linear updating of the expectations, e.g. yit+1 =

x∗ + arctan(βj(xt − x∗)) and/or zjt+1 = x∗ + βj(xt − x∗) + βj(xt − x∗)k for some k > 1.
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where x is the price of the asset, y is the price expectation and λ > 0 is the adjustment sensitivity. For simplicity,
we assume as in [19] that the excess demand is given by

Zt(yt+1, xt) = s(yt+1 − xt),

where s > 0 is a positive coefficient. We shall suppose that fundamentalists act as a whole. This is because
α-investors drive the market thanks to their superior information, which we aggregate at this stage of the model.
Otherwise stated, we assume the presence of a unique influential fundamentalist whose expectation is

y0
t+1 = xt − α0

[
(xt − v) + (xt − v)3

]
, (24)

where v is an estimate of the investment value and α0 > 0 is a sensitivity parameter. For exhaustive explanations
on (24), see [23, 19]. On the other hand, we keep separated n β-investors, whose expectations are

yit+1 = xt + βi(xt − u) i = 1, . . . , n (25)

where βi > 0 are the so-called flocking coefficients and u is a perceived fundamental value. Before proceeding
further, we assume v = u as explained in [23] in order to consider only a full equilibrium. Next, we linearly
aggregate expectations as usual, attaching weight φ0 to the influential fundamentalist and weights φi to the sheep.
A weight simply represents the relative importance of the investor. Putting everything together, we get the equation

xt+1 = xt + λs

[
(xt − v)

n∑

i=1

φiβi − α0φ0(xt − v)− α0φ0(xt − v)3

]
, (26)

The full equilibrium of (26) corresponds to the steady state x∗ = v. We distinguish the following interesting
cases.

Single sheep. If n = 1 and α0, β1 are the stochastic parameters of our investors, we see that the probability

of x∗ being stable is P
(

1−φ0

φ0
β1 < α0 <

2
λsφ0

+ 1−φ0

φ0
β1

)
, where φ0 is the constant weight associated to the funda-

mentalist. Such probability can be easily computed if the joint distribution of (α0, β1) is known. The analysis is
consistent with [23], where the deterministic skeleton is thoroughly analyzed.

Many sheep with same distribution. Suppose βi are i.i.d. with uniform weights φi = 1
n (1 − φ0)

for i ≤ n. Hence, we can exploit the results in (19)-(22) and the resulting probability of stability is P :=

P
(

1−φ0

φ0
E[β1] < α0 <

2
λsφ0

+ 1−φ0

φ0
E[β1]

)
. For instance, if α0 ∼ U(0, ᾱ) we see that

P =





0 if ᾱ ≤ 1−φ0

φ0
E[β1]

1− 1
ᾱ

1−φ0

φ0
E[β1] if ᾱ ∈

(
1−φ0

φ0
E[β1], 2

λsφ0
+ 1−φ0

φ0
E[β1]

)

1
ᾱ

2
λsφ0

if ᾱ ≥ 2
λsφ0

+ 1−φ0

φ0
E[β1]

(27)

Note that P is increasing in ᾱ (as long as ᾱ ≤ 2
λsφ0

+ 1−φ0

φ0
E[β1]), since such parameter correlates with a higher

impact of the fundamentalist on the market. P instead is decreasing in λ and s, both of which contribute to
defining the responsiveness of price changes to excess demand.

3 Inertia in expectations

In the previous Section we have developed a model characterized by two features. From a technical point of view,
the introduction of heterogeneity is absorbed within the dynamics of the system without affecting (increasing) its
order. This in turn implies that polarization effects can be traced back to the action of a fictitious representative-
agent in the spirit of [29]. In this Section we instead examine a family of models in which expectations may
also depend on one’s past values, i.e. exhibiting a component of inertia: this element is empirically relevant,
as has been pointed out in the literature for example in [3, 6, 18, 33]. Incorporating such component however
determines the dependence of the order of the dynamical system - and therefore the complexity of its analysis -
on the number of agents involved in the economic activity.

We can represent such a scenario in the baseline model of a single-agent economy through the discrete-time
dynamical system {

xt+1 = f(yt+1)
yt+1 = g(xt, yt, α1)

(28)
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with the usual assumptions that f and g are C1, and α1 : Ω → A ⊂ R is a scalar random variable. Assume
(x∗, y∗) ∈ R2 is the unique steady state of (28), i.e., x∗ = f(y∗) and y∗ = g(x∗, y∗, α) for all α ∈ A. To analyze
the stability of the equilibrium, we consider the characteristic polynomial of the random 2× 2 matrix

J1 =

[
fy(y∗)gx(x∗, y∗, α1) fy(y∗)gy(x∗, y∗, α1)

gx(x∗, y∗, α1) gy(x∗, y∗, α1)

]
. (29)

We need to compute the probability that the spectral radius of J1 lies in (0, 1). Given the first row is a
multiple of the second, we see that an eigenvalue of J1 is λ1 = 0, therefore we can compute the second eigenvalue
as λ2 = fy(y∗)gx(x∗, y∗, α1) + gy(x∗, y∗, α1). Hence, stability requires −1 < λ2 < 1.

The model extends to the n agents case very much as above. The i-th agent is assumed to update her
expectation about the state variable via the mapping

yit+1 = g(xt, y
i
t, αi). (30)

In other words, the i-th agent disregards (or is unaware of) the previous predictions of other agents when
updating her own. Aggregating through the usual linear combination with weights φi as above, results in the
(n+ 1)-dimensional dynamical system:

{
xt+1 = f

(∑n
i=1 φig(xt, y

i
t, αi)

)

yit+1 = g(xt, y
i
t, αi) i = 1, . . . , n.

(31)

We thus see that the unique steady state of (31) is (x∗, y∗, . . . , y∗) ∈ Rn+1 (with an abuse of notation, we will
sometimes write (x∗, y∗) instead).

Stability of system (31) depends on the spectral radius of the (n+ 1)× (n+ 1) random matrix

Jn =




fy(y∗)
∑n
i=1 φigx(x∗, y∗, αi) fy(y∗)φ1gy(x∗, y∗, α1) · · · fy(y∗)φngy(x∗, y∗, αn)

gx(x∗, y∗, α1) gy(x∗, y∗, α1) · · · 0
... 0

. . . 0
gx(x∗, y∗, αn) 0 · · · gy(x∗, y∗, αn)


 (32)

Otherwise stated, we have
Sn = {ω ∈ Ω : ρ(Jn(ω)) ≡ max

1≤i≤n+1
|λi(ω)| < 1}, (33)

where λ1, . . . , λn+1 are the eigenvalues of Jn. Now, let pn(λ) be the characteristic polynomial of Jn. Observe that
pn is a random polynomial of degree (n+ 1), meaning that the coefficients of pn are random variables. However,
for any fixed ω ∈ Ω, pn is not random and its properties are as follows.

Lemma 7 Assume the terms gx(x∗, y∗, αi) all have the same sign. Then:

(i) pn(λ) = −λ
[
fy(y∗)

∑n
i=1 φigx(x∗, y∗, αi)

∏
j 6=i(gy(x∗, y∗, αj)− λ) +

∏n
j=1(gy(x∗, y∗, αj)− λ)

]

(ii) pn has (n+ 1) real roots

(iii) At least n− 1 roots of pn belong to the interval [mini{gy(x∗, y∗, αi)},maxi{gy(x∗, y∗, αi)}]

Lemma 7 (iii) implies that if the realization of the gy(x∗, y∗, αi) terms all lie in the (−1, 1) interval then pn will
have (at least) n− 1 stable roots. It turns out that the condition P({|gy(x∗, y∗, αi)| > 1}) = 0 is also necessary
to have asymptotic stability for large n, as we show in the following Proposition.

Proposition 8 Let Ai = {ω ∈ Ω : |gy(x∗, y∗, αi(ω))| > 1} and assume αi are independent random variables.
If
∑∞
i=1 P(Ai) = ∞, then limn P(Sn) = 0. In particular, if αi are identically distributed and P(A1) > 0, then

limn P(Sn) = 0.

We shall henceforth assume αi i.i.d. and such that P({|gy(x∗, y∗, αi)| > 1}) = 0, i.e. the support of gy(x∗, y∗, αi)
is included in the interval [−1, 1]. The question of stability remains open however, since it is still necessary to
study the magnitude of the (at most two) remaining eigenvalue(s). Generally speaking, it is difficult to draw
precise conclusions about them. However, there are some tractable special cases which are interesting as they
include or are quite close to economic models such as production cobweb models with adaptive agents (see for
example [34, 39, 20]) with applications to farming production cycles.

8



Proposition 9 Assume αi are i.i.d., limn

∑n
i=1 φ

2
i = 0, gx(x∗, y∗, αi) have constant sign for all i and

gy(x∗, y∗, αi) ∈ (−1, 1) similarly have constant sign. Then

(i)

fy(y∗)gx(x∗, y∗, αi) > 0⇒ lim
n

P(Sn) =

{
1 if µfy(y∗) + 1 > 0

0 otherwise
(34)

where µ = E
[

gx(x∗,y∗,α1)
gy(x∗,y∗,αi)−1

]

(ii)

fy(y∗)gx(x∗, y∗, αi) < 0⇒ lim
n

P(Sn) =

{
1 if νfy(y∗) + 1 > 0

0 otherwise
(35)

where ν = E
[

gx(x∗,y∗,αi)
gy(x∗,y∗,αi)+1

]
.

The assumption (i) of Proposition 9 implies that f drives y to the steady state y∗ monotonically. On the
contrary, in case (ii) the law of motion f follows a cobweb-like dynamic.

Remark 10 Observe that there is a similarity between the conditions identifying the thresholds for stability in
Proposition 9 and that for the single-agent case concerning the matrix in (29). However, given the nonlinearity of
the expectation operator and the functional shape of µ and ν in Proposition 9, in general the average representative
agent model requires conditions that differ from the n-agents scenario: so this makes a case for the concept that
heterogeneous agents matter. The following Example illustrates this point.

Example 11 Our setting is well suited to represent the cobweb production model with heterogeneous producers
studied, e.g., in [34, 20]. Indeed, consider the system

{
xt+1 = D−1(

∑n
i=1 φiS(yit+1))

yit+1 = yit + αi(xt − yit), i = 1, . . . , n
(36)

where x is the current price of the commodity, yi is the expected price for the i-th agent, D and S are the demand
and supply function respectively, φi reflects the market share of the i-th agent and αi are i.i.d. random variables
with support on the unit interval. Note that every producer has adaptive expectations over the price. Assuming
a strictly monotone decreasing demand and a strictly monotone increasing supply, we deduce the existence of a
unique steady state (x∗, y∗, . . . , y∗) ∈ Rn+1, where x∗ = y∗ is the price that induces zero excess demand. Observe

that, in terms of our previous notation, fy(y∗) = S′(x∗)
D′(x∗) < 0, gx(x∗, y∗, αi) = αi > 0 and gy(x∗, y∗, α1) = 1− αi.

We can therefore apply Proposition 9, (ii), letting ν = E
[

αi
2−αi

]
: asymptotic stability will emerge (for large n) if

E
[

αi
2− αi

]
S′(x∗)
D′(x∗)

+ 1 > 0 (37)

Observe that, by virtue of Jensens’ Inequality, E
[

αi
2−αi

]
> E(αi)

2−E(αi)
which entails that in this case a representative

agent having parameter α equal to the population mean would imply weaker conditions for stability than those
required by (37) for the fully heterogeneous case. To inspect further the condition posed by (37) we can rewrite it
in terms of elasticities of demand and supply at the equilibrium

εD
εS

< E
[

αi
2− αi

]

Therefore we see that, given expectations (the exact probability distribution of αi) and technology as captured
by the elasticity of supply, demand must be inelastic enough in order for stability to arise in the presence of a
large number of producers with heterogeneous adaptive expectations.

3.1 Some generalizations and examples

The first extension to (31) concerns a more general form for the law of motion f . We consider the system

{
xt+1 = f(xt,

∑n
i=1 φig(xt, y

i
t, αi))

yit+1 = g(xt, y
i
t, αi), i = 1, . . . , n

(38)
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where f is allowed to depend directly on the current state x (in addition to its indirect influence through
expectations). Adapting the arguments of the baseline model with inertia, the following result shows that the
direct dependence on the state as measured by the partial derivative fx at the steady state is key to determine
the scope for stability with large n.

Proposition 12 Under the assumptions of Proposition 9 and that fy(x∗, y∗)gx(x∗, y∗, αi)gy(x∗, y∗, αi) > 0

lim
n

P(Sn) =

{
1 if − 1− νfy(x∗, y∗) < fx(x∗, y∗) < 1 + µfy(x∗, y∗)

0 otherwise
(39)

where µ and ν are defined in Proposition 9 and Sn are the stability sets of (38).

Remark that Proposition 12, differs from Proposition 9 in that (39) involves µ and ν simultaneously.for

Example 13 Consider an asset pricing model characterized by a type of agents who form their own expectation
yi about the future price combining an adaptive rule and a fundamental analysis over the traded asset (see [19, 23]
for similar settings). Specifically, this financial market is described by the system

{
xt+1 = xt + δ(yt+1 − xt)
yit+1 = αiy

i
t + (1− αi)xt − βi[(xt − x∗) + (xt − x∗)3], i = 1, . . . , n

(40)

with the usual linear aggregation of expectations yt =
∑n
i φiy

i
t. Here x∗ is an estimate of the fundamental value

of the asset and δ > 0 is a sensitivity parameter which depends on the tatônnement process underlying the pricing
rule (see [19, 23] for more details). We shall assume independently distributed αi ∈ (0, ᾱ) and βi ∈ (0, 1 − ᾱ),
with ᾱ ∈ (0, 1). Observe that the stochastic parameter is bi-dimensional in this case but this does not compromise
our results. The unique steady state of (40) is (x∗, x∗, . . . , x∗) ∈ Rn+1, fx(x∗, y∗) = 1− δ, and fy(x∗, y∗) = δ.

If we consider a single-agent model with given parameters (α, β), then we see that stability holds for δ < 2+2α
2α+β

and period-doubling bifurcations can occur, whereas when δ < 2 stability is always ensured. In the general case,
assuming (αi, βi) i.i.d., we can apply Proposition 12. For example, if αi ∼ U(0, ᾱ) and βi ∼ U(0, 1 − ᾱ), then
we find

µ =
(ᾱ− 1) ln(1− ᾱ)

2ᾱ
− 1, ν =

(3 + ᾱ) ln(1 + ᾱ)

2ᾱ
− 1.

As a consequence, when δ ≤ 1 we always have stability. On the contrary, if δ ≥ 4 then stability can never arise.
Finally, when 1 < δ < 4 we see that

lim
n

P(Sn) = 1 ⇐⇒ δ <
4ᾱ

4ᾱ− (3 + ᾱ) ln(1 + ᾱ)
, (41)

where Sn are the stability sets of (40). Observe that the stability threshold appearing in the right-hand side of
(41) is monotone decreasing in ᾱ: the larger the support for the adaptive parameter - that is strengthening the
weight of the adaptive component with respect to the fundamental component of expectations, the condition for
stability becomes more restrictive. In other words, the more agents there are with relevant adaptive components,
the less likely it is that with n large the system will converge to steady state.

A second extension considers the case when the law of motion f depends on the current value of y rather
than on its value at t + 1. Such setup is quite natural in many applications.12 Hence, we are led to study the
system {

xt+1 = f(xt,
∑n
i=1 φiy

i
t)

yit+1 = g(xt, y
i
t, αi), i = 1, . . . , n

(42)

The arguments in the base case can be tweaked in a straightforward way to tackle this case and give the following
result.

Corollary 14 Under the assumptions of Proposition 9 and that fy(x∗, y∗)gx(x∗, y∗, αi) > 0

lim
n

P(Sn) =

{
1 if − 1 + νfy(x∗, y∗) < fx(x∗, y∗) < 1 + µfy(x∗, y∗)

0 otherwise
(43)

where µ and ν are defined in Proposition 9 and Sn are the stability sets of (42).

12System (42) indeed can be easily cast into a simple two-dimensional Vector AutoRegressive model of order 1, which is widely
used in empirical and financial macroeconomics (see [44]). Also, it fits for instance a nonlinear discrete-time Cournot duopoly game
in which sellers have heterogeneous expectations, as in [5] and many other papers.
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Notice how (43) differs from (39): this stems from the underlying Jacobian not being singular any more and
its characteristic polynomial differing accordingly. Specifically, (43) gives a stronger condition on fx(x∗, y∗) in
order to have asymptotic stability, since νfy(x∗, y∗) > 0. So in general we can expect tighter conditions to be
required to secure stability for large n.

Example 15 An R&D consortium launches a new high-tech product on the market, which requires heavy in-
vestment by manufacturing companies, with the support of the Government. The initial investment guarantees
at least an aggregate production of x̄ units, with a minimal rate of use of the plants and the other factors by
each firm. The producers cannot engage in a Bertrand competition since the consortium rules bind the companies
to a given selling price depending on aggregate production, which in turn generates profit margins for the firm.
For this reason firms focus on the aggregate production x, their share of profits thereof, δix, and the individual
extra-production with respect to x̄: to this end firms can push the use of their plants and other inputs beyond the
minimum capacity, as measured by yi. The following system of equations depicts the above scenario:

{
xt+1 = x̄+ ρ

∑n
i=1 φiy

i
t

yit+1 = αiy
i
t + δitxt, i = 1, . . . , n

(44)

were we assume ρ > 0, αi ∈ (0, 1). Thus firms contribute to producing above the minimum threshold x̄ in a way
that depends on previous production: if the profit margins were zero (δit = 0) they would gradually reduce (at a
rate 0 < αi < 1) their extra production, reflecting constraints due to existing contracts by which they could not
immediately zero out yi. Notice that firms capacity utilization rate above the minimum translates into quantities
produced in a way that depends on the factor ρφi, which relates to the firm’s individual efficiency. For simplicity
we also assume that there is no actual idiosyncratic profit component, so δit = δ > 0.
With a single producer, there is a meaningful (in the sense of securing the non-negativity of the variables) unique
steady state of (44) provided ρδ < 1− α, and it is as follows

(
x̄(1− α)

1− α− ρδ ,
x̄δ

1− α− ρδ

)

Notice that the condition ρδ < 1− α ensures that the steady state level of production is larger than the minimal
threshold, and at the same time it is asymptotically stable. If for example α ∼ U(αl, αh), then we find

P({ω ∈ Ω : ρδ < 1− α(ω)}) =





0 if 1− ρδ ≤ αl
1−ρδ−αl
αh−αl if αl < 1− ρδ < αh

1 if 1− ρδ ≥ αh
(45)

On the other hand, with n producers there is a unique steady state which depends on the realization of the αi as
follows:

x∗ =
x̄

1− ρδ∑n
i=1

φi
1−αi

, yi∗ =
δx∗

1− αi
, i = 1, . . . , n.

Assuming αi i.i.d. and for example equal weights φi = 1
n allow us to resort to Corollary 14. Observing that

fx(x∗, y∗) = 0, fy(x∗, y∗) = ρ, we find asymptotic stability if and only if

ρδ <

(
E
[

1

1− α1

])−1

For instance, if α1 ∼ U(αl, αh), then asymptotic stability arises under the condition

ρδ <
1− αl

ln(1− αl)− ln(1− αh)

Let us compare this result with condition (45) arising in the single-firm case. One obvious point is that, given
there is polarization, stability with a large number of firms ceases to be stochastic and either occurs or does not.
This is to be contrasted with the single-firm situation (45) which involves an intermediate regime of probability
strictly between 0 and 1: however if we focus on the condition that entails stability with certainty, the constraint
is weaker with large n: a government-supported R&D consortium therefore would probably weigh this along with
other aspects, such as optimal partner size in order to determine the ideal composition and membership conditions
of the consortium.
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4 Discussion and possible extensions

In the previous sections, we sought to understand the extent to which the study of the local dynamic properties
of a model with heterogeneous agents can be traced back to that of the corresponding model with an average
representative agent. This was done by envisioning that the heterogeneous economy is populated by a very large
number of types drawn from a reference population whose probability distribution is known. On the one hand,
we have shown that an asymptotic result relating the stability properties of the heterogeneous model to certain
characteristics of the population distribution is valid under fairly general assumptions. In spirit, this result is
close to the one obtained in [13], with the drawback of being related only to the local dynamical properties of the
model, but with the benefit of being applicable to a larger set of cases. When heterogeneity increases, we find
that the local stability of the system is assured (in probability) if and only if the probability distribution satisfies
conditions that depend on the structure of the model under study. On the other hand, we observe that such
conditions cannot always be trivially connected to some average measure of the distribution of types, particularly
when agents heterogeneity incorporates some kind of adaptation with inertia, as seen in Section 3.

While we have tried to cover a sufficiently wide set of different basic models in order to make a convincing point
about the general validity of our two main sets of results, many extensions are possible which would contribute
to widely expand the scope of this work. We will now discuss some of them, trying to highlight the role played
by the assumptions on which our results are based.

One direction in which the assumptions can be relaxed concerns the probabilistic structure on which the
model rests: for instance we might relinquish the fact that α should have first and second moments. An example
is the following, which considers a possible twist of Example 6.

Example 16 We investigate the case of many sheep with different distributions in Example 6. Assume we
are given (possibly distinct) weights φi summing up to 1 − φ0 and independent random variables βi with Lévy
distribution, which has support [0,+∞) and is described by a single parameter bi > 0; we shall write βi ∼ L(bi)
and its density function is unimodal, with mode at x = bi

3 and E[β] = +∞. Also Lévy distributed random
variables are infinitely divisible: indeed

n∑

i=1

φiβi ∼ L



[
n∑

i=1

√
bi
φi

]2

 .

It follows that if limn

∑n
i=1

√
bi
φi

=: b < +∞, then we can perform our stability analysis in the limit for n growing

to infinity. Note that the assumption b < +∞ gives a quite strict condition on the parameters bi and the weights
φi. For example, if φi = 1/n, then the bi must be o(n−3). Now, if α0 is known we have

lim
n

P(Sn) =





2
[
N
(√

b
−2/λs+α0φ0

)
−N

(√
b

α0φ0

)]
if − 2

λs + α0φ0 > 0

2
[
1−N

(√
b

α0φ0

)]
otherwise

(46)

where N is the cumulative density of a standard Gaussian random variable. Thus polarization does not arise.
Furthermore, as long as − 2

λs + α0φ0 ≤ 0, the asymptotic probability in (46) is monotone increasing in α0 and
φ0, whereas it is decreasing in b and λs as expected. Surprisingly, when − 2

λs + α0φ0 > 0 the probability is
monotone decreasing in λs but it is not monotone with respect to any of the other parameters. Before concluding
this example, we remark that Proposition (2), (ii), just gives a sufficient condition in order to have P(C) = 1.
As a matter of fact, we show in the Appendix that if b < +∞, then P(ω ∈ Ω :

∑n
i=1 φiβi converges) = 1 even if

E[βi] = +∞ for all i. Clearly, the almost sure limit of the summation must be a Lévy distributed random variable
with parameter b.

In addition to various technical aspects, possible extensions can be organised in distinct substantive areas as we
examine below.

4.1 Coexistence of positive and negative feedback

While the main result of Proposition 2 in Section 2 holds under fairly weak assumptions, its extension to the
more general framework of Section 3 hinge upon the crucial sign assumptions of Proposition 9. These technical
assumptions rule out the possibility to apply those results to interesting settings some of which are discussed
below. The assumption about gx excludes models in which two different groups of agents form expectations at a
given time using previous expectations (inertia) and respond to changes in the state variable in opposite directions.
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One such situation is studied in [19] who suppose that agents are a heterogeneous mixture of sophisticated and
unsophisticated behavior. They assume expectations are generated by way of the law

pet+1 = αpet + (1− α) pt − β
(

(pt − v) + (pt − v)
3
)

+ γ (pt − pt−1) (47)

which, for extreme values of the parameters α, β and γ reduces to a version of the Day and Huang model.13 In
this case inertia may go along with reactions to price movement of both signs, hence revealing an example which
is not covered in this paper.

A second group of models left out from our analysis are those described by

pet+1 = α+
L∑

i

βipt−i +
L∑

i

γip
e
t−i (48)

when there are no constraints on the parameters βi, γi. Versions of such prediction rules have been used (and
estimated) in [36, 33, 6, 3] in the context of lab experiments. It is however interesting to remark that, in [33],
where estimations are carried out based on experimental data, our sign conditions (either βi or γi having different
sign across the estimated sample) were not violated.

Further examples include [21] where an inflation targeting monetary policy model generates expectations-
driven inflation dynamics with both the Central Bank and the private sector playing a role thereof. This case is
somewhat trickier because changes in expectations from the Central Bank and the private sector have opposite
effects on the state variable, whilst both expectations mechanisms feature positive inertia. The structure of the
model is: 




xt+1 = f(xt, yt,
∑n
i=1 φiz

i
t)

yt+1 = g(xt, yt)
zit+1 = h(xt, z

i
t, αi), i = 1, . . . , n

(49)

with gx, gy, hx, hz > 0 as required, but fyfz < 0 hence implying that the results in this paper do not shed light
on such model when heterogeneity is introduced.14

However, in [19, 21] the authors numerically show that the heterogeneous models of equations (47) and (49)
cannot be reduced to the corresponding average representative-agent case, and that a multiplicity of polarization
outcomes emerge when the number of agents increases, which is suggestive that the results presented here may
carry through to such models.

4.2 Aggregation

Across the paper we have so far assumed that heterogeneity is aggregated through a weighted average of individual
choices within the law of motion of the state variable of interest. While this is natural in many contexts, there
are cases where this assumption poses excessively demanding constraints. An example is given by the following
model of a market with one dominant firm and a competitive fringe (see e.g. [8, 9]).

Example 17 Let’s consider the market for a good with a linear demand function p = a− bq, and a supply side
of the market populated by one big, rational, profit maximizing firm, and a fringe of small, naive, price taking
potential entrants. A public authority monitors price dynamics and implements policies to push prices towards a

target p∗. Small firms have a total cost function CTi =
(qi)

2

2γi
+Fi and once entered the market they each produce

a quantity qi such that price and marginal cost are equal, qi

γi
= p⇒ qi = γip. At each point in time t firms draw

their production decisions for the following period given their price expectations, which are as follows:

pit+1 = p∗ + αi (pt − p∗)

If there are n small firms in the market, then the total quantity they produce at time t+ 1 is

qSt+1 =
n∑

i=1

qi =
n∑

i=1

γip
i
t+1 =

n∑

i=1

γi (p∗ + αi (pt − p∗)) = p∗
n∑

i=1

γi (1− αi) + pt

n∑

i=1

γiαi

13Observe that standard asset pricing models with fundamentalists and chartists do not belong to this category, and are covered
by the discussion in Section 2, because expectations - despite assuming agents who react in opposite way when prices depart from
the equilibrium value - do not embody inertia. The classical paper by Day and Huang [23] provides a trickier example. They
consider an asset pricing model where the market is populated by two types of agents, sophisticated (i.e. fundamentalists) and
unsophisticated who forecast future prices as a mixture of adaptive and trend chasing expectations. However such version of the
model is encompassed in Section 3 because the inertia in the model is related to agents having all the same kind of reaction to price
movement thus satisfying the assumption of gx all having the same sign.

14Instead, the result in Proposition 9 could be easily adjusted to encompass the case fyfz > 0.
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The big firm anticipates small firms behavior and acts as a monopolist on the residual demand. Given its total
cost function CT = cqB + F profit maximization implies

a− 2bqB − bqS − c = 0⇒ qB =
a− c

2b
− qS

2

and the dynamics of the system is described by the following set of equations





pt+1 = a− b
(
qBt+1 + qSt+1

)

qSt+1 =
∑n
i=1 q

i
t+1

qBt+1 = a−c
2b −

qSt+1

2
qit+1 = γip

i
t+1 i = 1 . . . n

pit+1 = p∗ + αi (pt − p∗) i = 1 . . . n

⇒ pt+1 =
a+ c

2
− b

2

n∑

i=1

γi (p∗ + αi (pt − p∗)) (50)

Thus, in this example it is natural to aggregate heterogeneity through a simple sum and not through a
weighted average. This fact is the source of several dissimilarities when compared to what we have seen so
far, the most important of which is the fact that the steady state depends on the magnitude and quality of
heterogeneity. Nonetheless, with some caution, the equilibrium analysis can be carried out as usual as we will
see now.

Example 17 (cont’d) The system described by equation (50) has the steady state p̂:

p̂ =
a+ c− bp∗∑n

i=1 γi (1− αi)
2 + b

∑n
i=1 γiαi

(51)

which depends on several parameters and, in particular, on the size n and types γi, αi of the competitive fringe.
In general, the announced price p* will not be consistent with the steady state, so the public authority will need
to consider the effect of the chosen target on the value of the equilibrium that will be actually achieved as well as
on its stability. If it aims at having a steady state of the system coherent with the target itself, given the structure
of market demand, and given the number n of small firms, the public authority should announce the following
target price

p∗ =
a+ c

2 + bΓ

where Γ =
∑n
i=1 γi. In this situation, assuming that in equilibrium the total quantity produced by small firms

does not exhaust demand and that profits are non-negative for all firms in the market, the stability condition

−1 < dpt+1

dpt

∣∣∣
pt=p∗

< 1 requires that

n∑

i=1

γi
Γ
αi <

2

bΓ

so stability is granted if the weighted average of the behavioral parameters αi with weights equal to γi
Γ , representing

a measure of the fraction of small-firms total quantity produced by firm i, is less than 2
bΓ .

Any different target p∗ would imply the steady state described by equation (51) which is decreasing in p∗. The
intuition is that if the target is high, small firms will adapt their expectations to it and hence increase production,
hence leading to a price decline. Anyway, a public authority willing to avoid any credibility issue which might
stem from the inconsistency between announced and realized price should announce a target price of p∗ = a+c

2+bΓ
and, possibly, try to influence it by favouring or thwarting the entrance (or permanence) of small firms in the
market - hence manipulating the parameter Γ. Remark that the larger the number of small firms, the greater
Γ, and the smaller p∗. So, in this regard, the public authority should favour the entrance of the largest possible
number of small firms. When the number of small firms becomes larger and larger, the stability condition reduces
to

E [αi] <
2

bΓ̂
with Γ̂ = lim

n→+∞
Γ

following from the Kolmogorov’s strong law of large numbers. As a consequence, the increase in the number of
small firms in the market pushes down the price and, at the same time, makes it harder for the stability conditions
to be satisfied, generating a dilemma for the public authority.
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4.3 Endogenous weights and learning

One assumptions we have maintained is that the weight of each agent (or firm), φi remains constant in time.
Relaxing such assumption within the above framework, could shed some light on situations where weights may
become endogenous and possibly reflect some underlying process of learning.

An example can be obtained observing that system (50) from Example 17 can be recast as





pt = a− b
(
qBt + qSt

)
= a− b

(
φ0
t qt +

∑n
i=1 φ

i
tqt
)

qt = a−c
2b +

∑n
i=1 γip

i
t

2
pit+1 = p∗ + αi (pt − p∗)
φit =

γip
i
t

qt

φ0
t = 1−∑n

i=1 φ
i
t

Written in this way the weights φi sum up to one but are time-varying. Models in which weights change in
time may be complex and, except specific cases such as the above, are outside the scope of this work: examples
include, within the framework of Example 17, the possibility of having entry and exits of fringe firms based on
expected profits and losses.

Further examples worth studying would have weights that reflect the relative performance of given predictors,
in the spirit of the adaptive rational equilibrium dynamics (A.R.E.D., [11] is the classical reference) and more in
general related to the literature about endogenous switching between predictors. The basic model introduced by
Brock and Hommes in [11] has the form

xt+1 = f

(
xt,

2∑

i=1

φity
i
t

)

in which y1
t , y

2
t are two different expectation functions and the weights are

φit =
e−βhi(xt,y

i
t)

e−βh1(xt,y1t ) + e−βh2(xt,y2t )

where the functions hi represent a measure of fitness of predictors yi and β is the intensity of choice determining
the rate of adjustment towards the best predictor.

Extending these models to the case of a large number of different heterogeneous agents leads to a more
complex situation. The large type limit model introduced in [13] considers the case of a generic market model
with heterogeneous sellers and buyers. Selling and buying decisions are adjusted in time according to an ex-post
evaluation of the performance of a given set of alternative functions (each characterized by the realization of a
random variable). In its simplest version, the model takes the reduced form

FI,J(xt+1,xt, αi, βj) =
1

IJ

I∑

i=1

J∑

j=1

φi,j(xt, αi, βj)G(xt+1,xt, αi, βj)

where xt is a vector of past realization of x, αi, βj are the parameters characterizing the possible alternative
demand and supply functions, and G is the excess demand function. This model, implicitly defines the dynamic
evolution of the state variable x, the weights

φi,j
IJ being both time dependent and not summing up to one.

In conclusion, it would be interesting to extend the model we have studied to include the case with endogenous
weights, and thus reconnect with the vast literature on learning.

5 Concluding remarks

In this work we have studied, for a fairly general class of agent-based discrete-time dynamic economic models, the
interdependence between the level of agents’ heterogeneity and local stability conditions of the implied dynamics
under two different, yet complementary, points of view.

First, we have shown that the common reductionist assumption of equivalence between a natively heteroge-
neous model and the corresponding model with a representative agent is granted under the set of assumptions
in Section 2 - mainly the absence of inertia in expectations, coupled with linearly convex aggregation of hetero-
geneity. Once inertia affects agent’s behavior, this result no more holds and the task of describing the dynamics
becomes increasingly difficult - due to the surge in the dimensionality of the system resulting from increasing
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heterogeneity. For this case, in a set of different scenarios, we have shown how stability conditions can be deter-
mined explicitly, irrespective of the number of distinct agent types - hence irrespective of the dimensionality of
the system.

Second, we have shown that an asymptotic result regarding the probability of stability holds under fairly
general conditions on the distribution of types within the whole population. Indeed, the probability of stability
of the equilibrium of an economy, as could be estimated by an outside observer (typically a policy maker), will
tend to 0 or 1 depending on the value of a set of behavioral and structural parameters. We refer to this fact with
the term polarization of probabilities. We have highlighted in the various examples the scope for manoeuvre for
the policy maker in the sense of avoiding booms and busts and favouring convergence towards steady states.

Various dimensions in which this work might be extended have been presented that include agents that respond
qualitatively in opposite directions to changes in the state variable (positive / negative feedback), alternative
ways of aggregating heterogeneity, and endogenous (rather than constant) weights of the agents and learning.
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Appendix

We need the following notation. For n ∈ N, define F∞n := σ(αn, αn+1, . . .) and let H :=
⋂∞
m=1 F∞m be the tail

σ-algebra generated by the αi.

Proof (of Proposition 2). (i) follows from the Kolmogorov’s Zero-One law, observing that φigx(x∗, αi) are
independent random variables and that C ∈ H. Note that this holds even if φigx(x∗, αi) /∈ L1(Ω,F,P). (ii) is
a straightforward application of the well-known Two-Series Theorem (see Theorem 2 in [43], IV.§2). (iii): let
Xi = gx(x∗, αi) have mean µ and variance σ2, and Z =

∑n
i φiXi−µ, so that E(Z) = 0, V(Z) = σ2

∑
φ2
i . Using

Chebyshev’s inequality we get

P(|Z| < ε) ≥ 1− σ2
∑
φ2
i

ε2

which, as n → ∞, in turn implies (8). Notice that (iii) follows immediately from the Strong Law of Large
Numbers (SLLN) in the special case φi = 1/n.

Proof (of the almost sure convergence in Example 16). For i ≤ n, take independent βi ∼ L(bi) and fixed

weights φi. Define ai :=
√

bi
φi

and ζi := φiβi. Note that ζi ∼ L(a2
i ) and in our Example 16 we assumed that

∑n
i=1 ai converges as n tends to infinity. Now consider the upper truncation of βi at the threshold c > 0, i.e. set

ζci := ζiI{ζi≤c}. To prove the almost sure convergence of
∑n
i=1 ζi, we will use the following well-known result.

Kolmogorov’s Three-Series Theorem (see [43], IV.§2) Let ζ1, ζ2, . . . be a sequence of independent random
variables. A necessary condition for the convergence of

∑n
i=1 ζi with probability 1 is that the series

n∑

i=1

E[ζci ],
n∑

i=1

V[ζci ],
n∑

i=1

P(|ζi| ≥ c) (52)

converge for every c > 0. A sufficient condition is that these series converge for some c > 0.
Thanks to the Three-Series theorem, we fix c = 1 and we show the convergence of the three series. First,

observe that we have limi ai → 0. Therefore, there exists n̄ ∈ N such that for i ≥ n̄, it holds

1√
2π[1−N(ai)]

≤M < +∞, (53)

for some M > 0. Using (53) and the fact that for a Levy distributed variable, density and cumulative probability
functions are

f(x) =

√
c

2π

e−c/2x

x3/2
, F (x) = 2

(
1−N

(√
c

x

))

we find

lim
n

n∑

i=n̄+1

E[ζ1
i ] = lim

n

n∑

i=n̄+1

(
aie
−a2i /2

√
2π[1−N(ai)]

− a2
i

)

≤M lim
n

n∑

i=n̄+1

(
aie
−a2i /2 − a2

i

)

≤M lim
n

n∑

i=n̄+1

ai < +∞

thanks to our assumption. For the second series, we have

lim
n

n∑

i=n̄+1

V[ζ1
i ] ≤ lim

n

n∑

i=n̄+1

E[(ζ1
i )2]

=
1

3
lim
n

n∑

i=n̄+1

(
a4
i +

aie
−a2i /2

√
2π[1−N(a8i)]

− a3
i e
−a2i /2

√
2π[1−N(ai)]

)

≤ 1

3
lim
n

n∑

i=n̄+1

(
a4
i +Mai

)
< +∞,
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since a4
i < ai definitely. Finally, for the third series it is sufficient to note that

P(ζi ≥ 1) = 2N(ai)− 1 =
2√
2π

∫ ai

0

e−z
2/2dz

≤ 2√
2π
ai

holds for every i.

Define henceforth
ηi = φigx(x∗, y∗, αi) and ξi = gy(x∗, y∗, αi)

.
Proof (of Lemma 7).

(i) readily follows from Schur’s complement formula. To prove (ii), suppose all ξi are distinct and non-zero
(these last cases can be treated similarly). Without loss of generality, we set ξ1 < ξ2 < . . . < ξn. Using the
formula of pn, we see that

sign(pn(ξi)pn(ξi+1)) = sign(ξiξi+1fy(y∗)2ηiηi+1(−1)2i−1). (54)

Hence, if ξi and ξi+1 have the same sign, then pn changes its sign in the interval (ξi, ξi+1). Now we distinguish
two main cases. First, if all ξi have the same sign, then pn has (n− 1) real roots, one in every interval (ξi, ξi+1).
Moreover, zero is always a root of pn. Hence the only remaining root must be real. On the contrary, if all ξi do
not have the same sign, then there exists a unique h such that ξh < 0 < ξh+1 and pn(ξh)pn(ξh+1) > 0. Now,
observe that

sign(pn(ξ1)) = sign(fy(y∗)η1), sign(pn(ξn)) = (−1)nsign(fy(y∗)ηn). (55)

Besides, we have limλ→−∞ pn(λ) = +∞ and limλ→+∞ pn(λ) = (−1)n+1∞. Therefore, considering the intervals
(ξi, ξi+1) and the behavior at infinity, pn changes its sign exactly n − 1 times (there are 4 cases, depending on
n even or odd and sign(pn(ξ1)) = ±1; they can be analyzed separately). Again, zero is always a root of pn and
the remaining root must be real. Finally, (iii) is a direct consequence of the previous argument. We also note
that if fy(y∗)η1 > 0, then an eigenvalue is greater than maxi{ξi}. Otherwise, if fy(y∗)η1 < 0, then an eigenvalue
is smaller than mini{ξi}.

Proof (of Proposition 8). The event Ā := lim supiAi ≡ {ω ∈ Ω : |ξi(ω)| > 1 infinitely often} belongs to the
tail σ-algebra H. Therefore, P(Ā) takes only the values 0 or 1. From Borel-Cantelli Lemma, we have P(Ā) = 0
if and only if

∑∞
i=1 P(Ai) < ∞. Therefore, our hypothesis implies P(Ā) = 1. In other words, when n tends to

infinity, at least one eigenvalue of Jn lies outside the interval (−1, 1) almost surely.

Proof (of Proposition 9).
(i) We prove the result when ξi ∈ (0, 1), the other case being similar. Using the formula for pn, we see that

pn(ξ1) < 0, sign(pn(ξn)) = (−1)n. (56)

Hence, if n is even (odd) it follows pn(ξn) < 0
(>0)

and limλ→+∞ pn(λ) = −∞
(+∞)

. Therefore, we have

n even
(n odd)

⇒ ρ(Jn) < 1 ⇐⇒ pn(1) < 0
(>0)
⇐⇒ 1 + fy(y∗)

n∑

i=1

ηi
ξi − 1

> 0. (57)

Next, observe that, using the same argument of the proof of Proposition 2 (iii),
∑n
i=1

ηi
ξi−1 converges almost

surely to µ as n grows to infinity, so (34) thus follows (even when µ = −∞).
(ii) It is similar to (i) and therefore omitted.

In order to prove Proposition 12 we need the following Lemma, which is the counterpart of Lemma 7.

Lemma 18 Let pn(λ) be the characteristic polynomial of the Jacobian of (38). Assume ηi) ∈ (−1, 1) all have
the same sign, all ηi have the same sign and fy(x∗, y∗)η1ξ1 > 0. Then:

(i) pn(λ) =
∏n
i=1(ξi − λ)(fx(x∗, y∗)− λ)− λfy(x∗, y∗)

∑n
i=1 ηi

∏
j 6=i(ξj − λ).

(ii) pn has (n+ 1) real roots.
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(iii) Exactly n− 1 roots of pn belong to the interval [mini{ξi},maxi{ξi}].

Proof. (i) pn is obtained via Schur’s formula. (ii)-(iii) Inspecting the sign of pn, we see that

sign(pn(ξi)pn(ξi+1)) = sign(−ξiξi+1ηiηi+1)
sign(pn(ξ1)) = sign(−fy(x∗, y∗)ξ1η1)
sign(pn(ξn)) = sign((−1)nfy(x∗, y∗)ξnηn)

Hence, if ξi have the same sign we are able to locate at least n−1 roots of pn in the interval [mini{ξi},maxi{ξi}].
Besides, if fy(x∗, y∗)ξ1η1 > 0, then we see that another root of pn lies in (−∞,mini{ξi}), since sign(pn(ξ1)) = −1
and limλ→−∞ pn(λ) = +∞. Finally, distinguishing the cases n even or odd shows that the only remaining root
of pn lies in (maxi{ξi},+∞) thanks to the intermediate value theorem.

Proof (of Proposition 12). The proof proceeds in the same way as in Proposition 9, observing that stability
requires at the same time pn(−1) > 0 and pn(1) < 0(> 0) if n is even (odd).

19



References

[1] Agliari, A., Massaro, D., Pecora, N., Spelta, A., 2017. Inflation targeting, recursive inattentiveness and
heterogeneous beliefs. Journal on Money, Credit & Banking 49/7, 1587-1619.

[2] Anufriev, M., Assenza, T., Hommes, C., Massaro, D., 2013. Interest rate rules and macroeconomic stability
under heterogeneous expectations. Macroeconomic Dynamics 17/8, 1574-1604.

[3] Anufriev, M., Hommes, C., Makarewicz, T., 2019. Simple forecasting heuristics that make us smart: evidence
from different market experiments Journal of the European Economic Association 17/5, 1538-1584.

[4] Assenza, T., Bao, T., Hommes, C., Massaro, D., 2014. Experiments on expectations in macroeconomics
and finance. In: John Duffy (ed.), Research in Experimental Economics: Experiments in Macroeconomics,
volume 17, pages 11-70, Emerald Publishing Ltd.

[5] Agiza, H.N., Elsadany, A.A., 2003. Nonlinear dynamics in the Cournot duopoly game with heterogeneous
players. Physica A: Statistical Mechanics and its Applications, 320, 512-524.8

[6] Bao, T., Hommes, C., Sonnemans, J. Tuinstra, J., 2012. Individual expectations, limited rationality and
aggregate outcomes. Journal of Economic Dynamics & Control 36/8, 1101-1120.

[7] Baur, D.G., Glover, K.J., 2014. Heterogeneous expectations in the gold market: Specification and estimation.
Journal of Economic Dynamics & Control 40, 116-133.

[8] Berck, P., Perloff, J.M., 1998. The dynamic annihilation of a rational competitive fringe by a low-cost
dominant firm. Journal of Economic Dynamics & Control 12/4, 659-678,

[9] Bonacina, M., Gull̀ı. F., 2007. Electricity pricing under ”carbon emissions trading“: A dominant firm with
competitive fringe model. Energy Policy 35/8, 4200-4220.

[10] Boswijk, H.P., Hommes, C.H., Manzan, S., 2007. Behavioral heterogeneity in stock prices. Journal of Eco-
nomic Dynamics & Control 31, 1938-1970.

[11] Brock, W.A., Hommes, C.H., 1997. A rational route to randomness. Econometrica 65, 1059-1095.

[12] Brock, W.A., Hommes, C.H., 1998. Heterogeneous beliefs and routes to chaos in a simple asset pricing
model. Journal of Economic Dynamics and Control 22, 1235–1274.

[13] Brock, W.A., Hommes, C.H., Wagener, F.O.O., 2005. Evolutionary dynamics in markets with many trader
types. Journal of mathematical Economics 41, 7-42.

[14] Brock, W.A., Hommes, C.H., Wagener, F.O.O., 2009. More hedging instruments may destabilize markets.
Journal of Economic Dynamics & Control 33, 1912-1928.

[15] Chavas, J.P., 2000. On information and market dynamics: the case of the U.S. beef market. Journal of
Economic Dynamics & Control 24, 833-853.

[16] Chen, S.H., Chang, C.L., Du, Y.R., 2012. Agent-based economic models and econometrics. Knowledge
Engineering Review 27/2, 187-219.

[17] Colander, D., Howitt P., Kirman, A., Leijonhufvud A., Mehrling, P., 2008. Beyond DSGE Models: Toward
an Empirically Based Macroeconomics. American Economic Review: Papers & Proceedings, 98/2, 236–240.

[18] Colucci, D., Valori, V., 2006. Ways of learning in a simple economic setting: A comparison. Chaos, Solitons
& Fractals 29/3, 653-670.

[19] Colucci, D., Valori, V., 2008. Asset price dynamics when behavioural heterogeneity varies. Computational
Economics 32, 3-20.

[20] Colucci, D., Valori, V., 2011. Adaptive expectations and cobweb phenomena: Does heterogeneity matter?
Journal of Economic Dynamics & Control 35, 1307-1321.

[21] Colucci, D., Valori, V., 2015. Stabilizing inflation in a simple monetary policy model with heterogeneous
agents. Mathematics and Computers in Simulation 108, 233-244.

20



[22] Cornea-Madeira, A., Hommes, C.H., Massaro, D., 2019. Behavioral Heterogeneity in U.S. Inflation Dynam-
ics. Journal of Business & Economic Statistics 37/2, 288-300.

[23] Day, R. H., Huang, W., 1990. Bulls, bears and market sheep. Journal of Economic Behavior and Organization
14, 299-329.

[24] Diks, C.G.H., van der Weide, R., 2005. Herding, a-synchronous updating and heterogeneity in memory in a
CBS. Journal of Economic Dynamics and Control 29, 741-763.

[25] Fleurbaey, M., 2009. Beyond GDP: The Quest for a Measure of Social Welfare. Journal of Economic Liter-
ature 47/4, 1029-1075.
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