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Abstract

We provide a procedure to identify the number of latent factors of stochastic volatility

models. The methodology relies on the non-parametric Fourier estimation method intro-

duced by Malliavin and Mancino (2002) and applies to high-frequency data. Based on the

Fourier analysis, we first estimate the latent volatility process and then the volatilities and

covariances of the processes that are gradually identified, such as volatility of volatility and

leverage. The analysis of the eigenvalues spectrum of the Gram matrix can reveal informa-

tion about the actual number of factors driving the process at hand. We corroborate our

analysis by numerical simulations on single and multi factor models. Finally, we apply our

methodology to intraday prices from the S&P 500 index futures.

Keywords: non-parametric identification stochastic volatility model, Fourier analysis.
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1 Introduction

Accurate specification of asset price dynamics is of crucial importance in financial risk manage-

ment, pricing and hedging of derivative securities. As is well known in financial mathematics,

under the no-arbitrage condition, price processes must be semimartingales. The correct identifica-

tion of an appropriate semimartingale model can nowadays benefit from the use of high-frequency

data in a remarkable way.

A huge amount of work has been done in the last thirty years in order to render the

assumptions about the data generating processes of the price series more in line with the empirical

evidence. In particular, many models have been proposed to model the volatility coefficient,

which is of crucial importance in financial risk management and a key input in any derivative

pricing formula. Going beyond the classical Black-Scholes (BS) model, a first class of models

assumes a time varying volatility by modelling it as a deterministic function of the underlying

asset. Another class of models considers the volatility as an additional latent state variable,

which can be correlated with the asset price: models of this kind are called stochastic volatility

models, including classical models such as Hull and White (1987), Stein and Stein (1991) and

Heston (1993). More recently, models accounting for stochastic leverage and stochastic volatility

of volatility have been considered (see Mykland and Wang (2014), Curato (2019), Aït-Sahalia

and Jacod (2014), Barndorff-Nielsen and Veraart (2013), Huang et al. (2018), Ruan (2020) and

Chen et al. (2022) among others). Discriminating between the class of one factor models and of

multi factor stochastic volatility models is important for the pricing of derivative securities.

This paper provides a procedure to identify the number of latent factors of stochastic

volatility models (driven by one or more factors). The methodology is non-parametric and does

not require knowledge of the functional form of the diffusion term or of the drift. It applies

to high-frequency data and is based on the Fourier estimation method introduced by Malliavin

and Mancino (2002). In the first step, the latent volatility process is obtained in terms of the

Fourier transform of returns. Then the instantaneous volatility can be handled as an observable

variable and the procedure can be iterated to estimate the volatilities and covariances of the

processes progressively identified, such as volatility of volatility and leverage. The analysis of the

eigenvalues spectrum of the Gram matrix can reveal information about the actual number of

factors driving the process at hand. Although potentially the method can be iterated to a larger

number, we limit our analysis to the case of three factors.

In the literature, several specification tests for diffusion models have been proposed, based
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on different estimation methods. Among others, we recall Gouriéroux et al. (1993); Gallant

et al. (1997); Chernov et al. (2003). Fermanian and Salanié (2004) have suggested a simulated

maximum likelihood estimator obtained by using a kernel density estimator of the simulated data;

Altissimo and Mele (2009) have proposed an estimator based on the minimization of weighted

distances between non-parametric conditional (or joint) densities estimated from sample data

and non-parametric conditional (or joint) densities estimated from data simulated out of the

model of interest. All the papers cited above require a complete specification of the drift and

diffusion terms and require the time span to go to infinity, keeping the interval between successive

observations fixed. However, methods based on low frequency observations may fail to exploit all

the informational content of the data. Different specification tests for the functional form of the

diffusion term of the process, based on infill asymptotics, require the interval between successive

observations to shrink to 0 and are implemented using high frequency observations. Examples

are given by Corradi and White (1999); Dette and von Lieres und Wilkau (2003); Dette et al.

(2006).

More recently Jacod and Podolskij (2013) developed a method to detect the maximal rank

of the volatility process within the framework of infill asymptotics. The main idea is based upon

a matrix perturbation method and uses the scaling property of a Brownian motion. Fissler and

Podolskij (2017) extended their method to noisy high-frequency data using the pre-averaging

approach. Kunimoto and Kurisu (2021) propose a method of detecting the number of latent

factors of quadratic co-variation of Itô semimartingales from a set of discrete observations under

market microstructure effects, based on the separating information maximum likelihood method.

They explore the estimated variance-covariance matrix of latent (efficient) prices of the underlying

Itô semimartingales by investigating asymptotically its characteristic roots and vectors. Their

procedure is essentially the same as the standard method in statistical multivariate analysis,

except the fact that they have latent continuous stochastic processes.

This strand of literature is strictly related to risk management and to other statistical prob-

lems, such as testing for market (in)completeness in financial mathematics and testing the local

volatility versus stochastic volatility hypothesis. Other econometric measures of systemic risk

related to principal component analysis are the connectedness indicators by Billio et al. (2012),

based on the principal components analysis and Granger-causality network. These indicators

measure the proportion of the market variability explained by the first k principal components

and aim to identify increased correlation among the asset returns of financial institutions. In fact,
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it is a stylized fact that, in periods of financial distress, the asset correlations, the connectedness

of the market and the systemic risk increase. In the same direction goes the market rank indicator

(MRI) by Figini et al. (2020) that considers the relation between the largest singular value of a

matrix of the return time series and its k smallest singular values. The rationale behind this is

that, in times of market excitation and higher correlation, the vectors of the return time series

become closer in the linear space containing them. The MRI is related to the notion of condition

number, a measure of how close returns are; therefore, the MRI increases in periods of market

tensions.

The above mentioned papers try to answer the following question: what is the minimal

amount of independent Brownian motions required for modeling a d-dimensional diffusion? An-

swering this question can give a direct economical interpretation of the financial data at hand.

Although based on similar rationale, our aim is more specifically to reveal the latent factors that

drive a single price process. Therefore, we are more focused on modeling error and its possible

effects on the pricing of derivative securities.

Traditionally, the construction of statistical tests and model calibration procedures requires

the use of option data.However, the outcome of the tests and the quality of the calibra-

tion may be rather sensitive to moneyness and maturity of the options. For instance,

at the extreme ends of option moneyness the data becomes noticeably less reliable

and the estimated parameters can be unstable across different moneyness and ma-

turity classes. Conversely, the approach followed here simply requires the availability of high

frequency observations on the price of the underlying asset and does not require any calibration

procedures via option prices. Related papers are, among many others, those of Corradi and Dis-

taso (2007a,b) that provide a testing procedure to discriminate between the classes of one factor

(or level dependent) and stochastic volatility models, by comparing two estimators of integrated

volatility: one is a kernel estimator (Florens and Zmirou (1993); Bandi and Phillips (2003)), the

other is the realized volatility. Under the null hypothesis of a one factor model, both estimators

are consistent for the true integrated volatility. Under the alternative hypothesis, the kernel esti-

mator is not consistent, while realized volatility retains the consistency property. Podolskij and

Rosenbaum (2012) design new procedures to test the assumption of a local volatility model for

the price dynamics against the alternative of a stochastic volatility model. Dette and Podolskij

(2008) present tests for the form of the volatility function which are based on stochastic processes

of the integrated volatility.
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Zu (2015) develops a specification test for stochastic volatility models by comparing the

nonparametric kernel deconvolution density estimator of an integrated volatility density with

its parametric counterpart. Aït-Sahalia (1996); Zu and Boswijk (2017) propose nonparametric

specification tests for stochastic volatility models by comparing the nonparametically estimated

return density and distribution functions with their parametric counterparts. Corradi and Swan-

son (2011) develop tests for comparing the accuracy of predictive densities derived from (possibly

misspecified) diffusion models. In particular, they outline a simple simulation-based framework

for constructing predictive densities for one-factor and stochastic volatility models. Corradi and

Distaso (2006) propose a procedure to test for the correct specification of the functional form of

the volatility process within the class of eigenfunction stochastic volatility models. The proce-

dure is based on the comparison of the moments of realized volatility measures such as realized

volatility, bipower variation, and modified subsampled realized volatility, with the corresponding

ones of integrated volatility implied by the model under the null hypothesis.

Our method is fully non-parametric and takes advantage from the well established ability of

the Fourier estimator to estimate iterated co-variation processes from discrete price observations.

The analysis of the eigenvalues of the Gram matrix allows to identify the number of latent factors

of the data generating process.

The outline of the paper is the following. In Section 2, we present our setting and procedure.

In Section 3, we illustrate the Fourier methodology for estimating the number of stochastic factors

which are latent in observed financial data. We recall the main existing theoretical results related

to the estimators of the entries of the Gram matrix and we provide a consistency result for its

eigenvalue estimates. In Section 4, we show numerical evidence of the efficacy of our procedure

to discriminate between single and multi factor models. In Section 5, we apply the proposed

procedure to intraday prices from the S&P 500 index futures. Finally, Section 6 concludes. The

Appendices contain the proofs of some consistency results.

2 The Identification Method

We consider a fairly general class of stochastic volatility models. Let pptq be the log-asset price

observed at time t

dpptq “ αptqdt` σptqdW 1
t (1)

dσ2ptq “ θptqdt` ξptq dW 2
t (2)
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dξ2ptq “ ηptqdt` vξptq dW 3
t , (3)

where W 1,W 2,W 3 are (possibly) correlated Brownian motions on a filtered probability space

pΩ, pFtqtPr0,T s, P q. We note that σ2ptq is the (stochastic) volatility process and ξ2ptq the (stochas-
tic) volatility of volatility process.1 The processes αptq, θptq, σptq, ηptq, ξptq, vξptq satisfy usual

regularity conditions in order to guarantee the existence of a unique strong solution (see, e.g.

Malliavin (1997)) and to ensure positivity of σ2ptq and ξ2ptq.
The model identification method is based on determining the number of non-zero eigenvalues

of the variance-covariance matrix associated to the processes in (1)-(3). More precisely, denote

by x , y the quadratic (co-)variation operation, and define the following volatilities

xdpptq , dpptqy{dt :“ Aptq , xdAptq , dAptqy{dt :“ Bptq , xdBptq , dBptqy{dt :“ Cptq , (4)

and cross-volatilities:

xdAptq , dpptqy{dt :“ aptq , xdBptq , dpptqy{dt :“ bptq , xdAptq , dBptqy{dt :“ cptq . (5)

It is immediate to identify that Aptq is the volatility process (i.e., σ2ptq for model (1)), Bptq
is the volatility of volatility process (i.e. ξ2ptq for model (2)), and Cptq is the volatility of the

volatility of volatility process (i.e., v2ξ ptq for model (3)). On the other side, we recognize aptq as
the leverage process, while bptq as the covariance process between price and volatility of volatility,

and cptq as the covariance between volatility and volatility of volatility. The latter processes

depend on the assumptions made on the Brownian motions driving the model, e.g.,

if dxW 1,W 2yt “ ρptqdt then aptq “ ρptqσptqξptq. However, the proposed method is based

only on the asset price observations and does not depend on the model governing

the various quantities of interest, which are simply required to be Brownian semi-

martingales. In the intent of keeping our arguments model-free, we introduce the

notations in (4) and (5) to point out the mathematical operations involved in the

construction of our identification method, independently of the peculiar shape of

the processes in (1)-(3). This will be especially useful for what we are going to do

at the end of our paper, namely apply our proposed method to real financial data.
1Along the paper we will use the term volatility process as synonym for variance process.
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For every t P p0, 2πq, consider the following the 3ˆ 3 Gram matrix

Γptq “

¨
˚̊
˚̊
˚̊
˚̊
˚̋

Aptq aptq bptq

aptq Bptq cptq

bptq cptq Cptq

˛
‹‹‹‹‹‹‹‹‹‚

(6)

and denote by λ1ptq, λ2ptq, λ3ptq (with λ1ptq ě λ2ptq ě λ3ptq ě 0) its eigenvalues. The matrix

Γptq is the variance-covariance matrix for the SDEs system (1)-(2)-(3). This matrix has rank

equal to one if W 1,W 2 and W 3 are perfectly correlated, as it is for the level dependent volatility

models (like Black-Scholes (BS) or Constant Elasticity of Variance (CEV) model), two in the

case of a stochastic volatility model (like Heston model), or three for the stochastic volatility of

volatility models.

Our method for identifying the number of latent factors consists of three steps.

(i) First, we estimate in a non-parametric way the entries of the matrix Γ. To this pur-

pose, we exploit the Fourier estimation method developed by Malliavin and Mancino (2002).

The Fourier methodology allows us to compute the diffusion coefficients in (1)-(2)-(3), and the

covariances, starting from discrete observations of the asset log-price trajectory only. The Fourier

transform of the unobservable instantaneous volatility process σptq, t P r0, T s, is expressed in

terms of the Fourier transform of returns by convolution. Then, the instantaneous volatility can

be handled as an observable variable and we can iterate the procedure to compute the volatility

of the volatility process as well as the other covariances. We remark that all these processes are

recovered pathwise from the observation of a given asset price trajectory.

(ii) Second, we compute the eigenvalues of the estimated Gram matrix and the rescaled

processes

γptq :“ λ1ptq
λ1ptq ` λ2ptq ` λ3ptq (7)

βptq :“ λ2ptq
λ1ptq ` λ2ptq ` λ3ptq (8)

ρptq :“ λ3ptq
λ1ptq ` λ2ptq ` λ3ptq . (9)

(iii) Third, the analysis of the rescaled eigenvalues allows us to discriminate between different

stochastic volaitlity models. More precisely, if the volatility function σptq is level dependent, i.e.
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σ is only a function of the price pptq and there are no other factors, then βptq “ ρptq “ 0.

Conversely, when a stochastic volatility model is considered, the two eigenvalues γptq and βptq
are non-zero quantities. Finally, we obtain three non-zero eigenvalues when a stochastic volatility

of volatility model is considered.

We point out again that all the entries of the matrix Γ are pathwise computable by simply

applying the Fourier methodology to one time series of asset price observations.

3 Estimation of the matrix entries

In this section we show how to estimate non-parametrically the random functions Aptq, Bptq,
Cptq, aptq, bptq, cptq starting from the asset price observations. The method proposed is based on

the Fourier methodology explained in Mancino et. al. (2017). The estimation of these processes is

admittedly challenging and require the use of high frequency data; however, it is well known that

high frequency financial data are contaminated by microstructure noise effects which can destroy

the accuracy of the estimation (see, e.g., Aït-Sahalia and Jacod (2014) for an updated discussion).

To this aim we exploit the robustness of the Fourier estimator of the volatility to microstructure

noise. In fact, as it is documented in Mancino et. al. (2017), the Fourier estimator needs no

correction in order to be statistically efficient and robust to various type of market frictions: the

estimator uses all available data by integration and is able to ignore the high-frequency noise by

cutting the highest frequencies. Therefore, when efficiently implemented, the Fourier estimator

uses as much as possible of the available price sample path without being excessively biased due

to the impact of market frictions. This property will be useful in the empirical exercise of Section

5.

3.1 Estimation of the volatility process A

We assume the general model framework (1-3) holds. By change of the origin of time and rescaling

the unit of time, we can always reduce ourselves to the case where the time window r0, T s becomes

r0, 2πs.
The first step consists in the estimation of the Fourier coefficients of Aptq from a discrete

unevenly spaced sampling of the log-price process pptq. Consider the sequence of observation

times Sn :“ t0 “ t0,n ď t1,n ď ¨ ¨ ¨ ď tkn,n “ 2πu for any n ě 1, such that the mesh size of

the partition goes to 0, that is ρpnq :“ max0ďhďkn´1 |th`1,n ´ th,n| Ñ 0 as n Ñ 8. For any
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j “ 1, . . . , kn ´ 1, denote δjppq :“ pptj`1,nq ´ pptj,nq.
For |k| ď 2N , define

ckpAn,N q :“ 2π

2N ` 1

ÿ

|s|ďN
cspdpnqck´spdpnq, (10)

where, for any integer k, ckpdpnq is the k-th (discrete) Fourier coefficient of the log-return process,

namely

ckpdpnq “ 1

2π

kn´1ÿ

j“0

e´iktj,nδjppq,

and the symbol i denotes the imaginary unit, i “ ?´1. A consistent estimator of the random

function Aptq can be obtained by the Fourier-Fejer summation

pAn,N,NA
ptq :“

ÿ

|k|ăNA

ˆ
1´ |k|

NA

˙
ckpAn,N qeikt, (11)

where ckpAn,N q is defined in (10).

The central limit theorem for the estimator (11) with a slightly sub-optimal rate and an

efficient asymptotic variance is proved in Mancino and Recchioni (2015), while more recently

Mancino (Mariotti and Toscano) prove that (11) is an efficient estimator of the spot volatility.

The rate of convergence is n´1{4, that is the optimal one. More precisely, for any integer |k| ă 2N

and under the condition N{nÑ 1{2, the following convergence in probability holds

lim
n,NÑ8 ckpAn,N q “ ckpAq,

where ckpAq is the k-th Fourier coefficient of the volatility process Aptq. Moreover, under the

conditions N{nÑ 1{2 and NAn´1{2 Ñ cA ą 0, it holds in probability

lim
n,N,MÑ8 sup

tPp0,2πq
| pAn,N,NA

ptq ´Aptq| “ 0

and, for any fixed t P p0, 2πq, as n,N,NA Ñ8, the following convergence stable in law holds

n1{2N´1{2
A

´
pAn,N,NA

ptq ´Aptq
¯
Ñ N

ˆ
0,

4

3
A2ptq ` 2π

3c2A
Bptq

˙
.
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3.2 Estimation of the volatility of volatility process B

The Fourier estimation method is particularly suited to build an estimator of the volatility of

volatility. In fact, the knowledge of the Fourier coefficients of the latent instantaneous volatility

Aptq allows us to handle this process as an observable variable and we can iterate the procedure

in order to compute the process Bptq.
To compute the instantaneous volatility of volatility Bptq we exploit the approach of Sanfe-

lici et. al. (2015); Toscano et al. (2022). Hence, an estimator of the random process Bptq is given
by

pBn,N,M,MB
ptq :“

ÿ

|k|ăMB

ˆ
1´ |k|

MB

˙
ckpBn,N,M qeikt, (12)

where ckpBn,N,M q is defined as

ckpBn,N,M q :“ 2π

2M ` 1

ÿ

|j|ďM
cjpdAn,N qck´jpdAn,N q ´KckpQn,N,M q, (13)

with cjpdAn,N q computed as

cjpdAn,N q :“ i j cjpAn,N q (14)

and2

ckpQn,N,M q :“ 2π
ÿ

|j|ďM
cjpAn,N qck´jpAn,N q.

For what concerns the Fourier coefficients (13), the consistency and asymptotic error distribution

together with its optimal rate and variance are provided in Toscano et al. (2022), whereas those for

the spot quantity (12) in Mancino and Toscano (2023). More precisely, for any integer |k| ă 2N

and under the conditions Nρpnq Ñ 1{2,Mρpnq1{2 Ñ cM , the following convergence in probability

holds

lim
n,N,MÑ8 ckpBn,N,M q “ ckpBq, (15)

where ckpBq is the k-th Fourier coefficient of the volatility of volatility process Bptq. Moreover,

under the conditions Nρpnq Ñ 1{2, Mρpnq1{2 Ñ cM ą 0, MBρpnq1{4 Ñ cB ą 0 and K “ 1
2
c2M
2π ,

it holds in probability

lim
n,N,M,MBÑ8

sup
tPp0,2πq

| pBn,N,M,MB
ptq ´Bptq| “ 0

2ckpQn,N,M q is an estimator of the k-th Fourier coefficient of quarticity Mancino and Sanfelici (2012).
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and, for any t P p0, 2πq, as n,N,M,MB Ñ8, the following convergence stable in law holds

ρpnq´1{8
´
pBn,N,M,MB

ptq ´Bptq
¯
Ñ N

ˆ
0,

2π

3

1

cB
C2ptq ` 2

3

cB
cM

B2ptq ` 2

15
cB c

3
MA

4ptq ` 16

9
cB cMBptqA2ptq

˙
.

Note that the volatility of volatility estimator depends only on the Fourier coefficients of the

variance cjpAn,N q, which have been estimated formerly. The study of the finite sample properties

of this estimator in the presence of microstructure noise can be found in Sanfelici et. al. (2015).

3.3 Estimation of the volatility of volatility of volatility process C

As in the previous step, once the Fourier coefficients of the volatility of volatility process Bptq
have been estimated, we can estimate the variance function of Bptq, denoted by Cptq.

An estimator of the Fourier coefficients of Cptq is defined by

ckpCn,N,M,Lq :“ 2π

2L` 1

ÿ

|j|ďL
cjpdBn,N,M qck´jpdBn,N,M q, (16)

where cjpdBn,M,N q is computed as

cjpdBn,M,N q :“ i j cjpBn,M,N q. (17)

Finally, a consistent estimator of the function Cptq can be obtained by the Fourier-Fejer

summation given its Fourier coefficients. More precisely

pCn,N,M,L,LC
ptq :“

ÿ

|k|ăLC

ˆ
1´ |k|

LC

˙
ckpCn,N,M,Lq eikt,

where ckpCn,N,M,Lq is defined in (16).

The consistency result for the spot volatility of volatility of volatility estimator

under the conditions N “ Opnq, M “ Opn1{2q, L “ Opn1{4q and LC “ Opn1{8q is proved

in Appendix A. The rate and asymptotic error normality is under study.

3.4 Estimation of the leverage process a (covariance price-volatility)

The Fourier estimation method is particularly suited to build an estimator of the leverage, that

is the covariance between the stochastic variance process and the asset price process. In fact,

the knowledge of the Fourier coefficients of the latent instantaneous volatility Aptq allows us to
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handle this process as an observable variable and we can iterate the estimation procedure in

order to compute the process aptq (i.e., the leverage).

To compute the instantaneous covariance aptq we exploit the multivariate version of Fourier

method, see Mancino et. al. (2017). Hence, an efficient estimator of the stochastic process aptq
is defined by

pan,N,M,Ma
ptq :“

ÿ

|k|ăMa

ˆ
1´ |k|

Ma

˙
ckpan,N,M qeikt,

where ckpan,N,M q is defined in

ckpan,N,M q :“ 2π

2M ` 1

ÿ

|j|ďM
cjpdpnqck´jpdAn,N q, (18)

and cjpdAn,N q is computed as in (14).

The consistency and suboptimal asymptotic error distribution of the Fourier coefficients are

given in Curato and Sanfelici (2015) and Curato (2019), while the Central limit theorem and

its optimal rate and variance are given in Mancino and Toscano (2022). The results for the spot

quantity can be found in Mancino et al. (2023). More precisely, for any integer |k| ă 2N and

under the conditions Nρpnq Ñ 1{2, Mρpnq1{2 Ñ cM , the following convergence in probability

holds

lim
n,N,MÑ8 ckpan,N,M q “ ckpaq,

where ckpaq is the k-th Fourier coefficient of the leverage process aptq. Moreover, under the

conditions Nρpnq Ñ 1{2, Mρpnq1{2 Ñ cM ą 0 and Maρpnq1{4 Ñ ca ą 0, it holds in probability

lim
n,N,M,MaÑ8

sup
tPp0,2πq

|pan,N,M,Ma
ptq ´ aptq| “ 0

and, for any t P p0, 2πq, as n,N,M,Ma Ñ8, the following convergence stable in law holds3

ρpnq´1{8 ppan,N,M,Maptq ´ aptqq Ñ N
ˆ

0,
2π

3

1

ca
σ2
aptq `

2

3

ca
cM

AptqBptq ` 1

9
cMcaA

3ptq
˙
.

The study of the finite sample properties of the estimator in the presence of microstructure

noise can be found in Curato and Sanfelici (2022). Note that the estimator (18) depends only

on the Fourier coefficients of the asset log-return cjpdpnq, that are computed from the real data,
3σaptq is the volatility of the process aptq.
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and on the Fourier coefficients of the variance cjpAn,N q, which have been estimated previously.

3.5 Estimation of the process b (covariance price-volatility of volatility)

A consistent estimator of the covariance function between price and volatility of volatility bptq
can be obtained by the Fourier-Fejer summation given its Fourier coefficients (19), more precisely

pbn,N,M,L,Lb
ptq :“

ÿ

|k|ăLb

ˆ
1´ |k|

Lb

˙
ckpbn,N,M,Lqeikt,

where ckpbn,N,M q is defined in

ckpbn,N,M,Lq :“ 2π

2L` 1

ÿ

|j|ďL
cjpdpnqck´jpdBn,N,M q, (19)

and cjpdBn,N q is computed as

cjpdBn,N,M q :“ i j cjpBn,N,M q. (20)

The consistency of the spot price-volatility of volatility covariance estimator

under the conditions N “ Opnq, M “ Opn1{2q, L “ Opn1{4q and Lb “ Opn1{8q can be

proved with analogous method as for C in Appendix A. The rate and asymptotic

error normality is under study.

3.6 Estimation of the process c (covariance volatility-volatility of volatil-

ity)

A consistent estimator of the function cptq can be obtained by the Fourier-Fejer summation given

its Fourier coefficients (21), more precisely

pcn,N,M,L,Lcptq :“
ÿ

|k|ăLc

ˆ
1´ |k|

Lc

˙
ckpcn,N,M,Lq eikt,

where ckpcn,N,M,Lq is obtained by

ckpcn,N,M,Lq :“ 2π

2L` 1

ÿ

|j|ďL
cjpdAn,N qck´jpdBn,N,M q, (21)

using (14) and (20).
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The consistence of the spot volatility-volatility of volatility covariance estimator

under the conditions N “ Opnq, M “ Opn1{2q, L “ Opn1{4q and Lc “ Opn1{8q can be

proved with analogous method as for C in Appendix A. The rate and asymptotic

error normality is under study.

3.7 Uniform consistency of the eigenvalues

Let us denote by Γ̂ptq the estimator of the matrix (6)

Γ̂ptq “

¨
˚̊
˚̊
˚̊
˚̊
˚̋

Âptq âptq b̂ptq

âptq B̂ptq ĉptq

b̂ptq ĉptq Ĉptq

˛
‹‹‹‹‹‹‹‹‹‚

(22)

Note that here and in the sequel we omit the subscripts in all the Fourier estimators of the

different quantities. Also, let λ̂1ptq, λ̂2ptq and λ̂3ptq denote the eigenvalues of the matrix (22).

We are now in the position to state the following consistency result. Assume thatN “ Opnq,
M “ Opn1{2q, L “ Opn1{4q, NA “ Opn1{2q, MB “ Opn1{4q, LC “ Opn1{8q, Ma “ Opn1{4q,
Lb “ Opn1{8q and Lc “ Opn1{8q. The following convergence in probability holds

lim
nÑ8 sup

tPp0,2πq
|λ̂jptq ´ λjptq| “ 0, (23)

for j “ 1, 2, 3.

The proof of Theorem 3.7 in given in Appendix B. A similar proof of this result has been

given in Liu and Ngo (2017) for the spot cross volatility matrix of a multidimensional diffusion

process.

4 Simulation Study

In this section we validate the theory outlined in the previous section by considering different

parametric models. We simulate discrete data from four well-known models, characterized by the

presence of one, two or three factors. These models include the classical BS model (Black and

Scholes (1973)), the CEV model (Cox and Ross (1976)), the Heston model (Heston (1993)) and

the Stochastic Volatility of Volatility (SVV) model (Barndorff-Nielsen and Veraart (2013)).
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For each model, firstly, the entries of the matrix (6) are estimated according to the Fourier

method presented in Section 3; secondly, the eigenvalues λ̂1ptq, λ̂2ptq and λ̂3ptq of the estimated

matrix are computed. Finally, the quantities

γ̂ptq “ λ̂1ptq
λ̂1ptq ` λ̂2ptq ` λ̂3ptq

(24)

β̂ptq “ λ̂2ptq
λ̂1ptq ` λ̂2ptq ` λ̂3ptq

(25)

ρ̂ptq “ λ̂3ptq
λ̂1ptq ` λ̂2ptq ` λ̂3ptq

(26)

are computed and examined.

Notably, in the case of one factor models, both βptq and ρptq are null, while for a two factor

model both γptq and βptq are different from zero. Lastly, γptq, βptq and ρptq are different from

zero in the presence of a three factor model. We expect the estimated quantities to confirm this

result.

For each of the four models, we use the Euler-Maruyama discretization scheme to simulate

data with a step-size equal to 2π
21600 over the interval r0, 2πs (see, e.g., Higham (2001)). The

observations are then computed at times j ˚ 2π
21600 , where j is an integer satisfying 0 ď j ď 21600,

with a total of 21601 observations.

Based on the indications contained is Section 3, the following choice for the cut-off frequen-

cies is adopted: N “ n{2, NA “ n1{2, M “ NA{2, MB “ p16Mq1{2, L “ MB{2, LC “ p16Lq1{2,
Ma “MB , and Lb “ Lc “ LC . Finally, the Fourier estimates of the Gram matrix are evaluated

on 2LC equally spaced points in the interval p0, 2πq.
Mancino and Sanfelici (2011) prove that the Fourier integrated covariance matrix is positive

semi-definite when the Fejér Kernel is used. The result is achieved by assuming the same cutting

frequency for each element of the matrix. This cannot be done for the estimation of the Gram

matrix (6) because the choice of the various cut-off frequencies in the computation of each entry

must fulfill the Nyquist relation for the grid sizes in time and frequency domains, as we move from

the estimation of the first level quantitity Aptq to the second and third level quantities Bptq, Cptq,
aptq, bptq and cptq. During our numerical and empirical experiments, in cases where the estimated

Gram matrix produces negative eigenvalues, we substitute it with its nearest symmetric positive

semidefinite matrix in the Forbenius norm (Higham (1988)).
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4.1 Single factor models

In this section we consider two classical single factor models, the BS and the CEV model. These

models are characterized by the presence of a single Brownian motion, however they account for

different characteristics. In particular, the CEV model is a local volatility model which is well

suited to capture the relationship between volatility and asset returns (leverage effect).

For the BS model, the log-return is specified as follows

dpptq “
ˆ
α´ 1

2
σ2

˙
dt` σdW ptq. (27)

The drift has no effect on the computation of the elements of the Gram matrix Γ and therefore

is set equal to zero for every model considered during our simulations. We take σ “ 0.1 and the

initial log-price equal to lnp100q. For the BS model, the matrix (6) degenerates into a matrix

having only one non-zero entry, that is Aptq “ σ2, for any t P p0, 2πq. The eigenvalue λ1ptq is
then equal to σ2 and it is the unique eigenvalue different from zero. We expect the same thing

to happen to the entries of the estimated matrix Γ̂ptq. Similarly, γ̂ptq should be close to 1, while

β̂ptq « 0 and ρ̂ptq « 0.

In the first two top panels of Figure 1 we plot the log-price pptq, the estimated eigenvalue

λ̂1ptq, the estimated spot volatility Âptq and the constant path of the true volatility. The other

two eigenvalues λ̂2ptq and λ̂3ptq are plotted in the remaining panels. According to the theoretical

results, the plots are displayed in the interval p0, 2πq. We remark that the apparent difference

between the trajectories of λ̂1ptq and Âptq can be justified by the fact that the former is plotted

at 2LC points, while the latter on a finer grid with 2NA points. Moreover, the eigenvalues

are computed using the Matlab function eig and not analytically. The mean and the standard

deviation of λ̂1ptq are equal to 0.0103 and 9.5110e-04. Further, λ̂1ptq shows no trend, confirming

thus that data result from a BS model with volatility equal to 0.1. The values of the estimated

eigenvalue λ̂2ptq have a mean and standard deviation equal to 9.0082e ´ 05 and 7.4861e ´ 05,

while those of λ̂3ptq equal to 9.2817e ´ 08 and 1.6388e ´ 07. As expected, the eigenvalues λ̂2ptq
and λ̂3ptq are very close to zero.
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Fig. 1. BS model. Top left panel: The log-price pptq as a function of time. Top right panel: The
Fourier estimate of the spot volatility Aptq is depicted with a solid red line, whereas the
estimated eigenvalue λ̂1ptq and the true spot volatility Aptq of the BS model are depicted,
respectively, with a solid black and blue line. The bottom two panels plot the estimated
eigenvalues λ̂2ptq and λ̂3ptq.

Figure 2 represents the behaviour of γ̂ptq, β̂ptq and ρ̂ptq. As it can be observed, γ̂ptq is almost

equal to 1 along the time period and β̂ptq, ρ̂ptq almost equal to 0, revealing that we are in the

presence of a single factor model coherently with the model under study.
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Fig. 2. BS model. The figure shows the values of γ̂ptq, β̂ptq and ρ̂ptq.

Indeed, this can also be seen in Table 1 where we report some statistics of γ̂ptq, β̂ptq and
ρ̂ptq.
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Table 1
BS model. Some statistics on γ̂ptq, β̂ptq and ρ̂ptq

Min Max Mean SD

γ̂ptq 0.9672 1.0000 0.9928 0.0059

β̂ptq 6.5236e-06 0.0328 0.0072 0.0059

ρ̂ptq 0.0000 8.9366e-05 7.8658e-06 1.6236e-05
The table reports the minimum (Min), maximum (Max), mean and the standard deviation (SD) of γ̂ptq,
β̂ptq and ρ̂ptq.

The second example of one factor model we consider is the CEV model, satisfying the SDE

dP ptq “ αP ptqdt` σP δptqdWt, (28)

where σ and δ are non-negative constants, and α a constant. A simple application of Itô’s formula

shows that the log-price pptq follows the SDE

dpptq “
ˆ
α´ 1

2
σ2 e2pptqpδ´1q

˙
dt` σepptqpδ´1qdWt. (29)

We first estimate the entries of the matrix (6) according to the Fourier method presented in

Section 3. Secondly, we compute the eigenvalues of the estimated matrix (6). Finally, we obtain

the quantities (24 - 26). We expect to obtain a single eigenvalue different from zero, as we are

again in the presence of a single factor model, even though the matrix (6) is now a full one.

We highlight the fact that the estimated eigenvalues and the γ̂ptq, β̂ptq and ρ̂ptq paths are
obtained in a non-parametric way given only data series of the log-return pptq, therefore showing
the feasibility of our method with true empirical data. However, when simulating data out of

a parametric model, we can also exploit the knowledge of the parametric model, in order to

analytically compute the entries of the matrix (6) for the considered CEV model. In fact, a
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simple application of Itô formula yields

Aptq :“ xdpptq, dpptqy{dt “ σ2e2pptqpδ´1q (30)

aptq :“ xdAptq, dpptqy{dt “ 2σ4pδ ´ 1qe4pptqpδ´1q (31)

Bptq :“ xdAptq, dAptqy{dt “ 4σ6pδ ´ 1q2e6pptqpδ´1q (32)

bptq “ xdBptq, dpptqy{dt “ 24σ8pδ ´ 1q3e8pptqpδ´1q (33)

Cptq :“ xdBptq, dBptqy{dt “ 576σ14pδ ´ 1q6e14pptqpδ´1q (34)

cptq :“ xdAptq, dBptqy{dt “ 48σ10pδ ´ 1q4e10pptqpδ´1q (35)

Filling the matrix Γptq, it is immediate to see that this matrix has rank equal to 1 for every

time t, as already anticipated by the fact that CEV has only one Brownian motion, and that the

eigenvalues can be computed analytically as follows

λ1ptq “ Aptq `Bptq ` Cptq, λ2ptq “ λ3ptq “ 0 (36)

We recall that the CEV process admits three distinct types of solutions accord-

ing to the paramenter regimes δ ă 1{2, 1{2 ď δ ă 1 and δ ą 1, see Feller (1951). For

our simulations, we set δ “ 0.8 (i.e. inside of the standard Lipschitz setting/Yamada-

Watanabe conditions. Cox and Ross (1976) set δ “ 0.5). The CEV model with δ ă 1 is

characterized by a local volatility which is a decreasing function of the asset price, thus repro-

ducing the so-called leverage effect. The initial log-price is the same as in the BS model.

Figure (3) shows the behaviour of the Γptq eigenvalues for what concerns the CEV model.

It can be noticed that λ̂1ptq and λ1ptq are very close to each other. As in the BS model case, the

values of λ̂2ptq and λ̂3ptq are almost equal to zero.
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Fig. 3. CEV model. Top left panel: The log-price pptq as a function of time. Top right panel:
The estimated eigenvalue λ̂1ptq is depicted with a solid black line, whereas the true eigenvalue
λ1ptq with a solid blue line. The bottom two panels plot the estimated eigenvalues λ̂2ptq and
λ̂3ptq.

Finally, in Figure 4 we display the values of γ̂ptq, β̂ptq and ρ̂ptq, confirming the fact that

the values of γ̂ptq are almost equal to 1 and those of β̂ptq and ρ̂ptq almost equal to 0.
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Fig. 4. CEV model. The figure shows the values of γ̂ptq, β̂ptq and ρ̂ptq.

4.2 Heston model

Heston (1993) assumes that the volatility process follows a square root model driven by a second
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Brownian motion (possibly correlated) with respect to the one driving the asset price. The log-

return/variance model has the following form

dpptq “
ˆ
α´ 1

2
σ2ptq

˙
dt` σptqdW 1

t (37)

dσ2ptq “ κpθ ´ σ2ptqqdt` νσptqdW 2
t , (38)

where W 1,W 2 are correlated Brownian motions, with xdW 1
t , dW

2
t y “ ψdt. In order to run our

simulations, we suppose as in Zhang et. al. (2005) that κ “ 5, θ “ 0.04, ν “ 0.5, and that the

correlation coefficient ψ is equal to ´0.5. The initial value of the log-price is the same as in the

previous models and the initial value of σ2ptq is taken to be equal to 0.1. Observe that the Feller’s

condition (Feller (1951)) is satisfied.

We begin our analysis verifying the efficiency of the Fourier estimates of the entries of the

matrix (6). As for the CEV model, the volatilities (4) and cross-volatilities (5) can be easily

obtained in closed-form as follows

Aptq :“ xdpptq, dpptqy{dt “ σ2ptq, Bptq :“ xdAptq, dAptqy{dt “ ν2σ2ptq, (39)

Cptq :“ xdBptq, dBptqy{dt “ ν6σ2ptq aptq :“ xdAptq, dpptqy{dt “ ψνσ2ptq, (40)

bptq :“ xdBptq, dpptqy{dt “ ψν3σ2ptq, cptq :“ xdAptq, dBptqy{dt “ ν4σ2ptq. (41)

Figure 5 shows the true and the estimated elements of the matrix Γptq defined in (6).
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Fig. 5. Heston model. Top panel: The log-price pptq as a function of time. The middle and
bottom panels: The Fourier estimates of the stochastic processes Aptq, aptq, Bptq, bptq, Cptq and
cptq are depicted with a solid red line, whereas the corresponding true quantities with a solid
blue line.

The Fourier estimates are particularly accurate especially in the case of the spot volatility.

The estimated leverage process of aptq is in most of the cases negative capturing the negative

correlation between the log-price and the spot volatility.

The Heston model is driven by only two factors. This is confirmed by our proposed method-

ology. Indeed, as it can be seen from Figure 6, γ̂ptq and β̂ptq are both clearly different from zero.

This means that the second factor starts to be important recommending data are generated from

a two factor model. On the other side, the values of ρ̂ptq are small and close to zero.
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Fig. 6. Heston model. The figure shows the values of γ̂ptq, β̂ptq and ρ̂ptq.

The fact that Heston model can be explained by only two factors also emerges from Table

2.

Table 2
Heston model. Some statistics on γ̂ptq, β̂ptq and ρ̂ptq

Min Max Mean SD

γ̂ptq 0.5403 0.9844 0.8888 0.1108

β̂ptq 0.0153 0.4586 0.1048 0.1068

ρ̂ptq 0.0000 0.0519 0.0064 0.0114
[para,flushleft] The table reports the minimum (Min), maximum (Max), mean and the standard devi-
ation (SD) of γ̂ptq, β̂ptq and ρ̂ptq.

We conclude the section by studying the accuracy of the eigenvalue estimators proposed

by the Fourier methodology. Computing the characteristic polynomial of the matrix Γ(t) and its

analytical eigenvalues, it is found that

λ1ptq “ λ1σ
2ptq, λ2ptq “ λ2σ

2ptq, λ3ptq “ 0,

where

λ1,2 “ p1` ν2 ` ν6q ˘ap1` ν2 ` ν6q2 ´ 4p1´ ψ2qpν2 ` ν6q
2

.

Figure 7 shows the true and the estimated eigenvalues. It can be observed that the values of
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the first two eigenvalues (both true and estimated) are different from zero, while λ̂3ptq is almost

identically equal to zero as expected.

1 2 3 4 5 6

Time

0

0.2

1 2 3 4 5 6

Time

0

0.04

1 2 3 4 5 6

Time

0

Fig. 7. Heston model. The estimated eigenvalues λ̂1ptq, λ̂2ptq and λ̂3ptq are depicted with a
solid black line, whereas the true eigenvalues with a solid blue line.

Additionally, the estimated and the true values are relatively close to each other. The slight

difference between the true and the estimated eigenvalues can be explained by the fact that if

one follows the Nyquist rule, the resolution of the Fourier estimates is lower as one moves from

the estimation of Aptq to the other entries of the matrix Γptq (Mancino and Sanfelici (2020)) and

therefore to avoid aliasing effects the matrix eigenvalues can be plotted in a maximum of 2LC

points (see also Remark 4). Nevertheless, the approximation still remains good.

4.3 Stochastic Volatility of Volatility model

Barndorff-Nielsen and Veraart (2013) and Kaeck and Alexander (2013) extend existing volatility

models to allow for a stochastic specification of the volatility of volatility. As in the Heston model,

the log-price in the SVV model is specified as follows

dpptq “
ˆ
α´ σ2ptq

2

˙
dt` σptqdW 1

t (42)
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We let then the spot volatility be defined by the two factor model (see Sanfelici et. al. (2015))

dσ2ptq “ κpθ ´ σ2ptqqdt` ξptqdW 2
t (43)

dξ2ptq “ κξpθξ ´ ξ2ptqqdt` νξξptqdW 3
t , (44)

where the Brownian motions W 1 and W 2 are correlated with coefficient ψ and W 3 is an inde-

pendent Brownian motion.

We follow Barletta et. al. (2019) and set the parameters of the two factor model as shown

in Table 3.

Table 3
SVV model. Parameters of the two factor model (43 - 44)

κ θ κξ θξ νξ ψ

Values 2.26 0.0374 1 0.299 1 0.8
The table reports the values of the parameters κ, θ, κξ, θξ, νξ and ψ.

The initial values of σ2ptq and ξ2ptq are equal to 0.0324 and 0.299, respectively. The log-price

is simulated again with the same parameters of the previous settings. The Feller’s condition is

not met and therefore the processes σ2ptq and ξ2ptq might attain negative values. To deal with

this problem, we use the Euler-Maruyama discretization with the absorption fix (Korn et. al

(2010)). De Col et al. (2013) show that the Feller’s condition is often violated in practice.

We begin the analysis verifying the efficiency of the Fourier estimator of the entries of the

matrix (6). The volatilities and cross-volatilities are easily obtained in closed-form as

Aptq “ xdpptq, dpptqy{dt “ σ2ptq, Bptq “ xdAptq, dAptqy{dt “ ξ2ptq, (45)

Cptq “ xdBptq, dBptqy{dt “ ν2ξ ξ
2ptq, aptq “ xdAptq, dpptqy{dt “ ψξptqσptq (46)

bptq “ xdBptq, dpptqy{dt “ 0, cptq :“ xdAptq, dBptqy{dt “ 0. (47)

In particular, the identities show that the leverage effect can be positive or negative depending on

the correlation coefficient and that the cross-volatilities between the spot volatility of volatility

and the log-price or the spot volatility are zero. The rank of the Gram matrix Γptq, in this case,

is full implying the eigenvalues λiptq, i “ 1, 2, 3, are different from zero.
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The characteristic polynomial is

pν2ξ ξ2ptq ´ λqrpσ2ptq ´ λqpξ2ptq ´ λq ´ ψ2ξptq2σptq2s “ 0,

thus we have

λ1ptq “ ν2ξ ξptq2

and

λ2,3ptq “ ξptq2 ` σ2ptq ˘apξ2ptq ` σ2ptqq2 ´ 4ξ2ptqσ2ptqp1´ ψ2q
2

.

Figure 8 shows the accuracy of the Fourier estimates of the matrix Γptq with respect to the

true ones. The results presented in this figure are encouraging for the Fourier estimators as they

approximate very well the elements of Γptq. Also look at how the positive correlation between

the log-price and spot volatility is captured by the Fourier estimate of the process aptq.

Fig. 8. SVV model. Top panel: The log-price pptq as a function of time. The middle and bottom
panels: The Fourier estimates of the stochastic processes Aptq, aptq, Bptq, bptq, Cptq and cptq are
depicted with a solid red line, whereas the corresponding true quantities with a solid blue line.

The good performance of the Fourier estimates is also visible from Figure 9. We note that the

contribution of the second and third factor increases compared to the previous simulations. More

particularly, the third factor starts to become important confirming the fact that the variability

of the SVV model is explained by three factors.
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Fig. 9. SVV model. The figure shows the values of γ̂ptq, β̂ptq and ρ̂ptq.

The importance of the third factor is also evident from Table 4. Indeed, it can be seen now

that the maximum value of ρ̂ptq increases to 0.2230, i.e. one order of magnitude larger than in

Table 2.

Table 4
SVV model. Some statistics on γ̂ptq, β̂ptq and ρ̂ptq

Min Max Mean SD

γ̂ptq 0.4607 0.9809 0.7591 0.1346

β̂ptq 0.0191 0.4608 0.2030 0.1076

ρ̂ptq 0.0000 0.2230 0.0379 0.0602
[para,flushleft] The table reports the minimum (Min), maximum (Max), mean and the standard devi-
ation (SD) of γ̂ptq, β̂ptq and ρ̂ptq.

5 Empirical analysis

In order to provide empirical evidence of our results, we apply our proposed non-parametric test

to intraday prices from the S&P 500 index futures. This index trades on the Chicago Mercantile

Exchange. The tick-by-tick dataset selected for the study covers the period from January 2,

2008 to December 31, 2008 having a total of 251 days.4 For each day, returns are computed as

the difference between two consecutive log-prices. Our dataset includes the collapse of Lehman

Brothers, the peak of the global financial crisis of 2007-2008. It would therefore be interesting to

see if around this event, a volatility model with more than one factor is more appropriate. Table
4We would like to thank Fulvio Corsi for providing data on the S&P 500 index futures.
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5 provides some features of these data.

Table 5
Data description

Min Max Mean SD No. of trades First trade

739.00 1480.2 1226.55 186.89 557982 09:30

Last trade Mean trades Min return Max return Mean return SD return

16:14 5.5165 -0.0866 0.0612 -9.0299e-07 4.7542e-04
The table reports the minimum (Min), maximum (Max), mean and the standard deviation (SD) of the
prices and returns of the S&P 500 index futures. In addition, the total number of trades (No. of trades),
the lowest and the highest trading time (First and Last trade) and the average number of trades per
minute (Mean trades) are reported. The sample covers the period from January 2, 2008 to December 31,
2008 and the number of days is equal to 251.

A necessary step in computing the Fourier estimate of the Gram matrix Γptq is the de-

termination of the various cutting frequencies involved. As is well known, high-frequency data

suffer from microstructure noise. For this reason, for every specific day, a value for the cutting

frequency N is derived using the results in Mancino and Sanfelici (2008) with noise moments esti-

mated as in Bandi and Russell (2008). The integrated realized volatility and quarticity estimates

required for such derivation are calculated with sparse sampled 10-minute returns, synchronized

using the previous tick interpolation method, that is, setting the price to its most recent value.

The choice of this sampling frequency is based on the analysis of the volatility signature plot

(Andersen et. al. (2000)) and the autocorrelation functions (ACFs) shown in Figure 10. From the

top two panels (left and middle panels) of this figure it emerges that the microstructure noise

is present in our data. Indeed, the left top panel shows that the daily average realized volatility

reaches its minimum when computed with raw data and starts then to increase when we lower

the sampling frequency. On the other side, from the middle top panel, raw returns have positive

autocorrelation at high frequencies. Combining these two facts, we can conclude that the graph

shown in the left top panel looks like the volatility signature plot of an illiquid asset (Andersen

et. al. (2000)). Therefore, the microstructure bias is probably due to inactive trading. This makes

sense if we also recall the financial crisis of 2007-2008. Looking also at the other ACFs, it seems

natural to assume that returns are noise free when log-prices are recorded at 10-minute intervals.

As pointed out above, for every specific day, the Fourier estimates of the spot volatility are

obtained using the previously derived cutting frequency N . The other frequencies are similar to
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those in the previous section5 and are taken equal to NA “ p8nq1{2,M “ NA{2,MB “ p16Mq1{2,
L “ MB{2, LC “ p8Lq1{2, Ma “ MB and Lb “ Lc “ LC . In order to avoid cases where the

cutting frequencies involved in the computation of the Fourier estimates are too small, we exclude

days with less than 1000 trades from our sample leaving us with 240 days.

0 10 20 30

Sampling Frequency

0

4

8

D
a
ily

 A
v
e
ra

g
e
 R

e
a
liz

e
d
 V

o
la

ti
lit

y

10-4

-0.1

0

0.2

A
C

F
0 5 10 15 20

Lags

Raw returns

-0.1

0

0.2

A
C

F

0 5 10 15 20

Lags

1-minute returns

-0.1

0

0.2

A
C

F

0 5 10 15 20

Lags

2-minute returns

-0.1

0

0.2

A
C

F

0 5 10 15 20

Lags

5-minute returns

-0.1

0A
C

F

0 5 10 15 20

Lags

10-minute returns

Fig. 10. The top left panel shows the daily average realized volatility as a function of the
sampling frequency expressed in minutes. The graph includes also the realized volatility
computed with the raw data. The other panels display the autocorrelation functions of raw, 1,
2, 5 and 10-minute returns. The sample covers the period from January 2, 2008 to December
23, 2008 and the number of days is equal to 240.

Equipped with the cutting frequencies, we proceed now to compute the quantities γ̂ptq, β̂ptq
and ρ̂ptq. For each day of our sample, the estimates are computed at a minimum of 20 and a

maximum of 24 points, where as in the previous section we exclude the first and last estimation

time. The findings are reported in Table 6 and Figure 11.
5Slight differences in the choice of the cut-off frequencies are motivated by the lower average daily number of

observations compared to the simulation exercise of Section 4 and the need to maintain a sufficient large number
of evaluation points 2LC . Nevertheless, we highlight that our results are robust to the sensible choice of the
parameters.
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Table 6
Some statistics on γ̂ptq, β̂ptq, ρ̂ptq. λ̂1ptq, λ̂2ptq and λ̂3ptq

Min Max Mean SD

γ̂ptq 0.7171 1.0000 0.9963 0.0124

β̂ptq 0.0000 0.2819 0.0037 0.0124

ρ̂ptq 0.0000 0.0123 1.0412e-05 2.3767e-04

λ̂1ptq 1.5020e-06 0.0128 1.1871e-04 4.2712e-04

λ̂2ptq 1.8285e-06 0.0012 2.8133e-05 1.0558e-05

λ̂3ptq 0.0000 4.3946e-06 3.4117e-09 7.5914e-08
The table reports the minimum (Min), maximum (Max), mean and the standard deviation (SD) of γ̂ptq,
β̂ptq, ρ̂ptq, λ̂1ptq, λ̂2ptq and λ̂3ptq for the S&P 500 index futures. The sample covers the period from
January 2, 2008 to December 23, 2008 and the number of days is equal to 240.
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Fig. 11. The top three panels show the values of γ̂ptq, β̂ptq and ρ̂ptq. The bottom three panels
show the estimated eigenvalues λ̂1ptq, λ̂2ptq and λ̂3ptq. The sample covers the period from
January 2, 2008 to December 23, 2008 and the number of days is equal to 240.

It is interesting to note that the eigenvalues assume relatively low values and that the mean

of γ̂ptq is approximately equal to one. However, it assumes also a minimum value which is unusual

to what we have seen in the previous section for the one factor models. Combining this with the

maximum values assumed by β̂ptq and ρ̂ptq suggests that there are trading times in which a

model with more than one factor can be more adequate. The results in Table 6 and Figure

11 show that one factor models are adequate to describe the S&P 500 index futures

most of the days. This finding is somehow in line with Guyon and Lekeufack (2023),
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where it is empirically shown that the volatility of equity markets is mostly path

dependent and do not require considering stochastic volatility models. However, the

model proposed in Guyon and Lekeufack (2023) is richer than the one implied by

the one factor model considered in the present paper, as we do not consider path

dependency in the volatility, but only Brownian semimartingales.

To get a more precise idea of the behaviour of γ̂ptq, β̂ptq and ρ̂ptq, we select two specific dates

of our sample. The dates are: January 3, 2008 and October 10, 2008. The first date corresponds to

the date having the maximum value of γ̂ptq and the second to the date having the minimum value

of γ̂ptq. The second date, at the same temporal instant of the minimum value of γ̂ptq, has a value

of β̂ptq and ρ̂ptq equal to 0.2819 and 0.0011. We also tested our dataset for the presence

of jumps, which may lead to biased estimates and are usually more proclaimed

during crisis periods such as the 2008 financial crisis. Jumps have been identified

and measured using the Threshold Bipower Variation method of Corsi et al. (2010),

which is based on the joint use of bipower variation and threshold estimation of

Mancini (2009). This method provides a powerful test for jump detection, which is

employed at the significance level of 99.9%. We refer the reader to Mancino and

Sanfelici (2012) for further details on the jump removal procedure. Indeed, the test

revealed the occurrence of jumps on many days of the sample that however do not

include either January 3 or October 10.

We plot the corresponding trajectories of γ̂ptq, β̂ptq and ρ̂ptq in Figure 12. Contrary to the

top three panels, the bottom panels are much more favourable to a model with more than one

factor. Not surprisingly, these panels correspond to the date October 10, 2008 which follows the

bankruptcy of Lehman Brothers on September 15, 2008. We would also like to mention here that

the maximum value of ρ̂ptq, equal to 0.0123, is reached on September 29, 2008 which coincides

with the September 29 stock market crash. At the same temporal instant when this value is

reached, the values of γ̂ptq and β̂ptq are equal to 0.8972 and 0.0905. This clearly indicates the

presence of more than one latent factor.
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Fig. 12. The top three panels show the values of γ̂ptq, β̂ptq and ρ̂ptq for the day January 3,
2008. The bottom three panels show the values of γ̂ptq, β̂ptq and ρ̂ptq for the day October 10,
2008.

Finally, we show the trending of the log-prices for the days January 3, 2008 and October, 10

2008 in Figure 13. Together with these, the right panels display the scree plots (Cattell (1966))

corresponding to the temporal instants of day January 3, 2008 and October, 10 2008 having,

respectively, the maximum values of γ̂ptq and β̂ptq. In the first case (top right panel), the scree

plot clearly suggests that a one factor model is correct. On the other hand, the bottom left panel

of Figure 13 indicates that there is a higher variability on October, 10 2008. Coherently, the

corresponding scree plot in the bottom right panel is more favourable to a two factor model.
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Fig. 13. The left panels show the log-price pptq for the day January 3, 2008 and October, 10
2008. The right panels show the scree plots corresponding to the temporal instants of day
January 3, 2008 and October, 10 2008 having, respectively, the maximum value of γ̂ptq and β̂ptq.

6 Conclusions

The main contribution of the paper is to provide an efficient and easily implementable method to

exploit the information contained in the observed asset prices and identify the number of latent

factors governing the data generating processes. This issue has many important applications in

both risk management and other statistical problems, such as testing for market (in)completeness

in financial mathematics and testing the local volatility versus stochastic volatility hypothesis.

We propose an efficient non-parametric model to detect the relevant number of factors in the

dynamics of the price of a given asset. Our methodology is able to identify factors driving the asset

price itself, its volatility and the volatility of the volatility. However, we remark that, potentially,

the method can be iterated also to a larger number of factors.

This is made possible by the well established ability of the Fourier estimator to estimate it-

erated co-variation processes from discrete price observations. Using time series of high-frequency

data, the Fourier estimator allows to estimate iterated co-variations filtering out potential mi-

crostructure effects. Moreover, while other commonly used estimators, which rely on quadratic-

covariation formula, already lose their efficiency when moving to the second iteration, namely

the volatility of volatility estimation, and require very long time series and cumbersome choices

of the tuning parameters or bias corrections, the Fourier method allows to estimate iterated
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co-volatilities even starting from time series of cardinality which are not too big. This can be

much relevant for practitioners.

Once the Gram matrix of the estimated processes is composed, the analysis of its eigenvalues

allows us to identify the number of latent factors of the data generating process.

The proposed methodology performs very well both numerically and empirically. In par-

ticular, our empirical results suggest that it is possible to detect the presence of more factors

driving the market in times of crisis and financial turmoil, such as the Lehman Brothers collapse.

Overall, we believe our approach can enrich the related literature.
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A Appendix A

The proof of the consistency for the spot volatility of volatility of volatility estimator is based

on the following proposition.

For any integer |k| ă 2N and under the conditions N „ n, M „ n1{2, L „ n1{4, the

following convergence in probability holds

lim
n,N,M,LÑ8 ckpCn,N,M q “ ckpCq,

where ckpCq is the k-th Fourier coefficient of the volatility of volatility of volatility process Cptq.
It is enough to prove that the result holds for k “ 0. The consistency of the other Fourier

coefficients estimators follows similarly. In the following we denote by ErXs the expectation for

a random variable X. Up to negligible multiplicative constants, we have

Er| 2π

2L` 1

ÿ

|j|ďL
cjpdBn,N,M qc´jpdBn,N,M q ´ c0pCq|2s

ď Er| 2π

2L` 1

ÿ

|j|ďL
cjpdBn,N qc´jpdBn,N,M q ´ cjpdBqc´jpdBq|2s (48)

` Er| 2π

2L` 1

ÿ

|j|ďL
cjpdBqc´jpdBq ´ c0pCq|2s. (49)

Remember that the processes involved, follow continuous semimartingale models. First consider

(48). It is enough to study the term

Er|cjpdBn,N,M qc´jpdBn,N,M q ´ cjpdBqc´jpdBq|2s,

for any |j| ď L. By the Cauchy-Schwartz inequality, this is smaller than

Er|cjpdBn,N,M q|4s1{2Er|c´jpdBn,N,M q´c´jpdBq|4s1{2`Er|c´jpdBq|4s1{2Er|cjpdBn,N,M q´cjpdBq|4s1{2.

By the boundedness assumption on the coefficients of the process Bt, the terms Er|c´jpdBq|4s
and Er|cjpdBn,N,M q|4s are bounded.

We consider now the term

Er|cjpdBn,N,M q ´ cjpdBq|4s1{2.
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Using the definition, we have

Er|cjpdBn,N,M q ´ cjpdBq|4s1{2 “ j2Er|cjpBn,N,M q ´ cjpBq|4s1{2. (50)

Therefore, the consistency result in (15) and the boundedness of the process B imply that

Er|c´jpBn,N,M q´ c´jpBq|4s1{2 converges to zero. Further, from the study of the estimator of the

process Bptq in Toscano et al. (2022), we derive that it converges with order opn´1{2q.
We conclude that (50) goes to zero, observing that that

j2Er|cjpBn,N,M q ´ cjpBq|4s1{2 “ L2opn´1{2q “ op1q,

for the assumption L “ Opn1{4q.

Now consider (49). From Lemma 3.2 in Malliavin and Mancino (2009) we have

Er| 2π

2L` 1

ÿ

|j|ďL
cjpdBqc´jpdBq ´ c0pCq|2s ď K

1

2L` 1
}B}28,

where K is a constant. Letting LÑ8, the consistency follows. l

Based on that, in virtue of the continuity assumption of Cptq (remind that the process Cptq
is a Brownian semimartingale), it follows that it holds in probability

lim
n,N,M,L,LCÑ8

sup
tPp0,2πq

| pCn,N,M,L,LC
ptq ´ Cptq| “ 0.

B Appendix B

Let us denote by }A}2, }A}8 the Euclidean and maximum norm of a given d ˆ d matrix A,

respectively. Now, recall that the following inequality holds6

}A}2 ď
?
d}A}8. (51)

The following Lemma provides some bounds on the difference between eigenvalues of the

matrix Γ̂ptq and Γptq. (Weyl’s Perturbation Theorem) Let A and Â be d ˆ d symmetric

6We remind that }A}2 :“ a
maximum eigenvalue of ATA and, in particular, for symmetric matrices }A}2 :“

maxt|λj | : λj is an eigenvalue of Au. Moreover, }A}8 :“ maxj“1,...,d
řd
k“1 |ajk|.
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matrices and denote by λ1 ě λ2 ě . . . ě λd and λ̂1 ě λ̂2 ě . . . ě λ̂d their eigenvalues. Then

max
j“1,...,d

|λ̂j ´ λj | ď }Â´A}2.

Proof. See Bhatia (2013).

We are now in the position to prove Theorem 3.7.

Proof of Theorem 3.7: The consistency results in the previous sections entail that

lim
n,M,N,L,NA,MB ,LC ,Ma,Lb,LcÑ8

sup
tPp0,2πq

}Γ̂ptq ´ Γptq}8 “ 0. (52)

For any t̄ P p0, 2πq, applying Lemma B and inequality (51) to each couple of eigenvalues λ̂jpt̄q
and λjpt̄q, for j “ 1, 2, 3, we get

|λ̂jpt̄q ´ λjpt̄q| ď
?

3}Γ̂pt̄q ´ Γpt̄q}8 ď
?

3 sup
tPp0,2πq

}Γ̂ptq ´ Γptq}8.

Taking the supremum over p0, 2πq of the left hand side, we get

sup
tPp0,2πq

|λ̂jptq ´ λjptq| ď
?

3 sup
tPp0,2πq

}Γ̂ptq ´ Γptq}8.

Uniform consistency of the j-th estimated eigenvalue as n,M,N,L,NA,MB , LC ,Ma, Lb, Lc Ñ8
follows from (52). l
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