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Abstract

We study the sensitivity of the leverage effect to changes of the price and
the volatility, showing the existence of an analytical link between the latter
and the price-leverage covariation under the Constant Elasticity of Variance
model. From the financial standpoint, this result allows for the interpreta-
tion of the price-leverage covariation as a gauge of the responsiveness of
the leverage effect to price and volatility changes. The study of S&P500
high-frequency prices over the period March, 2018-April, 2018, carried out
by means of non-parametric Fourier estimators, suggests that empirical data
may support this interpretation of the role of the price-leverage covariation.
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1 Introduction

Empirical evidence collected in the literature suggests that the leverage effect, i.e.,
the (usually negative) correlation between the price and the volatility of a financial
asset, is time-varying. For instance, Kalnina and Xiu (2017) point out that the
the intensity of the leverage effect gets stronger in turbulent periods, that is, in
correspondence of volatility spikes or large returns, while Bandi and Renò (2012)
model the leverage process as a function of the stochastic volatility of the asset,
based on empirical evidence. Thus, in order to get insight into the time-varying
dynamics of the leverage process, it may be interesting to study its sensitivity to
increments of the volatility or the price.

This can be done analytically in the case of the Constant Elasticity of Variance
(CEV) model by Beckers (1980). The CEV model is possibly the most popular ex-
ample in the class of level-dependent models, that is, models that treat the volatility
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process as a deterministic function of the price process. Level-dependent models
represent a parsimonious and analytically-tractable tool to reproduce some stylized
facts of financial markets, e.g., the implied volatility smile (see, e.g., Derman and
Kani (1994); Dupire (1994); Hobson and Rogers (1998)). More recently, a level-
dependent model driven by a Fractional Brownian motion has also been introduced,
with the aim of reproducing the empirically-observed long-memory property of the
volatility (see Araneda (2020)). Specifically, the CEV model is explicitly designed
to capture leverage effects. Moreover, under the CEV model, the leverage process
can be viewed as a deterministic differentiable function of either the volatility or
the log-price, thereby allowing the computation of its analytical derivative with
respect to any of these two processes.

In this regard, simple calculations show that both these analytical derivatives
depend on the same quantity: the price-leverage covariation. In particular, it
emerges that the derivative of the leverage with respect to the price (respectively,
the volatility) is equal to the ratio of the price-leverage covariation and the volatil-
ity (respectively, the leverage). Additionally, it also emerges that the price-leverage
covariation is equal to twice the vol-of-vol process. However, the result related to
the analytical derivative of the leverage with respect to the volatility holds more
generally. In fact we show that, for this derivative to be equal to the ratio of the
price-leverage covariation and the leverage, it is sufficient to assume that the data-
generating process is any stochastic volatility model with continuous paths where
the vol-of-vol process is a multiple of a power of the variance process. Popular,
widely-used examples of stochastic volatility models with this feature, beyond the
CEV model, are the model by Heston (1993), the 3/2 model by Platen (1997) and
the continuous-time GARCH model by Nelson (1990). Also, in this more general
semi-parametric framework, the price-leverage covariation is still a linear function
of the vol-of-vol.

The price-leverage covariation has first been studied in Barucci et al. (2003),
where the authors derive a model-free indicator of financial instability whose an-
alytical expression depends, other than on the volatility and the leverage, on the
price-leverage covariation. However, only recently Sanfelici and Mancino (2020)
have provided a consistent non-parametric estimator of the price-leverage covaria-
tion, based on the Fourier method by Malliavin and Mancino (2002).

The existence of a theoretical, model-dependent link between the price-leverage
covariation and the sensitivity (i.e., the derivative) of the leverage process with re-
spect to the price and the volatility motivates an empirical, model-free investigation
of this link. Accordingly, in this paper we conduct this investigation on the sample
of S&P500 1-second prices over the period March, 2018 - April, 2018. As a result,
we uncover the existence of a statistically-significant linear relationship between
the price-leverage covariation scaled by the volatility or the leverage and the cor-
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responding numerical derivative of the leverage, computed via finite differences.
Remarkably, estimated regressions coefficients are close to 1, thereby suggesting
that theoretical predictions provide an accurate proxy of the true derivatives of the
leverage for the sample object of study. Note that, to be able to perform this empiri-
cal investigation, we have reconstructed the unobservable paths of the volatility, the
leverage and the price-leverage covariation from high-frequency prices in a non-
parametric fashion through the Fourier methodology (see, respectively, Malliavin
and Mancino (2002, 2009); Barucci and Mancino (2010); Sanfelici and Mancino
(2020)).

Based on these empirical findings, the price-leverage covariation can be in-
terpreted, from a financial standpoint, as a model-free measure of the responsive-
ness of the leverage effect to the arrival of new information on the market that
causes changes in the price or in the amount of risk perceived by market partici-
pants (i.e., in the volatility). Further, additional empirical results suggest that the
price-leverage covariation is approximately equal to twice the vol-of-vol for the
sample of object of study. Again, this results is line with the prediction of the CEV
model, which implies - as already mentioned - that the price-leverage covariation is
exactly equal to twice the vol-of-vol. Interpreting the vol-of-vol as the uncertainty
about the actual level of risk perceived on the market, this finding suggests that
the response of the leverage effect to changes in the price or the volatility is pro-
portional to the intensity of this uncertainty: the larger the latter, the stronger the
response of the leverage (and viceversa). Finally, note that the path of the vol-of-
vol has also been reconstructed non-parametrically using the Fourier methodology
(see Sanfelici et al. (2015)) for this empirical analysis.

The paper is organized as follows. In Section 2 we derive the analytical expres-
sions of the derivatives of the leverage with respect to the price and the volatility un-
der the CEV model. In Section 3 we give a brief description of the non-parametric
Fourier estimators of the spot volatility, leverage, vol-of-vol and price-variance
covariation and recall their asymptotic properties. Sections 4 and 5 contain, re-
spectively, numerical and empirical results. Finally, Section 6 concludes.

2 Analytical derivatives of the leverage in the CEV frame-
work

Let X(t) denote the price process and assume that its dynamics follow the CEV
model, that is,

dX(t) = σX(t)δ dW (t)+µX(t)d(t), (1)
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where W is a Brownian motion on the filtered probability space (Ω,F ,(Ft)t≥0,P),
satisfying the usual conditions, µ ∈ R, σ > 0 and δ > 0. Note that the role of the
parameter δ is crucial, as it captures leverage effects. Specifically, if δ < 1, the
price and the volatility are negatively correlated, as it commonly happens on equity
markets. Instead, if δ > 1, the price and the volatility move in the same direction,
according to the so-called inverse leverage effect, a phenomenon usually observed
on commodity markets.

Define x(t) := ln(X(t)). Under model (1), the following expressions are ob-
tained for the volatility ν(t), the leverage η(t), the price-leverage covariation χ(t)
and the vol-of-vol ξ (t):

ν(t) :=
d〈x,x〉t

dt
= σ2e2(δ−1)x(t), (2)

η(t) :=
d〈x,ν〉t

dt
= 2(δ −1)ν(t)2, (3)

χ(t) :=
d〈x,η〉t

dt
= 8(δ −1)2ν(t)3, (4)

ξ (t) :=
d〈ν ,ν〉t

dt
= 4(δ −1)2ν(t)3. (5)

Therefore, the derivatives of the leverage η(t) with respect to the log-price x(t)
and the volatility ν(t) read:

∂η(t)
∂x(t)

=
χ(t)
ν(t)

, (6)

∂η(t)
∂ν(t)

=
χ(t)
η(t)

. (7)

Based on equations (6) and (7), in the CEV framework χ(t) could be inter-
preted, from a financial point of view, as the process that captures the response of
the leverage to the arrival of new information that causes changes in the volatility
and/or the price.

Further, note that the derivative of the leverage with respect to the price in
equation (6) is strictly positive, since it is equal to the ratio of two strictly positive
processes, ν(t) (see (2)) and χ(t) (see (4)). This implies that on equity markets
the leverage effect increases (i.e., the leverage process becomes more negative)
in correspondence of a negative return, and viceversa. Instead, the sign of the
derivative of the leverage with respect to the volatility in equation (7) depends on
the sign of η(t). Therefore, if at some point in time η(t) is negative, it becomes
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more (respectively, less) negative in correspondence of an increment (respectively,
reduction) of the volatility. Overall, model-dependent predictions of the sensitivity
of the leverage effect to the price and the volatility in equations (6) and (7) are
consistent with the empirical findings related to time-varying leverage effects by
Kalnina and Xiu (2017) and Bandi and Renò (2012).

Additionally, based on equations (4) and (5), the process χ(t) is simply equal
to twice the vol-of-vol ξ (t) in the CEV framework. From a financial standpoint,
this linear link could be interpreted as follows. Taking the volatility as a measure of
market risk and the vol-of-vol as a proxy of the uncertainty about the actual level of
market risk perceived by market operators, the larger is the latter, the more intense
is the response of the leverage to price and market risk changes, as captured by
χ(t).

Remark 1. For the result in equation (7) to hold and for the price-leverage co-
variation to be a linear function of the vol-of-vol, it is sufficient to assume that the
log-price and the volatility are continuous semimartingales driven by two Brow-
nian motions with constant non-zero correlation parameter and that the diffusion
component of the volatility process is a multiple of a power of the volatility process
itself. Formally, assume that

dx(t) =
√

ν(t)dW (t)+a(t)dt

dν(t) = γν(t)β dZ(t)+b(t)dt

d〈W,Z〉t = ρdt

(8)

where: W and Z are Brownian motions on the filtered probability space (Ω,F ,(Ft)t≥0,P),
which satisfies the usual conditions; a, b and ν are continuous adapted processes1;
ρ ∈ [−1,1]−{0}, γ ∈ R and β ∈ R. Then it follows that:

ξ (t) = γ2ν(t)2β , (9)

η(t) = ρ
√

ν(t)
√

ξ (t), (10)

χ(t) =
(

β +
1
2

)
ρ2ξ (t). (11)

1The condition ν(t)> 0 a.s., which is clearly desirable from a financial standpoint, may impose
some additional constraints on the parametric form of the drift b (see, e.g., Feller (1951) for the
case when b has a mean-reverting structure). However, any additional constraints on the parametric
form of b do not interfere with the computations of ξ (t), η(t) and χ(t), as they depend only on the
diffusion components of the price and the volatility.
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Therefore:

∂η(t)
∂ν(t)

=
χ(t)
η(t)

. (12)

The semi-parametric specification (8) contains the class of stochastic volatility
models where the volatility is a CKLS process (Chan et al. (1992)), such as the
Heston model, the continuous-time GARCH model and the 3/2 model. Moreover, it
contains also the CEV model, as in (1), which indeed can be rewritten as:

dx(t) = σ(t)dW (t)+
(

µ− 1
2

ν(t)
)

dt

dν(t) = γν(t)β dW (t)+ γν(t)
(

µ− 1
2
(γ +1)ν(t)

)
dt

(13)

where γ = 2(δ −1) and β = 3/2.

Assuming the CEV model as the data-generating process, consistent estimators
of the derivatives (6) and (7) can be built as the ratio of non-parametric estimators
of χ(t) and, respectively, ν(t) or η(t). We address this aspect in the next section,
using the Fourier methodology.

3 Fourier-based estimation of the analytical derivatives of
the leverage in the CEV framework

The Fourier method, introduced by Malliavin and Mancino (2002), is particu-
larly well-suited to build non-parametric estimators of second-order and third-order
quantities. As a first step, one obtains estimates of the Fourier coefficients of the
latent volatility ν(t). Then, the knowledge of these coefficients allows iterating
the procedure to compute the Fourier coefficients of the second-order quantities
ξ (t) and η(t). Finally, a third iteration yields estimates of the coefficients of the
third-order quantity χ(t). In this regard, it is worth noting that these progressive
iterations do not involve any differentiation procedure for the pre-estimation of the
spot volatility (in order to estimate second-order quantities) or the spot leverage
(in order to estimate the third-order quantity χ(t)). Instead, they only require the
pre-estimation of integrated quantities, namely the Fourier coefficients. Given the
numerical instabilities which are typically linked to differentiation procedures, this
feature represents a strength of the Fourier methodology, compared to the real-
ized approach for the estimation of spot processes (see Chapter 8 in Aı̈t-Sahalia
and Jacod (2014) for a detailed description of realized spot estimators and their
asymptotic properties).
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The Fourier estimators of ν(t),η(t),ξ (t) and χ(t), which we illustrate in the
following, are termed non-parametric in that, for their asymptotic properties to
hold, they only require that the processes x(t), ν(t) and η(t) are continuous semi-
martingales. Formally, we assume that:

dx(t) =
√

ν(t)dW (t)+a(t)dt

dν(t) = γ(t)dZ(t)+b(t)dt

dη(t) = λ (t)dY (t)+ c(t)dt

where W,Z and Y are correlated Brownian motions on the filtered probability
space (Ω,F ,(Ft)t≥0,P), which satisfies the usual conditions, while the processes
a,b,c,ν ,γ and λ are continuous, adapted and bounded in absolute value.

In the following subsections, after briefly illustrating the Fourier estimators of
ν(t), η(t), and χ(t) and recalling their asymptotic properties, we derive consistent
estimators of the derivatives (6) and (7) as the ratio of the Fourier estimators of
χ(t) and, respectively, ν(t) or η(t). The Fourier estimator of the vol-of-vol ξ (t) is
also illustrated, as it will be used in the empirical study of Section 5.

3.1 Fourier estimator of the volatility

Assume that the log-price process x(t) is observable on the grid of mesh size
ρ(n) := 2π/n over the interval [0,2π]2. Then, for |k| ≤ N, the k-th (discrete)
Fourier coefficient of the volatility is defined as

ck (νn,N) :=
2π

2N +1 ∑
|s|≤N

cs (dxn)ck−s (dxn) , (14)

where for any integer k, |k| ≤ 2N,ck (dxn) is the k-th (discrete) Fourier coefficient
of the log-return process, namely

ck (dxn) :=
1

2π

n−1

∑
j=0

e−ikt j,nδ n
j (x), (15)

where δ n
j (x) := xt j+1,n− xt j,n, t j,n = j 2π

n , j = 0,1, ...,n, while the symbol i denotes
the imaginary unit, that is, i =

√
−1.

2In applications, we can always assume that the price process x(t) is observed on [0,2π] by re-
scaling the actual time interval. Moreover, note that in this Chapter, to simplify the exposition, we
assume that the price process is observable on an equally-spaced grid, but, in general, the Fourier
method works also with unequally-spaced samples (see Mancino et al. (2017)).
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Once the Fourier coefficients of the volatility (14) have been computed, the ap-
plication of the Fourier-Fejér inversion formula allows reconstructing the volatility
path. The definition of the Fourier spot volatility estimator is as follows.

Definition 1. Fourier estimator of the spot volatility
The Fourier estimator of the spot volatility process is defined as the random

function of time

ν̂n,N,Sν (t) := ∑
|k|<Sν

(
1− |k|

Sν

)
ck (νn,N)eikt , (16)

where Sν is a positive integer smaller than N, while ck (νn,N) is defined in (14).

The following theorem demonstrates the uniform consistency of the Fourier
estimator of the spot volatility (16).

Theorem 1. For any integer |k| ≤ N, if N/n→ 1/2, the following convergence in
probability holds

lim
n,N→∞

ck (νn,N) = ck(ν),

where ck(ν) is the k-th Fourier coefficient of the volatility process ν(t). Moreover,
if N/n→ 1/2 and Sν/n→ 0, it holds in probability that

lim
n,N,Sν→∞

sup
t∈(0,2π)

|ν̂n,N,Sν (t)−ν(t)|= 0.

Proof. See Malliavin and Mancino (2009).

3.2 Fourier estimator of the leverage

As mentioned, the knowledge of the Fourier coefficients of the latent instantaneous
volatility ν(t) allows treating the latter as an observable process and iterate the pro-
cedure for computing the Fourier coefficients in order to reconstruct the leverage
process η(t). In particular, to estimate the instantaneous leverage η(t) we exploit
the multivariate version of Fourier method introduced in Malliavin and Mancino
(2009). Accordingly, an estimator of the Fourier coefficients of the leverage is
given by

ck (ηn,N,M) :=
2π

2M+1 ∑
| j|≤M

c j (dxn)ck− j (dνn,N) , (17)

where M is a positive integer smaller than N, c j (dxn) is given in (15) and we use
the approximation c j (dνn,N)∼= i jc j (νn,N)

3. Then the following theorem holds.

3See, e.g., Chapter 6 in Mancino et al. (2017).
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Theorem 2. If N/n→ 1/2 and M2/n→ 0 for n,N,M → ∞, then the following
convergence in probability holds

lim
n,N,M→∞

ck (ηn,N,M) = ck(η),

where ck(η) is the k-th Fourier coefficient of the leverage process η(t).

Proof. See Barucci and Mancino (2010).

Finally, a consistent estimator of the instantaneous leverage η(t) is obtained as

η̂n,N,M,Sη (t) := ∑
|k|<Sη

(
1− |k|

Sη

)
ck (ηn,N,M)eikt , (18)

where Sη is a positive integer smaller than M, while ck (ηn,N,M) is defined in (17).

3.3 Fourier estimator of the vol-of-vol

The knowledge of the coefficients of the volatility process ν(t) also allows build-
ing an estimator of its quadratic variation, the vol-of-vol ξ (t). In particular, an
estimator of the coefficents of ξ (t) is given by

ck (ξn,N,M) :=
2π

2M+1 ∑
| j|≤M

c j (dνn,N)ck− j (dνn,N) , (19)

where, again, c j (dνn,N) is approximated with i jc j (νn,N). Then the following the-
orem holds.

Theorem 3. If N/n→ 0 and M4/N→ 0 for n,N,M→ ∞, then the following con-
vergence in probability holds

lim
n,N,M→∞

ck (ξn,N,M) = ck(ξ ),

where ck(ξ ) is the k-th Fourier coefficient of the vol-of-vol process ξ (t).

Proof. See Sanfelici et al. (2015).

Finally, a consistent estimator of the spot vol-of-vol ξ (t) can be obtained as

ξ̂n,N,M,Sξ (t) := ∑
|k|<Sξ

(
1− |k|

Sξ

)
ck (ξn,N,M)eikt (20)

where Sξ is a positive integer smaller than M, while ck (ξn,N,M) is defined in
(19).
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3.4 Fourier estimator of the price-leverage covariation

Similarly to what we have done for the volatility process ν(t), once its Fourier
coefficients have been estimated, we can treat the second-order quantity η(t) as
an observable process and exploit the multivariate Fourier method to estimate the
third-order quantity χ(t). The following asymptotic result is obtained.

Theorem 4. If N/n→ 1/2 and L2M2/N→ 0 for n,N,M,L→∞4, then the follow-
ing convergence in probability holds

lim
n,N,M,L→∞

ck (χn,N,M,L) = ck(χ),

where, for L positive integer and smaller than M, we define

ck (χn,N,M,L) :=
2π

2L+1 ∑
| j|≤L

c j (dxn) i jck− j (ηn,N,M) .

Proof. See Sanfelici and Mancino (2020).

Accordingly, a consistent spot estimator of the process χ(t) is defined as

χ̂n,N,M,L,Sχ (t) := ∑
|k|<Sχ

(
1− |k|

Sχ

)
ck (χn,N,M,L)eikt , (21)

where Sχ is a positive integer smaller than L.

3.5 Fourier estimators of the derivatives of the leverage

The Continuous Mapping Theorem ensures that the ratio of the non-parametric
Fourier estimators (21) and (16), i.e.,

χ̂n,N,M,L,Sχ (t)
ν̂n,N,Sν (t)

(22)

is a consistent estimator of the derivative of the leverage process with respect
to the log-price process under (1), as given in (6). Analogously, it also ensures that
the ratio of the non-parametric Fourier estimators (21) and (18), i.e.,

χ̂n,N,M,L,Sχ (t)
η̂n,N,M,Sη (t)

, (23)

is a consistent estimator of the derivative of the leverage process with respect
to the volatility process under (8), as given in (7)5.

4Note that these conditions also imply that M2/n→ 0, satisfying the hypotheses of Theorem 2.
5For n finite, estimators (22) and (23) are undefined if, respectively, ν̂n,N,Sν (t) or η̂n,N,M,Sη (t)
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4 Simulation study

Given the availability of consistent Fourier estimators of the volatility, the leverage
and the derivatives of the leverage with respect to the log-price or the volatility,
a simple test to check with empirical data if the true model-free derivatives of
the leverage match the corresponding model-dependent predictions under the CEV
model, as given in equations (6) and (7), entails performing a linear regression
between numerical approximations of the true derivatives, obtained via finite dif-
ferences, and estimates of the corresponding theoretical derivatives, as given in
(22) and (23). Formally, the test involves estimating the linear models

η̂n,N,M,Sη (t +h)− η̂n,N,M,Sη (t)
x(t +h)− x(t)

= α1
χ̂n,N,M,L,Sχ (t)

ν̂n,N,Sν (t)
(24)

and
η̂n,N,M,Sη (t +h)− η̂n,N,M,Sη (t)

ν̂n,N,Sν (t +h)− ν̂n,N,Sν (t)
= α2

χ̂n,N,M,L,Sχ (t)
η̂n,N,M,Sη (t)

. (25)

If the estimation with empirical data yields statistically-significant estimates of
the coefficients α1 and α2 that are close to the value of 1, then the predictions of
the CEV model could be deemed as an accurate gauge of the true sensitivity of the
leverage to changes in the price and the volatility. This in turn would suggest that
empirical data support the interpretation of χ(t) as the process that captures the
response of the leverage to changes in the price and the volatility, as implied by the
CEV model via equations (6) and (7).

In order to obtain reliable results from the tests (24) and (25), it is not only
crucial that finite-sample efficient Fourier-based estimates of the paths of the pro-
cesses ν(t), η(t) and χ(t) are used, but also that the step h for the differentiation
procedure is carefully selected. Accordingly, the aim of the simulation study per-
formed in this section is to provide guidance for the optimal selection of the step
h.

For the simulation study, we generate price observations from the CEV model
in equation (1), setting σ = 0.3 and δ = 0.5. These parameter values are taken
from the simulation study in Sanfelici and Mancino (2020). Further, the initial
price value X(0) is selected as X(0) = 1. Recall that a value of δ smaller than 1
reproduces the type of leverage effect usually observed on equity markets, that is,
it yields a correlation between returns and volatility changes with negative sign.

is equal to zero. However, the analysis conducted in this chapter is not affected by this potential
problem, as estimators (22) and (23) are used only in equations (24) and (25), which are rewritten, to
reduce numerical instabilities as, respectively, (26) and (27).
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Based on these parameter values, we simulate a total of 100 days of 1-second
observations. Each simulated day is 6.5-hour long.

Specifically, we simulate two scenarios: one where the efficient log-price x(t)
is observable and another, more realistic, where one can only observe the noisy
price x̃(t) := x(t)+ ε(t), that is, the efficient price x(t) contaminated by the pres-
ence of an i.i.d. zero-mean microstructure noise component ε(t). For the simula-
tion of ε(t), we choose a Gaussian distribution, with standard deviation parameter
equal to 10−4.

In both simulated scenarios, we use all available data for the estimation of
ν(t), η(t) and χ(t), that is, we select n = 23400, which corresponds to the 1-
second sampling frequency. Further, we make the following selections for the
cutting frequencies. At the first level, to obtain spot volatility estimates, we select
N = n/2 in the noise-free scenario, while in the noisy scenario we select N based
on the noise-robust procedure proposed by Mancino and Sanfelici (2008); then, we
select Sν = n0.5. At the second level, we estimate the spot leverage by choosing
M = n0.5 and Sη = 4n0.25 Finally, we select L = 4n0.25 and Sχ = 6n0.125 at the third
level, to obtain spot estimates of χ(t). All these selections, with the exception of
N, are based on the numerical minimization of the mean-squared error (MSE). The
estimated trajectories of ν(t), η(t) and χ(t) in the absence and the presence of
noise are plotted, along with the corresponding true values, in Figures 1 and 2 to
demonstrate the accuracy of the estimation. Additionally, in Figures 1 and 2 we
also show the accuracy of the estimated trajectory of ξ (t), which will be used in the
final part of the simulation study. Note that the selection of the cutting frequencies
for the estimation of ξ (t) is performed separately (see Theorem 3). In particular,
first we select N either equal to 3n0.75 in the noise-free scenario or via the noise-
robust approach by Mancino and Sanfelici (2008) in the noisy scenario, then we
choose M = 2n0.25 and Sξ = n0.25 based on the numerical optimization of the MSE.
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Figure 1: Comparison, in the noise-free scenario, between the true and the es-
timated trajectories of ν(t) (panel a)), η(t) (panel b)), ξ (t) (panel c)) and χ(t)
(panel d)). For each panel, the true and estimated trajectories are plotted on the
equally-spaced grid of mesh size equal to 1 second.
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Figure 2: Comparison, in the noisy scenario, between the true and the estimated
trajectories of ν(t) (panel a)), η(t) (panel b)), ξ (t) (panel c)) and χ(t) (panel d)).
For each panel, the true and estimated trajectories are plotted on the equally-spaced
grid of mesh size equal to 1 second.

After having obtained accurate estimates of ν(t), η(t) and χ(t), we perform
tests (24) and (25). In this regard, to reduce the numerical instabilities related to
the computation of ratios, we estimate α1 and α2 after rewriting (24) and (25) as,
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respectively,

[
η̂n,N,M,Sη (t +h)− η̂n,N,M,Sη (t)

]
ν̂n,N,Sν (t) = α1

[
x(t +h)− x(t)

]
χ̂n,N,M,L,Sχ (t),

(26)
and
[
η̂n,N,M,Sη (t+h)−η̂n,N,M,Sη (t)

]
η̂n,N,M,Sη (t)=α2

[
ν̂n,N,Sν (t+h)− ν̂n,N,Sν (t)

]
χ̂n,N,M,L,Sχ (t)

(27)
The estimates of α1 and α2 in the noise-free and the noisy scenarios, obtained

for different values of the step h, are plotted in Figures 3 - 66. These figures show
that the estimates of α1 and α2 fluctuate around the true level, that is, around 1, for
values of h between 5 and 30 minutes7. This suggests that a more reliable estimate
of α1 or α2 could be obtained by computing the average of point-wise estimates in
correspondence of values of h between 5 and 30 minutes. Indeed, such averages,
which are also plotted in Figures 3 - 6 (see the red dashed lines), appear to be very
close to 1. The exact averages of the estimates of α1 and α2, along with average
values of other relevant outputs of the estimation procedure, are reported in the
Table 1. Note that these averages are quite accurate, that is, are quite close to 1.
Also, note that point-wise coefficient estimates are all statistically significant, with
a constant p-value equal to zero for both tests in both scenarios considered. Finally,
note that the very large R2 values confirm the accuracy of the Fourier estimates of
ν(t), η(t) and χ(t).

As mentioned in the previous section, based on equations (4) and (11), another
aspect that could be investigated empirically is the existence of a linear link be-
tween χ(t) and the vol-of-vol ξ (t). Specifically, the existence of such a link could
be investigated by performing the linear regression

χ̂n,N,M,L,Sχ (t) = α3ξ̂n,N,M,Sξ (t). (28)

A statistically-significant estimate of the coefficient α3 would offer evidence,
in a model-free setting, that χ(t) is actually linear in ξ (t), as predicted by the CEV
model (and, more generally, by the large class of models represented by (8)). In-
terpreting χ(t) as the process that captures the response of the leverage to changes
in the volatility or the price, this would mean that the latter is proportional to the

6Note that the estimation of α1 and α2 has been performed using the robust regression method
with a bisquare weighting scheme to penalize outliers (see Holland and Welsch (1977)). The same
holds for the estimation of α1 and α2 in the empirical study of the next section.

7For h smaller than 5 minutes, estimates of α1 and α2 tend to be biased and very noisy and thus
are omitted from the plots.
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Figure 3: Estimation of model (24) in the noise-free scenario: comparison of point-
wise estimates of the coefficient α1 in correspondence of different values of the step
h (in blue) and their average (red dashed line) with the true value (grey line).
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Figure 4: Estimation of model (24) in the noisy scenario: comparison of point-wise
estimates of the coefficient α1 in correspondence of different values of the step h
(in blue) and their average (red dashed line) with the true value (grey line).

uncertainty perceived by market operators about the actual riskiness of the asset of
interest (i.e., the vol-of-vol ξ (t)).

As for (24) and (25), the accuracy of the regression (28) can also be tested on
simulated observations from the CEV model, to obtain guidance for the selection
of the optimal frequency for the sampling of Fourier estimates of χ(t) and ξ (t).
Estimates of α3 in correspondence of different sampling frequencies between 5
and 30 minutes are shown in Figures 7 and 8. Note that point-wise estimates of α3
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Figure 5: Estimation of model (25) in the noise-free scenario: comparison of point-
wise estimates of the coefficient α2 in correspondence of different values of the step
h (in blue) and their average (red dashed line) with the true value (grey line).
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Figure 6: Estimation of model (25) in the noisy scenario: comparison of point-wise
estimates of the coefficient α2 in correspondence of different values of the step h
(in blue) and their average (red dashed line) with the true value (grey line).

appear to be very reliable, in that they are all very close to the true value of 2, at
least for sampling frequencies smaller than 15 minutes. However, a conservative
approach might suggest to adopt the average as a final estimate of α3 also in this
case (see the red dashed line in Figures 7 and 8). Average statistics of the regression
are reported in Table 28. Again, we obtain quite satisfactory R2 values, which

8To account for auto-correlations in the residuals, we compute Newey-West standard errors, see
Newey and West (1987). We do the same also when estimating α3 in the empirical exercise of the
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coeff. est. std. err. t stat. p-value R2

model (24), w/o noise 1.001 (0.550) 0.004 (0.001) 240.538 (110.971) 0 (0) 0.906 (0.138)
model (24), w/ noise 1.039 (0.654) 0.005 (0.002) 188.964 (81.688) 0 (0) 0.877 (0.190)
model (25), w/o noise 1.016 (0.587) 0.002 (< 10−3) 590.663 (290.443) 0 (0) 0.955 (0.120 )
model (25), w/ noise 1.064 (0.395) 0.002 (< 10−3) 636.648 (223.603) 0 (0) 0.992 (0.005)

Table 1: Estimation results for models (24) and (25): average values of coefficient
estimates, standard errors, t statistics, p-values and R2, computed for h ranging be-
tween 5 and 30 minutes. Standard deviations are also reported in brackets. For
each model, the lines “w/o noise” and “w/ noise” refer to, respectively, the simu-
lated scenario without and with noise.

confirm the accuracy of the estimates of χ(t) and ξ (t); also, all estimates of α3 are
significant, with constant p-values equal to zero.

Finally, note that we obtain comparable results in the noise-free and noisy sce-
narios for all three tests performed in this section, thereby confirming the robust-
ness of the Fourier methodology to the presence of noise.
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Figure 7: Estimation of model (28) in the noise-free scenario: comparison of point-
wise estimates of the coefficient α3 in correspondence of different sampling fre-
quencies (in blue) and their average (red dashed line) with the true value (grey
line).

next section.
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Figure 8: Estimation of model (28) in the noisy scenario: comparison of point-wise
estimates of the coefficient α3 in correspondence of different sampling frequencies
(in blue) and their average (red dashed line) with the true value (grey line).

coeff. est. std. err. t stat. p-value R2

model (28), w/o noise 2.003 (0.126) 0.326 (0.045) 6.280 (1.177) 0 (0) 0.543 (0.032)
model (28), w/ noise 2.020 (0.157) 0.233 (0.041) 8.918 (1.671) 0 (0) 0.538 (0.038)

Table 2: Estimation results for models (24) and (25): average values of coefficient
estimates, standard errors, t statistics, p-values and R2, computed for sampling fre-
quencies ranging between 5 and 30 minutes. Standard deviations are also reported
in brackets. The lines “w/o noise” and “w/ noise” refer to, respectively, the simu-
lated scenario without and with noise.

5 Empirical study

In this section we perform tests (24), (25) and (28) on the series of 1-second
S&P500 price observations over the period March, 2018− April, 2018 (see Figure
9).

To obtain Fourier estimates of the paths of ν(t), η(t), χ(t) and ξ (t), we use
all data in the sample, that is, we select n = 23400, corresponding to the 1-second
sampling frequency. Further, we select the cutting frequencies using as guidance
the MSE-optimal values obtained via simulations in the noisy scenario of Section
4. Specifically, after choosing N via the noise-robust procedure given in Mancino
and Sanfelici (2008), we select Sν = M = n0.5, Sη = L = 4n0.25 and Sχ = 6n0.125.
For the estimation of ξ (t), instead, we select M = 2n0.25 and Sξ = n0.25. The
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Figure 9: S&P 500 1-second prices over the period March, 2018 − April, 2018.

estimated trajectories of ν(t), η(t), ξ (t) and χ(t) are plotted in Figure 10. Note
that, before performing the estimation, we have removed days with price jumps
from the 2-month sample, using the jump detection test by Corsi et al. (2010). In
particular, the test at 99.9% confidence level detects only two days with jumps,
namely March 20th and March 23rd. These two days are associated with market
turbulence related to the so-called “trade war” between China and the US.
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Figure 10: Reconstructed 1-second trajectories of ν(t), η(t), ξ (t) and χ(t) for the
S&P 500 index over the period March, 2018-April, 2018.

Using the reconstructed paths of ν(t),η(t),χ(t) and ξ (t) we then perform tests
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(24), (25) and (28)9. The results are summarized in Table 3 and Figures 11 - 13.
Overall, the results of tests (24) and (25) support the interpretation of the pro-

cess χ(t) as a process that captures the instantaneous response of the leverage to
changes in the price and the level of market risk (i.e., the volatility). In fact, not
only we obtain statistically-significant estimates of α1 and α2 for all values of h
considered, but also these estimates fluctuate around average estimates which are
close to 1, taking values equal, respectively, to 1.018 and 0.914

Additionally, the results of test (28) support the existence of a statistically-
significant positive linear dependence between χ(t) and ξ (t). This empirical re-
sult, if considered jointly with the results of tests (24) and (25), suggests that the
sensitivity of the leverage to changes of the price or the volatility is larger when the
uncertainty about the actual level of risk perceived on the market (i.e., the vol-of-
vol) is larger. Additionally, note that point-wise estimates of α3 are close to 2, the
value predicted by the CEV model, with a final average estimate equal to 1.895.

Finally, note that we obtain R2 values which are not far from the values obtained
in simulations, for all three tests. This suggests that the tested models fit the sample
data quite well.

coeff. est. std. err. t stat. p-value R2

model (24) 1.018 (1.119) 0.006 (0.004) 163.605 (159.688) 0 (0) 0.821 (0.225)
model (25) 0.914 (0.660) 0.009 (0.002) 92.858 (73.879) 0 (0) 0.847 (0.159)
model (28) 1.895 (0.206) 0.625 (0.049) 3.037 (0.323) 0.004 (0.003) 0.409 (0.038)

Table 3: Estimation results for models (24), (25) and (28): average values of coef-
ficient estimates, standard errors, t statistics, p-values and R2, computed for values
of h (models (24 and (25)) or sampling frequencies (model (28)) ranging between
5 and 30 minutes. Standard deviations are also reported in brackets.

6 Conclusions

The main finding of this paper is uncovering, both from an analytical and an em-
pirical perspective, the relationship between the price-leverage covariation and the
sensitivity of the leverage process to changes in the price or the volatility.

9To avoid performing a spurious regression (see Granger and Newbold (1974)), we test for the
null hypothesis of the presence of a unit root in the all the series of regressors and regressands
involved, using the Augmented Dickey-Fuller test (see Dickey and Fuller (1979)). For all series, test
results at the 99.9% confidence level reject the null hypothesis.
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Figure 11: Estimation of model (24): point-wise estimates of the coefficient α1 in
correspondence of different sampling frequencies (in blue), along with their aver-
age (red dashed line).
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Figure 12: Estimation of model (25): point-wise estimates of the coefficient α2 in
correspondence of different sampling frequencies (in blue), along with their aver-
age (red dashed line).

Indeed, first we show that under the CEV model, which is explicitly designed
to capture the leverage effect, the derivatives of the leverage process with respect
to the price and the volatility are equal to the price-leverage covariation scaled,
respectively, by the volatility and the leverage itself. In this regard, we stress that
a key analytical result we obtain is expressing the derivatives of a stochastic pro-
cess (the leverage) as a function of objects that can be consistently estimated from
sample prices over a fixed time horizon, that is, iterated covariances.
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Figure 13: Estimation of model (28): point-wise estimates of the coefficient α3 in
correspondence of different sampling frequencies (in blue), along with their aver-
age (red dashed line).

Then, after reconstructing the paths of the volatility, the leverage and the price-
leverage covariation by means of the (non-parametric) Fourier methodology, we
show, empirically, that these model-dependent predictions reproduce the model-
free derivatives of the leverage quite accurately in the case of the S&P500 index
over the period March, 2018-April, 2018.

Based on this empirical evidence, the price-leverage covariation could be un-
derstood by market operators as a gauge of the responsiveness of the leverage ef-
fect to the arrival of new information causing a change in the price level and/or the
amount of market risk, that is, in the volatility.

Additionally, based on the existence of a linear link between the price-leverage
covariation and the vol-of-vol under the CEV model, we also investigate the empir-
ical dependence between these two quantities in model-free setting, that is, using
non-parametric Fourier estimates of their paths. In this regard, empirical results
support the existence of a statistically significant linear link, with a coefficient
close to 2, the value predicted by the CEV model. This in turn suggests that the
response of the leverage is stronger when the uncertainty about the actual level of
risk perceived, i.e., the vol-of-vol, is larger (and viceversa).
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The price volatility feedback rate: an implementable mathematical indicator of
market stability. Mathematical Finance, 13(1):17–35.

Barucci, E. and Mancino, M. E. (2010). Computation of volatility in stochastic
volatility models with high-frequency data. International Journal of Theoretical
and Applied Finance, 13(5):767–787.

Beckers, S. (1980). The constant elasticity of variance model and its implications
for option pricing. The Journal of Finance, 35(3):661–673.

Chan, K. C., Karolyi, G. A., Longstaff, F. A., and Sanders, A. B. (1992). An
empirical comparison of alternative models of the short-term interest rate. The
Journal of Finance, 47(3):1209–1227.
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