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1 Introduction

This paper is about a buyer’s incentives to reveal the own preferences to the suppliers in a

procurement auction. We rely on a setting which is studied in Gal-Or, Gal-Or and Dukes

(2007) (GGD henceforth) and provide some technical remarks to their analysis, complements

and extensions which are described in the second half of this introduction.

GGD consider a setting in which a male buyer denoted with B needs to buy a certain object

(for instance, an industrial firm needs to procure an input) and faces n ≥ 2 female suppliers
which can provide the object. The products offered by the suppliers are differentiated and

for each supplier i there is a parameter xi ∈ [0, 1] which represents the degree of fitness of i’s
product with B’s needs; precisely, if B buys that object and pays p then his payoff is xi − p.
B is risk neutral and uses a first score auction in which suppliers simultaneously submit bids

p1 ≥ 0, ..., pn ≥ 0, and then B buys product i such that xi − pi > xj − pj for any j 6= i; ties
can be broken arbitrarily.1 Before running the auction, B observes the values x1, ..., xn but

suppliers do not: each supplier views x1, ..., xn as the realizations of n i.i.d. random variables,

each with the same absolutely continuous c.d.f. F and strictly positive density f = F 0 on

(0, 1).

Before observing x1, ..., xn, B has the same beliefs as the suppliers about his values for the

objects, and GGD inquire whether at this stage B should commit to a policy of no information

revelation (concealment policy, henceforth denoted by C), or instead to a policy in which he

will reveal to each supplier i the value of xi (private revelation policy, henceforth denoted by

PR).2 Clearly, under PR supplier i may charge a premium price trying to extract B’s surplus,

especially if xi is large, but PR also intensifies price competition since a low fitness supplier

needs to reduce her bid to be competitive, and this may force also high fitness suppliers to

compete aggressively. Hence, whether B prefers PR or C is not obvious; we use ∼ and Â to

represent B’s preferences between C and PR.

A major claim in GGD is that if the density f is (weakly) increasing, then PRÂC. However,
in Section 2 we give an example in which f is increasing but CÂPR. This apparent inconsistency
occurs because the proof of GGD’s result relies on the assumption (unstated in the main text

of the paper) of logconcavity for the c.d.f. F : our example violates logconcavity of F and thus

the simple property of increasing f does not imply PRÂC.3

In order to analyze regime C, GGD focus on pure strategy symmetric Nash Equilibrium,

but they neglect that in some cases no such equilibrium exists. We point out that Caplin and

1In fact, GGD also study a model in which B approaches suppliers sequentially and needs to derive the

optimal stopping rule. We do not consider this setting in our paper.
2While this commitment assumption may appear strong, GGD notice that B may choose between providing

a detailed specification of the attributes of the object he wishes to procure (which allows each supplier i to infer

xi), and providing instead vague or minimal details (which leaves each supplier in the dark).
3Our example is relevant also because GGD fail to find a distribution such that CÂPR.
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Nalebuff (1991) provide sufficient conditions for existence in a more general model. Further-

more, we notice that when n = 2 the property that f is increasing has the same effect on the

comparison between C and PR as the property that f is decreasing; in a sense, this is at odds

with the focus of GGD on increasing densities.

Finally, in Section 3 we consider the case of risk averse suppliers with constant relative risk

aversion, and show that CÂPR under strong risk aversion, regardless of the distribution. The
proofs are given in the appendix.

2 A few remarks and complements to the analysis of GGD

GGD assume that suppliers are risk neutral and, for regime C, they consider symmetric pure

strategy Nash equilibria (NE henceforth), that is NE in which all suppliers make the same

bid p̂ > 0 [if p̂ = 0, then each supplier earns zero but can make a positive profit with a bid

in (0, 1)]. In order to derive p̂, GGD study supplier i’s optimal choice of her own bid pi,

given that each other supplier plays p̂. Since i wins if and only if xi − pi > xj − p̂ for any
j 6= i (neglecting zero probability events), and she does not observe (x1, ..., xn), i evaluates

her own winning probability as
R 1
0 F

n−1(xi + p̂ − pi)f(xi)dxi and i’s payoff as a function of
pi is πi(pi) ≡ pi

R 1
0 F

n−1(xi + p̂− pi)f(xi)dxi (each supplier bears no production cost). GGD
impose that the FOC for maximizing πi with respect to pi is satisfied at pi = p̂ and find

p̂ ≡ 1

n
R 1
0 (n− 1)Fn−2(x)f2(x)dx

(1)

This implies that the unique candidate for a symmetric pure strategy NE is the profile in which

each supplier bids p̂ in (1), denoted by p̂ in the following. Given p̂, the highest fitness supplier

wins. The problem with this methodology is that merely satisfying a FOC does not guarantee

that a maximum point for πi is obtained. Indeed, in some cases p̂ is not a NE, and then no

symmetric pure strategy NE exists.

Example 1 Suppose that n = 2 and f(x) = 2
3x
−1/3, F (x) = x2/3; then p̂ = 3

8 . However, given

p2 =
3
8 , the payoff of supplier 1 when p1 ≥

3
8 is π1(p1) = p1

R 1
p1− 3

8
(x1 +

3
8 − p1)2/3 ·

2
3x
−1/3
1 dx1

and numeric integration gives π1( 45100) '
19
100 > π1(

3
8) =

3
16 . Thus p̂ = (

3
8 ,
3
8) is not a NE.

4

Example 1 suggests some caution with GGD’s analysis for regime C, but under suitable

conditions it is possible to prove that p̂ is a NE. Indeed, Caplin and Nalebuff (1991) (CN

henceforth) provide an existence theorem for models of price competition with differentiated

products which include GGD’s C setting. In particular, Theorem 2 in CN implies that p̂ is a

4Perloff and Salop (1985) consider a model of product differentiation which is formally equivalent to GGD’s

C setting. They notice that a symmetric pure strategy NE may not exist, but in their counterexample F has a

mass point and thus is not absolutely continuous.
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NE as long as f is logconcave (in fact, a somewhat weaker condition suffices).5

In the regime of PR, B privately reveals to supplier i (for i = 1, ..., n) the signal xi.

GGD consider symmetric Bayes-Nash equilibria (BNE henceforth), that is BNE in which each

supplier bids according to the same bidding function P : [0, 1] → R, which depends on the
signal the supplier learns from B. GGD identify a symmetric BNE in which

P (x) =

Z x

0

Fn−1(z)

Fn−1(x)
dz (2)

Supplier i wins if and only if xi − P (xi) > xj − P (xj) for any j 6= i, and since xi − P (xi) >
xj − P (xj) if and only if xi > xj , it follows that the highest fitness supplier wins under PR.6

Given that B selects the supplier with the highest fitness in both regimes C and PR, B

prefers the regime in which his expected payment is lower. In the case of C, B pays simply

p̂. In PR, B’s expected payment is
R 1
0 P (x)dF

n(x), the expected bid of the highest fitness

supplier. Simple manipulations reveal that
R 1
0 P (x)dF

n(x) ≤ p̂, that is PRºC, if and only if

n

Z 1

0
Fn−1(x)[1− F (x)]dx

Z 1

0
(n− 1)Fn−2(x)f2(x)dx ≤ 1

n
(3)

Proposition 2 in GGD claims that when f is increasing, the inequality P (x) ≤ p̂ holds for any
x ∈ [0, 1]. An obvious corollary is then as follows [Proposition 3(ii) in GGD]: If f is increasing,
then (3) holds strictly. However, the proof of Proposition 2 uses both the assumption of f

increasing and of logconcavity for F ; thus, such a proposition should be stated as follows: If F

is logconcave and f is increasing, then P (x) ≤ p̂ for any x ∈ [0, 1]; the corollary, Proposition
3(ii), should be stated as follows:

If F is logconcave and f is increasing, then PR Â C (4)

Our example 2 below is such that f is increasing, F is not logconcave and (3) is violated, which

means that CÂPR. Therefore it cannot be proved that PRÂC under the sole assumption that
f is increasing; a fortiori, the same assumption alone does not imply that P (x) ≤ p̂ for any
x ∈ [0, 1]. Example 2 is of interest also because GGD cannot find an example such that CÂPR.
Example 2 Suppose that n = 2 and

f(x) =

(
1
2 for x ∈ [0, 45 ]
3 for x ∈ (45 , 1]

, F (x) =

(
1
2x for x ∈ [0, 45 ]

3x− 2 for x ∈ (45 , 1]
5The density f is said to be logconcave if and only if log f is a concave function. In fact, in CN the set of

feasible prices for each supplier is [0, y], where y > 0 is a fixed parameter, but for GGD’s C setting existence

can be proved, under f logconcave, even though there is no maximal price; details are available in the appendix.

See Section 6.3 in Anderson, de Palma and Thisse (1992) for a very readable presentation of CN’s result.
6The analysis of GGD can be simplified by noticing that this setting is closely related to the well known

environment in which an object is sold through a first price auction with n bidders: we can prove that there is

a one-to-one correspondence between the BNE in the two settings. Then (2) is obtained straightforwardly.
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We find that p̂ = 1
4 , but f is not logconcave [since log f is not continuous in (0, 1)] and thus

we cannot apply the results of CN to infer that (p1, p2) = (14 ,
1
4) is a NE under C; however, we

can prove this result directly.7 Given this fact, we compare C and PR by verifying that (3)

reduces to 2 · 23150 · 2 ≤
1
2 , which is violated.

In order to understand how much the result as stated in (4) is more restrictive with respect

to the formulation in GGD, it is useful to notice that F logconcave is equivalent to f
F decreasing,

which fails to hold if f increases too quickly. Thus the assumption in (4) is that f is increasing

but nowhere too quickly.8

When they provide an intuition on why an increasing f favors PR against C, GGD argue

that in such a case a high fitness supplier is likely to face competitors with high fitness, and this

induces her to bid low under PR. The opposite argument applies if f is decreasing, since then

a high fitness supplier likely faces low fitness competitors and thus she may want to bid less

aggressively. This intuition is incomplete, as it neglects the effect of f on p̂, and furthermore

the next proposition casts some doubts on it when n = 2. To this purpose, we define

g(x) ≡ f(1− x), G(x) ≡
Z x

0
g(z)dz for any x ∈ [0, 1] (5)

It is simple to see that g is a density function on [0, 1] and G is its c.d.f.; moreover, the graph

of g is the mirror image of the graph of f with respect to the vertical line x = 1
2 .

Proposition 1 Given an arbitrary density f and c.d.f. F , if g and G are defined as in (5)

then 2
R 1
0 F (x)[1− F (x)]dx

R 1
0 f

2(x)dx = 2
R 1
0 G(x)[1−G(x)]dx

R 1
0 g

2(x)dx. Thus, when n = 2

the left hand side of (3) is unchanged if f is replaced by its mirror image with respect to x = 1
2 .

As a consequence, if f is increasing then g is decreasing and it satisfies or violates (3) just

like f does. Therefore, when n = 2, satisfying (3) with an increasing density is just ”as simple

as” satisfying (3) with a decreasing density.

3 The effect of risk aversion

In this section we consider the case in which suppliers are risk averse with a utility function u

which is strictly increasing, strictly concave and such that u(0) = 0. In particular we analyze

how a specific form of risk aversion affects B’s preferences between C and PR.

7The proof is available in the appendix. Indeed, finding a distribution which violates (3) is relatively straight-

forward, but it is quite less simple to find a distribution such that in addition p̂ is a NE under C.
8 It is worthwhile to notice that when f is logconcave we have that (i) p̂ is a NE in regime C; (ii) F is

logconcave in view of Lemma 3 in An (1998). Thus, when f is logconcave it is correct to claim that f increasing

implies PRÂC. But GGD make no assumption about the logconcavity of f .
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Proposition 2 (i) Suppose that suppliers are risk averse. If a symmetric pure strategy NE
exists under concealment, then it is unique and such that each supplier bids p̂r which satisfies

u(p̂r)

u0(p̂r)
= p̂ (6)

and p̂r < p̂. If f is logconcave, then the profile of bids in which each supplier bids p̂r is a NE.

(ii) Under private revelation, in any symmetric pure strategy BNE each supplier with type x

bids Pr(x), in which the function Pr satisfies

P 0r(x) = 1−
u[Pr(x)]

u0[Pr(x)]
(n− 1) f(x)

F (x)
(7)

and Pr(x) < P (x) for any x ∈ (0, 1].

Proposition 2 reveals that risk averse suppliers are more aggressive than risk neutral sup-

pliers, both in regime C and in regime PR.9 The intuition for this result is that a risk averse

supplier bids more aggressively than a risk neutral supplier because she tries to win with a

higher probability, albeit with a smaller profit.10

We now consider the particular case in which u(p) = pa for some a ∈ (0, 1), which means
that each supplier has constant relative risk aversion degree and risk aversion is stronger the

smaller is a in (0, 1). For regime C, (6) yields p̂r = ap̂. For the case of PR, (7) reduces to

P 0r(x) +
n− 1
a

f(x)

F (x)
Pr(x) = 1 (8)

and multiplying both sides of (8) by F
n−1
a (x) we readily find Pr(x) =

R x
0
F
n−1
a (z)

F
n−1
a (x)

dz. Next

proposition shows that CÂPR when suppliers are very risk averse, regardless of the distribution.

Proposition 3 When each supplier has the utility function u(p) = pa and is very risk averse,
that is when the parameter a is close to zero, C is the best policy for B for any distribution F

such that the profile of strategies in which each supplier bids p̂r is a NE under C.

As we noticed with regard to Proposition 2, risk aversion induces lower bids for both regimes

C and PR, but Proposition 3 reveals that strong risk aversion has a greater effect on C than on

PR and leads to CÂPR for any distribution. We found difficult to provide a good intuition for
this result, especially because when a is close to zero, both under C and under PR the bids are

close to zero. However, it is maybe worthwhile to notice that in a sense each supplier i operates

9 In fact, GGD also study the full revelation policy (FR) in which B reveals x1, ..., xn to each supplier, and

they show that FR∼PR when suppliers are risk neutral. Risk aversion does not modify the suppliers’ behavior
under FR and thus PRÂFR by Proposition 2(ii). This justifies our focus on the comparison between C and PR.
10This is the well known intuition which applies to an auction setting in which an object is sold by using a

first price auction and bidders are risk averse [see for instance Maskin and Riley (1984)].
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in a more risky environment in regime C with respect to PR, as in regime C there is one more

piece of information that i fails to have, the own fitness parameter xi. As a consequence, it

seems conceivable that risk aversion induces more aggressive bids under C than under PR, as

it is seen in the next example.

Example 3 Suppose that F (x) = xθ with θ ≥ 1, so that f is logconcave; then p̂r = ap̂ =
(θn−1)a
n(n−1)θ2 and Pr(x) =

a
θ(n−1)+ax. This shows that as a is reduced from 1 to a0 ∈ (0, 1) (i) the

bid under C is just a0 times the bid when a = 1: the bid is reduced by the percentage 1−a0; (ii)
under PR the bid of each type x is [θ(n−1)+1]θ(n−1)+a0 a

0 times the bid when a = 1, and [θ(n−1)+1]
θ(n−1)+a0 a

0 > a0:

the bid is reduced by a percentage smaller than 1−a0; thus risk aversion favors C with respect
to PR. Precisely, the proof of Proposition 3 establishes that CÂPR if and only if (16) holds,
and (16) reduces to θ(n − 1) > (θ2n2 − 1)a given F (x) = xθ. This shows that PRÂC for a
close to 1, but the inequality becomes less restrictive as a is reduced in (0, 1) and there is an

a∗ ∈ (0, 1) such that CÂPR for a between 0 and a∗, as Proposition 3 states.

4 Appendix

Proof of the claim in footnote 5

Given any y > 0, Theorem 2 in CN implies that a pure strategy symmetric NE under C exists

when each supplier’s price is constrained to belong to [0, y], provided that f is logconcave.

Here we prove that p̂ is a NE when there is no maximal level for prices, provided that f is

logconcave. Precisely, we show that (i) p̂ is a NE when each price must belong to [0, y] and y

is larger than p̂; (ii) p̂ is a NE also when each price can be any non negative number.

Regarding (i), suppose that y > p̂. We know by Theorem 2 in CN that a pure strategy symmet-

ric NE exists and the only candidates are p̂ and the profile such that each supplier bids y. The

expected profit of supplier i when each other supplier bids y is pi
R 1
0 F

n−1(xi+y−pi)f(xi)dxi,
and the derivative of this function with respect to pi at pi = y is

R 1
0 F

n−1(xi)f(xi)dxi−y
R 1
0 (n−

1)Fn−2(xi)f2(xi)dxi =
1
n(1 −

y
p̂ ) < 0 after using (1). As a consequence, the profile such that

each supplier bids y is not a NE but p̂ is so in view of the existence theorem.

Regarding (ii), assume that there is no upper bound on prices and that all suppliers different

from i bid p̂. Then there exists no pi 6= p̂ which yields supplier i a profit higher than i’s profit
from bidding p̂, because if such a pi existed then p̂ would not be a NE when prices need to

belong to [0, y] and y > max{p̂, pi}, contradicting (i).

Proof of the claim in footnote 6

Consider the auction sale environment (denoted by AS in the following) in which an object

is sold through a first price auction with n bidders and xi is the valuation of bidder i, for i =
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1, ..., n. In such a setting a symmetric BNE is characterized by a bidding function β : [0, 1]→ R
such that each bidder with type x bids β(x). The following result links the PR setting of GGD

and the AS setting.

Lemma 1 In the PR setting of GGD, there exists a symmetric BNE in which the bidding

function is P if and only if there exists a symmetric BNE in the AS setting in which the

bidding function is β with β(x) = x− P (x) for any x ∈ [0, 1].

Proof. For the PR setting of GGD, there exists a symmetric BNE in which all suppliers bid
according to the function P if and only if

for any xi ∈ [0, 1],
pi Pr{xi − pi > xj − P (xj) for any j 6= i}

is maximized with respect to pi at pi = P (xi)
(9)

In the AS environment there exists a symmetric BNE in which all bidders bid according to the

function β if and only if

for any xi ∈ [0, 1],
(xi − bi) Pr{bi > β(xj) for any j 6= i}

is maximized with respect to bi at bi = β(xi)
(10)

Now we prove that P satisfies (9) if and only if β satisfies (10) with β(x) = x − P (x). For
instance, suppose that P satisfies (9) and let β(x) ≡ x− P (x), so that (10) is written as

for any xi ∈ [0, 1],
(xi − bi) Pr{bi > xj − P (xj) for any j 6= i}

is maximized with respect to bi at bi = xi − P (xi)
(11)

and upon using pi instead of xi − bi we see that (11) is equivalent to (9). Since (9) is satisfied
by assumption, we infer that also (11) holds, and so (10) is satisfied with β(x) = x − P (x).
Therefore, there exists a BNE in the AS environment in which all bidders bid according to

β(x) = x− P (x).
In a very similar manner we can prove the reverse implication: suppose that β satisfies (10)

and let P (x) ≡ x− β(x), so that (9) is written as

for any xi ∈ [0, 1],
pi Pr{xi − pi > β(xj) for any j 6= i}

is maximized with respect to pi at pi = xi − β(xi)
(12)

and upon using bi instead of xi−pi we see that (12) is equivalent to (10). Since (10) is satisfied
by assumption, we infer that also (12) holds, and so (9) is satisfied with P (x) = x − β(x).

Therefore, there exists a BNE in the PR setting of GGD in which all suppliers bid according

to P (x) = x− β(x).

In the AS environment, when the bidders’ values are i.i.d. with c.d.f. F , it is known that

the unique symmetric BNE is such that β(x) = x−
R x
0
Fn−1(z)
Fn−1(x)dz, thus it follows from Lemma

1 that the unique symmetric BNE in GGD’s PR setting is such that P (x) =
R x
0
Fn−1(z)
Fn−1(x)dz.
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Proof for example 2

Since suppliers are ex ante symmetric, we prove that (p1, p2) = (14 ,
1
4) is a NE under C by

showing that given p2 = 1
4 , the profit of supplier 1 is maximized at p1 =

1
4 . The profit of 1 as

a function of p1 is π1(p1) = p1
R 1
0 F (

1
4 + x1 − p1)f(x1)dx1 and π1(

1
4) =

1
8 ; in the following we

distinguish the case of p1 < 1
4 from the case of p1 > 1

4 .

• For p1 < 1
4 we find that

1
4+x1−p1 > 1 for x1 close to 1, so that π1(p1) = p1

R 3
4
+p1

0 F (14+

x1 − p1)f(x1)dx1 + p1
R 1
3
4
+p1

f(x1)dx1.

If p1 ≤ 1
20 , then π1(p1) = p1

R 11
20
+p1

0
1
2(
1
4+x1−p1)

1
2dx1+p1

R 3
4
+p1

11
20
+p1
(3(14+x1−p1)−2)

1
2dx1+

p1
R 4
5
3
4
+p1

1
2dx1 + p1

R 1
4
5
3dx1 = −18p31 −

7
16p

2
1 +

491
640p1 and π01(p1) = −38p21 −

7
8p1 +

491
640 > 0

for any p1 ∈ [0, 120 ].

If 1
20 < p1 <

1
4 , then π1(p1) = p1

R 11
20
+p1

0
1
2(
1
4 + x1 − p1)

1
2dx1 + p1

R 4
5
11
20
+p1
(3(14 + x1 − p1)−

2)12dx1 + p1
R 3
4
+p1

4
5

(3(14 + x1 − p1)− 2)3dx1 + p1
R 1
3
4
+p1

3dx1 = −318 p31 −
1
16p

2
1 +

97
128p1 and

π01(p1) = −938 p21 −
1
8p1 +

97
128 > 0 for any p1 ∈ (

1
20 ,

1
4).

• For p1 > 1
4 we find that

1
4+x1−p1 < 0 for x1 close to zero, so that π1(p1) = p1

R 1
p1− 1

4
F (14+

x1 − p1)f(x1)dx1.

If 14 < p1 ≤
9
20 , then π1(p1) = p1

R 4
5

p1−1
4

1
2(
1
4+x1−p1)

1
2dx1+p1

R 11
20
+p1

4
5

1
2(
1
4+x1−p1)3dx1+

p1
R 1
11
20
+p1
(3(14+x1−p1)−2)3dx1 =

159
128p1−

63
16p

2
1+

31
8 p

3
1 and π

0
1(p1) =

159
128−

63
8 p1+

93
8 p

2
1 < 0

for any p1 ∈ (14 ,
53
124) while π

0
1(p1) > 0 for any p1 ∈ ( 53124 ,

9
20 ].

If 9
20 < p1 ≤

21
20 , then π1(p1) = p1

R 4
5

p1− 1
4

1
2(
1
4 + x1− p1)

1
2dx1+ p1

R 1
4
5

1
2(
1
4 + x1− p1)3dx1 =

309
640p1 −

9
16p

2
1 +

1
8p
3
1 and π01(p1) =

309
640 −

9
8p1 +

3
8p
2
1 > 0 for any p1 ∈ ( 920 ,

3
2 −

1
20

√
385),

π01(p1) < 0 for any p1 ∈ (32−
1
20

√
385, 2120). We find that π1(

3
2−

1
20

√
385) ' 0.11654, which

is smaller than π1(
1
4) =

1
8 .

If 2120 < p1 ≤ 5
4 , then π1(p1) = p1

R 1
p1−1

4

1
2(
1
4 + x1 − p1)3dx1 =

75
64p1 −

15
8 p

2
1 +

3
4p
3
1 and

π01(p1) =
75
64 −

15
4 p1 +

9
4p
2
1 < 0 for any p1 ∈ (2120 ,

5
4).

Proof of Proposition 1

Given (5), we have
R 1
0 g

2(x)dx =
R 1
0 f

2(1−x)dx and the substitution z = 1−x yields
R 1
0 f

2(1−
x)dx =

R 0
1 f

2(z)(−1)dz; thus
R 1
0 g

2(x)dx =
R 1
0 f

2(x)dx.

In order to show that
R 1
0 F (x)[1−F (x)]dx =

R 1
0 G(x)[1−G(x)]dx, we define Φ(x) = F (x)[1−

F (x)] and Γ(x) = G(x)[1 − G(x)]. We prove below that Φ(x) = Γ(1 − x) for any x ∈ [0, 1],
which implies

R 1
0 Φ(x)dx =

R 1
0 Γ(1− x)dx =

R 1
0 Γ(x)dx (the latter equality is proved by using

9



the substitution z = 1 − x); thus our goal is achieved. We notice that the derivative of

Φ is f(x)[1 − 2F (x)], while the derivative of Γ(1 − x) is g(1 − x)[2G(1 − x) − 1], that is
f(x)[2G(1 − x) − 1]. These derivatives are equal as long as 1 = F (x) + G(1 − x), and this
equality holds since G(1 − x) =

R 1−x
0 g(z)dz =

R 1−x
0 f(1 − z)dz =

R 1
x f(t)dt after using the

substitution t = 1− z.

Proof of Proposition 2

(i) This proof mimics the arguments in GGD, already sketched in Section 2. We consider

symmetric pure strategy NE, in which all suppliers make the same bid p̂r and examine the

point of view of supplier i, who supposes that pj = p̂r for any j 6= i. If i chooses pi, then she
wins with probability q(pi) ≡

R 1
0 F

n−1(xi+ p̂r−pi)f(xi)dxi and she is interested in maximizing
u(pi)q(pi). The FOC with respect to pi is u0(pi)

R 1
0 F

n−1(xi + p̂r − pi)f(xi)dxi = u(pi)
R 1
0 (n−

1)Fn−2(xi + p̂r − pi)f(xi + p̂r − pi)f(xi)dxi, and since it needs to be satisfied at pi = p̂r we

obtain 1
nu

0(p̂r) = u(p̂r)
R 1
0 (n− 1)Fn−2(xi)f2(xi)dxi. This equality is equivalent to (6) in view

of (1).

Since u is concave, it is possible to prove that u(p)
u0(p) is strictly increasing and that

u(p)
u0(p) > p for

any p > 0. Thus we find that p̂r < p̂.

In order to establish existence when f is logconcave it is useful to recall the arguments of CN.

CN show that (i) f logconcave implies that v(pi) ≡ 1
q(pi)

is convex in pi; (ii) if v is convex,

then the payoff of supplier i under risk neutrality, piq(pi), is quasiconcave in pi. Given the

constraint that pi belongs to the compact set [0, y], we find that (i) and (ii) allow to apply a

standard existence theorem [theorem 1.2 in Fudenberg and Tirole (1991)]. Under risk aversion,

(i) still holds and thus we now prove that if v is convex, then the payoff of supplier i under risk

aversion, u(pi)q(pi), is quasiconcave; this is done with the following minor extension of the proof

of Proposition 3 in CN. In view of a contradiction, suppose that u(pi)q(pi) is not quasiconcave.

Then there exists two prices p0i and p
1
i , and λ ∈ (0, 1) such that pλi ≡ (1− λ)p0i + λp1i and

u(p0i )q(p
0
i ) > u(p

λ
i )q(p

λ
i ), u(p1i )q(p

1
i ) > u(p

λ
i )q(p

λ
i ) (13)

Hence q(p0i ) > 0, q(p1i ) > 0 and we can divide the inequalities in (13) by q(p0i )q(p
λ
i ) and by

q(p1i )q(p
λ
i ), respectively, to obtain

u(p0i )

q(pλi )
>
u(pλi )

q(p0i )
,

u(p1i )

q(pλi )
>
u(pλi )

q(p1i )
(14)

Now we multiply the inequalities in (14) by 1 − λ and λ, respectively, and add the results to

get (the first inequality below follows from strict concavity of u)

u(pλi )

q(pλi )
>
(1− λ)u(p0i ) + λu(p1i )

q(pλi )
> u(pλi )[

1− λ

q(p0i )
+

λ

q(p1i )
] (15)
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But the inequality 1
q(pλi )

> 1−λ
q(p0i )

+ λ
q(p1i )

implied by (15) is impossible, as it violates the assump-

tion that v is convex. This implies existence when each price needs to belong to [0, y], and

then we can argue like in the Proof of the claim in footnote 5 above in order to establish that

a symmetric pure strategy NE exists when there is no upper bound on prices.

(ii) Lemma 1 introduced above in Proof of the claim in footnote 6 holds also in the case that

suppliers are risk averse: it suffices to replace pi and (xi − bi) in (9) and (10) with u(pi) and
u(xi − bi), respectively, and the proof still applies. For the AS setting we know from Maskin

and Riley (1984) that a unique symmetric BNE exists, and the equilibrium bidding function

βr satisfies the differential equation −u0[x − βr(x)]β
0
r(x) + (n − 1)

f(x)
F (x)u[x − βr(x)] = 0. By

replacing βr(x) with x− Pr(x) we obtain (7).

Proof of Proposition 3

It turns out that xi − Pr(xi) > xj − Pr(xj) if and only if xi > xj , hence the highest

fitness supplier wins in both regimes C and PR. Then we compare B’s expected payments: he

pays ap̂ in C and
R 1
0 Pr(x)dF

n(x) =
R 1
0

R x
0 F

n−1
a (z)dznFn−1−

n−1
a (x)f(x)dx in PR. The latter

expression is equal to an
an−n+1

R 1
0 [F

n−1
a (x)− Fn(x)]dx,11 thus CÂPR if and only if

n

an− n+ 1

Z 1

0
[F

n−1
a (x)− Fn(x)]dx > 1

n
R 1
0 (n− 1)Fn−2(x)f2(x)dx

(16)

Since lima↓0 n
an−n+1

R 1
0 [F

n−1
a (x)− Fn(x)]dx = n

n−1
R 1
0 F

n(x)dx, we now prove that

n2
Z 1

0
Fn(x)dx

Z 1

0
Fn−2(x)f2(x)dx > 1 (17)

which implies CÂPR when a is close to zero. After noticing that
R 1
0 F

n
2 (x)[F

n−2
2 (x)f(x)]dx =R 1

0 F
n−1(x)f(x)dx = 1

n , we can use the Cauchy-Schwartz inequality
12 to obtainZ 1

0
Fn(x)dx

Z 1

0
Fn−2(x)f2(x)dx ≥

µZ 1

0
F

n
2 (x)[F

n−2
2 (x)f(x)]dx

¶2
=
1

n2
(18)

We prove (17) by showing that the inequality in (18) is strict. If that inequality is an equality,

then there exists (λ,μ) 6= (0, 0) such that λF n−2
2 (x)f(x) = μF

n
2 (x)dx for almost any x ∈ (0, 1);

thus f(x)
F (x) =

μ
λ , or F (x) = ke

μ
λ
x for some k ∈ R, a contradiction since F is a c.d.f.

11This is correct as long as a 6= n−1
n
, and when a is close to zero we can neglect the case of a = n−1

n
.

12Section 6.2 in Royden (1968) introduces the so-called Hölder inequality, of which the Cauchy-Schwarz

inequality is the particular case that is obtained by setting p = q = 2 in the notation of Royden (1968).
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