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Abstract

We allow firms and banks to entertain multiple credit connections
in a financially constrained production framework, resorting to a ran-
dom network model whose parameters are calibrated with real data.
The calibration is successful since the network model is able to re-
produce the degree and strength (debt and loan) distributions of the
Japanese credit market. We run simulations over the parameter space
using an efficient design, and compare a number of alternative statis-
tical metamodels in order to select the best specification for the rela-
tionship between the parameters and a set of endogenous variables of
the model. We show that the metamodeling approach can be usefully
extended to economic models in order to bridge the gap between micro
and macro variables through a rigorous statistical analysis of ABMs,
without imposing unrealistic restrictions on the micro model such as
the representative agent hypothesis.

1 Introduction

The relationship between ABM and empirics is a widely discussed topic
among scholars in the field. On the one hand, ABMs provide a more faith-
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ful representation of economic reality, introducing more realistic behavioral
assumptions with respect to mainstream models. Thus, they should poten-
tially provide a better agreement with empirical data. Indeed numerous con-
tributions have underlined the success of ABM in replicating “stylized facts”
thanks to the introduction of agent heterogeneity, bounded rationality and
learning, decentralized out-of-equilibrium interactions1. On the other hand,
there is still little consensus in the field on how to evaluate the agreement
between models and facts. Some ABM scholars support the view that a sys-
tematic calibration / validation with real data, not to speak of forecasting
exercises, are neither possible nor desirable (Valente, 2005). Instead, they
advocate for a loose comparison with historical data and other descriptive
evidence. They underline that social phenomena are inherently complex and
not stationary, involving too many dimensions. Thus any quantitative exer-
cise of the sort mentioned above is bound to fail when applied to models for
which the ergodic hypothesis does not hold.

Most researchers do not share this view, underlining in particular that em-
pirics imposes a much needed discipline on model building, and that ABMs
should accept the challenge of a stringent comparison with empirical evidence
(Fagiolo et al., 2007). Nonetheless, existing works follow diverse approaches,
of which it is even difficult to work out a shared characterization. For in-
stance, alternative taxonomies have been proposed which are at first sight not
consistent with each other (Fagiolo et al., 2007; Brenner and Werker, 2007).
On the other hand, a growing number of contributions tackle the issue of
econometric estimation of agent-based models, although these exercises are
exclusively confined to relatively simple models of financial markets Alfarano
et al. (2005); Manzan and Westerhoff (2007).

Before we proceed further, we believe it is important to underline the
specificity of ABM within the larger field of simulated models. In particular,
we would like to stress that ABMs cannot be likened to simulated statistical
models. Indeed the mathematical structure of the latter is completely speci-
fied by the modeler, e.g. by choosing regressors, functional shapes, lags and
by making assumptions on the structure of errors. What is left to estimate
from data is the “strength” of the assumed relationships between variables.
The ABM modeler instead does not have an equivalent control over all the
properties emerging from her model. Not coincidentally, unexpected sim-
ulation results are a common experience for researchers in this field. Once

1For a recent review see Chen et al. (2012)
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statistical models are estimated, they can be used to provide computationally
inexpensive predictions over endogenous variables conditioned to variations
of the exogenous variables. Instead, ABM modelers are always bound to
replicate computationally expensive simulations runs over each point of the
model parameter space to provide such predictions. This necessity follows
from the fact that the functional form of the relationship between endogenous
and exogenous variables in ABMs is unknown.

To make things a bit more complicated, there is also some terminologi-
cal uncertainty at stake. While econometricians usually write about model
“estimation” or “evaluation”, ABM scholars usually opt for the terms “cali-
bration” and “validation”, which are employed both individually and jointly,
sometimes as synonyms. Then we feel it is necessary to clarify the meaning
we attach to these terms for the purpose of this paper. By “model calibra-
tion” we mean the attainment of the maximum alignment of a set of model
outputs (i.e. endogenous variables) with empirical evidence, specifically un-
der the form of numerical data (“calibration dataset”). From the definition
it’s clear that calibrating a model involves some kind of optimization. Thus
“model calibration” is a synonym of “model estimation” as intended by the
econometricians. Instead, we distinguish “model calibration” as just defined
from “parameter calibration”, which refers to the imposition of a restriction
over the domain of model parameters, which is derived from a statistical
estimation or from prior assumptions which must be specified before model
calibration (Brenner and Werker, 2007)2. Finally, by “model validation” we
mean the comparison of the conditional expectations of a set of model out-
puts, computed from the calibrated/estimated model, with data other than
those used for calibration (“validation dataset”).

All these procedures should be regarded as stages of a more general pro-
cedure of model selection, by which we try to detect the best model among
a set of alternatives according to some criterion. In most works, models are
selected at the calibration stage by means of various goodness-of-fit mea-
sures and/or information criteria. Some authors have underlined instead
that model selection should be performed on the validation dataset in or-
der to avoid overfitting (Hassan et al., 2013). In the latter case, forecasting
exercises are performed on a third set of data. Apart from this differences,
we believe that a comparative approach is of fundamental importance for

2It is implicit in the definition that unobserved parameters cannot undergo a calibration
procedure of this sort.
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ABMs since simulations by themselves can only prove existence assertions,
namely that some model behavior follows from model assumptions at a given
set of parameter values. In order to strengthen our confidence in these as-
sumptions, we would need to compare for instance their forecasting power
with other, incompatible, assumptions, e.g. those underlying DSGE models.
Although our purpose in this paper is more modest as detailed below, we
believe that, generally speaking, this is the path to follow.

The calibration procedure of ABMs must face multiple hurdles. In a
classical statistical framework, the calibration problem can be formulated as
follows

θ∗ = arg min
θ∈Θ

F (x, y(θ)) (1)

where F is a criterion function, x is a vector of statistics computed from
real data, and y(θ) is a vector of the same statistics produced from a model
characterized by the parameter vector θ taking values in the domain Θ3. If x
and y result from the estimation of the same “auxiliary” statistical model over
real and simulated data, this approach is usually termed “indirect inference”
(Gouriéroux C. and Monfort, 1996). A frequent choice for F , in case of over-
identified models, is a quadratic loss function, while y typically includes some
aggregate or distributional statistics, e.g. regarding the size distribution of
agents (see e. g. Bianchi et al. (2007)).

It generally happens with ABMs that y is a possibly non-linear function
of θ whose likelihood function is unknown. Thus we can employ neither
ML estimators nor standard approximations of the likelihood function, like
the Laplace approximation, which are generally employed for both classical
and Bayesian inference. Moreover, since the model is simulated, y is itself a
random variable, and standard numerical optimization algorithms, such as
gradient methods or the Nelder-Mead simplex algorithm, are bound to fail
even if we take averages over a large number of simulations runs in order to
obtain an estimate of E[y|θ]. One option is to employ adapted optimization
algorithms, such as the one proposed by Gilli and Winker (2003), which may
work on these estimates. A shortcoming of this option is that we cannot
avoid extensive Montecarlo replications. To overcome this problem, we may
use instead a deterministic approximation of the model, as in Recchioni et

3In a Bayesian framework, instead, calibration is attained by updating the probability
distribution of parameters in accordance with data. We are not going to investigate the
Bayesan approach in this paper.
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al. (2015), if it is available. In both cases, numerical algorithms provide local
solutions, therefore we cannot exclude that the model is unidentifiable.

In order to address the identification issue, we should explore system-
atically the parameter space of ABMs before we attempt any calibration /
validation exercise. Normally, this is an impossible task because of the curse
of dimensionality. In order to overcome this problem, we propose to estimate
the influence of θ over y by means of a metamodel, i.e. a statistical auxiliary
model of the following form:

y(θ) = µ(θ) + u (2)

where µ(θ) is a deterministic, possibly non linear, term, and u is a second-
order stationary, zero mean, potentially heteroskedastic, random term with
given covariance matrix (Salle and Yildizoglu, 2014). The metamodel is esti-
mated from a sample of points in the parameter space, which still represents
a computationally costly exercise for ABMs that can be made more efficient
by an appropriate choice of evaluation points, e.g. with latin hypercube de-
signs or other parsimonious sampling designs (see below). Furthermore, the
parameter space may be eventually restricted through the calibration of at
least some of them, as explained above, following the suggestion of Brenner
and Werker (2007).

We remark that the result obtained in this way is analogous, for a simu-
lated model, to the reduced form of an analytically solvable model. We can
employ this reduced form, if its forecasting power with respect to the original
ABM is good, for a variety of purposes, like sensitivity analysis (Campolongo
et al., 2000), model calibration and validation.

Given the general framework just outlined, in this paper we focus only on
a subset of the numerous problems mentioned above. By taking as workhorse
the ABM described in sec. 2, we provide an example of parameter calibration
aimed at matching some fundamental properties of real credit networks with
those of networks simulated in the model (sec. 3). After having specified
a suitable sampling design for the remaining parameters of the model, we
turn to simulations and discuss shortly some basic results of the ABM (sec.
4). Then we compare a number of alternative statistical models which could
serve as “reduced form” of the ABM and, after having selected our model of
choice by means of cross validation, we analyze the role of each parameter
through regressions, and employ the same model for sensitivity analysis, with
the specific purpose of assessing its consistency with the ABM (sec. 5). Sec.
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6 provides some conclusions along with considerations regarding the long
standing issue of aggregation.

2 Model Description

The most faithful microscopic description should depict the economic sys-
tem as a network of networks, each corresponding to a market, which are
populated by large numbers of heterogeneous, interacting agents evolving
over time. In each of these networks, agents entertain multiple connections,
which are endogenously adjusted according to their goals and behavioral pro-
cedures. The latter are not necessarily optimal, and outcomes are affected
by a variety of endogenous and exogenous sources of uncertainty. In order
to get a bit closer to this general picture, we extend the “Network-based
financial accelerator” model of Riccetti et al. (2013) allowing firms to have
multiple credit suppliers. Firms’ financial structure adjusts towards a time
dependent, endogenous, leverage target, assuming that firms follow a sort of
Dynamic Trade-off Theory.

Firms produce their output with a linear production function where labor
is the only input. They set their production plans at the maximum level
allowed by their target leverage λi = Di

Ei
. We can use the balance sheet

constraint (1 + λi)Ei = Wi = wNi and the production function Yi = αNi to
obtain4

Ŷi =
1 + λi
c

Ei (3)

where c = wα−1 is the unit labor cost. The effective production of final
firm i is Yi = min(Ŷi, Y̌i), where Yi = Y̌i in case of credit rationing, i.e.
Y̌i represents the maximal production level of i which can be financed by
the credit sector. Agents are matched on the credit markets by means of a
random network model which can be calibrated with real data as shown in
sec. 3. The extension to multiple connections, indeed, allows to calibrate our
model with respect to fundamental network observables like degrees, i.e. the
number of first neighbors. The actual leverage of firms in each simulation
period is endogenously determined as the outcome of calibrated interactions
on the credit market. In particular, following empirical data (see Sec. 3),

4Time indices are omitted whenever they are not strictly necessary.
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we assume that firms’ debt is proportional to their equity, Df ∝ Ef . The
interest rate charged from banks to firm f is set in the following manner:

rf = rcb (1 + δ λf ) (4)

where rcb is the benchmark policy rate and δ > 0 is a parameter which
reflects the sensitivity of lenders to borrowers creditworthiness. Firms are
subject to a random price shock defined with respect to labor unit cost :

pf = c (1 + εf ) (5)

where εf ∼ N(µ, σ). In general, we may view the distribution of price
shocks as reflecting demand conditions, within a framework of price adjust-
ment to market imbalances. Thus, a higher µ and a lower σ stand, ceteris
paribus, for a stronger final demand. Firms’ equity is updated according to
profits, assuming that no dividends are distributed:

Et+1
f = Et

f + πf (6)

The profits of firms πf are given by the following equation

Πf =

[
pf −

(
c+ rf

Df

Yf

)]
Yf (7)

where Di =
∑

b Lfb is the total debt of firm f and Lfb is the amount of
loan extended from bank b to firm f . Substituting Yf , pf and rf respectively
with eqs. (3),(5) and (4), after some simplifications we obtain

πf =
Πf

Ef +Df

= εf − rcb
Df

Ef

(Ef + δ Df )

(Ef + Df )
= εf − rcb

1 + δλf

λ−1
f + 1

(8)

From this expression we see that the profit rate of firms is independent
of c. Instead it depends positively on the parameters of the price shock µ, σ,
negatively on the parameters of the interest rates rcb, δ and on λf , which is an
endogenous variable since Df depends on the net worth of f and on the net
worth of banks. Thus all the relevant economic variables for firms (expected
profits, loss risk, bankruptcy risk) depend on a firm specific, time varying
endogenous component. For instance, bankruptcy risk may be written as
follows
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P (Πf + Ef 6 0) = P

(
πf +

1

1 + λf
6 0

)
= Φ

(
rcb

1 + δλf

λ−1
f + 1

+
1

1 + λf

)
(9)

where Φ is the normal cdf. The profits of bank are computed as follows

Πb =
∑
f

H(Ef + Πf ) rf Lfb −
∑
f

[1−H(Ef + Πf )] Lfb (10)

where H(Ef + Πf ) = 1 if Ef + Πf > 0 and H(Ef + Πf ) = 0 otherwise.
We also assume that the supply of credit is proportional to banks’ equity
Sb ∝ Eb and that banks don’t distribute dividends:

Et+1
b = Et

b + πb (11)

With the changes above the model becomes more parsimonious in terms of
parameters with respect to the original formulation, thereby making it easier
to sample the parameter space as required by our metamodeling exercise. On
the other hand, our setting is indeed simplistic from an economic point view,
and it’s easy to argue that a more realistic model is likely to be required to
obtain convincing results from a model calibration exercise which is, at any
rate, beyond the scope of this paper.

3 Credit Market Interaction

We opt for a representation of market interactions by means of a random
network model. We follow this path for two reasons. In the first place, it
is less expensive in terms of computational time. Since we allow multiple
credit connections, standard AB simulations should go through all potential
links, i.e. cycle over n×m steps, where n and m are the number of firms and
banks respectively. This is a slow, inefficient, solution for the most widely
used languages, like Matlab, R or Python. Using a random network model
we perform, instead, the following two operations: firstly we compute the
parameters of a set of n × m probability distributions; secondly, we draw
n×m random variables from these distributions5.

5Both operations can be accomplished quickly thanks to vectorized, high performance,
libraries like LAPACK or ARPACK.
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In the second place, a random network model provides a general frame-
work for describing economic interactions, which can be easily calibrated
with economic data. In particular, an important set of network measures is
related to connectivity, since most economic and social networks are found
to be sparse. A credit network involving n firms and m banks connected by l
links is said to be sparse when l� n×m, otherwise the network is said to be
dense. The former case is typical of real networks, e.g. the Japanese credit
market studied in Bargigli and Gallegati (2011), whose most recent data are
employed in this paper, had l = 21, 811 connections over a maximum of
n×m = 2, 674× 182 = 486, 668 in 2005.

If a network is sparse, its topological properties6 become non trivial. For
instance, the size of the neighborhood of an agent, i.e. her degree, becomes
very important. Agents with a high number of neighbors, called hubs, are
typically conducive of large systemic effects, in particular they can poten-
tially trigger bankruptcy avalanches, if affected by external shocks, through
balance-sheet effects on many other agents (Shin, 2008).

Indeed, real credit markets display a high fraction of such agents, since
their degree distributions are typically right-skewed. We wish to replicate
this property of real credit markets in our model. A well known solution
for this task in network theory is to build a statistical ensemble of random
networks for which the average degree of each node is equal to the degree
of the same node in the real network (Park and Newman, 2004). Random
networks drawn from this ensemble trivially replicate the degree distribution
of the original network. Here we follow a different route, because we wish
to connect the degree distribution with the economic variables of the model.
In particular, since we have assumed that credit demand and supply are
determined as multiples of the net worth of firms and banks respectively
(sec. 2), we wish to make their respective degrees dependent just on these
variables (see sec. 3.1).

Once obtained a model for the activation of the link between firm i and

6By topological property we mean any observable which is defined on a binary network
or on the binary representation of a weighted network. A network G is specified by the
couple (V,E), where V is the vertex or node set, typically mapped onto a subset of N,
while E is the edge or link set, with E ⊂ V ×V with elements eij = (i, j). If the elements
of E map onto {0, 1} we say that the network is binary. If they map onto a subset D of
R or N the network is weighted, and wij is the weight associated with (i, j). The binary
representation of a weighted network is defined as H(wij) for each link (i, j), where H is
the Heaviside function.
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bank j, conditioned on their respective net worth, we need also a model
to determine the size of loans Lij, conditioned on the same variables, with
the ambition to replicate the debt and loan size distributions of some real
market. In order to control for topological properties and assign loan amounts
at the same time, we need to follow an approach in two stages, i.e. we
constrain Lij to be positive only whenever a link between i and j has been
activated (see sec. 3.2). In fact, random weighted network models that
replicate only the strength distribution of some real network are not bound
to follow any topological property, including the degree distribution. Recent
papers (Mastromatteo et al., 2012; Musmeci et al., 2013) have highlighted
that random networks in these ensemble are, with high probability, dense.

To sum up, the purpose of the estimations presented in the following
sections is to calibrate our simulated credit market with real markets taking
as reference a set of properties of choice (degree, debt distributions). For this
exercise we employ the dataset for the banks-firms lending-borrowing links
from 1980 to 2012 in Japan, maintained by the Econophysics Group at the
University of Kyoto. The dataset includes balance sheet data on commercial
banks and other credit institutions, as well as on listed companies7.

3.1 Links

We suppose that connections between banks and firms on the credit market
are binary random variables dependent on respective equity:

afb ∼ F (Ef , Eb) (12)

From network theory Park and Newman (2004) we know that the max-
imum entropy distribution of the value of the link between nodes i, j, in a
statistical ensemble of binary networks G, is associated with an expectation
of the following form:

E [aij] =
1

1 + exp(−εij)
(13)

where εij embodies a set of constraints imposed on G. Then it is natural
to explore the relationship (12) by means of a logistic regression model. In
practice, we make the following specification in (13):

7 For more details see http://www.econophysics.jp/foc_kyoto/index.php?FOC%

20Kyoto.
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εfb = α + β logEf + γ logEb (14)

where f, b stand for firms and banks indices respectively. From the
Japanese dataset we see that the two regressors behave differently over time.
Fig. 1 highlights that there is a strong and stable linear relationship be-
tween the degree of banks kb and their equity Eb. The relationship between
companies’ equity Ef and degree kf is significant but weaker, less stable.
This suggests that our specification does not include some relevant variables
on the firms’ side, like sector classification, which are not available in the
Japanese dataset. Since we expect the logistic model to be misspecified, at
least on the firms’ side, we try to improve its fitness by means of random
effects.

Figure 1: Correlations between degree and equity, Japanese dataset (Shaded
areas are recessions)
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It might be worth to discuss the relationship between the topological
properties of networks and the maximum likelihood (ML) logistic estimator.
The number of links in the observed network is given by l =

∑
fb afb, while

the model expectation is E [l|θ∗] =
∑

fb E [afb|θ∗], where θ∗ = (α∗, β∗, γ∗) is
estimated from data and E [afb|.] is specified by (13) and (14). The FOC for
the ML problem are
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∂ lnL
∂θ

=
∑
fb

(afb − E[afb|θ, xfb]) xfb = 0 (15)

where xfb = (1, Df , Eb) and θ = (α, β, γ). This implies

L =
∑
fb

afb =
∑
fb

E [afb|θ, xfb] = E [L|θ, x] (16)

Thus we see that the ML estimator automatically recovers the connectiv-
ity of the original network. The same is not true for the two (firms,banks)
observed degree distributions. In fact from the FOC we obtain

∑
f

Efkf =
∑
f

EfE [kf |θ, xf ] (17)∑
b

Ebkb =
∑
b

EbE [kb|θ, xb] (18)

while the purpose of our calibration is to minimize the n+m expressions

‖kf − E [kf |θ∗]‖ f = 1, . . . , n (19)

‖kb − E [kb|θ∗]‖ b = 1, . . . ,m (20)

It’s clear that the conditions (19)-(20) are more restrictive than (17)-(18).
Thus the success of our calibration exercise depends on the effectiveness of
the specifications that we adopt.

We estimate three models using the most recent data available in the
dataset (2011): model 1 is given by eqs. (13) - (14); model 2 adds firm-
specific random effects; model 3 includes both firm and bank-specific random
effects. We have opted for random effects instead of fixed effects because
the conditional log-likelihood estimation method of Chamberlain (1980) for
logistic models with fixed effects does not provide the coefficients of the latter,
which are needed for simulations (see sec. 4). From Tab. 1 we see that the
coefficients of the three models are always significant and their magnitude
is similar. From the goodness-of-fit measures in the table we see that the
introduction of random effects improves the estimation.

Fig. 2 compares the distribution of degrees in actual data with the one
obtained from a sample of 1,000 random networks simulated with calibrated
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parameters. We see that model 1 provides a poor fit for the degree distribu-
tion of firms, while model 3 provides the best fit to the degree distribution of
banks. In order to test for conditions (19)-(20), we perform the two-sample
KS test comparing the actual and simulated degree distributions. From Tab.
2 we see that the null hypothesis of equal distributions cannot be rejected
for models 2 and 3, and that the latter provides the best approximation for
both distributions. For this reason we select this model for our simulations.

Table 1: Logistic estimation on the Japanese credit market data (2011), ∗∗∗(p <
0.01)

Model 1 Model 2 Model 3
(Intercept) -3.95951*** -4.20761*** -4.35155***

logEf 1.53145*** 1.62358*** 1.60026***
logEb 0.19733*** 0.17885*** 0.18615***

Firms RE No Yes Yes
Banks RE No No Yes

Null Dev. 75,004
Resid. Dev. 53,576 51,686 49,750

AIC 53,582 51,694 49,760
Pseudo R2 0.286 0.312 0.337

Table 2: Kolmogorov-Smirnov 2-sample test for real and simulated degree distri-
butions

Model 1 Model 2 Model 3

kf
KS stat. 0.111 0.021 0.016
p-value 0.000 0.460 0.804

kb
KS stat. 0.081 0.067 0.035
p-value 0.410 0.643 0.998

3.2 Loans

We want to employ the same regressors in order to explain the value of loans
conditioned to the existence of a link between a firm f and a bank b:

(Lfb|afb = 1) ∼ F (Ef , Eb) (21)

From Fig. 3 we see that Ef and Eb are correlated in the Japanese dataset
respectively with corporate bank debt D and the loan assets of banks S, i.e.

13



Figure 2: Simulated vs. real degree distribution (artificial network sample size
R = 1, 000)
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the sum of loans extended to firms. In particular, the correlation between
Eb and S is very high and stable over time.

We estimate the following model firstly with OLS, all log-variables are
rescaled:

log(Lfb|afb = 1) = α + β log Ef + γ log Eb + u (22)

With standard tests we detect both firm and bank specific effects in the
data. In order to take these into account, we estimate distinct models with
clustered errors. Finally, we add an interaction term between regressors.
From Tab. 3 we see that the coefficients are always significant with expected
sign. We also detect a significant influence of the interaction term. The in-
clusion of random effects improves the fitness of the estimation, as shown by
the decrease of the AIC measure, and by the increase of the conditional R2

proposed by Nakagawa and Schielzeth (2013), which is equal to the propor-
tion of variance explained by both the fixed and random factors, while the
marginal R2 accounts for the variance explained by fixed factors alone.

In Fig. 4 we compare real data with simulated values obtained from
models by randomly drawing from the residuals. We see that all models
provide at first sight a good approximation to the distributions of D and S
across firms and banks respectively. From Tab. 4 we see that the hypothesis
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Figure 3: Correlations between firms’ debt and equity, Japanese dataset
(Shaded areas are recessions)
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of equal distribution cannot be rejected for models 5 and 6, with the latter
providing a significantly better agreement with data for S. In the overall, we
opt for this model in our AB simulations.

4 Simulation

The initial conditions of the model are given by the equity of firms and
banks. For our simulations we employ as initial conditions the observed
values of both variables taken from the Japanese dataset in 2011, which
includes n = 1572 firms and m = 117 banks8. During simulations, the equity
of agents evolves endogenously according to eqs. (6)-(11). When a firm /
bank goes bankrupt, it is re-initialized with the median equity of survived
firms / banks. The parameters needed for credit market interactions are fixed
at the values estimated respectively from model 3 of Sec. 3.1 and model 6
of Sec. 3.2. In the simulations we draw samples from the distribution of the

8For a detailed explanation of the dataset see http://www.econophysics.jp/foc_

kyoto/index.php?FOC%20Kyoto
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Table 3: Loan estimation (2011), ∗∗∗(p < 0.01)

M1 M2 M3 M4 M5 M6

(Int.) 0.000 −0.000 0.010 0.009 0.010 0.000
logEf 0.564∗∗∗ 0.571∗∗∗ 0.587∗∗∗ 0.560∗∗∗ 0.591∗∗∗ 0.580∗∗∗

logEb 0.234∗∗∗ 0.236∗∗∗ 0.225∗∗∗ 0.241∗∗∗ 0.227∗∗∗ 0.228∗∗∗

logEf × logEb 0.126∗∗∗ - - - 0.095∗∗∗

Firms RE no no yes no yes yes
Banks RE no no no yes yes yes

AIC 22, 562 22, 306 19, 844 22, 416 19, 664 19, 485
marg. R2 0.374 0.391 0.381 0.371 0.383 0.384
cond. R2 - - 0.655 0.391 0.670 0.667

Figure 4: Loan estimation: models versus real data, 2011 sample size R =
1, 000)
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Table 4: Kolmogorov-Smirnov 2-sample test for real and simulated distribu-
tions

Model 2 Model 5 Model 6

D
KS stat. 0.094 0.017 0.019
p-value 0.000 0.714 0.560

S
KS stat. 0.060 0.084 0.042
p-value 0.784 0.367 0.981

estimated random effects from these models in order to take into account of
their influence over market interaction.

The range of the remaining parameters is presented in Tab. 5. In gen-
eral, the dynamics of the model is determined by the losses of firms and the
resulting bankruptcies. For each firm the probability of bankruptcy depends
on the one hand on an endogenous threshold, which is independent of c but
dependent on rcb and δ, and on the other hand on the parameters of the
distribution of price shocks (see eq. 9), i.e. the probability increases if the
probability mass that falls below the endogenous threshold increases. So
if, for example, we decrease µ, the distribution of price shocks moves left-
wards and bankruptcies increase ceteris paribus. Otherwise, if we increase
σ, the probability mass in the tails increases and the effect is the same.
However, the interpretation is different, since in the former case the increase
in bankruptcies is associated with a decrease in the expected profit at con-
stant uncertainty, which we may call a “first order” effect of price shocks, in
the latter case instead uncertainty increases with expected profit unchanged,
which we may call a “second order” effect of price shocks. Mixing the two
effects would make the results more difficult to interpret. Thus, for sake of
simplicity, we confine ourselves to first order effects of price shocks by varying
µ while keeping σ constant, and leave for the future the analysis of second
order effects.

The sampling scheme we adopt for the subspace of varying parameters
(rcb, δ, µ) is the one suggested by Cioppa and Lucas (2007) and employed by
Salle and Yildizoglu (2014). Random sampling from an uniform distribution,
which is a common choice in Montecarlo exercises, is inefficient because it
generates a high number of redundant sampling points (points very close to
each other), while leaving some parts of the parameter space unexplored. A
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common alternative is importance sampling, which however requires prior
information. A proper “design of experiment” (DOE) delivers instead a
parsimonious sample which is nevertheless representative of the parameter
space. In particular, representative samples are said to be “space filling”,
since they cover as uniformly as possible the domain of variation.

Table 5: Parameter space explored in the simulations

rcb [0.001, 0.05]
δ [0.1, 1]
µ [0.001, 0.1]
σ 0.001
c 0.8

The scheme of Cioppa and Lucas (2007) is based on Nearly Orthogo-
nal Latin Hypercubes (NOLH). In the context of sampling theory, a square
grid representing the location of sample points for a couple of parameters is a
Latin square if there is only one sample point in each row and each column. A
Latin hypercube is the generalization of this concept to an arbitrary number
of dimensions, whereby each sample point is the only one in each axis-aligned
hyperplane containing it. This property ensures that sample points are non
collapsing, i.e. that the 1-dimensional projections of sample points along
each axis are space filling. In fact, with this scheme, the sampled values of
each parameter appear once and only once. Basic Latin Hypercube schemes
may display correlations between the columns of the k× n design matrix X,
where k is the number of parameters and n is the sample size for each pa-
rameter, especially when k / n. Instead, an orthogonal design is convenient
because it gives uncorrelated estimates of the coefficients in linear regression
models and improves the performance of statistical estimation in general. In
practice, in orthogonal sampling, the sample space is divided into equally
probable subspaces. All sample points in the orthogonal LH scheme are then
chosen simultaneously making sure that the total ensemble of sample points
is a Latin Hypercube and that each subspace is sampled with the same den-
sity. The NOLH scheme of Cioppa and Lucas (2007), in particular, improves
the space filling properties of the resulting sample when k / n at the cost
of introducing a small maximal correlation of 0.03 between the columns of
X. Furthermore, no assumptions regarding the homoskedasticy of errors or
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the shape of the response surface (like linearity) are required to obtain this
scheme.

For each of the 17 points of the NOLH scheme reproduced in Appendix,
we replicate 10 simulations over T = 500 periods, after an initial run of
200 periods. For each simulation run, we compute the average and standard
deviation of the time log-differences of the following aggregate variables: pro-
duction (y), firms’ equity (feq), banks’ equity (beq), firms’ debt (dbt), firms’
leverage (lev). Furthermore, we compute the average of firms’ and banks’
bankruptcies by simulation step (fbkr and bbkr respectively).

A summary of the results is presented in Fig. 5 through correlations
between model outputs obtained at different points of the parameter sam-
ple. We see that avg y is highly correlated both with avg feq and avg dbt,
which is a consequence of eq. (3). This equation is also at work in the high
correlation of the std variables. The common factor in both cases is given
by price shocks. Growth (avg y) is also significantly correlated with leverage
(avg lev), which means that aggregate leverage is pro-cyclical in the model,
at least within the subspace Ω of Tab. 5. On their part, the growth of debt
and leverage are highly correlated with the growth of bank equity (avg beq),
which suggests, given the credit market mechanism we have assumed, that
debt growth is mostly driven by supply, while the linkage with credit de-
mand is weaker as shown by the fact that leverage is negatively correlated
with firms’ equity. Growth and bankruptcies are negatively correlated, as we
might expect, since higher growth is associated with a stronger equity base
for firms. Banks become instead more risky when they lend more and are
more profitable (indeed bbkr is positively correlated with avg dbt, avg lev

and avg beq), as well as with higher volatility in general. We also find a
significant clue of contagion effects in the positive correlation of bbkr and
fbkr.

We underline that the negative correlation between feq and lev is a
consequence of the network calibration of the model. Indeed

Lfb = (Lfb|afb = 1)× afb = A× Eβ
f × E

γ
b × afb (23)

where A = exp(α + u). By taking expectations we obtain

E[Lfb] = A′ × Eβ
f × E

γ
b ×

1

1 + exp(−εfb)
(24)

where εfb is specified as in eq. (14) and A′ = exp(α)E[exp(u)]. We see

19



that the r.h.s. of eq. (24) is an increasing function of Ef and Eb, since the
denominator is decreasing in both variables. Thus E[Df ] is of course also
an increasing function of net worths. Regarding leverage we may proceed as
follows

E[λf ] =
E[Df ]

Ef
= A′ × Eβ−1

f ×
∑
b

Eγ
b

1 + exp(−εfb)
6 A′ × Eβ−1

f ×

(∑
b

Eγ
b

)
(25)

We see that λf is decreasing in Ef whenever β < 1, which is indeed
the case in our estimations (Tab. 3), while it is always increasing in banks’
equity.

5 Metamodels

We compare a number of metamodels. On the one hand we estimate various
Kriging spatial models, which are generalized regression models, potentially
allowing for heteroskedastic and correlated errors, whose general form is given
by eq. (2) above. This approach is widely used for ABM metamodeling in
various fields (see e.g. Salle and Yildizoglu (2014), Dancik et al. (2010) and
references therein). Using generalized regression is convenient since some of
the parameters of our model are related to random distributions (µ, σ, which
are related to price shocks), which naturally affect the variability of model
output. The Kriging approach (Roustant et al., 2012) resorts to feasible
generalized least squares by assuming a stationary correlation kernel K(h) =
K(θi− θj), where θi, θj are points in the parameter space Θ. K(h) takes the
following general form:

K(h) =
d∏
j=1

g(hj, λj) (26)

where d is the dimension of Θ, and λ = (λ1, . . . , λd) is a vector of param-
eters to be determined. In particular, we employ for g the specifications of
Tab. 6.

Since we work with noisy, potentially heteroskedastic observations, in our
estimation the covariance matrix is determined as follows:

C = σ2R + diag(τ) (27)
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Table 6: Covariance kernels (Roustant et al., 2012)

K1 Matérn (ν = 5/2) g(h) =
(

1 +
√

5|h|
λ

+ 5h2

3λ2

)
exp

(
−
√

5|h|
λ

)
K2 Matérn (ν = 3/2) g(h) =

(
1 +

√
3|h|
λ

)
exp

(
−
√

3|h|
λ

)
K3 Gaussian g(h) = exp

(
− h2

2λ2

)
K4 Power-Exponential g(h) = exp

(
−
(
|h|
λ

)t)
K5 Exponential g(h) = exp

(
− |h|

λ

)

where R is the correlation matrix with elements Rij = K(θi − θj) and
τ = (τ 2

1 , . . . , τ
2
n) is the vector containing the observed variance of model

output at fixed points of the parameter space, where n is the size of the
NOLH design. The ML estimation is performed on the “concentrated” mul-
tivariate Gaussian log-likelihood, obtained by substituting the vector of co-
efficients β with its generalized least square estimator. The “concentrated”
log-likelihood is a function of σ and λ, which are the optimization variables
of the estimation. The solution is obtained numerically through the quasi-
Newton algorithm provided by the DiceKriging R (2015) package (Roustant
et al., 2012).

In our exercise we compare the fitness of the same metamodel estimated
with different Kriging kernels and with OLS. The metamodel reads as follows:

y = βx+ u(θ) (28)

x = (1, rcb, δ, µ, r
2
cb, δ

2, µ2, rcb × δ, rcb × µ, δ × µ) (29)

y = (avg y, std y, fbkr) (30)

θ = (rcb, δ, µ) (31)

where β is the matrix of coefficients which can be estimated equation by
equation with the methods mentioned above, and the dependency of the error
term from θ, due to heteroskedasticity and cross correlations, is made explicit.
The higher order terms in the model are introduced because we expect the
ABM to display non linear behavior. In particular, we wish to capture the
combined effect of parameters regulating credit cost (rcb, δ) and price shocks
or final demand conditions as explained in Sec. 2 (µ). The components of y
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are chosen among model outputs that are not highly correlated (see previous
section), in order to obtain independent equations.

In a first estimation exercise, we compute a simple OLS regression with
the specification (28)-(29) for each model output in y. Since the hypothesis of
constant variance is rejected by the Breusch-Pagan test, we introduce robust
weights computed from the interquartile distance of model outputs at fixed
values of the parameters, and observe an improved fitness of the estimation.
Then we opt for weighted regression in the comparison with Kriging models.

The fitness of alternative estimations is computed by means of k-fold
cross validation, i.e. the models are used to predict the response variables
on k random sections of the experiment design after being estimated on the
rest of it. In particular, we set k = 5. Fitness is compared through RMSE,
MAE and Q2, which is a R2 statistics computed out of sample (thus it can
take negative values). The values of Tab. 7 are means over 100 replications
of the procedure. We see that the weighted OLS regression always performs
better than the alternative Kriging models. It is remarkable that the fitness
of all models is very low when the dependent variable is avg y. We regard
this result as a consequence of the complex behavior of ABMs (see Sec. 6).

After having estimated the full model (28)-(29) over the entire simulation
sample, we find high variance inflation factors (vifs) for all regressors, which
are not eliminated after centering data with respect to the mean. High
vifs are expected since we employ higher order and interaction terms, and
we wish to obtain reliable regression coefficients for a consistent economic
interpretation of results. Then we select, for each model output, distinct
submodels which guarantee a higher fitness in terms of R2 coupled with low
vifs.

Table 8 summarizes the WLS estimation of these models. Since the
hypothesis of constant variance is still rejected for avg y, we employ het-
eroskedastic consistent standard errors for inference purposes in this case. It
is noteworthy that we find no significant effect of µ over growth. This can
be explained as follows. A higher µ implies a higher rate of accumulation
for firms but also for banks. If accumulation is unbalanced in favor of the
latter, credit supply expands too much, pushing up debt and leverage, see
eq. (25). But a higher leverage makes credit more costly, thereby making
firms more likely to make losses, see eq. (7). If many firms go bust, a large
number of banks (if not all) are likely to go bust as well. In this case, overall
bank equity is reduced drastically, cutting credit supply and finally hamper-
ing growth itself. This is confirmed by the volatility enhancing effect of µ
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Table 7: Cross k−validation of Metamodels, k = 5

(a) avg y

WLM K1 K2 K3 K4 K5

Q2 -0.066 -15.064 -15.782 -15.677 -13.995 -17.772
(0.002) (0.535) (0.597) (0.671) (0.507) (0.889)

RMSE 0.004 0.009 0.009 0.009 0.009 0.010
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

MAE 0.003 0.007 0.007 0.007 0.007 0.007
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

(b) std y

WLM K1 K2 K3 K4 K5

Q2 0.954 0.598 0.638 0.546 0.598 0.609
(0.000) (0.014) (0.008) (0.032) (0.010) (0.014)

RMSE 0.196 0.556 0.538 0.562 0.565 0.548
(0.000) (0.007) (0.005) (0.011) (0.006) (0.007)

MAE 0.123 0.403 0.390 0.402 0.412 0.394
(0.000) (0.004) (0.004) (0.006) (0.004) (0.005)

(c) fbkr

WLM K1 K2 K3 K4 K5

Q2 0.765 0.244 -0.178 0.118 0.245 0.235
(0.001) (0.029) (0.160) (0.057) (0.039) (0.044)

RMSE 8.930 15.249 16.978 15.841 15.029 15.058
(0.011) (0.280) (0.675) (0.428) (0.327) (0.343)

MAE 5.155 11.571 12.292 11.852 11.330 11.427
(0.008) (0.169) (0.358) (0.272) (0.206) (0.205)

WLM = weighted OLS estimation; K1 = Kriging est., Matern(5/2); K2 = Kriging est.,
Matern(3/2); K3 = Kriging est., Gaussian; K4 = Kriging est., power-exponential; K5 =
Kriging est., exponential. Standard errors in parentheses.
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over growth. A typical evolution of the ABM for high µ is reproduced in
Fig. 6. On the other hand, from the same figure we see that rcb and δ have a
stabilizing effect since if rates are high and µ is low, firms’ equity decreases,
keeping bank accumulation at bay and thus preventing the explosive behav-
ior of leverage. The signs of the interaction terms for fbkr are consistent
with this framework, since the effect of higher rcb, δ combined with the ex-
plosive behavior of leverage triggered by a higher µ, makes bankruptcy more
likely. Finally, the low fitness for avg y is also explained since, if widespread
bankruptcies occur when growth-related parameters are at first sight more
favorable, equity and thus production is determined by the ad hoc replace-
ment mechanism explained in Sec. 2, which works independently from the
parameters of the model.

Table 8: WLS estimation of metamodels

Dependent variable:

avg y std y fbkr

rcb −0.037∗∗ −21.113∗∗∗ 21.453∗∗∗

(0.015) (1.169) (1.350)

δ −0.002∗∗∗ −0.893∗∗∗ −0.057
(0.0005) (0.069) (0.081)

µ 0.002 22.395∗∗∗ 11.473∗∗∗

(0.005) (0.549) (0.722)

r2cb −17.715∗∗∗

(4.564)

δ2 61.025
(57.495)

µ2 −24.138∗∗∗

(1.372)

rcb × δ −122.680
(82.289)

rcb × µ 2.695∗∗∗

(0.401)

δ × µ 172.055∗∗∗

(28.298)

Obs. 170 170 170
R2 0.125 0.963 0.909

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Since some of the effects captured by the metamodel appear counterin-
tuitive, we would like to verify in a systematic way that the metamodels
reproduce adequately the behavior of the underlying ABM. We accomplish
this task by means of sensitivity analysis.

Campolongo et al. (2000) define sensitivity analysis (SA) as the study of
how uncertainty in the output of a model can be apportioned to different
sources of uncertainty in the model input. With this respect, SA techniques
should satisfy the two main requirements of being global and model free.
By global, one means that SA must take into consideration the entire joint
distribution of parameters. Global methods are opposed to local methods,
which take into consideration the variation of one parameter at a time, e.g.
by computing marginal effects of each parameter. By model independent,
one means that no assumptions on the model functional relationship with
its inputs, such as linearity, is required. Campolongo et al. (2000) propose a
global approach based on the decomposition of variance:

V (y) =
k∑
i

Vi +
∑
i<j

Vij +
∑
i<j<m

Vijm + · · ·+ V12...k

Vi = V [E (y|θi = xi)]

Vij = V [E (y|θi = xi, θj = xj)]− V [E (y|θi = x)]− V [E (y|θj = x)]

. . .

We see that Vi represents the variance of the main effect of parameter i,
while all the other terms are related to interactions effects. From this general
formula we can obtain the contribution of interaction effects SIi involving the
parameter θi in y = f(θ), with f square integrable, as

SIi = ST i − Si

Si =
Vθi

[
Eθ−i

(y|θi)
]

V

ST i =
Ex−i

[Vxi(y|x−i)]
V

= 1−
Vθ−i

[Exi(y|x−i)]
V

The multidimensional integral of the last line can be evaluated numer-
ically using the extended FAST method described in Campolongo et al.
(2000). This method requires a specific sampling scheme, involving unfortu-
nately a much larger number of model runs than the design of sec. 4. Thus we
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are more interested in a SA method which may work with a given sampling
scheme, like the one proposed by Plischke et al. (2015), at the cost of losing
some precision of estimates. They introduce a global, moment independent,
uncertainty indicator whose definition, to the contrary of the previous exam-
ple, is well posed also in the presence of correlations among the parameters,
since their distributions are not required to be independent. This indicator
is always between 0 and 1, it equals 0 if the output is not dependent upon
a parameter, it is readily defined for parameter groups and it equals unity if
the group of all inputs is considered. Its definition is as follows:

d(θi) =
1

2
Eθi [s(θi = x)] (32)

s(θi = x) =

∫
|f [y(θ)]− f [y(θ)| θi = x]| p(θ)dθ (33)

where f is the probability density of y. Eq. (33) provides the variational
distance between the unconditional density of y and its conditional density
once θi is fixed. d(θi) can be viewed as the reduction of uncertainty regarding
the model output which is consequent to knowing the value of θi. Plischke
et al. (2015) provide an estimator for this quantity, which works with any
given sample. Thanks to this property, we can compare the response of the
metamodels with the one of the original ABM. Thus we see from Fig. 7 that
the full metamodel of eq. (29) is able to mimic the ABM’s behavior for std y

and fbkr, while we observe significant difference in the two responses in the
case of avg y, as we might expect from the low fitness of this metamodel.
Moreover, we see that there is some loss of accuracy, at least for fbkr, if we
use the metamodel of Tab. 8, which comes along with the benefit of more
reliable estimates for the regression coefficients.

6 Conclusions

In this paper we have extended the ABM of Riccetti et al. (2013) by allowing
firms and banks to entertain multiple connections in a stylized credit market
model. In practice, we resort to a random network model whose parame-
ters are calibrated with real data. The calibration is successful in the sense
that the network model is able to reproduce the degree and strength (debt
and loan) distributions of the Japanese credit market. At the same time,
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we reduce the number of parameters of the ABM, in order to make it easier
to explore globally the parameter space, which is sampled with the efficient
design proposed by Cioppa and Lucas (2007). Subsequently we compare a
number of alternative statistical models in order to select the best specifi-
cation for the relationship between the parameters and a set of endogenous
variables of the model. These statistical metamodels are estimated on AB
simulations, and we observe a high fitness for two endogenous variables out
of three, both using in-sample criteria, like R2 and sensitivity analysis, and
out of sample criteria like cross validation.

The selected metamodels, one for each endogenous variable under con-
sideration, allow to identify the effect of each parameter, taking into account
non linearities, by looking at the significance and sign of the corresponding
regression coefficients. While some results are in line with expectations, oth-
ers appear at first sight counterintuitive. In particular, the average growth
of production is not increasing in µ, to the contrary of what would suggest
eq. (8), and we also observe a low fitness of the metamodel for this variable.
This results follow from the fact that the growth of the two sectors (firms and
banks) is not necessarily balanced in the model: if the net worth of banks
grows faster than the net worth of firms, credit supply expands too much,
pushing up leverage and making defaults more likely, thereby hampering
growth. If defaults are numerous, net worth and production are determined
mostly by the replacement mechanism described in Sec. 4 and not by the
value of the parameters, a circumstance which explains the low fitness of the
metamodel in this case.

From this discussion we see that metamodeling can be a source of the-
oretical discipline for ABMs. In particular, our analysis shows that some
mechanism to balance the accumulation process of firms and banks is re-
quired to obtain more convincing results at the aggregate level. Following
the general approach of agent based modeling, any solution should avoid
theoretical shortcuts, like assuming balanced growth ex ante, which are typ-
ical of neoclassical models. For instance, we could introduce simple dividend
policies in both sectors or, at least, in one in of them, to control for equity
growth.

Some final considerations are in order at this point. Aggregation is a long
standing issue in economic theory. In the case of mainstream macro mod-
els, the gap between micro and macro is bridged by imposing ex ante strong
theoretical restrictions (such as doing away with agent heterogeneity) which
allow to derive a log-linear mathematical state-space representation of the
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macro observables directly from the micro model. ABMs instead generally
lack analytical solutions, and most ABM modelers are not favorable to select
their assumptions on the basis of analytical tractability. Moreover, as soon as
heterogeneity is allowed for, the relationship between micro and macro vari-
ables becomes more complex to handle, as underlined in many contributions
(e.g. Kirman (1992), Stocker (1993) and Gallegati et al. (2006)).

Our results show that we can bridge micro and macro through a rig-
orous statistical analysis of ABMs. In agent based simulations, aggregate
statistics are directly collected from microsimulations. With this bottom-up
approach we are extempted from the need to impose restrictions on the micro
model (Stocker, 1993) or to take approximations (Gallegati et al., 2006). On
the other hand, we see that a positive result is not guaranteed, since some
aggregate variables (like growth in our model) might elude our efforts to en-
capsulate them in a mathematical relationship with the parameters of the
model. This limitation could be possibly overcome employing as metamodel
a state space formulation instead of a reduced form formulation like the one
employed in this paper. To begin with, we could make growth at t depend
on the number of defaults in the previous period, since the latter affect ag-
gregate net worth of firms and banks which on their turn affect production.
Otherwise, we may turn to indirect inference, and seek a parametrization
for which the ABM is able to reproduce a set of key statistical properties of
real aggregate time series, e.g. by fitting some densely parametrized, unre-
stricted model like a VAR model both on real and simulated data (Winker et
al., 2007). As explained in the introduction, we leave these issues for future
research.
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A Appendix: DOE

Table A.1: DOE

rcb δ µ
0.019 0.381 0.026
0.029 0.156 0.001
0.013 0.213 0.063
0.050 0.269 0.057
0.007 0.775 0.032
0.041 1.000 0.007
0.016 0.663 0.088
0.047 0.606 0.081
0.026 0.550 0.050
0.032 0.719 0.075
0.022 0.944 0.100
0.038 0.888 0.038
0.001 0.831 0.044
0.044 0.325 0.069
0.010 0.100 0.094
0.035 0.438 0.013
0.004 0.494 0.020
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Figure 5: Correlation plot of model outputs (non crossed values 5% signifi-
cant)
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y = production; feq = firms’ equity; beq = banks’ equity; dbt = firms’ debt; fbkr =
firms’ bankruptcies; bbkr = banks’ bankruptcies, lev = firms’ leverage; avg = (time)
average; std = (time) standard deviation. avg y, avg feq, avg beq, avg dbt,lev are
the time average of log-differences. std y, std feq, std beq, std dbt are the standard
deviation of log-differences. fbkr and bbkr are computed as the average number of failures
per period.
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Figure 6: Simulation runs

(a) rcb = 0.01, δ = 0.1, µ = 0.094
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(b) rcb = 0.041, δ = 1, µ = 0.007
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Figure 7: Density based sensitivity analysis
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