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Abstract

We show that, when measuring inequality of opportunity with survey data, scholars
face two types of biases. A well-known downward-bias, due to partial observability of cir-
cumstances that affect individual outcome, and an upward bias, which is the consequence
of sampling variance. The magnitude of the latter distortion depends on both the empirical
strategy used and the observed sample. We suggest that, although usually neglected in em-
pirical contributions, the upward bias may be significant. We propose a simple criterion to
select the best specification which balances between the two sources of bias. Our method
is based on cross validation and can be easily implemented to survey data. In order to show
how this method can improve our understanding of the inequality of opportunity measure-
ment, we provide an empirical illustration based on income data of 26 European countries.
Our evidence shows that estimates of inequality of opportunity are extremely sensitive to
model selection. Alternative specifications lead to significant differences in the absolute
level of inequality of opportunity and to a number of substantial countries’ re-ranking. This
in turn clarifies the need of an objective criterion to select the best econometric model when
measuring inequality of opportunity.
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1 Introduction

The measurement of inequality of opportunity (IOp) is a growing topic in economics and, in
the last two decades, the number of empirical contributions to this literature has exploded: see
Ferreira and Peragine (2016) and Roemer and Trannoy (2015) for a review. The vast majority
of these contributions are based on the approach proposed by Roemer (1998). This standard
method consists in a two-step procedure: first, starting from a distribution of outcome (typically
income or consumption), a counterfactual distribution is derived. This counterfactual distri-
bution reproduces only unfair inequalities, i.e. inequalities due to circumstances beyond the
individuals control, and does not reflect any inequality arising from choice and effort of the
individual. Second, a suitable inequality measure is used to quantify inequality in the counter-
factual distribution.

The empirical literature has extensively used two approaches to compute counterfactual
distributions based on survey data: a parametric and a non-parametric one. One of the main
drawbacks of both approaches is that, unless all circumstances beyond individual control that
affect outcome are observable, they produce biased estimates of IOp. While the magnitude of
this bias may be impossible to identify (Bourguignon et al., 2013), under some assumptions it
can be shown that the sign of the bias is negative (Roemer, 1998; Ferreira and Gignoux, 2011;
Luongo, 2011). This explains why IOp estimates are generally interpreted as lower-bound
estimates of the “true” IOp, whereas the latter are interpreted as the estimates one would obtain
if all circumstances were observable. Some authors have challenged the usefulness of those
lower bound measures (Kanbur and Wagstaff, 2015; Balcazar, 2015). In particular, Balcazar
(2015) and Ibarra et al. (2015) have suggested that the downward bias may lead to a substantial
underestimation of the true level of IOp in empirical applications.

Typically, authors address this problem using rich data sources. In this case, the downward
bias is minimized by either increasing the number of circumstances, as in Biörklund et al.
(2012); or splitting circumstances in a broader partition of categories; or introducing interaction
terms among categories, as in Hufe and Peichl (2015). Those empirical strategies reduce the
downward bias by increasing the explained variability attributable to IOp. However, in this
paper we emphasize that those procedures are not exempt by risk and might all lead to an upper
distortion of the IOp estimates. Indeed, the reliability of the estimates would depend on both
the number of circumstances and the types’ partition but would also crucially depend on the
sample distribution across types.

In both parametric and non-parametric approaches, we recognize a trade off between the
downward bias resulting from the observability of circumstances and the upward bias related
to the sampling variance of the estimated counterfactual distribution. Although the topic is not
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new to econometricians and practitioners, our concern over upward bias IOp estimates has been
mostly neglected in the empirical literature of the IOp measurement. This is surprising because,
as we show in the empirical section, such a distortion is likely to be far from negligible. We
show that the magnitude of the upward distortion depends on the strategy used to obtain the
counterfactual distribution. This is particularly straightforward when applying a parametric
approach but can be easily generalized to the non parametric approach. A wrong choice of
explanatory variables, as well as an inappropriate division in types’ categories, might lead to
distortions in both directions. We suggest that, when choosing among alternative specifications,
scholars should opt for the best balance between the two sources of bias.

In this paper, after illustrating in detail the trade off and discussing its consequences for the
measurement of IOp, we propose a method to select the best econometric specification, that is
the specification that best minimizes both types of biases.

Our method is based on cross validation. The original sample is divided into a training set
and a test set. The association between circumstances and outcome is first estimated on the
training sample, under a large number of meaningful model specifications. Next, the derived
coefficients are used to predict the outcome on the test sample. The specification selected is the
model that minimizes the prediction errors in the test sample. This model selection technique
is widely adopted in statistical learning; many routines have been developed and can be easily
implemented in commonly used software.

In order to show the usefulness of our approach we apply our method to income data of
26 European countries using the EU Survey on Income and Living Conditions (EU-Silc) 2011
database. Our evidence shows that IOp estimates are extremely sensitive to model selection.
Alternative specifications lead to significant differences in the absolute level of IOp and, in
many cases, to substantial re-ranking of countries. Interestingly, our preferred specification
generally differs from the typical model used in the literature. Hence, our estimates differ from
estimates provided by other authors that have used the same data to estimate IOp.

The rest of the paper is organized as follows: Section 2 introduces the canonical model
used to measure IOp, presents the estimation methods used to implement it and clarifies the two
possible sources of distortion. Section 3 proposes a criterion to balance the trade-off between
the two biases when selecting the specification to estimate IOp. Section 4 presents an empirical
implementation while Section 5 concludes.
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2 Downward and upward biased IOp

The canonical equality of opportunity model can be summarized as follows (see Ferreira and
Peragine, 2016). Each individual in a society realizes an outcome of interest, y, by means of
two sets of traits: circumstances beyond individual control, C, belonging to a finite set Ω =

{C1, ...,CJ}, and a responsibility variable, e, typically treated as scalar. A function g : Ω × <+

→<+ defines the individual outcome:

y = g(C, e)

For all j ∈ {1, ..., J} let us denote by K j the possible values taken by circumstance C j and by∣∣∣K j

∣∣∣ the cardinality K j. For instance, if C j denotes gender, then K j = {male, f emale} . We can
now define a partition of the population into T types, where a type is a set of individuals who
share exactly the same circumstances. That is, T =

∣∣∣ΠJ
i=1K j

∣∣∣. Let us denote by Y the overall
outcome distribution.

IOp is then defined as inequality in the counterfactual distribution, Ỹ , which reproduces all
inequalities due to circumstances and does not reflect any inequality due to effort. A number of
methods have been proposed to obtain Ỹ and, in general, the chosen method affects the resulting
IOp measure (Ferreira and Peragine, 2016; Ramos and Van de gaer, 2015). In what follows,
we focus on the ex-ante approach, introduced by Bourguignon et al. (2007) and Checchi and
Peragine (2010), which is by far the most largely adopted method in the empirical literature
(Brunori et al., 2013)1. This approach interprets the type-specific outcome distribution as the
opportunity set of individuals belonging to each type. Then, a given value vt of the opportunity
set of each type is selected. Finally, Ỹ is obtained replacing the outcome of each individual
belonging to type t with the value of her type vt, for all t = 1, ...,T .

2.1 Counterfactuals estimation

Ex-ante IOp can be estimated either by a non parametric or a parametric approach. On the
one hand, Checchi and Peragine (2010) propose to estimate Ỹ non-parametrically following
the typical two stage method: (i) after partitioning the sample into types on the basis of all
observable circumstances, they choose the arithmetic mean of type t, denoted by µt, as the
value vt of type t; (ii) for each individual i belonging to type t they define ỹi = µ̂t - where µ̂t is

1Other well established approaches can be used to measure IOp. Approaches differ in how they define the
principle of equal opportunity, and then in turn in the way the counterfactual distribution is constructed (Roemer,
1998; Lefranc et al., 2006; Fleurbaey and Shockaert, 2009; Checchi and Peragine, 2010). However, because the
construction of these alternative counterfactual distributions generally requires the observation or identification of
effort(an extremely difficult variable to measure) they are less frequently adopted in the empirical literature.
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the sample estimate for µt - and measure inequality in Ỹ .
On the other hand, Bourguignon et al. (2007) propose to measure ex-ante IOp by estimating

Ỹ parametrically, as the prediction of the following reduced form regression:

yi =

J∑
j=1

K j∑
k=1

χ jkci jk + ui (1)

where ci jk identifies each category of the observable characteristics by means of a dummy
variable and χ jk is the corresponding coefficient2. The typical parametric approach consists in
an ordinary least square regression where total outcome variability is explained by a linear com-
bination of regressors with no interaction terms. It does not directly measure types’ means but
captures the variability explained by a given circumstance independently of all other character-
istics considered. This restriction allows us to increase the degree of freedom of the regression,
improving the reliability of the estimated counterfactual distribution. Understandably, such a
parametric estimation has been proposed as a good alternative to the nonparametric when few
observations are available (Ferreira and Gignoux, 2011; Ibarra et al., 2015).

Only recently, Hufe and Peichl (2015) discuss the importance of considering interaction
terms in estimating IOp. Indeed, we notice that - when all explanatory variables are categorical
- the parametric and the non parametric method coincide when the parametric counterfactual
distribution is obtained by the prediction of a regression model where y is regressed on all
possible combination of circumstances’ values, i.e. all values of all regressors are interacted
each other, obtaining a model with (K × J)2 dummies. In this case, each regressor captures the
effect of belonging to one of all the possible circumstances’ combination, which is the effect of
belonging to a given type:

yi =

T∑
t=1

βtπit + ui (2)

where πit are T binary variables obtained by interacting all categories of all circumstances.
In other cases, the corresponding IOp measures might be very different, and - by construction -
the typical (linear) parametric approach (1) will explain less inequality than the non parametric
(2) which allows variability to be explained also by the full set of interactions.

Here a trade off emerges: while the linear specification might be too restrictive, the inclusion
of the full set of combinations among categories might lead to a very large sampling variance
of the estimated counterfactual distribution. Especially when a limited number of observations

2Note that in principle one could have non-categorical regressors if cardinal circumstances are observed. How-
ever, to the best of our knowledge this is never the case. Even when a cardinal measure is available, such as parental
income, authors tend to construct quantiles and use them as regressors (see for example Bjorklund et al., 2012).

5



is available for some types.
Following the same reasoning, the sampling variance of the estimated counterfactual dis-

tribution is also influenced by alternative partitions into categories of observed circumstances:
a broadest partition might, again, lead to a larger variance in the case of a limited number of
observations per types.

Indeed, the reliability of both parametric and non-parametric IOp estimates requires a suf-
ficient number of observations characterized by each circumstance. In particular, the limitation
is more severe in the case of the non parametric approach, as a sufficient number of observa-
tions for each combination of circumstances is required. In practice, this might represent a
severe constraint as individuals are unlikely to be uniformly distributed across types and across
categories partitions.

A typical argument arises when dealing with Western countries in which researchers ob-
serve both parental education and parental occupation as circumstances. Unfortunately, those
variables are strongly correlated with each other and, usually, there are very few individuals
whose parents are highly educated and employed in elementary occupations, or who have no
education but work as managers. In order to overcome this drawback, scholars tend to limit the
number of circumstances in the definition of types (using either parental education or parental
occupation) or to aggregate the different values that a circumstance might take (using blue and
white collars rather than more specific occupation categories) but those are obviously ad-hoc
solutions which might greatly affect the shape of the counterfactual distribution and lead to ad-
hoc IOp estimates. In what follows, we propose a statistical criterion to properly select among
different model specifications or alternative categories’ partitions.

2.2 Variance-bias trade-off in estimating IOp

A number of methodological contributions have shown that, if the ‘true’ set of circumstances
is not fully observable, estimated IOp will be lower than the ‘real’ IOp (Ferreira and Gignoux,
2011; Luongo, 2011). This result follows from the assumption of orthogonality between cir-
cumstances and effort (see on this Roemer, 1998) and explains why IOp measures are generally
interpreted as lower-bound estimates of IOp.

Typically, authors attempt to solve this problem by using rich datasets that contain the largest
possible number of circumstances including outcome obtained during childhood (Bjorklund et
al., 2012; Peichl et al., 2015). Recently, Niehues and Peichl (2014) endorse an extreme per-
spective and, by exploiting longitudinal datasets, they measure IOp including individual fixed
effects among circumstances beyond individual control. This implies that any unobservable in-
dividual characteristics which persist overtime are considered a source of IOp. This method -
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understandably - has been proposed as an ‘upper-bound’ estimates of the true IOp.
However, when using survey data, whenever one makes an effort to reduce the downward

bias by increasing the number of circumstances or the number of categories in which circum-
stances might be split, she obtains a counterfactual distribution based on a finer partition in
types. This, by construction, implies a smaller number of observations in each type3. This
strategy might lead to higher between-group inequality and to a larger sampling variance when
estimating the counterfactual distribution.

Surprisingly, the empirical literature on the estimates of IOp has so far neglected this second
implication. Only recently it has been suggested that this issue may be an important aspect of
IOp measurement. Brunori et al. (2016), working with Sub-Saharan African surveys, notice
that the use of very detailed circumstances such as hundreds of ‘village of birth’ in Madagascar
or hundreds of ‘ethnic group’ in Congo, tends to dramatically increase the IOp estimates.

However, it is important to notice that, when measuring inequality, higher sampling variance
of the estimated distribution implies an upward biased IOp measure. This result is easily shown
applying what Chakravarty and Eichhron (1994) proved for the case of inequality estimation
when the variable of interest is measured with an error. The same result can be applied here:
instead of the classical measurement error discussed in Chakravarty and Eichhron (1994), we
consider a variable - the type mean - which is estimated with a higher sampling variance, the
finer the partition in types.4

As far as the measurement of IOp is concerned, this result has two interesting consequences.
Firstly, it states that if all circumstances are observable then IOp is upward biased. Secondly,
whenever circumstances are not fully observable, two opposite distortions might bias our esti-
mates and we can no longer assume that the estimated IOp is a lower-bound of the true IOp.

When sample size is large relative to the number of circumstances included in the model,
the downward-bias is likely to be much larger. However, when the sample size is small relative
to the number of types/regressors, it may be the case that the upward-bias prevails.

Yet, the absolute and relative sizes of the two biases depend on the sample size, the joint
distribution of outcome and circumstances, and the model specification used to estimate the
counterfactual distribution. That is to say, it is ultimately an empirical issue.

This discussion clarifies that, when estimating IOp, we should consider two different sources
of distortion that bias our estimates in opposite directions. We cannot simply try to include
the larger possible number of circumstances or to consider a broad partition of categories in
order to minimize the downward distortion. Partial observability and sampling variance of the

3Or, if adopting a parametric approach, a regression with a larger number of controls and with fewer degrees
of freedom.

4A formal proof is available in the appendix.
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counterfactual distribution are both sources of bias that should be minimized. The following
section proposes a simple method for choosing the best mode to measure IOp, i.e., the best way
to exploit information contained in survey data, minimizing the sum of the two biases.

3 Model selection for measuring IOp

In this section we propose a method to select the most suitable model among the following
alternatives: (i) the simple linear model (1) with the most parsimonious categories’ partition,
which provides the lowest extreme IOp estimates; (ii) a flexible model which includes the full
number of combinations among categories - defined using the finest partition - (2), and leads to
the highest value of the IOp estimates; (iii) all the intermediate specifications which only include
subset of categories’ combinations and alternative aggregations of characteristics’ partitions.

This ‘agnostic’ approach, which does not impose any a priori restriction on the the effect of
circumstances on outcome, may be inappropriate in other Contexts, such as when the aim is to
test theoretical predictions of a theoretical model. However, since Bourgignon et al. (2007) IOp
is measured using a reduced form model. Therefore, with no assumptions about the functional
form of g(), to test for all possible models seems to be (when computationally affordable) the
most appropriate choice.

In a statistical learning framework, we evaluate the variance bias trade-off in terms of model
predictions. On the one hand, a more flexible model reduces the typical downward bias in IOp
measurement and increases the prediction variance leading to upward bias. On the other hand,
a more restricted model reduces the sampling variance and hence the upward bias, but suffers
from omitted variable bias, the typical downward bias well known in the literature. In what
follows, we propose to exploit the property of Mean Square Error (MSE) and choose the best
model conditioned to available information by means of Cross Validation (CV). In a regression
setting the MSE is defined as:

MS E =
1
n

n∑
i=1

(
yi − f̂ (xi)

)2

where y is the dependent variable, x are the regressors, and i = 1, ..., n are the observations.
For given out of sample observations y0 and x0, the MSE can always be decomposed in variance
of f̂ (x0), square bias of f̂ (x0) and variance of the error term such as

E
(
y0 − f̂ (x0)

)2
= Var( f̂ (x0)) +

[
Bias

(
f̂ (x0)

)]2
+ Var(ε)

where f̂ (x0) are the predictions. Since the variance of the error cannot be reduced, it turns
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out that in order to minimize the MSE, we need to minimize both the bias and the variance. A
comparison among different specifications is performed by CV. In a CV procedure, the sample
is randomly divided into k equal-sized parts. Leaving out part k (test sample), the model is fitted
to the other k − 1 parts (training sample) whereas out-of- sample predictions are obtained for
the left-out kth part. CV compared with AIC, BIC and adjusted R2 provide a direct estimate
of the error. Overfitted models will have high R2 values, but will perform poorly in predicting
out-of-sample cases. CV is also useful to choose among alternative nonlinear specifications
together with non nested models. For each specification, the average of the k MSEs is stored
and the best specification is selected by minimizing it. This simple CV procedure is the widely
acknowledged criterion that we propose to select the best specification among a number of pos-
sible alternatives: model (1), (2) and all the alternative specifications obtained both interacting
only a subset of circumstances and defining categories using different partitions. Hence, our
proposal is to estimate Ỹ with the model selected by CV. This is the best model which mini-
mizes both sources of bias5. Note that this strategy might also imply the use of a different model
for the same country in different time periods and, in general, each time the country’s sample
size differs.

A consequence of this is that, when comparing different countries in terms of IOp, we will
compare measures obtained with different model specifications. This is somehow in contrast
with what is generally proposed in the literature. When the same source of data is available for
different countries, comparable measures of IOp have usually been computed using identical
model specification for all countries, see Marrero and Rodriguez (2012), Brzezinski (2015) and
Checchi et al. (2016). What we are suggesting here is a different approach. Comparable IOp
measures should be calculated using the best performing model given the observable circum-
stances. To give a (simplistic) example, let us consider the comparison between France and
Belgium in terms of IOp. It would make little sense to include among circumstances ‘mother
tongue’ in France. Its inclusion implies a higher sampling variance and is unlikely to explain
much of outcome inequality in the country. However, the same circumstance is likely to be
one of the main sources of unequal opportunity in Belgium. In this case, we claim that the
French counterfactual distribution should be estimated excluding ‘mother tongue’ from the set
of regressors whereas, when estimating IOp in Belgium, this circumstance should be included.

We consider our method preferable when the intent is to compare the level of IOp in the
two populations. On the one hand, it may seem unsatisfying, because measures are based on

5We are aware that the number of models to test explodes when circumstances are interacted. Moreover, some
circumstances can enter into into the regression with alternative alternative level of detail, e.g. country of birth,
region of birth, district of birth. When the level of detail to choose is not obvious this further increases the number
of models that have to be checked. In these cases our method should be complemented with an algorithm able to
restrict the number of models considered such as for example forward stepwise selection (Gareth et al., 2013).
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different sets of information. On the other hand, the two measures are the two most reliable
estimates of the effect of circumstances on outcome in the two populations.

Indeed, we believe that the specification used should differ, firstly because the set of avail-
able information may not be the same for the two populations. Secondly, and most importantly,
because the nature of unequal opportunity, i.e. how circumstances affect individual outcomes,
may differ in the two populations.

4 An empirical illustration

In order to clarify that our method is easily implementable and can substantially improve our
understanding of IOp, we provide an empirical illustration based on the EU-Silc 2011 dataset.
This dataset is the reference source for comparative statistics on income distribution in the
European Union. Thanks to the special module on intergenerational transmission of poverty,
the same data have been exploited for other estimates of IOp in the past, see Marrero and
Rodriguez, 2012; Brzezinski, 2015; Checchi et al., 2016. In particular, in 2011 respondents
provide information about their family of origin and socioeconomic background. The data
contains information about 26 countries: Austria (AT), Belgium (BE), Bulgaria (BG), Czech
Republic (CZ), Denmark (DK), Estonia (EE), Germany (DE), Great Britain (UK), Greece (GR),
Finland (FI), France (FR), Hungary (HU), Italy (IT), Latvia (LV), Lithuania (LT), Luxembourg
(LU), the Netherlands (NL), Norway (NO), Poland (PL), Portugal (PT), Romania (RO), Spain
(ES), Slovakia (SK), Slovenia (SI), Sweden (SE) and Switzerland (CH).

Since our aim is to show how IOp estimates can be improved adopting the suggested model
selection method, we compare our results with the measures obtained by Brzezinski (2015) and
Checchi et al. (2016). Although both analyses use the EU-Silc 2011 data and an ex-ante para-
metric approach, the measures provided by those authors differ for at least two reasons: they
use a different model specification and two alternative outcome definitions, e.g. Checchi et al.
(2016) use individual disposal income whereas Brzezinski (2015) considers equivalized house-
hold disposable income. Hence, we apply our cross validation methodology to both outcome
variables. In particular, following Checchi et al. (2016), we use individual disposal income6

and restrict the sample to individuals aged between 30 and 60 who are either working full or
6The net individual income definition includes “(net) employee cash or near cash income” (variable PYN010)

plus “(net) cash benefits or losses from self-employment” (variable PYN050 - negative values set equal to zero)
plus “(net) non-cash employee income” (this variable is not available for all countries – variable PYN020). Capital
incomes are excluded because they are only measured at household level, and it would be arbitrary to attribute them
to household members. The disposable income definition add “(net) unemployment benefits” (variable PYN090),
“(net) survivor’ benefits” (variable PYN110), “(net) sickness benefits” (variable PYN120), “(net) disability ben-
efits” (variable PYN130) and “(net) education-related allowances” (variable PYN140). Zero values are excluded
from computation.
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part-time, unemployed or fulfilling domestic tasks and care responsibilities. Further, we also
perform our exercise on yearly equivalized disposable income for households whose head is
between 26 and 50 years old, as specified in Brzezinski (2015).

We select gender, country of origin and family background as circumstances affecting in-
dividual incomes irrespective of individual responsibility. Those are all categorical variables
and we consider them in both a parsimonious and a finer categories’ partition. In the most
parsimonious case only four binary variables are included in the regression equation: gender
(male/female), country of origin (native/foreign), parental education (low/ high) and parental
occupation (elementary/not elementary). In the broadest partition, we consider the following
division: gender (male/female), country of origin (native/ EU foreign/ non EU foreign), mother
and father occupation (coded in 10 values each)7 and parental education (coded in 4 values
each)8. Table 1 and 2 show the descriptive statistics of the most parsimonious case under both
income definitions while Figure 1 shows the Gini IOp measures of three cases: (i) the linear,
most parsimonious case (low), which is widely adopted in the literature, where categories are
defined as binary variables and there are no interactions; (ii) the fully interacted model where
the categories are defined in the widest option and are fully interacted (up); (iii) an intermediate
measure computed from the best model selected by the CV method (best). This exercise is
repeated for the two outcome variables.9

Both cases show that the three alternative measures clearly differ among one another, and in
some cases (left) the best model and the linear model coincide. In other cases (right), the best
model is far from the linear specification and rather close to the most flexible one. An immediate
implication is that the position achieved in the countries’ ranking clearly depends on the model
specification chosen by the researcher. In light of those results, we suppose that, in measuring
IOp, it is important to rely on a statistical method to select the best specification in order to avoid
ad-hoc ranking. Next, we compare our best measure with alternative estimations obtained in
other studies, which use the same EU-Silc data and the same definition of outcome variable, i.e.
Checchi et al (2016) for disposal income and Brzezinski (2015) for the equivalized disposable
income. We notice that the final assessment differs substantially in both cases. Figure 2 shows
the rank correlation of our best measure and the two alternative estimates. Although the rank-
correlation is clearly positive and significant, a number of countries lie outside the 45 degree
line. Indeed, the re-ranking is substantial in a few cases. To give some examples in Checchi et

7ISCO-08: Armed forces occupations; Managers; Professionals; Technicians and associate professionals; Cler-
ical support workers; Service and sales workers; Skilled agricultural, forestry and fish; Craft and related trades
workers; Plant and machine operators; Elementary occupations.

8Could neither read nor write; Low level (pre-primary, primary education); Medium level (upper secondary
education); High level (first stage of tertiary education).

9Tables 3 and 4 in the Appendix contains IOp estimates and relative bootstrapped standard errors.
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Figure 1: IOp in 26 European countries under different model specifications

Source: EU-SILC, 2011 . Note: The Figure shows each country’s IOp measure with the three alternative
methods: (i) the linear, most parsimonious case (low), (ii) the fully interacted model (up); (iii) the best model

selected (best) using individual equivalized income. Error bars show 95% bootstrap confidence intervals.
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al. (2016) Poland ranks 20th and the Netherlands rank 5th, whereas accordingly with our best

measure they rank 6th and 9th, respectively. As well in Brzezinski (2015), Belgium lies at the
16th position whereas, if the best specification is adopted, it would be 7th.

We believe that this exercise provides convincing evidence that the variance-bias trade-off

in IOp measurement is far from negligible in empirical applications. It is therefore crucial to
introduce a widely accepted statistical criterion to select the best model among a very large
number of possible specifications.

5 Conclusions

Scholars are well aware that the IOp estimates are mostly downward biased. This is a con-
sequence of the partial observability of circumstances beyond individual control that affect
individual outcome. However, since IOp is measured as inequality in a counterfactual sam-
ple distribution, a second possible source of bias might be related to the sampling variance of
the estimated counterfactual distribution. In this paper, we discuss this further source of bias,
which has surprisingly been neglected by the empirical literature on IOp measurement. We
show that it implies an upward bias of IOp which challenges the interpretation of IOp estimates
as lower-bound estimates of the real level of IOp.

We stress that, because the empirical specification used to estimate IOp largely influences
its magnitude, we need a reasonable criterion to choose among alternative models. We suggest
that this criterion should minimize the two sources of bias.

We interpret this problem as a typical variance-bias trade-off and propose to adopt a simple
cross validation method to find the best fitting model. Finally, we show the empirical relevance
of our intuition and implement the proposed method to measure IOp in 26 European countries.
Our empirical evidence clarifies that the choice of the model specification largely affects the
estimated IOp and demonstrates the importance of having a widely accepted criterion to identify
the best possible specification.
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Figure 2: IOp in 26 European countries estimates from different studies

Source: EU-SILC, 2011 . Note: the Figure shows the rank correlation of countries in terms of IOp. Our best
model specification is compared with Checchi et. al. (2016) and Brzezinski (2015)

14



References

- Balcazar, C. (2015), “Lower bounds on inequality of opportunity and measurement error”,
Economics Letters, 137: 102-105.

- Biörklund, A., Jäntti A. and Roemer J. (2012), “Equality of Opportunity and the Distri-
bution of Long-Run Income in Sweden”, Social Choice and Welfare, 39: 675-696.

- Bourguignon, Ferreira F., and Menendez M., (2007), “Inequality of Opportunity in Brazil”,
Review of Income Wealth, 53: 585-618.

- Bourguignon, Ferreira F., and Menendez M., (2013), “Inequality of Opportunity in Brazil:
A Corrigendum”, Review of Income Wealth, 59: 551-555.
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Table 3: IOp (Gini) esitmates - Individual disposal income
up best low

AT 0.1980 0.1338 0.1336
( 0.0033 ) ( 0.0014 ) ( 0.0013 )

BE 0.1734 0.1095 0.0858
( 0.0048 ) ( 0.0021 ) ( 0.0013 )

BG 0.1911 0.1609 0.1290
( 0.0028 ) ( 0.0021 ) ( 0.0011 )

CH 0.2694 0.1879 0.1875
( 0.0035 ) ( 0.0011 ) ( 0.0015 )

CZ 0.1497 0.1219 0.1142
( 0.0019 ) ( 0.0013 ) ( 0.0009 )

DE 0.2070 0.1612 0.1313
( 0.0026 ) ( 0.0014 ) ( 0.0008 )

DK 0.1452 0.0962 0.0655
( 0.0043 ) ( 0.0022 ) ( 0.0010 )

EE 0.2168 0.1591 0.1202
( 0.0034 ) ( 0.0021 ) ( 0.0017 )

ES 0.2073 0.1265 0.1114
( 0.0043 ) ( 0.0020 ) ( 0.0015 )

FI 0.1882 0.1102 0.0850
( 0.0042 ) ( 0.0018 ) ( 0.0011 )

FR 0.1826 0.1245 0.1112
( 0.0029 ) ( 0.0012 ) ( 0.0011 )

GR 0.1731 0.1148 0.0995
( 0.0053 ) ( 0.0023 ) ( 0.0023 )

HU 0.1732 0.1337 0.1172
( 0.0016 ) ( 0.0010 ) ( 0.0008 )

IT 0.1729 0.1225 0.1122
( 0.0023 ) ( 0.0013 ) ( 0.0011 )

LT 0.1772 0.1517 0.0671
( 0.0040 ) ( 0.0033 ) ( 0.0005 )

LU 0.2422 0.1748 0.1543
( 0.0037 ) ( 0.0030 ) ( 0.0023 )

LV 0.2346 0.1584 0.1100
( 0.0033 ) ( 0.0021 ) ( 0.0012 )

NL 0.2006 0.1323 0.1195
( 0.0042 ) ( 0.0019 ) ( 0.0013 )

NO 0.2038 0.1220 0.1043
( 0.0047 ) ( 0.0017 ) ( 0.0010 )

PL 0.1463 0.1145 0.0902
( 0.0019 ) ( 0.0010 ) ( 0.0007 )

PT 0.2131 0.1427 0.0844
( 0.0047 ) ( 0.0023 ) ( 0.0024 )

RO 0.1949 0.1369 0.1365
( 0.0028 ) ( 0.0020 ) ( 0.0022 )

SE 0.2166 0.1008 0.0609
( 0.0105 ) ( 0.0051 ) ( 0.0023 )

SI 0.1451 0.0825 0.0662
( 0.0030 ) ( 0.0010 ) ( 0.0008 )

SK 0.1277 0.1078 0.0851
( 0.0020 ) ( 0.0013 ) ( 0.0007 )

UK 0.2619 0.1833 0.1640
( 0.0040 ) ( 0.0018 ) ( 0.0014 )

Source: EUSILC 2011. Notes: IOp (Gini) estimates derived from (i) the linear most parsimonious case (low); (ii)
the fully interacted model (up); (iii) the best model selected (best), respectively. Bootstrapped standard errors in
parenthesis. .
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Table 4: IOp (Gini) esitmates - Individual disposal equivalent income
up best low

AT 0.1295 0.0653 0.0505
( 0.0032 ) ( 0.0015 ) ( 0.0011 )

BE 0.1326 0.0631 0.0517
( 0.0038 ) ( 0.0015 ) ( 0.0010 )

BG 0.1899 0.1554 0.1232
( 0.0038 ) ( 0.0027 ) ( 0.0020 )

CH 0.1596 0.0956 0.0456
( 0.0035 ) ( 0.0013 ) ( 0.0008 )

CZ 0.1165 0.0866 0.0661
( 0.0020 ) ( 0.0014 ) ( 0.0005 )

DE 0.1141 0.0535 0.0231
( 0.0020 ) ( 0.0006 ) ( 0.0003 )

DK 0.1097 0.0126 0.0095
( 0.0048 ) ( 0.0012 ) ( 0.0007 )

EE 0.1709 0.1241 0.0632
( 0.0035 ) ( 0.0022 ) ( 0.0012 )

ES 0.1909 0.1123 0.0900
( 0.0041 ) ( 0.0020 ) ( 0.0018 )

FI 0.1300 0.0386 0.0166
( 0.0035 ) ( 0.0008 ) ( 0.0003 )

FR 0.1284 0.0728 0.0572
( 0.0024 ) ( 0.0008 ) ( 0.0007 )

GR 0.1881 0.1329 0.1138
( 0.0056 ) ( 0.0038 ) ( 0.0035 )

HU 0.1412 0.1083 0.0922
( 0.0016 ) ( 0.0009 ) ( 0.0006 )

IT 0.1595 0.1022 0.0926
( 0.0026 ) ( 0.0013 ) ( 0.0012 )

LT 0.1707 0.0919 0.0767
( 0.0042 ) ( 0.0014 ) ( 0.0009 )

LU 0.1935 0.1787 0.1119
( 0.0031 ) ( 0.0028 ) ( 0.0010 )

LV 0.2224 0.1574 0.0980
( 0.0043 ) ( 0.0027 ) ( 0.0017 )

NL 0.1169 0.0437 0.0341
( 0.0029 ) ( 0.0011 ) ( 0.0007 )

NO 0.1183 0.0451 0.0237
( 0.0035 ) ( 0.0010 ) ( 0.0007 )

PL 0.1475 0.1209 0.0855
( 0.0018 ) ( 0.0008 ) ( 0.0006 )

PT 0.1886 0.1259 0.0517
( 0.0046 ) ( 0.0024 ) ( 0.0028 )

RO 0.2115 0.1833 0.1384
( 0.0036 ) ( 0.0025 ) ( 0.0027 )

SE 0.1514 0.0350 0.0317
( 0.0084 ) ( 0.0026 ) ( 0.0022 )

SI 0.1077 0.0706 0.0637
( 0.0019 ) ( 0.0008 ) ( 0.0006 )

SK 0.0996 0.0715 0.0324
( 0.0021 ) ( 0.0014 ) ( 0.0006 )

UK 0.1701 0.0823 0.0535
( 0.0035 ) ( 0.0011 ) ( 0.0007 )

Source: EUSILC 2011. Notes: IOp (Gini) estimates derived from (i) the linear most parsimonious case (low); (ii)
the fully interacted model (up); (iii) the best model selected (best), respectively. Bootstrapped standard errors in
parenthesis. .
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5.1 Upward bias when estimating IOp with survey data

Chakravarty and Eichhron (1994) distinguish between the true distribution of income, y, and
the observed one ỹ where ỹ = y + e and e is commonly defined as measurement error such that
e ∼ iid(0, σ2). By considering a strictly concave von Neumann-Morgenstern utility function of
the individuals, U, they prove by analogy that if, we measure inequality I(ỹ) with an inequality
index I that satisfies symmetry and Pigou-Dalton transfer principle, then the inequality of the
true counterfactual distribution is smaller than what observed in the sample.

In the case of IOp - assuming no measurement error and assuming to observe all circum-
stances beyond individual control affecting outcome - we know that our counterfactual distribu-
tion Ỹ is estimated with some degree of uncertainty. The uncertainty depends on the available
degree of freedom. A finer partition of the population and, therefore, smaller types’ sample
size, leads to fewer degree of freedom and larger sampling variance. This implies that the IOp
in the sample is smaller the IOp estimated in a sample. The finer the partition in types the larger
the upward bias.

More in details, if µt is the type mean when the number of observations within types is small,
we expect a biased estimates of sample mean, such that µ̃t = µt + η where µ̃t is the estimated
type mean, µt is the ”true” parameter and η is the standard error of µ̃t, i.e. σ

√
Nt

. Simulations
prove that the error component leads to a positive distortion and by construction converges to
zero as Nt → ∞. Following Chakravarty and Eichhron (1994) we can easily prove that between
inequality derived by a larger partition of the population is an overestimation of that derived by
smaller (and more representative) ones.

Assuming that U is strictly concave by Jensen’s inequality, we have

E (U (µ̃t|µt)) < U (E (µ̃t|µt))

given that

µ̃t = µt + η (3)

= E (µ̃t|µt) +

η︷            ︸︸            ︷
(µ̃t − E (µ̃t|µt))

µ̃t − η = E (µ̃t|µt) from (3) µ̃t − η = µt

and
U (E (µ̃t|µt)) = U (µt) (4)

Then
E (U (µ̃t|µt)) < U (µt)
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Taking expectation of both sides of (4) with respect µt, we get

E (U (µ̃t)) < U (E (µt)) (5)

Given that µ̃t and µt asymptotically - as Nt → ∞ - have the same mean and U is strictly concave.
Therefore, given the circumstances observed, if IOp is estimated by applying an inequality

index satisfying symmetry and Pigou-Dalton transfer principle, IOp estimates are an upward
biased estimate of the real between-type inequality. The bias is monotonically increasing with
the number of observed circumstances and is monotonically decreasing with the sample size.
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