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Abstract

We study a procurement auction recently analysed by Gal-Or et al. (2007).
In this auction game the buyer ranks different bids on the basis of both the prices
submitted and the quality of each bidder that is her private information. We
emphasise the similarity between this model and existing models of competition
in horizontally differentiated markets. Finally we illustrate conditions for the
existence and the stability of such equilibrium. To this end we extend the model
to a dynamic setting in which a sequence of independent auctions takes place. We
assume bidders have bounded rationality in a twofold sense. On one hand, they
use an underparametrized model of their competitors’ behaviour, best responding
to expectations on average bids rather than keeping track of the entire vector of
competitors’ bids. On the other they update expectations adaptively. In a general
framework with more than two bidders the system may fail to converge to the
steady state, i.e. to the symmetric Nash equilibrium of the original game.
Journal of Economic Literature Classification Numbers: D43, D44, C62, D83
Key Words: Non-binding auctions, Product differentiation, Hotelling Duopoly,
Expectations, Stability of steady states

1 Introduction

Auction theory has always recognised that in many settings bidders’ strategies can be
influenced by the revelation of some information that is privately held by the auctioneer.
Usually it is assumed that the auctioneer holds some information regarding the item
put up for auction. As a consequence, its revelation can allow bidders to have a more

∗We wish to thank Prof. Domenico Menicucci and an anonymous referee for valuable comments
and suggestions. The usual caveat applies.
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accurate estimate of their valuation for the object and to make less uncertain their
utility in case their bid is accepted1.

Some recent papers investigate the importance of a different kind of auctioneer’s
private information: in multidimensional auctions, bidders can be ignorant about the
real awarding rule. Katok et al. [9] define this competitive mechanism as ”non-binding
auctions”. More specifically, it is often assumed that a buyer can rank different bids ac-
cording not only to the prices, but also to the quality associated to each proposals. The
qualitative assessment usually depends on buyer’s preferences that can be her private
information because they are related to her tastes or to her specific requirements2. In
this case bidders can always calculate thoroughly the ex-post profit associated to each
specific bid; however, the information policy adopted by the buyer influences their es-
timate of the probability to be the winner. When the buyer chooses to reveal privately
(publicly) her information suppliers are involved in a standard auction setting, with
independent private (public) values. Conversely, the case in which the buyer conceals
her information represents a novelty in the auction literature, and that is why we want
to explore in more depth the characteristics of this game and the properties of its Nash
equilibrium.

In the next section we introduce the general model of an auction where the buyer
conceals her private information, as proposed by Gal-Or et al. [7] and we show that
this specific setting is closely related to classic models of horizontal differentiation.
In particular, we emphasise how, in the case with only two bidders, their equilibrium
bidding strategies are equivalent to duopolists’ pricing strategies in the Nash equilibrium
of an Hotelling model with exogenous location. For this purpose we follow the recent
generalization of the Hotelling model put forward by Kim [10]. In the general case of n
bidders a multidimensional auction with concealment of buyer’s private information is
formally identical to the model of product differentiation studied by Perloff and Salop
[12]: the only difference is the analysis of the strategic value of the buyer’s private
information in Gal-Or et al. [7] with respect to the otherwise more general model of
Perloff and Salop [12].

In section 3 we study a simple dynamic version of the above model. To this end
we posit a sequence of auctions take place in time, to which a given set of suppliers

1Milgrom et al. [11] represents the seminal paper on this issue. By analysing an affiliated val-
ues auction model they stated the celebrated linkage principle, according to which expected revenue
increases if the auctioneer commits to reveal any information about the value of the object. More
recently some authors have shown that this principle can be wrong in some different contexts. See
Ganuza [8], Board [4].

2See Gal-Or et al [7], Rezende [15], Katok et al. [9] for an analysis of this issue in procurement
settings. Cason et al. [5] and Chan et al. [6] emphasise how this issue affects the awarding of subsidies
in natural resource management programs. Note that a secret award rule is often present also in the
procedures for the privatization of previously State-owned enterprises: Governments usually compare
different proposals and at the end they select one private firm on the basis not only of the economic
offers, but also of different factors, like political, social and environmental considerations.
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participate without actually knowing the quality assessments held by the auctioneers.
It is thus a situation in which a given set of suppliers compete repeatedly to procure a
specific good. We simply assume that every buyer is characterized by a vector of quality
assessments, one for each supplier3. From the suppliers standpoint, buyers’ assessments
correspond to independent random draws from a given probability distribution. Each
supplier maintains some kind of expectation regarding their opponents’ behaviour which
we shall suppose to be wrapped up in an expectation about a mean of the opponents’
prices. Clearly this hypothesis qualifies agents as having bounded rationality, in that the
opponents are treated as if they were one, whereas a fully rational player would have to
figure out the best response to the predicted bids of every other player. This depends on
the fact that these auctions are non-binding, so that qualities as well as bids determine
the winner. While considering a mean price is clearly suboptimal, it nonetheless has
the property of depending on the entire set of choices by the competitors as implied
by full rationality. On the contrary, concentrating only on the others’ best price, as
would be optimal in standard auctions, is not rational in this context because the
contract is not necessarily awarded to the lowest bidder. In turn expectations about the
opponents’ mean price are updated adaptively. This model entails a moderate departure
from rationality in the vicinity of the steady state, which turns out to be unique and
implies coordination on the Nash equilibrium of the stage game, and our purpose is
precisely to study local stability: these observations are the rationale for using the
above limited rationality model of choice. Alternatively the dynamic model can be seen
in the Hotelling framework as a straightforward way to model the repeated situation
of market competition in a horizontal differentiated oligopoly with boundedly rational
sellers. The vast literature on oligopoly dynamics focuses mainly on the Cournot model
and is neatly surveyed by Barkley Rosser [3]. Relatively fewer papers examine the
dynamics in the Hotelling setting (for an example, see Puu and Gardini [14]). However
they focus on the spatial competition, in which firms choose both a price and a location.
Conversely, in the present paper we analyse the dynamics of (price-only) competition
in the framework formalized by Perloff and Salop [12]. The stability of the dynamical
system is not easy to assess in general because the reaction functions may be non-
differentiable at the steady state. In such a case the analysis can resort to the derivative
of the reaction function in a neighborhood of the steady state. We will show how the
stability of the Nash equilibrium of this game is affected by the distribution from which
bidders’ qualities are drawn. More specifically if n = 2 then the Nash equilibrium is
always stable whatever the quality distribution. Conversely when n > 2 stability can
be violated. In fact, if bidders’ qualities are drawn from a specific class of densities
then in equilibrium reaction functions are negatively sloped and the system may fail to
converge.

3We could also imagine the case in which there is a unique buyer who, perhaps due to frequent job
rotation related to political evolution, has time-changing quality assessments.
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2 Auctions with horizontally differentiated suppli-

ers

2.1 Equilibrium in non-binding auctions

Assume there is a unique buyer wishing to procure a single unit of a specific product
by means of an auction procedure. There are n firms, competing to supply the item.
Both the buyer and the suppliers are assumed to be risk-neutral. We allow the buyer to
value the specific product provided by each seller differently. Let qi denote the buyer’s
evaluation of the quality associated to the bid of supplier i. We assume that the quality
parameters are independent and identically distributed (i.i.d.) random variables with a
continuous density f (with cumulative distribution function F ) over the support

[
q, q̄
]

and that their realisations are privately known by the buyer only.
The utility the buyer can obtain contracting with a specific supplier depends on the

quality of his product and the price asked to provide it:

U(qi, pi) = qi − pi i = 1, ..., n.

A multidimensional auction is held in order to select a supplier, and we assume
that the score function used to rank alternative bids is the same as the buyer’s utility
function4. Suppliers are characterized by identical production costs, normalized to be 0.
Every competing bidder submits an economic bid pi in order to maximise his expected
profit, equal to his ex-post profit times the probability of being the selected contractor:

max
pi

pi Pr{qi − pi ≥ max
j 6=i

qj − pj}

By taking into account how the quality of each competitor is distributed we can
rewrite the maximization problem as follows:

max
pi

pi

∫ q̄

q

[∏
j 6=i

F (qi + pj − pi)

]
f (qi) dqi (1)

Further, restricting the attention only to symmetric equilibria and assuming the com-
mon bid submitted by competitors other than i equals p̄ the above rewrites as

max
pi

H (pi, p̄) (2)

H (pi, p̄) ≡ pi

∫ q̄

q

[F (qi + p̄− pi)]
n−1 f (qi) dqi

4Notice that the buyer’s utility might be negative even with her best buy: we are implicitly ruling
out the outside option of not purchasing the good at all.
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Notice that, defining V (x) = Pr{maxj 6=i {qj} − qi ≤ x} and v (x) = V ′ (x) (i.e. the
density of the difference between the highest quality of i’s competitors and i’s own
quality, which can be written explicitly using convolutions) the maximization problem
can also be written as

max
pi

piV (p̄− pi)

Optimising with respect to pi the first order condition ∂H(pi,p̄)
∂pi

= 0 can be expressed as

V (p̄− pi)− piv (p̄− pi) = 0 (3)

Imposing pi = p̄ = p∗ we obtain the (candidate) Nash equilibrium of this game:

p∗ =
V (0)

v (0)
=

1/n

(n− 1)
∫ q̄

q
[F (qi)]

n−2 f 2 (qi) dqi

(4)

Obviously, the second order condition ∂2H(p∗,p∗)
∂p2

i
< 0 or, 2v (0)− V (0)

v(0)
v′ (0) > 0 needs

to hold for the above equilibrium price to be the solution of problem (2): the density
v (·) has to be differentiable in zero for this to make sense, otherwise we need the
function appearing in (3) to be decreasing around p∗. A condition which bypasses the
possible non-smoothness of v (·) and which ensures that p∗ is a Nash equilibrium, is
that the distribution V (·) be log-concave.5 In turn, a condition which ensures this is
that f(x) be log-concave6 (see An [1] and Bagnoli and Bergstrom [2]). Interestingly, it
also turns out to be sufficient for stability, as we shall explain in section 3.

Formula (4) emphasises the way in which the optimal bidding strategy is affected
by the (common) beliefs of suppliers over the buyer’s preferences, represented by the

5The log-concavity of V means that the ratio v
V is decreasing. This implies that, if the first order

condition holds, i.e.

V (p̄− pi)
(

1− pi
v (p̄− pi)
V (p̄− pi)

)
= 0

then, for a positive quantity δ

1− (pi + δ)
v (p̄− pi − δ)
V (p̄− pi − δ)

< 0

and

1− (pi − δ)
v (p̄− pi + δ)
V (p̄− pi + δ)

> 0

which guarantees that the first order condition selects indeed a maximum. Notice that the above
means that the objective function in (2) is pseudo-concave (so its critical point is a global maximum).

6Indeed log-concavity of the density fX implies the log-concavity of the density of the mirror image
f−X and of the distribution function F (see Bagnoli and Bergstrom [2], Theorem 8 and Theorem 1
respectively). In turn it is easy to see that the distribution function Fn and its associated density
nFn−1f are both log-concave. The convolution of nFn−1f and f−X gives the density v which is again
log-concave (see An [1], Corollary 1). Finally, Theorem 1 of Bagnoli and Bergstrom [2] implies that V
is also log-concave.
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distribution function F . This solution is the same as the equilibrium price of the model
of monopolistic competition proposed by Perloff and Salop [12] (see equations 12 and
13, p. 110).They analyse the outcome of competition in a differentiated market with n
firms and L consumers. Each consumer is identified by specific tastes, represented by
an n-dimensional vector of values, one for each firm, and corresponding to independent
draws from the same probability function F . Consumers maximize their net utility,
given by the difference between each firm’s value and the correspondent price. So the
oligopolist’s maximization problem in this product differentiated market is formally
equivalent to the bidder’s maximization problem in a non-binding auction. The only
exception is that oligopolists face L consumers, while bidders compete to serve a unique
buyer. However this difference does not affect the price equilibrium that is identical for
these two games.

Perloff and Salop [12] prove that there can be at most one symmetric price equilib-
rium. However, in the case of n > 2 the possibility of equilibria in asymmetric prices
is not ruled out, even though costs are identical for each firm. Conversely, in the case
in which n = 2 the existence of a multiplicity of equilibria is not admissible, so the
symmetric equilibrium is surely unique. The case with only two firms is particularly
interesting because it has a formal correspondence with the model of price competition
in the classic duopoly à la Hotelling. In the next section we will show how the distri-
bution representing buyers’ preferences is very close to the distribution of consumers
along the Hotelling line.

2.2 Optimal price strategy in an Hotelling game with non uni-
form consumers

Imagine there are two suppliers, A and B, having production costs equal to 0 and lo-
cated at either end of a Hotelling line of unit length. Consumers are characterized
on the basis of their location parameter θ ∈ [0, 1], and they are distributed on this
Hotelling line according to a cumulative distribution G(θ), having a strictly positive
density g(θ) over the interior of the support. Their utility function when they buy the
product from supplier i is equal to:

U = v − pi − bdi i = A, B

where v is their reservation price for each good, pi is the price charged by supplier i,
di is the distance from supplier i, where dA = θ, dB = 1 − θ, b is the linear cost of
transport. In such a setting, given a price pair (pA, pB), we can define θ̃ as the consumer
indifferent between supplier A and B, where:

θ̃ =
b + pB − pA

2b
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As a consequence all the consumers on the left of θ̃ prefer supplier A, while those on the
right prefer supplier B. Therefore, the maximization problems of both suppliers are:

max
pA≤v−b

pA[G(θ̃)] and max
pB≤v−b

pB[1−G(θ̃)]

If we assume that consumers’ reservation price, v, is sufficiently high, so that in equi-
librium all of them buy some product, we have that in the Nash equilibrium of this
game suppliers’ optimal price strategies are:

pA = 2b
G (θ∗)

g (θ∗)
and pB = 2b

1−G (θ∗)

g (θ∗)
(5)

where θ∗ must satisfy the following implicit equation

θ∗ =
1

2
+

1−G (θ∗)

g (θ∗)
(6)

Remark that this solution is also valid if we assume that suppliers A and B com-
pete in a market with a single buyer, whose position is unknown to them. If G(θ)
represents their common beliefs over his possible position the maximization problems
are unchanged, except for the fact that in this case suppliers maximize their expected
profit. On the basis of this new interpretation of the Hotelling game we can state the
following proposition:

Proposition 1 The Nash-equilibrium of the auction game with concealment of buyer’s
private information when there are only two suppliers is equivalent to the Nash-equilibrium
of the Hotelling game if
i) buyer’s position θ is a function of suppliers’ quality in the auction game, θ = b+qB−qA

2b

and
ii) suppliers’ beliefs over θ are consistent with their beliefs over the initial qualities.

Proof. In order to prove the result we need to derive g(θ). First we define z =
qB − qA. z is then distributed as the difference between suppliers’ qualities and its
density has positive values on the support [−b, +b] according to the convolution

h(z) =

∫ +∞

−∞
f (z + q) f (q) dq

where we are assuming f (·) to be identically zero outside the support [q, q̄]. Now we
can note that θ is a monotone transformation of the random variable z. In fact:

θ =
1

2
+

z

2b
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As a consequence, θ is distributed over the support [0, 1] according to the following
density function:

g(θ) = 2bh(2bθ − b)

It is easy to note that h, and consequently g, are symmetric functions. This fact implies
that G (1/2) = 1/2 and consequently condition (6) is satisfied for θ = 1/2 Substituting
this value in (5) we obtain:

pA = pB =
2bG

(
1
2

)
g
(

1
2

) =
1

2h (0)
=

1

2
∫ q̄

q
f 2 (q) dq

But this solution is coincident with formula (4) when n = 2.
Therefore the conclusion of Perloff and Salop [12] and Gal-Or et al [7], according

to which firms’ optimal price strategy depends on the distribution of buyers’ tastes,
corresponds to the result achieved by Kim [10], that the optimal price strategy of
duopolists in an Hotelling setup depends on the distribution of consumers’ location
along Main Street.

3 Economic dynamics under bounded rationality.

In this section we shall embed the above analysis into a simple dynamic framework,
meant to be a rough indicator of whether the Nash equilibrium derived above is bound
to be actually reached if agents are either boundedly rational and/or are unsure about
the other players’ rationality. Each seller is supposed to be participating in a sequence
of auctions in which, at each time, the seller’s quality parameter is drawn from the
same distribution. In the stage game each seller has a best strategy which depends on
the bids of his competitors. The reaction function of a generic seller can be derived by
solving for pi in the first order condition applied to the objective function in (1):

∫ q̄

q

[∏
j 6=i

F (qi + pj − pi)

]
f (qi) dqi−pi

∫ q̄

q

∑
j 6=i

f (qi + pj − pi)
∏
h 6=j,i

F (qi + ph − pi) f (qi) dqi = 0

(7)
Notice that the best response of seller i, p∗i , does not depend on the competitors’ bids
which have no chance of winning. More precisely ph −minj {pJ} > q̄ − q implies that
∂p∗i
∂ph

= 0. While the converse is not always true we can observe that, generically, a
change in the strategy of a possibly winning competitor affects the optimal bid p∗i . So
when price dispersion is sufficiently low, a bidder’s best response is influenced by the
full vector of competitors’ bids.

Therefore in this context each bidder’s optimal strategy is not focused on beating the
best price, as in standard first price auction. However, even with a restricted number
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of competitors it is quite difficult to calculate explicitly the best response function (see
equation (7)). For this reason we hypothesise that agents simplify their problem by
treating their opponents as if they were all bidding a price equal to a mean of the full
vector of competitors’ prices and we let sellers update their expectations about its value
adaptively. Results are robust to having subject-specific weighted averages; due to the
heavier required notation we shall stick to simple means in the following (see Footnote
7).

Summing up, sellers at each time t, solve the same optimization problem using the
first order conditions in (3) given a different value for the opponents’ mean price, and
will therefore be using the same reaction function evaluated at these different values.
The symmetry imposed over the sellers implies that each shall have the same reaction
function, R(). So seller i at time t will choose pt,i = R

(
p̄e

t,−i

)
and compute the expected

mean price of the opponents according to

p̄e
t,−i = p̄e

t−1,−i + αi

(
p̄t−1,−i − p̄e

t−1,−i

)
(8)

p̄t,−i =
∑
j 6=i

pt,j

n− 1

pt,i = R
(
p̄e

t,−i

)
(9)

Notice that we allow some behavioral heterogeneity in that αi may vary across different
sellers. These equations define the following n-dimensional discrete dynamical system
in p̄e

t,−i 
p̄e

t+1,−1 = p̄e
t,−1 + α1

(∑
j 6=1 R(p̄e

t,−j)
n−1

− p̄e
t,−1

)
. . .

p̄e
t+1,−n = p̄e

t,−n + αn

(∑
j 6=n R(p̄e

t,−j)
n−1

− p̄e
t,−n

) (10)

which possesses a single steady state whereby

p̄e
t,−i = p∗ i = 1, . . . , n

where p∗ is the Nash equilibrium derived above in (4). Stability of the steady state can
be characterised as usual studying the Jacobian matrix of the system evaluated at the
steady state, provided the reaction function is differentiable at p∗: in this case we have

Jn =

 1− α1 α1
R′(p∗)
n−1

· · · α1
R′(p∗)
n−1

· · · · · · . . . · · ·
αn

R′(p∗)
n−1

αn
R′(p∗)
n−1

· · · 1− αn


We aim at giving conditions on the underlying parameters of the model that ensure that
the spectral radius of Jn is less than one for any choice of the vector of gain parameters
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α1, . . . , αn in (0, 1)n or, symmetrically, provide conditions under which a suitable choice
of such parameters implies instability of the steady state and therefore that the Nash
equilibrium will not be reached as t grows. In particular it is well known that if ‖·‖ is
a matrix norm on Jn and ρ (Jn) is its spectral radius then

ρ (Jn) ≤ ‖Jn‖

Consider for example

∥∥∥∥ A
n×n

∥∥∥∥ = maxi

∑n
j=1 |aij|. In the case of the above matrix Jn it is

‖Jn‖ = max
i

1− αi + αi |R′ (p∗)| (11)

Therefore |R′ (p∗)| ≤ 1 implies ρ (Jn) ≤ 1 for all possible choices of αi and therefore
stability of the steady state7. So it is interesting to establish conditions ensuring a bound
on the (absolute value of the) derivative of the reaction function in p∗. This is what we
do in Proposition 2. But first, we need to set conditions granting differentiability of R
on the steady state.

Lemma 1 For the problem (2) differentiability of the reaction function at p∗ holds if
and only if

f (q̄) = f
(
q
)

= 0 when n = 2
f (q̄) = 0 when n > 2

(12)

Proof. We now want to ascertain the differentiability of v i.e.

v (z) =


0 if z < q − q̄∫ q̄

q−z
(n− 1) [F (q + z)]n−2 f (q + z) f (q) dq if q − q̄ ≤ z < 0∫ q̄−z

q
(n− 1) [F (q + z)]n−2 f (q + z) f (q) dq if 0 ≤ z ≤ q̄ − q

0 if z > q̄ − q

Let n = 2. Using Leibnitz’s rule we get

v′
(
0−
)

= f 2
(
q
)

+

∫ q̄

q

f ′ (q) f (q) dq =
f 2 (q̄)

2
+

f 2
(
q
)

2

v′
(
0+
)

= −f 2 (q̄) +

∫ q̄

q

f ′ (q) f (q) dq = −

(
f 2 (q̄)

2
+

f 2
(
q
)

2

)

therefore v′ (0) exist if and only if f 2
(
q
)

= f 2 (q̄) = 0, in which case v′ (0) = 0.

7Note that this would not change if in (10) heterogeneous weighted averages replaced the arithmetic
means. Indeed such generalisation would not alter the matrix norm (11) and therefore the stability
conditions.
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Instead, when n > 2

v′
(
0−
)

=

∫ q̄

q

(n− 1) (n− 2) [F (q)]n−3 f 3 (q) + (n− 1) [F (q)]n−2 f ′ (q) f (q) dq

v′
(
0+
)

= − (n− 1) f 2 (q̄) + v′
(
0−
)

so v′ (0) exist if and only if f 2 (q̄) = 0 and v′ (0−) 6= ±∞.

Proposition 2 Consider the problem (2) under condition (12). When n = 2 we have
R′ (p∗) = 1

2
; in this case the dynamical system (10) is always locally stable. When

n > 2 condition R′ (p∗) < 1 always holds, while R′ (p∗) > −1 (and therefore local
stability) holds if and only if

v′ (0)

v (0)2 <
3

2
n (13)

Proof. Under differentiability of the density v we can apply implicit differentiation
to (3) to get:

R′ (p∗) =
v (0)− p∗v′ (0)

2v (0)− p∗v′ (0)
(14)

Therefore, when n = 2, Lemma 1 shows that v′ (0) = 0, so(14) implies R′ (p∗) = 1
2

as
stated.

When n > 2 we have

R′ (p∗) < 1 ⇔ v (0)− p∗v′ (0)

2v (0)− p∗v′ (0)
< 1

which always holds, given the second order condition 2v (0)− p∗v′ (0) > 0 and the fact
that v (0) =

∫ q̄

q
(n− 1) [F (q)]n−2 f 2 (q) dq > 0.

Finally:

R′ (p∗) > −1 ⇔ v (0)− p∗v′ (0)

2v (0)− p∗v′ (0)
> −1

⇔ v′ (0)

v2 (0)
<

3

2
n

The above result, implying that the n = 2 case is a threshold above which stability
is not necessarily granted, is reminiscent of classic results from the literature on dy-
namics in the Cournot model such as Theocharis [16]. Remark that the conditions for
stability when n > 2 can be violated only if the reaction function at p∗ is decreasing.

Notice that R′ (p∗) = −∂2H(p∗,p∗)
∂p̄∂pi

/∂2H(p∗,p∗)
∂p2

i
can be negative only if ∂2H(p∗,p∗)

∂p̄∂pi
is negative,

given the second order condition ∂2H(p∗,p∗)
∂p2

i
< 0. This means that only under strategic
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substitutability at equilibrium can the system fail to converge to the Nash equilibrium.
In other words it has to be the case that a more aggressive strategy by suppliers j 6= i
(i.e. a lower bid) raises i’s marginal profit. Vice versa strategic complementarity at
equilibrium is always associated with a (dynamically) stable Nash equilibrium.

A specific example in which (13) fails is as follows: let n = 3 and consider the beta
density function with parameters a = 3/4, b = 3

f (x) =
x−

1
4 (1− x)2∫ 1

0
x−

1
4 (1− x)2 dx

We get v′(0)
v2(0)

' 5.4604, thus violating condition (13), and p∗ = V (0)
v(0)

' 1/3
1.5595

= 0.21374
implying

R′ (p∗) =
v (0)− p∗v′ (0)

2v (0)− p∗v′ (0)
' −4.5591

In this case8 the system’s Jacobian at the steady state is

J3 =

 1− α1 α1
R′(p∗)

2
α1

R′(p∗)
2

α2
R′(p∗)

2
1− α2 α2

R′(p∗)
2

α3
R′(p∗)

2
α3

R′(p∗)
2

1− α3


which for the above specific value of R′ (p∗) has eigenvalues outside the unit circle for
suitable values9 of α1, α2, α3.

Our last point regards dynamics in the n = 2 case when the density v (·) is not
differentiable in zero. In this case, which happens if either f (q̄) or f

(
q
)

are non-zero,
v′ (0−) > 0 and v′ (0+) < 0 so in turn R′ (p∗−) < 0 < R′ (p∗+) < 1. This implies
that, locally, a perturbation (either positive or negative) from p∗ will eventually lead
the dynamics to a decreasing path towards p∗ which therefore turns out to be locally
stable.

4 Conclusions.

We have shown that the non-binding auction model analysed by Gal-or et al. [7] is
formally equivalent to the differentiated market studied by Perloff and Salop [12] and,

8Notice that a case like this would not be possible if f were log-concave. Indeed that would make
V log-concave as well and therefore, given p∗ = V (0)

v(0) ,

v2 (0)− V (0) v′ (0) > 0 ⇒ v (0)− p∗v′ (0) > 0

and R′ (p∗) > 0 as a consequence. This argument also shows that, under log-concavity the reaction
function has positive slope and, because such slope cannot exceed 1, local stability is ensured.

9For example α1 = 0.3, α2 = 0.4, α3 = 0.5 imply the following eigenvalues: 1.5777, 1.4285,
−1.2062.
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for the n = 2 case, to the generalisation of the Hotelling duopoly recently proposed
by Kim [10]. We have examined more in depth the symmetric equilibrium of this
class of games. In particular, we have emphasised how a sufficient condition for both
the existence and the stability of such equilibrium requires the log-concavity of the
probability density of bidders’ (oligopolists’) qualities. However, there exist distribution
functions for which stability can be violated. This is the result of an extension of these
models to a dynamic framework in which bidders behave according to some expectation
over the prices of their competitors (summarized by their mean), and update these
expectations adaptively on the basis of the data from previous auctions. The steady
state of such a system is unstable only if, in equilibrium, bidders’ reaction functions
are negatively sloped, i.e. under strategic substitutability. The dynamic analysis of
oligopoly thus far has been focused mainly on the Cournot model. This work then
represent an attempt to adopt the same approach in analysing other forms of market
imperfections. Moreover, we have shown how this methodology can be applied also
in an auction framework, at least when bidders have no private information and the
Nash equilibrium is in pure strategies. Future research can be devoted to investigate
the potentiality of such analysis in these kind of settings.
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