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Abstract

In contrast with the canonical models, Naimzada and Ricchiuti (2008,

2009) show that the interaction of groups of agents who have the same trad-

ing rule but present different beliefs about the fundamental value could be

a source of instability in financial markets. Differently from Naimzada and

Ricchiuti (2008, 2009), we assume the market maker employs a so-called

multiplicative price mechanism (Tuinstra, 2002 and Zhu et al., 2009). We

show that the occurrence of heterogeneity has an ambiguous role: it may

either stabilize or destabilize the market.
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1 Introduction

In the last two decades an increasing number of theoretical and empirical works

on financial markets have shown how complex dynamics of price fluctuations are

related to the interactions between agents with heterogenous beliefs (see Hommes

2006 for a complete survey). Typically, heterogeneity regards the applied trading

rule: agents could be in fact fundamentalists, chartists, noise traders and so on.

Moreover, as clearly stated by Hommes (2006, p.1175): ’sophisticated traders,

such as fundamentalists or rational arbitrageurs typically act as a stabilizing

force, pushing prices in the directions of the RE fundamental value. Technical

traders, such as feedback traders, trend extrapolators and contrarians typically

act as a destabilizing force, pushing prices away from the fundamental’.

Naimzada and Ricchiuti (2008, 2009, 2012a, 2012b) develop a framework in

which the source of instability resides in the interaction of groups that are homo-

geneous in the strategy they use (they are both fundamentalists), but have het-

erogeneous beliefs about the fundamental value of the asset. We strongly believe

that heterogeneity in beliefs’ structure (not just about rules applied) may imply

complex dynamics. The estimations about the future have a subjective dimension:

(i) hardly agents reach the true fundamental value and (ii) it is really unlikely that

agents have the same expectations. Indeed, in a real stock market, there is a lot of

uncertainty on what the “true fundamental” is. As in [Kirman, 1998], our model

’involves agents who may use one of a number of predictors which they might

obtain from financial gurus (experts)’, the belief is for these agents a focal point.

Brock and Hommes (1998, p. 1258) contains a 3-type asset-pricing model

with fundamentalists, upward and downward biased traders. We could interpret

this example as a model with three fundamentalists trader types, one with the

correct estimate of the fundamental and two other types with a wrong estimate

of the fundamental. We consider a two type version of the model; there are two

groups of agents which follow a ’guru/expert’, both having a wrong/bias estimate

of the fundamental value.

Different authors (Brock and Hommes, 1998; De Grauwe and Rovira, 2007

and Rovira, 2010) detect an unknown fundamental price and discuss the pres-

ence of biased traders (optimists or pessimists) in financial markets. We assume

directly that the expectations are different, without detecting the true fundamen-

tal price: we do not know whether agents are or not pessimists (optimists), we

just assume that they have different expectations. Moreover, these articles assume

that supply and demand are always equal and the former is exogenous, while we

assume that the price mechanism is driven by a market maker. Their switching
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mechanism is based on profitability and have chartists in their analysis and, fi-

nally, while they use extensively simulations we have also an analytical approach.

Naimzada and Ricchiuti (2008) employ a simple switching mechanism based

on fitness, showing that market instability and periodic, or even, chaotic price

fluctuations can be generated; moreover, we show that there are conditions under

which an expert can drive another expert out of the market (differently from Brock

and Hommes, 1998). On the other hand, Naimzada and Ricchiuti (2009, 2012a,

2012b) use a switching mechanism à la Brock and Hommes based on fitness,

showing that with heterogeneity there exists at least a fixed point: the average

between the two biased fundamental values. Moreover, given the intensity of

switching, there exists a positive degree of heterogeneity such that a pitchfork

bifurcation occurs. Finally, they show that uniqueness can be achieved even if

there is heterogeneity and that a small heterogeneity leads to stability while higher

heterogeneity leads to instability of the unique steady state: heterogeneity has an

ambiguous role. There is a transition from the an unstable fixed point to a regime

in which the fixed point becomes stable and again an unstable period two cycle.

Finally, a homoclinic bifurcation transforms a two piece chaotic set into a one

piece chaotic set which generates bull and bear markets.

In comparison with these previous works, we assume that the market maker

employs the so-called multiplicative price mechanism (Tuinstra, 2002 and Zhu,

2009). Instead of the prices first difference, it looks at the rate of change of price

(the return) calculated with the exact formula, assuming that it is proportional to

the excess demand. Two are the main reasons that urge us to analyze this structure.

From an empirical point of view the prices first difference specification has a

strong lack: the prices are non-stationary. Indeed, even if the returns are just a

monotonic transformation of prices, in empirical finance econometricians analyze

returns instead of prices because the latter are non-stationary (see Tsay, 2002). On

the other hand, an approximation of our specification has been already studied in

literature by other authors (Farmer and Joshi, 2002; Westerhoff, 2004; Westerhoff

and Reitz, 2005). Specifically, they have used the so-called price impact function,

the market maker adjust prices as follows: pt+1−pt = ED whereED is the excess

demand and pt+1 = LogPt+1. As well known, the logarithmic difference provides

a good approximation of the rate of change around zero, and hence its use is rather

immaterial as far as this choice refers small variations of prices. However, for

example, the structural differences that characterize the distribution of the monthly

rate of variations of a turbulent period imply that the method of computation does

matter. The relevance of the method used to compute the variation of a price is

twofold: first, logarithms provide a poor approximation of the rate of change when
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this is large; second, and most notably, the logarithmic approximation determines

a significantly lower variance of the sample distribution of the rate of variation of

a price when there is turbulence. A priori, it is not possible to predict whether the

use of logarithms will generate a distribution with a higher or smaller variance, as

the logarithm is a contraction mapping on the domain (1,+∞) and an expansion

mapping in the domain (0, 1). But, if the sample values of the rate of change lie

disproportionately above or below zero, the use of the logarithmic approximation

influences the standard deviation of the transformed values in a predictable way

(see Bertoli et al., 2010; for a discussion on the exchange rates). For these reasons

we study the rate of change calculated with the exact formula rather than the

difference of logarithms.

Even if we introduce a substantial change in the market maker’s mechanism,

we show that heterogeneity still plays an ambiguous role: first it stabilizes the

market and then it destabilizes it. However, this ambiguity depends (differently

from Naimzada and Ricchiuti, 2009, 2012a and 2012b) on the condition of the

map when expectations are homogenous. If there is monotonic convergence, het-

erogeneity leads only to a pitchfork bifurcation but the system is still stable. On

the other hand, when there is oscillatory convergence heterogeneity affects the

sequence of period doubling. Finally, with period cycles and chaos an increasing

heterogeneity firstly stabilizes and then destabilizes the system. Moreover, differ-

ently from the previous works heterogeneity can lead to the coexistence of stable

attractor with a chaotic attractor.

After a presentation of the model, we will discuss the necessary conditions

for existence and stability of fixed points, and then we use simulations to study

the role of heterogeneity. Finally, the last section of this paper provides brief

concluding remarks and suggestions for further research.

2 The Model

In what follows, we have the same structure of the model adopted by Naimzada

and Ricchiuti (2009). We have a risk and a risk-free asset. The latter has a per-

fectly elastic supply at the gross return (R = (1 + r/k) > 1), where r is the

constant risk-free rate per year and K is the frequency of the trading period per

year. The risky asset has a price per share ex-dividend at time t equal to Xt and

it presents a (stochastic) dividend process equal to yt. Defining with i = 1, 2 two
groups of agents, their wealth at (t+ 1) is given by:
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Wi,t+1 = RWi,t +Rt+1qi,t = RWi,t + (Xt+1 + yt+1 −RXt) qi,t (1)

where Rt+1 = (Xt+1 + yt+1 −RXt) is the excess capital gain/loss, and qi,t
represents the number of shares of the risky asset purchase at time t. Agents have

two key beliefs the conditional expectation and the variance of wealth, which can

be expressed respectively as follows:

Ei,t(Wt+1) = RWi,t + Ei,t (Xt+1 + yt+1 −RXt) qi,t, (2)

Vi,t(Wt+1) = q2i,tVi,t(Rt+1). (3)

We assume that each group of agents has a CARA (constant absolute risk aver-

sion) utility function, u(W ) = −e−aW , where a is the strictly positive constant

risk aversion equal for both groups of agents. Agents maximize the following

expected wealth utility function:

Maxqi,t =
[

Ei,t(Wi,t+1)−
a

2
Vi,t(Wi,t+1)

]

. (4)

Therefore, the demand function for each group is:

qi,t =
Ei,t(Rt+1)

aVi,t(Rt+1)
=

Ei,t(Xt+1 + yt+1 −RXt)

aVi,t(Rt+1)
(5)

We assume that agents have common expectations on dividends (Ei,t(yt+1) =
Et(yt+1) = ȳ)1. Moreover, we assume the presence of groups of agents with

different expectations on the fundamental price2:

1The assumption of common expectations on dividends is restrictive. However, the qualitative

dynamic behavior of the model is not modified by this assumption.
2According to Brock and Hommes [3, p.1245], we could re-write our model assuming the

existence of only pure biased traders and that all beliefs have the following linear form:

Ei,t(Xt+1) = Ei(X
∗

t+1) = F ∗ + bi = Fi (6)

where F ∗ is the unknown fundamental value and bi is the bias of trader type i. The fundamen-

tal value is not derived from the model structure and does not have any effect on the dynamics.

However, it is focal point to detect optimists (pessimists) agents. F ∗ + bi > 0, when bi is posi-

tive (negative) the agent is optimist (pessimist). Differently from previous works, our framework

allows the analysis of the case in which agents are at the same time both optimists (pessimists).
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Ei,t(Xt+1) = Ei(X
∗

t+1) = Fi (7)

Fi is the expectation of trader type i. In the numerical analysis below we will

assume that are F2 > F1.

Equation (5) can be rewritten as follows:

qi,t = α(Fi − Pt) (8)

where Pt = RXt − ȳ and α = 1
aσ2 is the positive coefficient of the reaction of

investors representing a measure of both risk aversion and reaction to mis-pricing

of the biased traders3.

There is a market maker and two groups who, following a guru, can switch

from one expert to another. Differently from Naimzada and Ricchiuti (2008,

2009), we employ a so-called multiplicative price mechanism (Tuinstra, 2002 and

Zhu, 2009):

Pt+1 = Pt(1 + βEDt), (9)

where β is the market maker’s reaction coefficient and EDt is the following

excess of demand:

EDt = wt+1q1,t + (1− wt+1)q2,t (10)

where wt+1 is the proportion of biased traders of group 1. Agents can switch

from one group to the next following an adaptive belief system (Brock and Hommes

1997 and 1998) based on fitness: it depends on the following square errors given

by the distance between the fundamentals and the price of the last period:

SEi,t = (Fi − Pt)
2 (11)

the less the sum of the square errors, the higher the quota of agents that emulate

the i′s guru is. Hence wt+1 can be defined as the following frequency:

wt+1 =
exp[−γ(F1 − Pt)

2]
∑

j exp[−γ(Fj − Pt)2]
(12)

where γ represents the intensity of choice. Substituting equation (12) into (10)

the following dynamic system is achieved:

3In terms of the classical Day and Huang’ paper (1990), our two groups are α/investors.
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Pt+1 = Pt

(

1 + αβ

[

(F2 − Pt)−
F2 − F1

1 + exp[γ(F2 − F1)(2Pt − F1 − F2)]

])

. (13)

3 Dynamic Analysis

Throughout a mixture of local bifurcation analysis and simulations, we study the

existence of steady state(s) and its (their) stability properties.

3.1 Fixed Points

Proposition 1. Given map (13), at least two fixed points exists, the trivial P ∗ = 0

and PM = (F1+F2

2
. Two new steady states appear if (F2−F1) >

√

2
γ

. Finally, with

the exception of P ∗ = 0, the set of steady states belong to the interval (F1, F2).

Proof. Let Pt+1 = Pt = P ∗ be the condition to have a steady state. It is straight-

forward that P ∗ = 0 is a fixed point of the map (13). Moreover, The other possible

steady states have to satisfy the following equation:

F2 − P ∗

(F2 − F1)
=

1

1 + exp[γ(F2 − F1)(2P ∗ − F1 − F2)]
. (14)

It is easy to show that PM = (F1+F2)
2

satisfies this relation. Let us assume that

F2 > F1. The LHS (the blue line, in the Figures 1(a)-(b)) is a decreasing linear

function in P ∗, it crosses the x-axis in F2 and the y-axis in F2

F2−F1

, that is greater

than one. The RHS (the red line) is a decreasing function and it has a limit for

P ∗ → +∞ = 0 and P ∗ → −∞ = 1; therefore, the RHS must intersect the

LHS at least in one point. Moreover, the second derivative of the RHS is zero in

P ∗ = PM . It can be easily shown that it is the unique inflection point, therefore

PM is a steady state always existing.

The derivatives of eq. 14 are the following:

−
1

(F2 − F1)
= −

2γ(F2 − F1)exp[γ(F2 − F1)(2P
∗ − F1 − F2)]

[1 + exp[γ(F2 − F1)(2P ∗ − F1 − F2)]]2
. (15)

There are three intersections (steady states) when the derivative of the RHS of

eq 14, calculated in the inflection point PM is higher than that of the LHS, that is

when:

7



(F2 − F1) >

√

2

γ
. (16)

Figure 1: Steady states conditions

Therefore, given the intensity of choice, a large enough distance between the

two biases leads to the appearance of two further steady states.

Finally, even if we do not know an analytical expression for the steady states,

we can state that with the exception of P ∗ = 0, the set of steady states belong to

the interval (F1, F2). Equation (14) can be rewritten as follows:

−
F1 − P ∗

F2 − P ∗
= exp[γ(F2 − F1)(2P

∗ − F1 − F2)], (17)

The LHS has an asymptote for (F2) and crosses the x-axis at (F1). Given that

the RHS is an exponential function, that is always positive, the possible steady

states belong to the interval (F1, F2). This means that, each group cannot con-

quered the entire market.

To study stability properties of both P ∗ = 0 and PM we use both an analytical

and a simulation approach.

3.2 Stability

To study the stability of the steady states we work out the following first derivative

of map (13):
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∂Pt+1

∂Pt

= 1−
αβ(b2 − b1)

1 + exp[γ(b2 − b1)(2Pt − 2F ∗ − b1 − b2)]
+ αβ(b2 + F ∗ − 2Pt)+

+
2γαβPt(b2 − b1)

2exp[γ(b2 − b1)(2Pt − 2F ∗ − b1 − b2)]

[1 + exp[γ(b2 − b1)(2Pt − 2F ∗ − b1 − b2)]]2

(18)

Proposition 2. The steady state P ∗ = 0 is always unstable.

Proof. Eq. (18) evaluated in P ∗ = 0 is:

∂Pt+1

∂Pt (P ∗=0)

= 1− αβ

[

(b2 − b1)

1 + exp[γ(b2 − b1)(−2F ∗ − b1 − b2)]
− (F ∗ + b2)

]

(19)

P ∗ = 0 is stable if:

−2 < −αβ

[

(b2 − b1)

1 + exp[γ(b2 − b1)(−2F ∗ − b1 − b2)]
− (F ∗ + b2)

]

< 0 (20)

The expression in the squared parenthesis is negative, therefore

−αβ

[

(b2 − b1)

1 + exp[γ(b2 − b1)(−2F ∗ − b1 − b2)]
− (F ∗ + b2)

]

is positive, the eigenvalue is greater than 1 and, hence, P ∗ = 0 is always

unstable.

Proposition 3. When b1 = b2 = b, PM can lose stability through a period dou-

bling bifurcation. When b1 6= b2, PM loses stability through a pitchfork bifurcation

and also via a period doubling bifurcation.

Proof. To evaluate the stability properties of PM , we work out Eq. (18) for P ∗ =
PM :

∂Pt+1

∂Pt (P∗=PM )

= 1−
αβ(b2 − b1)

2
+ αβ(−F ∗ − b1) +

1

2
αβγ(b2 − b1)

2(
1

2
b1 + F ∗ +

1

2
b2)

(21)

When b1 = b2 = b, Eq. (21) becomes simple as follows:

∂Pt+1

∂Pt (P ∗=PM )

= 1− αβ(F ∗ + b) (22)
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In this case, PM can lose stability only through a period doubling bifurcation

if αβ(F ∗ + b) = 2, that is either when the reaction’coefficients or the expectation

of future price are high enough. On the other hand, when b1 6= b2, PM is stable if:

−2 < g < 0 (23)

where

g = −
αβ(b2 − b1)

2
+ αβ(−F ∗ − b1) +

1

2
αβγ(b2 − b1)

2(
1

2
b1 + F ∗ +

1

2
b2).

Specifically, PM loses its stability through a pitchfork bifurcation if:

(b2 − b1) =

√

2

γ
(24)

In this case, g=0 and the eigenvalue is equal to one. On the other hand, there

are sets of parameters for which g=-2 and a flip bifurcation may occur.

4 Numerical Analysis

When b1 = b2, the homogeneous case, the map (13) is topologically conjugated

to the logistic and PM = F ∗ + b is the unique positive steady state. We use nu-

merical simulations, to study the effects of an increasing heterogeneity, that is an

increasing distance between b1 and b2. As already stated, differently from Brock

and Hommes (1998) and De Grauwe and Rovira (2007), we focus on a situation

in which the groups of agents are both optimists, that is bi > 0. Specifically, we

start from the homogeneous case (b1 = b2) setting up the following parameters

α = 0.5, b1 = b2 = 1, F ∗ = 10, γ = 0.5. Then, we increase β, the market maker’s

reaction coefficient, to analyze how heterogeneity affects the initial status. Given

the propositions discussed above, the pitchfork bifurcation arises when b2 = 3
holding b1 = 1. In Fig. 2, as we already know from above, we can see that an

increase in β leads to chaos through a cascade of period doubling bifurcations.

Starting from different values of β we analyze how the occurrence of heterogene-

ity affects the dynamics.

The first case is showed in Fig 3. It is worth noting that with homogeneity (Fig.

3a) the max of the map is on the right of the fixed point, that is there is a monotonic

convergence. When the biases are different enough a pitchfork bifurcation arises

(see Fig.3b): PM becomes unstable and two new steady states, PL and PH arise,
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Figure 2: From stability to chaos in the homogeneous case, βǫ[0.1, 0.5], α =
0.5, b1 = b2 = 1, F ∗ = 10, γ = 0.5

Figure 3: From Stability to Pitchfork. α = 0.5, β = 0.1, b1 = 1, F ∗ = 10, γ =
0.5, b2 = 1 in a), b2 = 4.5 in b)

with PL < PM < PH . Moreover, as showed in Fig. 3c, we can see that the new

steady states are stable.

In Fig. 4a, for a higher β there is an oscillatory convergence. As in the first

case, when b2 = 3 a pitchfork bifurcation occurs and two stable steady states arise.

However, as shown in Fig. 4b and 4c, an increasing b2 leads to two coexistent

attractors. Indeed, there is the coexistence of a stable attractor around the lower

steady state PL and a chaotic attractor around the higher steady state, PH . This

is different from Naimzada and Ricchiuti (2009), where the dynamic behavior is

symmetric around the two new steady states.

In the next figures we analyze the case in which PM with homogenous biases

is not stable. Specifically, we study the effect of increasing heterogeneity when

the map shows either a period four cycle, chaos or divergence to infinity. In the
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Figure 4: From oscillatory convergence to coexistent attractors. α = 0.5, β =
0.35, b1 = 1, F ∗ = 10, γ = 0.5, b2 = 1 in a), b2 = 4.5 in b) and c)

Fig. 5 and Fig. 6, β is set such that, with homogeneity, there is a cycle 4 or chaos

respectively. In both cases, an increasing heterogeneity leads to a period halving

bifurcation: the system switches to a new behavior with half the period of the

map with homogeneity, a series of period-halving bifurcations leads the system

from chaos to order. For b2 = 3 the pitchfork bifurcation arises, moreover an

increasing distance between the two biases leads two coexistent attractors (Fig.

5b-c and Fig. 6b-c), in both cases after the pitchfork there is a cascade of period-

doubling bifurcations leading to chaos.

Figure 5: Period 4 cycle. α = 0.5, β = 0.454, b1 = 1, F ∗ = 10, γ = 0.5,
b2 = 1 in a), P0 = 11 in b)andP0 = 7 in c)

Finally setting β = 0.6, the map with homogeneity diverges (see Fig 7),

clearly because the first iterate of the maximum lies out of the admissible interval.

As expected heterogeneity acts such that the map becomes a self-map and so any

initial condition in the admissible interval does not diverge.
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Figure 6: Chaos. α = 0.5, β = 0.5, b1 = 1, F ∗ = 10, γ = 0.5, b2 =
1 in a), P0 = 11 in b)andP0 = 7 in c)

Figure 7: From Divergence to Self map. α = 0.5, β = 0.6, b1 = 1, F ∗ = 10, γ =
0.5

5 Conclusions

Heterogeneity has been developed in various models which have aided in explain-

ing the financial market dynamics. Differently from the canonical models, we

focus on agents that employ the same trading rule (i.e., fundamentalists) but het-

erogeneous beliefs, that is, they predict different biased expected prices. More-

over, agents can move from one expert to another following an adaptive rational

mechanism.

As in Naimzada and Ricchiuti (2008,2009), we show that even interactions

between agents that use the same trading rule can lead to complex price fluctua-

tions and, in contrast to common knowledge, fundamentalists can destabilize the

market. However, there are interesting differences. On one hand, heterogeneity

can lead to the coexistence of stable attractor with a chaotic attractor. There-

fore, the price variations on the market crucially depend on the initial conditions.

On the other hand, heterogeneity plays an ambiguous role: first it stabilizes the

market and then it destabilizes it. The idea is that when agents (or better gurus)

disagrees but their distance is small, the aggregate effect is an agreement around
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an ’average’ price (that for other economists is the representative agent). On the

other hand, when agents/gurus opinions diverge consistently, the price variations

are strong. This ambiguity depends (differently from Naimzada and Ricchiuti,

2009) on the condition of the map when the biases are homogenous. If there is

monotonic convergence, heterogeneity leads only to a pitchfork bifurcation but

the system is stable. On the other hand, when there is oscillatory convergence

heterogeneity affects the sequence of period doubling. Finally, with period cycles

and chaos an increasing heterogeneity firstly stabilizes and then destabilizes the

system.

We would like to indicate some additions to our simple behavioral financial

model. First of all, it would be interesting to analyze a case when there are more

than two gurus and agents who have long memory. In such a case, it would be

possible to analyze the interactions between many views within the economic sys-

tem and their survival in an evolutionary environment based on historical data. A

higher complexity could be reached by either studying the dynamics when agents

follow the guru that guarantees higher profits rather than the better forecast or

adding, more realistically, a group of chartists.
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