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Abstract

We assume that the variations of the exchange rate depend on the
current net demand of the base currency as a consequence of mar-
ket making, and that the current net demand of the base currency
depends on current and past variations of the exchange rate as a con-
sequence of how future price expectations are formed by bounded ra-
tional agents. We achieve identification supposing that the structural
shocks of price variations and demand follow a GARCH process. Us-
ing high-frequency transaction data of the EUR/USD market in 2016,
we show that the simultaneous effects of price on demand and vicev-
ersa are both significant and positive. Our estimates suggest that one
important source of heterogeneity in demand might be missing from
our model, since the structural errors are negatively correlated.

Keywords: Asset pricing model, heterogeneous beliefs, market making, for-
eign exchange market, SVAR-GARCH, high frequency data.
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1 Introduction

The market micro-structure approach provides powerful insights into the
working of financial markets (Vitale, 2007; King et al., 2013). This approach
has gained popularity thanks to the availability of high frequency transaction
data. Another popular stream of literature points instead to the possibility
that market participants might deviate from the paradigm of full rational-
ity. According to this family of models with heterogeneous agents (HAM),
deviations of the price of assets from their fundamental value arise because
the heterogeneous beliefs of market participants are myopic and evolve en-
dogenously (Brock and Hommes, 1998). Although these two lines of research
share the ambition to provide a more faithful representation of financial mar-
kets than the standard full-rationality-with-continuous-market-clearing set-
ting, there are little contact points between these two approaches. In order
to overcome this limitation, in this paper we present a simple model which
incorporates two basic assumptions. The first one, coming from the mar-
ket microstructure literature, is the dependency of price variations on the
contemporaneous net order flow (Evans and Lyons, 2002). The second one,
coming from the HAM literature, is the dependency of current demand on
price variations.

The rationale for the first assumption relies on the behavior of a mar-
ket maker who might find optimal to increase / decrease her bid and/or ask
price following a positive / negative net order flow (Madhavan and Smidt,
1993). The rationale of the second assumption relies on the myopic nature of
speculators who form their expectation of tomorrow’s returns based on the
returns observed to date. This general mechanism of expectation formation
encompasses different typologies of speculators which are popular in the liter-
ature such as chartists, fundamentalists, contrarians etc. One shortcoming is
that usually this approach assumes a delay, with which agents react to price
signals, which is hard to justify. Indeed, bounded rationality is adopted as a
good proxy for the actual behavior of market participants, but it is not very
realistic to assume that the latter do not react as quickly as possible to price
variations. The actual delay of real markets is so small that an instantaneous
reaction, which is the assumption we adopt in this paper, appears to be much
more realistic.

We further assume that net market demand is autocorrelated because of
microstructural effects such as order-splitting or back-stop orders. Although
the absence of significant linear correlations of price increments has been
widely documented and is viewed as a proof that the market is efficient,
autocorrelation cannot be ruled out at short time scales, which are those the
market needs to react to new information. Moreover, there is evidence of
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negative first-order autocorrelation of prices in high-frequency FX markets,
which is explained as a microstructural effect(Zhou, 1996; Cont, 2001). Thus
we also allow for the autocorrelation of price increments.

In order to take into account all these hypotheses, we need to refer to a
bivariate unrestricted SVAR model in price variations ∆pt and net demand
zt. It’s simple to show that this model must have time varying coefficients
if the market participants are heterogeneous. Unfortunately, a model of this
sort cannot be estimated with the currently available methods. However we
can estimate the coefficients of a standard VAR model and then perform
a stability analysis to verify the hypothesis of heterogeneity of market par-
ticipants. In order to make both simultaneous coefficients identifiable, we
adopt an approach based on heteroskedasticity (Rigobon, 2003; Sentana and
Fiorentini, 2001). Equipped with these assumptions, we employ a dataset
of high-frequency transactions on the EUR/USD market in 2016 provided
by Nex data, in order to answer the two following questions: what is the si-
multaneous impact of price and demand on each other? Does heterogeneity
affects the way market demand reacts to price variations and viceversa? The
remaining of the paper is organized as follows. In Sec. 2 we present the the-
oretical model sketched above. In Sec. 3 we describe the dataset we employ
for our empirical analysis. In Sec. 4 and in the Appendix we describe our
identification and estimation strategy. In Sec. 5 we present the main results
of the analysis. Finally, Sec. 6 concludes.

2 The model

We assume that the market maker is a profit maximizing monopolist who
trades a zero yielding asset with a large number of different types of specula-
tors whose participation to the market evolves endogenously. We assume that
the market maker knows the optimal demand of each type of speculator and
that she employs this information when she solves her optimization process.
Then we suppose that the market is liquid enough to allow the market maker
to adjust in advance her inventory at the current price, in order to match
the projected orders of speculators. After this adjustment she announces the
optimal price, taking into account a quadratic cost of inventory maintenance.
Once the new price is revealed to speculators, the latter trade according to
their optimal demand in such a way that, at the end of the period, the net
variation of the inventory position of the market maker is zero. Finally, the
market price is updated to the optimal price of the market maker.

The timeline of events in each period of the model is pictured in Fig. 1.
We remark that the assumption we make on market liquidity is analogous to

3



MM fixes pt

MM adjusts her inventory
at the current market price pt-1

MM announces pt

to the speculators

Speculators post
their orders

Trading brings
MM inventory
to zero

The market price 
is updated to pt

Figure 1: Timeline of events occuring within a single period of the model.

the one made by Evans and Lyons (2002), who suppose that FX dealers trade
on the wholesale market before the price adjustment on the retail market.
It is also in line with evidence from the FX market and in particular with
the practice of “hot potato” trading which allows FX dealers to profit from
retail trading (King et al., 2013). The current profit of the market maker is
specified as follows:

Πd,t = (pt − pt−1) zt −
ω

2
z2
t (1)

where zt is the net market demand and ω
2
> 0 measures the impact of

the quadratic inventory cost z2
t on Πd,t. We remark that, according to our

hypotheses, the inventory cost is linked to zt since at the end of each period
the inventory is brought down to zero. In practice, it is the cost of holding
an amount of risky asset equal to zt > 0 until it is resold to the speculators1.

The market maker maximizes Πd,t with respect to pt. Taking into account
the effect of the optimization variable on zt the FOC reads:

zt + (pt − pt−1)
d

dpt
zt − ωzt

d

dpt
zt = 0 (2)

Setting γ0,t ≡ d
dpt
zt, we obtain

∆pt =

(
ω − 1

γ0,t

)
zt (3)

We follow the literature on asset pricing with heterogeneous speculators
mentioned in Sec. 1 and exclude, for simplicity, a more complex forward
looking setting, e.g. like the one of Madhavan and Smidt (1993). In the
HAM setting speculators are myopic mean-variance maximizers, since their
future wealth is uncertain. In practice, speculators of each type i maximize
their expected risk adjusted profit in the next period:

1 In the case in which zt < 0, we might think that the risky asset must be exchanged
against some other asset and that holding this other asset is costly too.
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max
zi,t

{
Eit [Πi,t+1]− 1

2D
Vit [Πi,t+1]

}
(4)

where D−1 is a risk aversion parameter linked to the variance of future
profit Vit [Πi,t+1]. Indeed the profit of speculators at t + 1 is determined by
their net demand at t and they ignore the future market price when taking
their decision. The current profit of speculators of type i is written as follows:

Πi,t = (pt − pt−1) zi,t−1 (5)

where the right hand side of the equation above represents the profit
obtained buying the amount zi,t−1 at the price pt−1 and reselling the same
amount at the price pt.

Then we have:

Eit [Πi,t+1] = (Eit [pt+1]− pt) zi,t (6)

Vit [Πi,t+1] = Vit [pt+1] z2
it (7)

Taking into account Eqs. (6) and (7), supposing for simplicity that
Vit [pt+1] = σ2 is constant across time and investor’s types and finally let-
ting this term be absorbed by D−1, we may rewrite the objective as follows:

max
zi,t

{
Ei,t[∆pt+1] zi,t −

z2
i,t

2D

}
(8)

where Ei,t[∆pt+1] stands for the type i’s expectation of ∆pt+1.
We solve the FOC for zi,t to obtain the optimal demand of a generic

speculator of type i:

zi,t = DEi,t[∆pt+1] (9)

Then the total market demand is

zt = D

S−1∑
i=0

Ei,t[∆pt+1]Ni,t (10)

where Ni,t is the number of speculators of type i at t and S is the number
of different types of speculators on the market. We introduce the following
specification for Ei,t[∆pt+1]:

Ei,t[∆pt+1] =
K−1∑
k=0

gi,k∆pt−k (11)
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Substituting (11) in (10) we obtain

zt = D
S−1∑
h=0

Ni,t

K−1∑
k=0

gi,k∆pt−k (12)

Changing the order of summation we obtain

zt =
K−1∑
k=0

∆pt−k

S−1∑
h=0

DNi,tgi,k (13)

and defining

γk,t ≡
S−1∑
i=0

DNi,tgi,k (14)

we obtain that market demand is a time varying function of current and
past prices:

zt =
K−1∑
k=0

γk,t∆pt−k (15)

We see that, according to (15), ∂zt
∂pt

= γ0,t which is consistent with our pre-

vious definition in Eq. (3). Thus we end up with a system of 2 simultaneous
equations in (∆pt, zt) plus lagged values of price increments:

∆pt =
(
ω − 1

γ0,t

)
zt + ε0,t

zt =
∑K−1

k=0 γk,t∆pt−k + ε1,t

(16)

The bivariate random process εt = (ε0,t, ε1,t) is added to take into account
all the exogenous factors which impact price and demand. Thus we expect
that this process has more structure than a simple i.i.d. white noise. In par-
ticular we allow for time varying conditional correlation and heteroskedas-
ticity by assuming the following:

εt = H
1
2
t vt (17)

where vt is a bivariate i.i.d. vector with scaled first and second moments

and H
1
2
t is a positive definite matrix such that Ht is the conditional covariance

matrix of εt.
The system (16) is equivalent to a restricted SVAR model with time

varying coefficients:
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[
∆pt zt

] [ 1 −γ0,t

−
(
ω − 1

γ0,t

)
1

]
=

=
[

∆pt−1 ∆pt−2 . . . ∆pt−K
] 

0 γ1,t

0 γ2,t

. . . . . .
0 γK−1,t

+
[
ε0,t ε1,t

]
(18)

In the empirical estimation we prefer to lift all the restrictions on the
r.h.s. since there is evidence that microstructural effects on the market lead
to autocorrelation of both price variations and demand (see Sec. 1). So,
setting y′t = (∆pt, zt), we end up with the following model:

A0,tyt = A1,tyt−1 + · · ·+ Aq,tyt−q +H
1
2
t vt (19)

where

A0,t =

[
1 −

(
ω − 1

γ0,t

)
−γ0,t 1

]
(20)

while all the coefficients in A1,t, . . . , Aq,t are unconstrained. Regarding
the coefficients in A0,t, the only ex ante hypothesis we can make is ω− 1

γ0,t
>

0, since we expect that market makers raise (lower) prices when there is
a positive (negative) excess demand. We choose not to impose this sign
restriction ex ante as a constraint and indeed, according to the estimation,
it is confirmed by the data.

Finally, we observe that the elements of the matrices on the r.h.s. of (19)
are a combination of time varying and constant coefficients. The time varying
component is given by the coefficients γ0,t, γ1,t, . . . , γK−1,t of the lagged values
of ∆pt in the demand equation, which reflect the heterogeneous reaction of
different types of speculators to price variations. The constant component is
given by the coefficients of the lagged values of ∆pt and zt in the price equa-
tion, and by the coefficients of the lagged values of zt in the demand equation
which, as we just explained, are introduced as microstructural effects whose
magnitude and direction should not change over time.

3 Data description

We analyze in this paper tick-by-tick transaction data, recorded on the EBS
FX Spot trading plaform and provided by NEX data. For the purpose of our
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anaysis, the data are sampled with a 5 minutes frequency. More precisely,
the following time series are investigated: the (last) Euro/ Dollar midpoint
between bid and offer prices (pt) expressed in USD cents; the total values in
period t of the bid (BSZt) and offer (OSZt) order flows expressed in Millions
of Euros. The sample spans the time interval from 3 January 2016, 17:55
(5.55 pm.), to 30 December 2016, 21.55 (9.55 pm.). It includes relevant events
related to the final spasms of the EMU crisis, which interact with the vagaries
of the British Brexit referendum campaign. A painstaking synchronization
of the time series has reduced the sample length to 36,207 observations per
continuous time series. Weekends, holidays and late-evening / night periods
are excluded.

Fig. 2 exhibits the EUR/USD exchange rate in levels (pt) and in 5 min-
utes first differences expressed (∆pt), together with the 5 minutes difference
between the total values of the offer and bid order flows, which is our mea-
sure of net demand: zt = OSZt − BSZt. The exchange rate pt is clearly
non - stationary, as corroborated by the unit root analysis of Table 1, and
is affected by the outcome of the Brexit referendum (June 24) and by the
election of Donald Trump as president of the US (November 11), which are
marked with a thick vertical line in the graph. The appreciation of the dollar
in the wake of the two events clearly stands out, although we see that the
price and demand movements which are close in time to these events are
by no means the largest in magnitude of the dataset. Indeed, the largest
price swings followed the annoucement by the ECB of a further expansion of
Quantitative Easing on March 10 2 and the announcement of weak US jobs
data on June 33, which lead to a stark appreciation of the Euro. The largest
demand swing intead was triggered by the Euro falling below the critical 1.04
$ benchmark for the first time in 14 years on December 15 4.

It should be noted that large demand swings do not necessarily corre-
spond to large price swings and viceversa. The explanation is twofold: on
the one hand, most public information is incorporated directly into price and,
on the other, the EUR/USD market is liquid enough to absorb large demand
imbalances without large price effects. This goes without denying that the
two variables influence each other: indeed the Pearson correlation coefficient
between ∆pt and zt is 0.305. The sources of this correlation are twofold.
On the one hand, we have the behavioral interaction of market makers and
speculators as depicted by the model of Sec. 2. On the other we have a
common factor affecting both price and demand, namely the exogenous flow

2https://www.ft.com/content/02ec97ea-e6d9-11e5-bc31-138df2ae9ee6
3https://www.ft.com/content/eb77d7d6-2937-11e6-8ba3-cdd781d02d89
4https://www.ft.com/content/25fba186-fc9f-3bf2-a020-82efe29f1f7b
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of information which acts simultaneously on both market makers and spec-
ulators. The first source is captured by the coefficients A0,t, A1,t, . . . , Aq,t of
the model (19), the second one is captured by the coefficients of a parametric
representation of the process which drives Ht. The purpose of the estima-
tion described the next section is to distinguish and quantify each of the two
sources. At the same time we must be aware of a potential factor of con-
fusion, which might affect the impact of the exogenous flow of information
on the endogenous variables. This is represented by the fact that we are
dealing with a wholesale market whose participants do not necessarily trade
at their own initiative. Indeed, according to the practice of “hot potato”
trading mentioned in the previous section, dealers replicate on the wholesale
market the trades of their customers in order to offload their inventory (King
et al., 2013). Thus the trades in our dataset do not necessarily represent the
goals and beliefs of those who submit them. Instead they might represent
goals and beliefs of different classes of traders, among which liquidity / noise
traders might prevail5, triggering very different reactions to the external flow
of information depending on the circumstances.

The statistical properties of the exchange rate first differences ∆pt, ex-
pressed in USD cents, and of net demand zt = OSZt − BSZt, expressed in
Millons of Euros, are analyzed in Table 2. They are stationary and display
the main stylized facts of high frequency financial time series, with highly
persistent serial correlation and severe volatility clustering. Skewed and lep-
tokurtic, they have non normal distributions, as suggested by the very large
values of the corresponding Jarque Bera statistics. In particular, the sig-
nificance of ARCH effects justifies our parametric approach to model the
conditional volatility of our data.

4 Estimation Strategy

A SVAR model such as Eq. (19) cannot be estimaed with the methods which
are currently available. Primiceri (2005) has proposed a Bayesian approach to
estimate a time-varying SVAR, where both the coefficients of the SVAR and
the covariance matrix of the shocks are allowed to vary over time. But this
comes at the cost of imposing the usual a priori identification restrictions
on A0,t, which are unfortunately unwelcome in our case. Indeed feedback

5We recall the following definition of liquidity or noise traders provided by Dow and
Gorton (2008): “Noise traders are economic agents who trade in security markets for non-
information-based reasons”. One of the possible rational motivations of liquidity trading
is insurance / hedging but other explanations have been proposed (Vitale , 2000). See
Ramiah et al. (2915) for a recent review of the noise-trader literature.
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pt ∆pt zt

-2.099 -32.629** -29.11**
(c, 33) (nc, 33) (nc, 33)

ADF (nc, (n)c): Augmented Dickey
Fuller unit root test statistic, with
(no) constant term and nth order au-
toregressive component. **: signifi-
cant at the 1% level.

Table 1: Unit root analysis

∆pt zt

Mean -0.0002 1.0655
Std. dev. 0.0466 37.909
Skewness 0.5633 -0,7674
Kurtosis 37.829 58.576
JB 1831900 [0.00] 4663300 [0.00]
AR1 40.675 [0.00] 445.52 [0.00]
AR5 55.317 [0.00] 624.28 [0.00]
AR20 92.985 [0.00] 851.99 [0.00]
ARCH1 212.67 [0.00] 112.35 [0.00]
ARCH5 937.24 [0.00] 171.19 [0.00]

Notes: probability values in square brackets; JB:
Jarque-Bera normality test; ARk: Ljung-Box test
statistic for k-th order serial correlation of the time
series; ARCHk: Ljung-Box test statistic for k-th or-
der serial correlation of the squared time series.

Table 2: Descriptive Statistics
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trading (which implies γ0,t 6= 0) is ubiquitous in foreign exchange market
since it is associated with price-contingent trading strategies such as stop-
loss and profit-taking orders (Osler, 2003, 2005; Dańıelsson and Love, 2006).
We cannot realistically suppose that γ0,t = 0 nor we can suppose that ω = 0,
since the latter restriction would imply that market makers are not adverse to
inventory risk, contrary to a widespread evidence (King et al., 2013). Finally,
we cannot assume that ω − 1

γ0,t
= 0, since this would contradict our basic

intuition about the behavior of market maker as discussed at the end of Sec.
2.

At the same time, a bivariate approach appears unavoidable. Evans and
Lyons (2002) proposed to estimate the impact of order flows on price incre-
ments with a simple OLS approach using the following equation:

∆pt = βzt + ut (21)

As underlined by Vitale (2007), this approach is plagued by a simultaneity
bias if exchange rate movements cause order flows. In this case, the ordinary
least squares (OLS) estimate of the coefficient β̂ is biased, and the results
reported by Evans and Lyons (2002) are misleading. The usual identifica-
tion strategy to overcome this limitation is to impose restrictions on A0, in
particular forbidding zt to depend from ∆pt. But from our arguments above
we see that we cannot accept the restriction γ0 = 0 in our model.

The most adopted alternative, when a priori restrictions cannot be made,
is to find good instruments. But this is impossible to achieve in our case
given that market efficiency rules out by principle that good predictors of
one-period-ahead returns are available. This is why we choose a different
approach, which is based on the observation that, if the variances of the
structural shocks change over time, the coefficients of interest can be identi-
fied from the reduced-form covariances at different points in time (Rigobon,
2003). Under this approach, in order to obtain identification we need to im-
pose some parametric restrictions on the structure of the covariance matrix,
which might take the form of variance regimes (Rigobon, 2003), restricted
or unrestricted multivariate ARCH or GARCH processes (Rigobon, 2002;
Sentana and Fiorentini, 2001), constant or dynamic conditional correlation
processes (Weber, 2010), stochastic volatility (Lewis, 2018)6. In particular,
Herwartz et al. (2019) show by means of a simulation study that a GARCH
based Gaussian ML approach provides the best results when the underlying
d.g.p. is conditionally heteroskedastic even if the distribution of the struc-
tural errors is misspecified7. This is the approach we follow in our study.

6A detailed review is provided by Kilian and Lütkepohl (2017).
7In particular they employ skewed and leptokurtic distributions which reflect the char-
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For the sake of simplicity, we restrict the coefficients to be constant8,
with the idea that the effect of heterogeneity (which is the driver of the
time evolution of those coefficients according to our model) can be tested by
checking the stability of the coefficients of this restricted estimation. Thus
the resulting model is

A0yt = A1yt−1 + · · ·+ Aqyt−q + εt (22)

A0 =

[
1 −

(
ω − 1

γ0

)
−γ0 1

]
(23)

εt = H
1
2
t vt (24)

vt ∼ N (0, I) (25)

Ht = diag(h1,t, h2,t) (26)

ht = ω + diag(α) εt−1 � εt−1 + diag(β) ht−1 (27)

where ω, α and β are vectors of parameters and� stands for the Hadamard
product. The original time varying coefficient become constant if we assume
that there is no heterogeneity of speculators (i.e. S = 1) and that the partic-
ipation to the market is constant (Nt = N), because in this case we obtain

γk ≡ DNgh,k (28)

We can test the hypothesis of no heterogeneity by looking at the reduced
form residuals of eqs. (22) as explained in the next section. Since, as we have
already pointed out at the end of Sec. 2, the original model contains both
time varying and constant coefficients, one of the equations in (22) might
pass the stability test, while the other might not. In particular, following
the arguments at the end of Sec. 2, we expect that the price equation pass
the stability test since its coefficients are linked to microstructural effect that
do not change over time, while the demand equation doesn’t since its coef-
ficients are impacted by the time varying participation of the heterogeneous
speculators to the market.

In a second estimation we relax the assumption of orthogonality of Ht

and specify the covariance matrix with a Dynamic Conditional Correlation
(DCC) model (Engle, 2002):

Ht = DtRtDt (29)

acteristics of financial time series.
8 Although there are in principle no impediments to assume that the reduced form

coefficients vary over time, the time invariance of A0 is required by all the existing iden-
tification schemes based on heteroskedasticity (Lewis, 2018). See also the observations
above on Primiceri (2005).
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Dt = diag(
√
h0,t,

√
h1,t) (30)

Rt = diag(Qt)
− 1

2Qtdiag(Qt)
− 1

2 (31)

Qt = (1− a− b)Q+ a
(
D−1
t−1εt−1

) (
D−1
t−1εt−1

)′
+ bQt−1 (32)

where a, b are scalars and ht = (h0,t, h1,t) is still given by eq. (27). This
extension overcomes the identification restrictions of the approaches based
on conditional heteroskedasticity, which require that the structural errors
are uncorrelated (Rigobon, 2002, 2003; Ehrmann et al., 2011). As explained
below, this is accomplished thanks to the two step estimation procedure of
the DCC model, which at the first step treats the structural errors as if they
were independent.

The estimation proceeds through the following steps. Firstly, the reduced
form parameters are estimated with a VAR model:

yt = A′1yt−1 + · · ·+ A′qyt−q + ut (33)

where
ut = A−1

0 εt (34)

In the second step, according to the assumptions of the model, the fol-
lowing log-likelihood is maximized:

L(θ) = −1

2

T∑
t=1

(
n log 2π + log |Ht|+ u′tA

′
0H
−1
t A0ut

)
(35)

where the parameter vector θ contains ω and γ0 plus the parameters of
the GARCH equation (27) which takes the following form:

ht = ω + diag(α) (A0ut−1)� (A0ut−1) + diag(β) ht−1 (36)

Following the terminology of Lütkepohl (2005), the model (33)-(36) is an
A-model. This means that the diagonal elements of A0 are normalized to one
while the unconditional variances of the structural shocks are unrestricted.
Alternatively, Lanne and Saikkonen (2007) and Lütkepohl and Milunovich
(2016) adopt a B-model where the structural errors are uncorrelated with
unconditional identity covariance matrix and the elements of A0 are unre-
stricted but they must be chosen in such a way that A0A

′
0 = Σu, where Σu

is the unconditional covariance matrix of the reduced form errors. Since the
unconditional volatilities of the structural errors are normalized, the con-
ditional volatilities are parametrized with a GO-GARCH model (Van Der
Weide, 2002).

The main difference between the two models is that in a B-model the
condition A0A

′
0 = Σu implies equivalently that the estimated unconditional
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variances of the structural errors are equal to the sample unconditional vari-
ances of the reduced form errors. In our model instead the unconditional
variances of the structural errors are obtained from the GARCH parameters
without imposing any additional conditions apart from those of the GARCH
model itself. For this reason we consider our model to be less restrictive than
the alternative one. Furthermore, given the assumption that the structural
errors are uncorrelated, the maximization of the likelihood of our model can
be performed consistently equation by equation without imposing the orthog-
onality conditions required by the B-model (Lanne and Saikkonen, 2007).

The details of the estimation procedure together with a discussion of
the identification conditions of the structural parameters of the model are
provided in the Appendix. Here we limit ourselves to provide the following
general considerations. The identification conditions of Rigobon (2003) easily
extend to the GARCH setting of this paper, since adding extra covariance
regimes which satisfy, for each pair of regimes, the condition (A.12), simply
makes the model overidentified. In particular, the non proportionality of the
different volatility regimes is a. s. assured by the existence of ARCH effects
across time periods. The same reasoning applies to the full rank condition
that Sentana and Fiorentini (2001) require from the matrix containing the
full path of conditional variances or to the conditions proposed by Milunovich
and Yang (2013) which state that in a GARCH setting no structural shock
be degenerate (i.e. ω 6= 0 in eq. (27)) and that at most one structural shock
i be homoskedastic (i.e. αi = 0 for at most one shock in (27)).

In principle it is not straightforward to check some of the conditions men-
tioned above as they are expressed in terms of population quantities, while
we observe only their estimators9. To overcome this problem Lanne and
Saikkonen (2007) provide three different test statistics which are based on
the autocovariance of the structural errors of a B-model (see also Lütkepohl
and Milunovich (2016) for an application). Lewis (2018) provides instead an
identification criterion which is based on the application of the Cragg and
Donald (1996) statistics and the corresponding rank test to the unconditional
autocovariance matrix of the reduced form errors. This approach is more gen-
eral, since it is consistent with a variety of different models (regime based,
markov switching volatility, GARCH, stochastic volatility), but is rather de-
manding since it requires to estimate the standard errors of the estimator
of the autocovariance matrix. Here we choose a less rigorous approach and

9 Lanne and Saikkonen (2007) observe that under the null hypothesis the model is
unidentified, which implies nonstandard properties of conventional tests such as the likeli-
hood ratio and motivates the quest for alternative tests. Curiously, this problem does not
prevent the LR test from being used in applications, see e.g. Lütkepohl and Netšunajev
(2014).
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regard the existence of ARCH effects, which is attested in the data (see
the previous section), as a sufficient proof that the identification conditions
mentioned above are fulfilled. This claim is vindicated by the results of our
estimation which show an improvement of the likelihood attained with our
SVAR-GARCH model as compared with a simple VAR-GARCH estimation
(see the Appendix).

The final step of our analysis is DCC estimation. It is known that the
loglikelihood of this model can be decomposed in two parts which can be
maximized sequentially:

LV (θ1) = −1

2

T∑
t=1

(
n log 2π + 2 log |Dt|+ u′tA

′
0D
−1
t D−1

t A0ut
)

(37)

LR(θ2) =
1

2

T∑
t=1

[
(D−1

t A0ut)
′(D−1

t A0ut) + log |Rt|+ (D−1
t A0ut)

′R−1
t (D−1

t A0ut)
]

(38)

The parameter vector θ1 contains the same parameters of the bivariate
GARCH model and indeed a careful look at (37) shows that it is identical
to (35), given the definition of Dt in eq. (30). The parameter vector θ2

contains the unknown parameters of eq. (32), a, b and Q. By adding the
maximization of LR as a third step after the two steps described above, we
obtain an estimate of the time varying correlation of the structural shocks.
All the considerations regarding identification apply to this extension exactly
in the same way as discussed above.

5 Results

The analysis is performed on data which are aggregated on a time window
of 5 minutes. The first step is to estimate the reduced form VAR. The
number of lags is selected as the maximum across a number of information
criteria and set equal to 24. We obtain the confidence intervals for the IRFs
with a boostrap procedure performed according to the recursive-design wild
bootstrap scheme used by Lütkepohl and Schlaak (2019), which preserves
the conditional heteroskedastic innovations of AR models.

From the cumulative IRFs (Fig. 3) we see that demand is much more
autocorrelated than price as expected (see Sec. 2), although in both cases
the VAR coefficients explain only a small fraction of the overall variance
of the dependent variables 10. The lagged cross-effects between price and

10The values of the adjusted R2 are respectively 0.004 and 0.019.
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demand are either small or non significant, as we could expect from market
efficiency considerations. In particular, considering that price variations are
expressed in USD cents and the unit of demand is one million Euros, we see
that a positive demand shock of 1 million Euros at t causes a (negative) price
variation worth as little as -0.0001 USD in the subsequent 2 hours, equivalent
to the 0.19% of the sample volatility of price. Instead, a positive EUR/USD
price shock worth 1 cent causes an extra demand of up to 57 millions Euros
in the subsequent 2 hours, equivalent to the 149% of the sample volatility of
demand.

A negligible price impact of past demand shocks is what we expect in an
efficient and extremely liquid market, like the one we consider. Instead, a
more pronounced impact of past price shocks on demand is what we expect
in a market which is populated by speculators who try to react as fast as
possible to price shocks but may do so with some delay and in addition are
forced by the microstructure of the market to split their trades over different
periods. At the same time, it is interesting to observe that the effect of
demand on price is significant while the converse is not true. This points
to the possibility that the former, smaller effect is linked to microstructural
effects, which are much less volatile, while the latter, larger effect is made
more volatile by the shifting expectations of heterogeneous speculators over
time. This is confirmed by the Granger causality test that shows that the
null of no causality can be rejected for zt but not for ∆pt.

In order to assess the effect of heterogeneity we perform a stability analy-
sis of the VAR estimation using a set of suitably chosen empirical fluctuation
processes of the residuals. Within the framework of generalized fluctuation
tests, we compute an empirical process that captures the fluctuation in resid-
uals, and for which the limiting processes are known. In this way boundaries
can be computed, which are crossed with probability α under the null hy-
pothesis that the coefficients of the VAR model are constant over time. This
means that, if the empirical process crosses the boundaries, the null hypoth-
esis should be rejected (at significance level α) . In particular, the processes
we employ for the analysis are the cumulative sum (CUSUM) or the mov-
ing sum (MOSUM) of either the ordinary residuals (OLS) or the recursive
residuals (Rec).

The results of this analysis are unequivocal for ∆pt since the null hypoth-
esis is never rejected according to the measures mentioned above (data not
displayed). This is in line with the model of Sec. 2 which suggests that price
is only indirectly affected by the heterogeneity of speculators through the
shifts of demand itself, provided that γ0,t is large enough in absolute terms.
The results for zt instead are contradictory as depicted in Fig. 4, which shows
that the null hypothesis of constant coefficients for the VAR model is rejected
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for recursive residuals, while the opposite holds for the ordinary residuals.
Thus the claim that demand is directly affected by the shifting expectations
of heterogeneous speculators and their changing participation to the market,
which should shift the magnitude of the VAR coefficients over time, is not
unequivocally vindicated by the data. This result lends some support to our
estimation approach which is based on fixed VAR coefficients.

The timing of the structural breaks should correspond to either the be-
gining of a shift (MOSUM) or a peak (CUSUM) in the empirical process.
In the graph we signal with a vertical line the following critical days (see
Sec. 3): March 10 (QE expansion); June 3 (US Jobs announcement); June
24 (Brexit referendum); November 9 (Trump election); December 15 (Euro
falls below $ 1.04)11. We see that the recursive errors converge to identify a
potential structural break ahead of the landmark date of the Brexit referen-
dum, mostly coinciding with the announcement of weak job data in the US
on June 3.

The residuals of VAR estimation strongly reject the null hypothesis of
homoskedasticity for a number of tests. In particular, both series display
ARCH effects as required by the identification conditions discussed in Sec.
4. Then we are justified in proceeding to the second step of the estimation
as described in the same section and in the Appendix. In order to proceed
with the estimation, we suppose that the variances of the structural errors
follow a GARCH(1,1) process. The results are summarized in the following
equations for the volatility of the structural residuals of the price (h0,t) and
demand (h1,t) equations respectively:

h0,t = 0.00011
(0.00002)

+ 0.16961
(0.02008)

u1,t−1 −

0.00467
(0.00001)

− 1

233.273
(0.00000)

 u2,t−1

2

+ 0.79030
(0.02030)

h1,t−1

(39)

h1,t = 75.3427
(4.50189)

+ 0.21843
(0.01308)

(
u2,t−1 − 233.273

(0.00000)
u1,t−1

)2

+ 0.76365
(0.00003)

h2,t−1 (40)

All the coefficients are highly significant, as we expected from the men-
tioned analysis of the VAR residuals. The standardized residuals and squared
residuals obtained from the GARCH estimation show no signs of serial cor-
relation.

The economic implication of our estimates of ω and γ0 is interesting, since
it shows that the exchange rate is stabilized by the existence of momentum
traders. Indeed, from Eq. (3) we see that the simultaneous price impact of

11This date is depicted only in the CUSUM panels.
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demand is ω̂ − 1
γ̂0

= 0.00038. If the overall demand reaction of speculators
to a simultaneous price variation had a negative sign, the simultaneous price
impact of the same amount of net orders would be at least as great as ω̂,
i.e. 10 times larger. The economic rationale of this result is straightforward:
thanks to the fact that net orders are instantaneously increased by an in-
crease of the price quoted by market makers, the profits of market makers
are maximized with a smaller price increase than if momentum trading was
absent.

The IRFs obtained from our estimates are depicted in Fig. (5). We
see that the cross effects between price and demand are both positive and
significant. The most appropriate comparison is with the cumulative impact
of ordinary SVAR estimations. After two hours, the cumulative impact on
price of a demand shock worth one unconditional standard deviation (i.e.
65 million Euros based on the GARCH estimates) is equal on average to
an increase of 2.06 cents in the EURO/USD price according to the SVAR-
GARCH model, which is almost double the 1.11 cents increase predicted by
the ordinary SVAR model. Conversely, the cumulative impact on demand
of a price shock worth one unconditional standard deviation (i.e. 5,23 cents
based on the GARCH estimates) is worth on average 22.7 millions Euros,
which is higher than the 19.6 millions predicted by the standard SVAR model.

The last step is the estimation of the conditional correlation of the struc-
tural shocks by means of Eq. (38). The results are summarized in the
following equations:

Qt =

(
1− 0.01767

(0.00271)
− 0.84294

(0.02501)

)[
0.99770 −0, 26746
−0, 26746 1.05377

]
+

+ 0.01767
(0.00271)

(
D−1
t−1A0ut−1

) (
D−1
t−1A0ut−1

)′
+ 0.84234

(0.02432)
Qt−1 (41)

A0 =

[
1 −0.00038

−233.273 1

]
(42)

Dt =

 1√
h0,t

0

0 1√
h1,t

 (43)

where h0,t and h1,t are given by Eqs. (39) and (40). The time evolution
of the conditional variances h0,t and h1,t and the conditional correlation ρt
are depicted in Fig. 6. The vertical lines are the same of Fig. 4. We see
that price volatility is more clearly related to exogenous events (March 10,
June 3, June 24, Nov 9) as we expected, while demand volatility is related
to endogenous events like the crossing of a critical support price (December
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15). More in general, volatility spikes of the two variables show a tendency
to move in the same direction (with a Pearson correlation of 0.46) but do no
overlap perfectly. At the same time we see that the unconditional correlation
of the structural shocks is negative (-0.26), and the conditional correlation is
mostly negative with only some rare exceptions. These results are robust to
an alternative estimation performed assuming that the errors follow a Student
distribution. Indeed the exogenous events do not appear to have large effects
on ρt, with the big exception of June 3, when ρt becomes strongly positive.
Moreover, the movements of ρt result to be negatively correlated to those of
h0,t and h1,t.

A good candidate for explanation of the negative correlation of the struc-
tural errors is that the model of Sec. 2 does not take into account the full
heterogeneity of demand because it overlooks the role of liquidity / noise
traders. The latter in fact are generally assumed to trade with a loss, a
circumstance which might help to explain why in our results a positive (neg-
ative) price shock might occur along with a negative (positive) demand shock.
In particular, as explained above (see Sec. 3), we must take into consider-
ation that many of the transactions we observe on the EBS platform occur
because dealers wish to clear the trades of their customers, many of which
are likely to be noise traders. These transactions are likely to appear as ex-
ogenous shocks in our estimations as they don’t result from the speculative
behavior we assume in our model.

In order account for the correlation of the structural errors, we make use
of the well known generalized impulse response functions proposed by Koop
et al. (1996) which are defined as follows:

Θh = ΦhA
−1
0 ΩΣ (44)

where Φh is the standard forecast error impulse response (FEIR) func-
tion, Ω is the unconditional covariance matrix of the structural errors, Σ ≡
diag

(
1
σ0
, 1
σ1

)
and σ0, σ1 are the unconditional standard deviations of the

structural errors. The results are depicted in Fig. 7 where we report only
the cross effects between ∆pt and zt. We see that the cumulative impact of a
demand shock on price is still positive although the magnitude of the impact
is greatly diminished, since the negative correlation of the two shocks moder-
ates the simultaneous positive reaction of price variations to demand shocks.
At the same time the negative correlation of the structural shocks turns the
cumulative impact of a price shock on demand to negative, overturning the
result of the previous estimation. These results reinforce the interpretation
advanced above, namely that the negative correlation of the structural errors
stems from an additional source of heterogeneity of demand. Indeed, we see
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that the effect of the negative correlation is to make the market more stable
since the price adjusts less to demand shocks and the demand curve takes
a negative inclination thus favouring the balancing of the market. This sta-
bilizing role is exactly the one assigned to liquidity / noise traders from the
market microstructure literature (Evans and Lyons, 2002; King et al., 2013).
We will elaborate more on this point in the conclusions.

The cumulative impact depicted in Fig. 7 depends on the unconditional
covariance of the structural errors. If we replace the latter with the condi-
tional covariance matrix we obtain a time dependent IRF function Θh,t. The
results of Fig. 8 show that the cross cumulative impact of price and demand
shifts dramatically its magnitude and direction over time, as a consequence
of the fact that the conditional correlation of the structural errors changes its
direction from negative to positive under specific circumstances and in par-
ticular when exogenous shocks occur. In particular, we see that the impact
of demand shocks on price variations is often negative. As we explain in the
next section, this result might be explained as a reaction of market makers
to liquidity trading.

6 Conclusions

Using high-frequency transaction data on the EUR/USD market in 2016, we
estimate a SVAR-GARCH-DCC model which shows that there is a positive
simultaneous effect of the exchange rate variation on demand and vicev-
ersa. After adjusting for the negative correlation of the structural errors, the
cumulative effect of a price shock on demand turns out to be negative. In
particular, our estimates imply that a positive price shock worth one uncondi-
tional standard deviation (which is equal to 5.23 cents based on the GARCH
estimates) triggers on average, within the next 2 hours, net additional sell
orders worth 4.6 million Euros, which is 12% of the standard deviation of
zt. The cumulative effect of a demand shock on price is instead positive.
In particular, a demand shock worth one unconditional standard deviation
(which is equal to 65 million Euros based on the GARCH estimates) triggers
on average, within the next 2 hours, a positive price variation of 0.59 cents,
which represents 12.6% of the standard deviation of ∆pt.

The reduced form VAR coefficients explain only a tiny fraction of the
volatility of endogenous variables. This is by no means a surprise because
we are dealing with a highly liquid market, where we expect that lagged
effects are either negligible or non significant. In particular, a negligible
price impact of past demand shocks is what we find. Instead, we find a
more pronounced but non significant impact of past price shocks on demand,
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which is consistent with heterogeneous speculators who try to react as fast
as possible to price shocks but may do so with some delay and in addition
are forced by the microstructure of the market to split their trades over time.

The stability analysis performed on the VAR coefficients shows no signs
of structural breaks in the price equation. This result is in line with the
model of Sec. 2 which suggests that price is only indirectly affected by the
heterogeneity of speculators through the shifts of demand itself. Instead
the results for the demand equation are different depending on the measure
employed. Thus the claim, typical of HAMs, that demand is directly affected
by the shifting expectations of heterogeneous speculators and their changing
participation to the market, which should shift the magnitude of the VAR
coefficients over time, is not unequivocally vindicated by the data. On the
other hand, this result lends some support to our estimation approach which
is based on fixed VAR coefficients.

Finally, our results suggest that one important source of heterogeneity in
demand might be missing from the model described in Sec. 2. It is not easy to
justify that the structural price and demand shocks are negatively correlated
if we assume that speculators are the only source of demand. Indeed, the
common factor influencing at the same time both price and demand shocks is
the exogenous flow of information, and any piece of information that is likely
to raise / lower price is also likely to raise /lower the demand of speculators.
A reasonable explanation is that the model of Sec. 2 overlooks the role
of noise traders. From this point of view, it is interesting to observe that
allowing for the negative correlation of structural errors makes the market
more stable since the price adjusts less to demand shocks and the demand
curve takes a negative inclination. This stabilizing role is exactly the one
assigned to noise traders from the market microstructure literature (Evans
and Lyons, 2002; King et al., 2013), following the original intuition of Black
(1986).

Indeed we must take into consideration the fact that many of the transac-
tions we observe on the EBS platform occur because dealers wish to clear the
trades of their customers according to the well known “hot potato” scheme.
These transactions are likely to appear as exogenous demand shocks in our
estimations to the extent that they don’t result from the speculative behav-
ior we assume in our model. The alternative hypothesis that demand shocks
might come from better informed traders seems to be rejected by the fact
that in the latter case the reaction of a rational market maker would be to
raise and not to lower prices as we observe. Instead, lowering (raising) the
price is rational for the market maker, if the buyer (seller) is considered to
be uninformed, in order to prevent liquidity based speculation to catch on
(Vitale , 2000; Jeanne and Rose, 2002). This supposed behavior of the mar-
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ket maker would provide an explanation for the result mentioned at the end
of Sec. 5, that the impact of a positive demand shock on price variations,
although positive on average, turns out to be negative in many periods. We
might speculate that in those periods noise trading prevails on the market.

We thank the participants to the International Conference “Minsky at 100”, held

in Milan on December 16th-17th 2019, for their useful comments. All the usual

disclaimers apply.

A Identification conditions and estimation pro-

cedure

It is known that, if the identification conditions based on conditional het-
eroskedasticity hold, the solution is unique up to a reordering, change of
sign and renormalization of the columns of A0 (Rigobon, 2003; Ehrmann et
al., 2011; Lewis, 2018). This means that we need additional information to
identify the structural coefficients of the model.

In order to see why this is necessary, let’s start from a generic bivariate
simultaneous system:

xt = a yt + ε0,t (A.1)

yt = b xt + ε1,t (A.2)

where xt and yt are observed variables and ε0,t and ε1,t unobserved errors.
After exchanging the order of the equations, the system can be rewritten
equivalently as follows:

xt =
1

b
yt + ε0,t (A.3)

yt =
1

a
xt + ε1,t (A.4)

Indeed, since we don’t observe the errors, we cannot distinguish between
ε0,t and ε1,t, between ε0,t and ε′0,t = ε0,t

a
or between ε1,t and ε′1,t = ε1,t

b
. From

the two equivalent formulations we obtain the same reduced form:

xt = θ0 yt + ε0,t (A.5)

yt = θ1 xt + ε1,t (A.6)

Following Rigobon (2003), we assume that there are two different regimes
s = 0, 1 for the variance of ε0,t and ε1,t. In this case the system (A.1)-(A.2)
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satisfies exactly the order condition under the assumption that ε0,t and ε1,t are
uncorrelated under each regime. In particular, a and b satisfy the following
couple of equations:

a =
w0,1,s − w1,1,sb

w0,0,s − w0,1,sb
s = 0, 1 (A.7)

where, under each regime, w0,0,s, w1,1,s, w0,1,s are the variances and covari-
ance of xt and yt, which can be estimated from the data. In order to obtain
(A.7), these estimates are equated to their theoretical counterparts which are
on their part obtained from the following reduced form solutions:

xt =
ε0,t + ε1,ta

1− ab
(A.8)

yt =
ε0,tb+ ε1,t

1− ab
(A.9)

From the ordering (A.3)-(A.4) we obtain a different reduced form solution:

xt =
(ε0,tb+ ε1,t) a

1− ab
(A.10)

yt =
(ε0,t + ε1,ta) b

1− ab
(A.11)

Nevertheless, subjecting (A.10)-(A.11) to the same algebric manipula-
tions of (A.8)-(A.9), it’s possible to show that a and b still satisfy the equa-
tions (A.7).

Equating the r.h.s. of the system (A.7) we obtain a quadratic equation
which yields two distinct real and finite solutions for b when the following
holds(Rigobon, 2003):

w0,0,0w0,1,1 − w0,0,1w0,1,0 6= 0 (A.12)

If we solve the equations (A.7) for b we obtain instead the following
system:

b =
w0,0,sa− w0,1,s

w0,1,sa− w1,1,s

s = 0, 1 (A.13)

Equating the r.h.s of these equations it’s easy to check that, if b∗ is a
solution for (A.7), then a∗ = 1

b∗
is a solution for (A.13). This shows that the

two solutions obtained from either (A.7) or (A.13) correspond to the values
of the reduced form parameters θ0 and θ1 of eqs. (A.5)-(A.6), so that only
the latter are identified while a and b are not.

Most of the existing literature addresses this problem by imposing in-
equality restrictions on the coefficients of the model (Ehrmann et al., 2011;
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Herwartz and Lütkepohl, 2014; Lütkepohl and Netšunajev, 2014; Lanne and
Luoto, 2020). In our case, we can show that the constraint imposed by the
model (22)-(23) on the reduced form coefficients allows the identification of
one of the two structural coefficients. In order to illustrate this point, let’s
write in vector form the two ways in which the reduced form errors of the
model (22)-(23) can be written:

ut = A0 εt

A0 =

[
1 1

γ0
− ω

− 1
γ0

1

]
(A.14)


u∗t = A∗0 εt

A∗0 =

[
1 − 1

γ0
γ0

1−γ0ω 1

]
(A.15)

Now let’s suppose that θ0 and θ1 are the reduced form coefficients of either
A0 or A∗0. This yields the following two systems: θ0 = ω − 1

γ0

θ1 =
1

γ0

(A.16)


θ0 =

1

γ0

θ1 =
γ0

γ0ω − 1

(A.17)

Let’s solve the two systems for the structural parameters. In the first
case, we obtain:  ω = θ0 +

1

θ1

γ0 = θ1

(A.18)

In the second case instead we obtain:
ω = θ0 +

1

θ1

γ∗0 =
1

θ0

(A.19)

Thus we see that ω is identified indipendently from the ordering of the
system (22)-(23).
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In order to obtain the identification conditions similarly to Rigobon (2003),
we write explicitly the reduced errors (A.14):

u0,t =
γ0 ε0,t + (γ0ω − 1) ε1,t

γ0(2− γ0ω)
(A.20)

u1 =
ε0,tγ0 + ε1,t

2− γ0ω
(A.21)

Considering that E [ε0,t ε1,t] = 0, the reduced form covariance matrices
are

Ws =
1

(γ0ω − 2)2

[
σ2

0,s +
(γ0ω−1)2σ2

1,s

γ20
γ0σ

2
0,s +

(γ0ω−1)σ2
1,s

γ0

· σ2
0,sγ

2
0 + σ2

1,s

]
s = 0, 1

(A.22)
Since the model satisfies the order condition for identification as above,

the estimates of the parameters can be obtained by solving the following six
moment conditions:

Ŵs ≡
[
w0,0,s w0,1,s

· w1,1,s

]
= Ws s = 0, 1 (A.23)

These conditions yield the following couple of equations:

w0,0,sγ
2
0 − w1,1,s

(γ0ω − 1)2 − 1
=

(w0,0,sγ0 − w0,1,s) γ0

(γ0ω − 1) (γ0ω − 2)
s = 0, 1 (A.24)

If we solve the eqs. (A.24) for γ0 we obtain, for each regime, two solutions
for γ0:

γ0 =
1

2

w1,1,sω ±
√

4w0,0,sw1,1,s − 4w0,1,sw1,1,sω + w2
1,1,sω

2

w0,1,sω − w0,0,s

s = 0, 1

(A.25)
If we equate across the two regimes the r.h.s. of each of the two solutions

we obtain the following unique solution:

ω =
w0,0,0w1,1,1 − w0,0,1w1,1,0

w0,1,0w1,1,1 − w0,1,1w1,1,0

(A.26)

If we solve instead (A.24) for ω we obtain the following couple of equa-
tions:

ω =
w0,0,sγ

2
0 − w1,1,s

(w0,1,sγ0 − w1,1,s) γ0

s = 0, 1 (A.27)
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By equating the two r.h.s. of (A.27) we obtain a quadratic equation in γ0

which, under appropriate conditions on Ŵs, yields two independent solutions
for γ0

12. It’s clear that the unique solution (A.26) for ω corresponds to the
one obtained from the reduced form coefficients above:

ω = θ0 +
1

θ1

(A.28)

and that the two solutions for γ0 (A.27) correspond to the two alternative
values obtained in the same way: γ0 = θ1

γ∗0 =
1

θ0

(A.29)

So, except in the unlikely case that θ1 =
1

θ0

, γ0 is not identified.

In order to distinguish between γ0 and γ∗0 the sequence of the estimation of
the equations matters. In fact, we see that if we wish to estimate γ0 according
to the ordering (A.14) of the system (22)-(23), we have to maximize firstly
the likelihood of the second equation, i.e. the demand equation. We must
follow instead the reverse order if we wish to obtain the other estimate γ∗0 .

Since we know that γ0 and γ∗0 yield by construction the same value of the
likelihood, we choose to avoid the potential numerical precision problems of
estimating ω and γ0 directly according to one or another of the two orderings
(A.14) or (A.15) and begin estimating θ0 and θ1 instead. In detail, we take
the following steps (in parentheses we report the likelihood obtained at the
corresponding step):

1. Estimate the VAR (33) where ∆pt is ranked as first and zt is ranked as
second dependent variable

2. Estimate equation-by-equation the bivariate GARCH model (36) on
the reduced form errors of the VAR model, i.e. set θ0 = θ1 = 0 (L(θ̂) =
−114, 441.40)

3. Use the GARCH parameters obtained under step 2 as starting values
and maximize the likelihood of the structural residuals of each equation
to obtain the estimates θ̂0, θ̂1 and the updated GARCH parameters
(L(θ̂) = −110, 013.97)

12It’s possibile to show that (A.26) and (A.27) are obtained also for the alternative
reduced errors (A.15).
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4. Use the parameter values obtained under step 3 as starting values for
the maximization of the bivariate loglikelihood (35) (L(θ̂) = −109, 983.50)

5. Compute the estimates ω̂ and γ̂0 according to the ordering (A.14): these
are the ones reported in the main text, see Eqs. (39) -(40) (L(θ̂) =
−109, 983.50)13

6. Finally, compute the estimates ω̂ and γ̂∗0 , according to the ordering
(A.15) (L(θ̂) = −109, 983.50)14

The results obtained under step 6 are as follows:

h0,t = 0.00011
(0.00002)

+ 0.16961
(0.02008)

u0,t−1 −
1

2629.79
(0.00000)

u1,t−1

2

+ 0.79030
(0.02030)

h1,t−1 (A.30)

h0,t = 75.3427
(4.50189)

+ 0.21843
(0.01308)

u1,t−1 −
1

0.00467
(0.00007)

− 1
2629.79
(0.00000)

u0,t−1


2

+ 0.76523
(0.00003)

h2,t−1

(A.31)

From the comparison of eqs. (A.30)-(A.31) with (39)-(40) we see that the
value of ω̂ is identical, as we expected from the previous arguments, while
the value of γ̂∗0 is much larger than the value of γ̂0 reported in the main text.

As explained above, the current literature tries to overcome this source
of indeterminacy relying mainly on restrictions imposed on A0. For instance,
if we deal with a standard demand-supply system, we might impose sign
restrictions on the structural coefficients which translate into sign restrictions
of the reduced form coefficients, making the former identifiable. In our model,
the only theoretical restriction of this sort we might think of is the positivity
of the adjustment coefficient in the price equation, i.e.

ω − 1

γ0

> 0 (A.32)

which is strongly supported by our knowledge of how market makers
adjust prices. This constraint could have been informative if one of the

13 In particular we employ a variety of procedures which yield identical estimates: firstly
we compute jointly ω̂ and γ̂0 conditioned on the value of the GARCH parameters obtained
under Step 4; secondly, we perform a joint maximization of all the parameters; thirdly, we
compute jointly ω̂ and γ̂0 conditioned on the value of the GARCH parameters obtained
under Step 2.

14We employ the same procedures of the previous step and the estimates are identical
across them as well.
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two reduced form coefficients was negative and the other was positive. But
unfortunately this is not the case with our estimation.

Alternatively, researchers have proposed to identify equations by suppos-
ing that the structural shock contributing most to the innovations of a given
variable is the shock of interest for that variable (Lewis, 2018). This approach
runs the risk of being circular, because it is very likely to end up identifying
the residuals of the equation where, say, price is the dependent variable as
the structural shock of the price equation in (16), thus circumventing the
problem.

The common denominator of the different approaches in the literature
is that they do not provide more than plausible arguments to identify the
“right” ordering of equations15. Indeed, if the issue is one of forecasting the
response of dependent variables to structural shocks, this identification is
unimportant since the IRFs depend only on the reduced form coefficients θ0

and θ1. It might become important in those contexts where the response to
a policy shock is of interest, and thus we must know which is the structural
error corresponding to a policy shock. Although this is not our case, never-
theless it is somewhat disturbing that we end up with two different estimates
of γ0 which are orders of magnitudes distant one from the other. Thus we
venture to advance two plausible arguments in favour of the estimate we
report in the main text.

The first argument relies on the magnitude of the coefficients. Taking
into consideration that the unconditional standard deviations are respec-
tively σ(∆pt) = 0.04661 and σ(zt) = 37.90 and considering the two alterna-
tive estimates of γ0, we obtain the following two alternative values for the
instantaneous response of zt to a price shock equal to σ(∆pt):

zt = γ0 × σ(∆pt) = 10, 84

z′t = γ′0 × σ(∆pt) = 121, 76

We see that the first value is worth 28% of σ(zt), while the second one is
worth more than three times σ(zt). We consider the second one to be the less
plausible value since it entails that the average response of zt to an average
price shock is much larger than the average volatility of zt itself.

The second, possibly more rigorous, argument relies on the correlation
between the structural errors obtained from our model and those obtained
from a restricted counterpart which uniquely identifies the ordering of the
equations. To begin with, we observe that the only possible zero restriction

on A0 is θ0 = ω − 1

γ0

= 0, while no zero restrictions can be made on A∗0.

15For a discussion see Lewis (2018)
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Thus the standard SVAR model estimated adopting the restriction θ0 = 0
uniquely identifies the structural errors of the equation where ∆pt occurs as
dependent variable, as those of the price equation, i.e. the first equation in
(16). In fact the equivalent reordering of the equations is not possible in this
restricted model. Let’s denote the structural residuals of the price equation in
the standard SVAR estimation just described as ε∆pt . In the ordering (A.14)
the price equation is the first one, while in the ordering (A.15) it is the second
one. Let’s denote the structural residuals of the first equation in (A.14) as
ε′∆pt and those of the second equation in (A.15) as ε′′∆pt . Correspondingly,
let’s denote the structural residuals of the second equation in (A.14) as ε′zt
and those of the first equation in (A.15) as ε′′zt . Since the structural residuals
are the same for both orderings, of course we have that ε′′∆pt = ε′zt . Then we
can identify the “correct” equation ordering in the unrestricted model as the
one which yields the highest correlation of the assumed structural residuals
of price equation (i.e. either ε′∆pt or ε′′∆pt = ε′zt) with the structural residuals
which are for sure those of the price equation in the restricted model (ε∆pt).
The values of the Pearson coefficients are respectively ρ(ε∆pt , ε

′
∆pt

) = 0.95 and
ρ(ε∆pt , ε

′′
∆pt

) = 0.02 suggesting that the more reliable estimate of γ0 is the
one reported in the main text. Indeed the estimate of γ0 which is obtained
from the restricted SVAR estimation is very close to the one in Eq. (40).
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Figure 2: Time series plots
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Figure 3: VAR cumulative impulse response functions
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(a) (b)

(c) (d)

Figure 4: Empirical fluctuation processes of the VAR residuals for zt. The
boundaries (red horizontal line) are drawn for α = 0.05. The vertical blue
lines correspond to a set of “critical” days as described in the text.
.
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Figure 5: SVAR-GARCH cumulative impulse response functions
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Figure 6: GARCH-DCC filters. The vertical red lines correspond to a set of
“critical” days as described in the text.
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Figure 7: SVAR-DCC-GARCH cumulative impulse response functions (only
cross effects displayed)

Figure 8: Time dependent IRF function Θh,t with h = 24 (only cross effects
displayed). The vertical red lines correspond to a set of “critical” days as
described in the text.
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