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Abstract

This paper, considering regional disparities in climate change and policy impacts, highlights the need for a

multi-regional level modelling that accounts for non-identical socio-economic and environmental dynamics at

the sub-national level. Through a systematic literature review, we aim to identify and summarise heterogeneous

approaches and research’s focus from existing literature concerning multi-level and multi-regional models used

to address sustainability issues. We identify the most relevant themes, trends and topics investigated by the

papers for which multi-level models have been used. While environmental and ecological issues are frequently

addressed by these models, social dynamics are not particularly investigated and little to no interest is devoted

to regional-national links. From the methodological perspective, most of the computational models employed

utilise static systems (primarily Input-Output and CGE) and dynamic Integrated Assessment Models (IAMs).

The paper provides a welcome basis for how multi-level models can contribute to addressing sustainability

issues in economic research.

Indeed, national areas deal with non-identical climate shocks and are characterised by inconsistent socio-

economic dynamics. Through an analysis of the current literature, of relevant papers concerning multi-level and

multi-regional models, and of analyses spanning across multidisciplinary subjects, the most relevant themes,

trends and topics are shown. This examination shows how social dynamics are not particularly investigated in

the considered papers, and little to no interest is devoted to regional-national links. Moreover, this literature

exploration highlights that most computational models employed utilise IAMs and static systems (primarily

Input-Output and CGE) and that the interest concerning ecological economics related issues, has been growing

in the past years.

Keywords— Sustainability; Energy Transition; Environment; Multi-level; Multi-regional; Climate Policy; IAMs,

I-O; CGE; Ecological Economics
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1 Introduction1

Socio-economic systems are outstanding examples of “complex adaptive systems” (Giampietro et al., 2018), char-2

acterised by endless interaction and co-evolution between human societies and the ecological systems in which3

they are embedded. Drawing on foundational contributions in Ecological Economics (Georgescu-Roegen, 1971),4

this perspective emphasises that economic processes are not autonomous, but materially grounded in and con-5

strained by biophysical processes. These systems are characterised by emergent properties, non-linear feedbacks,6

multi-level interactions, and historical path dependencies, all of which challenge reductionist or single-scale mod-7

elling approaches (Reinert et al., 2023). Crucially, spatial and temporal scales influence how sustainability is8

conceptualised (namely, the capacity of a system to maintain its functions over time) and how transitions are9

judged (specifically, who gains and who bears the costs during a change of state). While sustainability raises10

the question of durability under ecological and social constraints, transition dynamics pose inherently political11

questions about distribution, timing, and geographical impacts. As such, analysing socio-ecological systems re-12

quires modelling approaches that can represent the interactions, tensions, and alignments between nested levels13

of organisation: local, regional, national, and even global. A multilevel perspective is thus not only analytically14

necessary to capture the complexity of coupled systems, but also essential for informing governance mechanisms15

that are context-specific, adaptive, and socially just.16

From an environmental viewpoint, the consequences of climate shocks are intensifying, both in frequency and17

magnitude, with profoundly heterogeneous spatial effects. These disruptions are not homogeneously distributed18

across the globe; rather, they reveal geographically specific dynamics shaped by local ecological conditions and19

systemic vulnerabilities. In the Arctic, for example, rising temperatures are accelerating permafrost thaw, altering20

hydrological cycles and releasing large quantities of methane, thus creating dangerous feedback loops (Schuur et21

al., 2015; Schuur et al., 2022). In the Amazon Basin, increasing temperatures and shifting precipitation patterns22

are contributing to forest dieback and biome destabilisation, threatening global carbon regulation (Boulton et al.,23

2022). Meanwhile, in the Sahel region, prolonged periods of drought and erratic rainfall patterns are driving de-24

sertification processes, reducing vegetation cover and altering regional albedo (Yang et al., 2022). In temperate25

regions, such as parts of Central Europe, shifts in seasonal patterns and more frequent extreme weather events26

(such as floods or late frosts) are disrupting long-standing ecological equilibria, with cascading effects on soil27

stability, water availability, and biodiversity. These spatially heterogeneous impacts underscore the need for mod-28

els that can account for multi-scalar environmental processes, as well as the cross-scale feedbacks that shape the29

resilience or fragility of ecosystems in the context of accelerating climate change (Doblas-Reyes et al., 2021).30

Beyond biophysical disruptions, the socioeconomic consequences of climate change are deeply stratified,31

shaped by the vulnerability, resilience, and institutional capacities of affected populations (Felice 2018). Climate32

shocks do not act upon a homogeneous dimension; rather, their impacts are mediated through pre-existing in-33

equalities in wealth, access to resources, infrastructure, and governance (Islam and Winkel, 2017; Markkanen34

and Anger-Kraavi, 2019). As such, poorer populations (particularly in low- and middle-income countries) are35

disproportionately exposed to climate-related hazards while possessing fewer means of adaptation or recovery36

(Hallegatte et al., 2020; Rentschler et al., 2022). For instance, the increasing recurrence of droughts in the Horn of37

Africa has led to acute food and water insecurity, with devastating effects on pastoralist communities whose liveli-38

hoods depend on climate-sensitive ecosystems and who lack robust infrastructural or institutional buffers (Cooper39

et al., 2019). In contrast, in Southern Europe, prolonged heatwaves and altered precipitation patterns (such as40

those observed in Spain and Italy) have intensified water scarcity, reduced agricultural productivity, and increased41

energy demands for cooling, placing mounting pressure on public services and rural economies (Toreti et al.,42

2019). Even in high-income countries, climate disruptions exhibit socio-spatial asymmetries. Recent extreme43

flooding events in Germany and Belgium illustrate how climate risks transcend income boundaries, particularly44
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when intersecting with infrastructural deficits or land-use legacies (Koks et al., 2021).45

Within-country disparities are equally salient: in the United States, sea-level rise and saltwater intrusion pose46

acute threats to coastal urban centres like Miami, while inland agricultural regions such as California’s Central47

Valley face chronic drought and aquifer depletion, endangering the livelihoods of migrant workers and small-scale48

farmers (Stewart et al., 2020). Similarly, in China, pronounced regional differences amplify climate vulnerability.49

Coastal mega-cities like Shanghai and Guangzhou are increasingly exposed to sea-level rise and typhoon risks,50

while the country’s arid northern provinces (such as Inner Mongolia and Ningxia) struggle with desertification,51

water shortages, and declining agricultural output. Rural areas in western China often lack the infrastructural52

resilience and state support available in more affluent eastern regions, exacerbating rural-urban divides in adaptive53

capacity (Renaud et al., 2015; Lei et al., 2016). These examples demonstrate how climate change amplifies54

existing social and spatial inequalities, underscoring the need for multiscale modelling approaches that can capture55

the diverse interactions between environmental hazards and socio-economic vulnerabilities at local, regional, and56

national levels. Addressing sustainability transitions demands models that go beyond aggregate representations,57

recognising that policies must respond to context-specific risks and adaptive capacities rather than relying on58

uniform solutions that risk deepening inequality (Mercure et al., 2016).59

In the current study, we aim to provide a comprehensive critical review of the existing literature on multi-60

system, multi-scale and multi-dimensional modelling for sustainability transitions, identifying the key themes61

addressed, methodologies applied, and their respective strengths and limitations. We seek to outline future direc-62

tions for the development of more refined modelling approaches capable of dealing with spatial heterogeneity and63

social complexity. We also draw on the lens of Post-normal Science (Funtowicz and Ravetz, 1990; Kvacic and64

Funtowicz, 2024), which advocates for the inclusion of “extended peer communities” and transdisciplinary knowl-65

edge in addressing high-stakes, uncertain, and value-laden problems such as sustainability transitions (Pereira and66

Saltelli, 2017). While the integration of societal actors into model development and policy design is desirable,67

we also acknowledge the real-world constraints: data availability, limited time for participatory processes, diver-68

gent priorities among stakeholders, and the growing computational demands of complex, spatially explicit models.69

These challenges highlight the trade-offs and methodological decisions that must be confronted to make multiscale70

modelling both scientifically robust and socially relevant (Accetturo et al., 2022).71

This paper is structured as follows. Section 2 introduces the main concepts of multi-level models, focusing72

in particular on how sustainability challenges and climate-related impacts are addressed within these frameworks.73

In order to ease the review, we complement the analysis with the list of abbreviation in the Appendix (Table A.1).74

Section 3 outlines the methodology employed for the literature review, including the data sources and criteria75

used for selecting and analyzing relevant studies. Section 4 presents the main results, identifying key trends,76

thematic focuses, methodological approaches, and knowledge gaps in the existing literature. Finally, Section 577

offers concluding reflections and suggests future directions for developing models better equipped to address the78

multi-dimensional and multi-scale nature of sustainability transitions.79

2 Theoretical concepts and current models80

Understanding and governing sustainability transitions requires models capable of capturing the inherent com-81

plexity of socio-ecological systems. In this context, three intertwined concepts have gained increasing relevance:82

multi-dimensional, multi-scale, and multi-system models. Multi-dimensional models aim to go beyond purely83

economic variables by incorporating environmental, social, institutional, and cultural dimensions of change, re-84

flecting the plurality of values and objectives involved in transitions by respecting planetary boundaries (Raworth,85

2018; Finstad and Andersen, 2023; O’neill, 2024). Multi-scale models address the fact that sustainability chal-86

lenges unfold across both temporal and spatial hierarchies where local, regional, national, and global dynamics87

3



interact in non-linear and path-dependent ways (Aragão and Giampietro, 2016). In our review, we primarily focus88

on spatial scales, particularly the often-overlooked subnational level, where policy interventions are implemented89

and experienced (Distefano et al., 2025). Multi-system models, finally, are those that explicitly represent interac-90

tions between distinct but interdependent systems—such as energy, food, land, water, and social systems (whose91

feedbacks shape transition dynamics and trade-offs) (Löhr and Chlebna, 2023). The System of Systems (SoS)92

approach has a long tradition, and it is a problem-solving methodology first elaborated by engineers and manage-93

ment scientists (Raz et al., 2024). This approach recognises that changes or interventions in one subsystem can94

have cascading effects on others, thus calling for a systemic perspective (Sterman, 1994; Schot and Kanger, 2018).95

These concepts reflect an emerging paradigm in sustainability science that rejects oversimplified, reductionist ap-96

proaches in favour of integrative frameworks. They also highlight the need for policy-relevant models capable of97

representing spatial diversity, systemic inter-dependencies, and the plurality of development pathways in the face98

of accelerating environmental change (D’alessandro et al., 2020; Andersen and Geels, 2023).99

To further broaden our research and include as many papers as possible, while remaining coherent with the100

purpose of this article, we gather both terms (multi-dimensional and multi-scale) under the umbrella term "multi-101

level". As described by Giampietro and Mayumi (2000) multi-dimensional and multi-scale modelling approaches102

are often referred to as "multilevel integrated analysis". Hence, again, multi-level in this paper is used as an103

overarching category encompassing these concepts. When necessary, we will specify which of these dimensions104

is being explicitly addressed. These models have fallen under the Integrated Assessment Models (IAM) category,105

therefore, throughout this work, and in our query, we will refer to these models as IAMs.106

Figure 1: Number of works per publication year.

Source: Authors’ elaboration based on WoS.

Figure 1 illustrates the temporal evolution of the selected publications of the types of multi-level models107

developed over time, revealing a rapidly expanding discipline, particularly over the past decade. Three distinct108

phases in the development of multi-level modelling applied to socio-environmental issues can be identified. The109

first, a “latency phase” (1998–2008), is characterised by a very low number of publications, typically no more110

than one or two per year, except for 2003. This suggests that the field was still in its embryonic stage, marked111

by pioneering but sporadic contributions and the absence of a consolidated research community. This is followed112

by an “initial growth phase” (2009–2016), during which the number of studies increased more consistently. This113

period likely reflects the progressive establishment of methodological foundations and the growing recognition of114

multi-level as well as IAMs models as effective tools for tackling complex sustainability challenges. The most115
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recent “acceleration phase” (2018–2025) has seen a marked surge in academic output, with publication peaks116

in 2020, 2021, and a record high in 2024. This sharp rise can be attributed to several converging factors: the117

mounting urgency of global challenges such as climate change (Haunschild et al., 2016; Santos and Bakhshoodeh,118

2021), growing access to high-resolution and sub-national data, and advancements in computational capabilities119

that have made these models increasingly accessible and scalable (Li et al, 2024).120

In terms of modelling techniques, the early years (pre-2010) were dominated by Computable General Equi-121

librium (CGE) models, post-evaluation approaches such as Difference-in-Differences (DiD) and spatial regression122

analysis. From the early 2010s onwards, however, the field has undergone notable methodological diversification123

(see Figure 2). Multi-Regional Input-Output (MRIO) models, including advanced variants such as Multi-Scale124

MRIO (MSMRIO) and Multi-Scale Geographically Weighted Regression (MGWR), have become increasingly125

prominent. This shift reflects growing awareness of the global interconnectedness of supply chains and the need126

to trace embodied environmental impacts through international trade, such as carbon, water, and material foot-127

prints (Miller and Blair, 2022).128

This diversification has also contributed to the fragmentation and renewal within the broader family of IAMs,129

originally developed to integrate environmental and economic dynamics across systems. In their early iterations,130

IAMs were dominated by mainstream approaches, most notably the DICE model developed by Nobel Laureate131

Nordhaus (1993), which sought to translate environmental impacts into monetary terms for cost-benefit analysis.132

These models have been widely criticised for their reductive assumptions, especially in valuing ecosystems133

and long-term climate damage (Stern, 2007; Pindyck, 2017).134

The DICE model and the "neo-classical" IAMS model, for example, assume that climate-related damages are135

solely represented by a simplified function that links global warming to a decline in global GDP. This implies that136

climate impacts are translated exclusively in terms of loss of aggregate economic output, ignoring multiple social137

and ecological dimensions (Kalkuhl and Wenz, 2020). Moreover, these models assume that environmental losses138

and damages can be compensated by an increase in capital availability or economic efficiency, implying perfect139

substitutability between natural resources and economic production factors. Lastly, these models also assume140

gradual and linear climate impacts. Climate impacts are, therefore, globally homogeneous and do not include141

tipping points or spatial variability. Given these assumptions, ecosystems, biodiversity, but also more quantifiable142

measures as gender inequalities as well as income inequality, are not specifically quantified (Rao et al., 2017;143

Safarzyńska and van den Bergh, 2022)144

In response, an alternative and increasingly influential field has emerged under the label of Ecological Macroe-145

conomics (EM) (Victor, 2023).146

EM introduces a more comprehensive treatment of socio-ecological interactions by combining Environmen-147

tally Extended Input-Output (EEIO) frameworks—grounded in national accounting—with Stock-Flow Consistent148

(SFC) modelling to incorporate financial and material constraints, and System Dynamics (SD) to capture feedback149

loops, delays, and nonlinear dynamics across levels (Hardt and O’Neill, 2017). As shown in Figure 2, the number150

of EM publications has grown significantly since 2015, highlighting its rising relevance and adoption across mul-151

tiple disciplines. Together, these developments point to two complementary trends: specialization, as modelling152

tools are increasingly designed to address specific research questions and contexts; and hybridisation, reflecting153

a growing effort to bridge different epistemological and disciplinary approaches to more accurately represent the154

complex, multi-level dynamics of socio-ecological systems.155

In recent years, specialization has been developed by scholars with the purpose of tackling precise challenges156

(climate finance, resource depletion, or inequality). For instance, ABMs have been tailored to simulate household157

energy consumption (Castro et al., 2020) and low-carbon behaviour (Lamperti et al., 2019), while spatially ex-158

plicit EEIO frameworks are employed to assess regional environmental footprints (Jiang et al., 2020). This trend159

responds to critiques of "one-size-fits-all" models, acknowledging that socio-ecological systems require context-160
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specific tools to capture localised feedback (D’Alessandro et al., 2020), institutional constraints, or behavioural161

heterogeneity.162

On the other hand, hybridisation, has been emblematic concerning how scholars aim to integrate different163

methodologies across disciplines to overcome single-approach limitations. SFC models, tracking financial stocks164

and flows, have been paired with EEIO models to consider biophysical constraints, allowing for a more precise165

analysis of the interaction between monetary policies and ecological thresholds (Jackson and Victor, 2020). Simi-166

larly, SD has been combined with network theory to capture cascading disruptions in supply chains or ecosystems167

(Ghadge et al., 2021).168

Therefore, the interplay between specialization and hybridisation is particularly beneficial and synergistic.169

On one hand, specialised tools provide granular insights, while on the other, hybrid frameworks embed them170

within broader systemic interactions. For example, climate-economy models like EUROGREEN merge SFC171

macroeconomic structures with ecological modules while allowing sector-specific refinements (Distefano and172

D’Alessandro, 2023).173

3 Methodology and Data174

The construction of the sample of scientific articles for this analysis was based on a rigorous, transparent and multi-175

stage selection process, aimed at identifying the most relevant contributions in the field of multi-regional and multi-176

level modelling. This process is inspired by established bibliometric methodologies. Indeed, the lexical analysis177

methodology, supported by IRAMUTEQ, is well established in textual data processing (Camargo and Justo, 2013;178

Ratinaud and Déjean, 2009). This approach relies on lemmatisation and statistical clustering techniques (Reinert,179

1990) and has been widely applied in systematic literature reviews (Ramos et al., 2018). Our process was designed180

to ensure not only the consistency and relevance of the analysed body of literature, but also the replicability of our181

research procedure (see Table1 1).182

Table 1: Steps employed to select the relevant literature.

Step Description Key decision

1 Initial search on Web of Science (WoS) Multi-regional/Multi-level keywords

2 Filter by model type (e.g., CGE, I-O, IAM) Focus on relevant architectures

3 Filter by topic (e.g., climate, sustainability) Excluded irrelevant subjects

4 Preliminary sample (∼12,000 articles) Confirmed interdisciplinarity

5 WoS category filter (e.g., economics, environment) Reduced articles available

6 Manual abstract screening Ensured thematic consistency

7 Applied inclusion criteria (3 requirements) Rigorous selection

8 Full-text review for uncertain cases Guaranteed alignment with goals

9 Final sample (238 articles) Basis for lexical analysis

Our primary source of data is the Web of Science (WoS) database, selected for its broad interdisciplinary183

coverage, its indexing of high-impact scientific journals, and its widespread international use as a standard for184

evaluating research output across disciplines. This choice ensures a solid and recognised foundation for our185

dataset. The decision to only employ WoS as a database, while not considering Scopus nor the grey literature,186

1This table breaks down the nine steps we employed to finalize the corpus of literature used for this literature review.
Starting with an initial search on WoS, applying filters by model type and topic, and ending with a final sample of 238 articles
after rigorous screening and review. Key decisions at each step ensured interdisciplinary relevance and thematic consistency.
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was guided by methodological rigour and supported by bibliometric research. Mongeon and Paul-Hus (2016)187

showed that WoS and Scopus largely overlap in core journals, with Scopus adding mainly niche publications188

less relevant to the study of established multi-level modelling methodologies. The stringent selection criteria189

characterising WoS (Martín-Martín et al., 2018) ensure the high-quality, peer-reviewed focus essential for our190

analysis of modelling techniques. Grey literature was excluded following Mallet et al. (2016) and PRISMA191

guidelines (Page et al., 2022), as our review of methodological approaches prioritises peer-reviewed studies with192

documented rigour over broader but less standardised sources. However, we acknowledge certain limitations193

of this source: the WoS database includes only contributions published in WoS-indexed journals and excludes194

publications in books or other languages (Merli et al., 2018; Vadén et al., 2020). Our dataset comprises a selection195

of articles collected by WoS and published in international scientific journals between 1998 and 2025. The first196

selection goal was to gather a wide range of potentially appropriate articles. The research methods were conceived197

to include as many works as possible to minimise the risk of excluding potentially relevant papers. A detailed topic198

search has been performed within the WoS database, strategically combining different keywords to maximise199

papers coverage. This search strategy has been developed on two intertwined conceptual levels, providing a solid200

starting base.201

The first step aimed at identifying the relevant methodological approaches. To do so, the employed termi-202

nology used the following words: “multi-regional” and “multi-level”.2 These terms were chosen because they203

represent the conceptual core of our investigation, allowing us to capture the spatial dimension and integration204

between different scales of analysis (from local to global scale), a central aspect of our study. The second concep-205

tual step was aimed at specifying both the most popular model architectures and their main application areas. The206

first of these two layers was indeed conceived to search and highlight the most common models3 employed in the207

climate change-related multiregional analysis, and the input words were (Table 2).:208

• “Input-Output”,209

• “CGE” (Computable General Equilibrium),210

• “GCAM” (Global Change Analysis Model),211

• “Globiom” (Global Biosphere Management Model),212

• “Partial Equilibrium”,213

• “Agent-Based”,214

• “System Dynamic”.215

This selection represents the state of the art in economic and environmental modelling, covering a range from216

structural macroeconomic models to bottom-up models that simulate individual behaviour (Doole and Pannel,217

2013; Barkalova et al., 2017; Drechsler at al., 2022; Nuzi, 2023; Solano-Pereira et al., 2025). The third step,218

instead, aimed to analyse the relevant topics, hence the chosen words were:219

• “Climate Change”,220

• ‘Land Use”,221

• “Water Use”,222

• “Biodiversity, Environment”,223

2(To avoid missing data we also considered their plausible variations such as “multiregional” and “multilevel” or “multi
regional” and “multi level”, and similia.

3All models acronyms have been included in the appendix, Table A.1.1
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• “Sustainability”,224

• “Biodiversity”.225

These topics were chosen for their undisputed relevance in the contemporary scientific and political debate related226

to the challenges of sustainability (Tomislav, 2018; Kraft, 2021). The same process was then applied for IAM227

modelling.4 This term was then coupled with the most relevant IAM models (Weyant, 2017) and models resulting228

from broader research that paired "IAMs" and "Ecological Macroeconomics" as per Table 3. The combination229

of these keywords (Table 2) made it possible to construct a comprehensive and inclusive search query. This230

initial phase produced a large preliminary sample of around 12,000 scientific articles. This large number, while231

confirming the breadth and interdisciplinary nature of the topics covered, made subsequent refinement stages232

essential to isolate the truly relevant contributions. Given the heterogeneity and the size of the initial sample,233

an initial systematic filtering process was necessary to narrow down the field to the studies most relevant to234

the objectives of our research. We applied a filter based on the disciplinary categories defined by Web of Science235

(WoS Fields). This strategic choice allowed us to efficiently exclude entire bodies of literature that, although using236

homonyms of our keywords, belonged to irrelevant scientific contexts. For example, physics articles on non-linear237

“system dynamics”, or marketing works on “multi-level” were eliminated. Hence, the categories selected for238

our scope of investigation were: “Environmental Studies,” “Ecology,” “Environmental Sciences,” “Economics,”239

“Development Studies,” “Business Finance” and “Business” (Table ??).240

Table 2: Selection criteria employed to select the relevant literature.

Selection criteria Description

Methodology Multi-level; Multi-regional

Model employed Input-Output; CGE; GCAM; GLOBIOM; Partial Equilibrium; Agent-
Based; System Dynamics

Relevant topics Climate Change; Land Use; Water Use; Biodiversity; Environment;
Sustainability

WoS Fields Environmental Studies; Ecology; Environmental Sciences; Economics;
Development Studies; Business Finance; Business

Source: Authors’ elaboration based on WoS.

4The acronym "IAM" was used along with its plausible variations ("IAMs", "Integrated Assessment Modelling", "Integrated
Assessment Model", "Integrated Assessment Models").
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Table 3: Selection criteria employed to select the relevant IAM literature.

Selection criteria Description

Methodology IAM

Model employed Ecological Macroeconomics; MEDEAS; WILLIAM; EUROGREEN;

GEMMES; DICE; RICE; IF (International Future); WORLD-3; C-

ROADS; MINICAM; PGCAM; ICAM; GCAM; Imagine 1.0; Imag-

ine 2.0; ESCAPE; TARGET; AIM; MERGE; SFC; TIMES; E3; HUB-

BERT; AIM; FUND; UKIAM

Relevant topics Climate Change; Land Use; Water Use; Biodiversity; Environment;

Sustainability

WoS Fields Environmental Studies; Ecology; Environmental Sciences; Economics;

Development Studies; Business Finance; Business
Source: Authors’ elaboration based on WoS.

The application of these filters significantly reduced the number of articles, focusing on those published in241

academic journals central to the debate on economics, environment and sustainable development, and ensuring242

greater thematic coherence of the sample to be analysed. The final step of the selection process was the most243

qualitative, intensive and crucial. In this stage, we carried out a careful review of all articles resulting from the244

previous stage. The abstract was used as the first and fundamental indicator of a paper’s relevance. In all cases245

of uncertainty or when the abstract did not provide sufficient information, the article was read selectively or in246

full to determine its actual adherence to our criteria. To be included in the final sample, each article had to247

simultaneously and unequivocally meet the following three inclusion criteria: i) the papers must mention one or248

more defined models, ii) the study must focus on the linkage between regional and national scales, and iii) the249

papers must include socio-economic dimensions within their definition of multi-level. More precisely, the first250

criterion required the publications to be based on a well-structured, explicit and recognisable quantitative analysis251

model (e.g. CGE, MRIO, IAM etc.). This criterion was crucial to exclude purely theoretical articles, unsystematic252

literature reviews5, or papers that mentioned models only marginally without any actual empirical application.253

The aim was to focus on research that produced quantifiable and replicable results. Whereas for the second, the254

study had to analyse the impact of a certain phenomenon (e.g. a policy change, a climate event) in at least one255

specific geographical region. This criterion ensures the policy relevance of the selected works, as policy decisions256

require an understanding of impacts at different territorial scales. Lastly, the third criterion implies that for studies257

adopting a so-called “multi-level” approach, the selection required the analysis not to be limited to the economic258

or biophysical dimension alone. Explicit integration of social dimensions (e.g. distributional impacts on income259

inequality, changes in employment by sector or qualification, effects on household welfare or food security) was260

required. This criterion ensured that the concept of “multi-level” was interpreted in a broad and holistic sense,261

covering the different spheres of sustainability as defined by international agreements. This meticulous “funnel”262

review process resulted in a drastic but necessary reduction in the number of articles. The final selection resulted263

in a corpus sample of 238 articles. This corpus sample, although numerically small, is highly selected and forms264

the solid empirical basis upon which the entire analysis conducted in this paper is based (Table 3).265

5Systematic literature reviews have been included when they matched the three criteria aforementioned.
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Figure 2: Models employed in the analysed sample’s annual evolution and publication year. In this figure, models are
divided into seven categories. 1. Spatial refers to spatial regression analysis and includes papers using Spatial Regression and
Multi-scale Geographically Weighted Regression. 2. Static - I-O refers to Input-Output models and includes Environmental
Extended Input-Output analysis and multi-regional and multi-scale Input-Output. 3. Other static refers to other models that
are not included in the "Spatial", "Static - I-O" and "Static - CGE", categories and includes Global-to-Local-to-Global and
Difference-in-Difference. 4. Static - CGE, similarly, includes Computable General Equilibrium and Partial Equilibrium. 5.
Ecological Macroeconomics includes Stock Flow Consistent, System Dynamics, WILLIAM, WORLD-3, C-ROADS, E3, EURO-
GREEN, MEDEAS and lastly MERGE. 6. IAMs refers to neoclassical models: RICE, TIMES, UKIAM, Agent-Based Models,
AIM, DICE, FUND, GCAM, GLOBIOM, GROWTH, GUIDE, HUBBERT, IAM CGE, International Future, IMAGINE 1.0 and
IMAGINE 2.0. 7. Lastly, methodology refers to those papers addressing a literature review of a few models, highlighting the
advantages of the considered models. Source: Authors’ elaboration based on WoS.
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4 Results266

As mentioned, the sample selection provided 238 papers out of which 55 employ static models while 183 use267

IAMs.268

A comprehensive analysis of this result reveals several dominant thematic patterns while highlighting the269

existence of gaps regarding multi-level dynamics and social dimensions.270

In the 55 articles employing static models MRIO and CGE are the most used modelling techniques, as 36271

papers (65%) use these frameworks. These works, although methodologically sound, mainly adopt top-down272

perspectives and only 22% (12 papers out of 36) incorporate cross-scale interactions between local, regional, and273

national levels (Palazzo et al., 2017; Hertel et al., 2019; Sheykhha et al., 2022; Chen et al., 2023; Zhang et al.,274

2023; Rum et al., 2024 and others). The remaining 24 papers address social or institutional factors, though often275

as secondary considerations rather than central analytical components, and do not fully integrate social dynamics276

into the economic-environmental modelling (Diaz-Maurina et al., 2018; Sjöstrand et al., 2018; Buchhorn et al.,277

2023; Palm et al., 2019 and others).278

An interesting result is found regarding scale integration. While 41 papers (75%) claim multi-level analy-279

sis, only 9 studies (16%) operationalize this through explicit modelling of feedback mechanisms across scales.280

Amongst these 9 works, for instance, Palazzo et al. (2017) and Hertel et al. (2019) stand out as exceptions by281

systematically linking local stakeholder inputs with global economic models. The majority of the studies instead282

employ parallel multi-scale assessments, yet they do not model inter-scale dynamics, de facto generating what283

could be called "multi-scale illusion", the appearance without the substance of true cross-level integration.284

The results concerning treatment of social dimensions are equally interesting. Just seven papers include285

substantive social variables beyond aggregate employment statistics (Dubina et al., 2017; Garaffa et al., 2021;286

Yuan and Wang, 2021; Holscher et al., 2022; Chen et al., 2023; Zhang et al., 2023; Cunico et al., 2024). In287

this group two works stand out: Chen et al. (2023) demonstrates the potential of integrating migration data288

with economic resilience analysis, while Zhang et al. (2023) innovatively captures community perceptions of289

ecosystem services. However critical social factors including institutional arrangements, distributional impacts,290

and cultural contexts are yet underdeveloped in the analysed literature.291

IAM models show a wide employment of "macro top-down" approaches (50% of analyzed IAMs publica-292

tions). This trend consolidates a tradition of research focused on macroeconomic consistency and aggregate policy293

analysis, well represented in a vast body of the analyzed literature (Liu et al., 2018; Ciarli et al., 2019; Delzeit et294

al., 2020; de Bortoli et al., 2025). This approach, though correct in its own right, tends to largely ignore economic295

agents’ heterogeneity and local systems complexity, hence they risk to fail to coordinate on rational equilibrium296

outcomes (Kaplan and Violante, 2018; Hommes, 2021).297

On the other end of the spectrum "bottom-up approaches" are also represented. An emblematic example is298

showcased by ABM modelling. ABMs have been developed expressly to overcome the aforementioned limitations299

(Kukacka and Kristoufek, 2020). The fundamental added value of ABMs lies in their ability to represent a world300

populated by heterogeneous agents. Unlike CGE models, which are based on “representative agents” (e.g. a301

single consumer or a single company representing the industry average), ABM models simulate an ecosystem of302

individual and diverse actors (Hertel et al., 2019; Yilmaz et al., 2019; Bourceret et al., 2021; Wu et al., 2024).303

However, the strength of ABMs is also their greatest weakness. Their abundance of detail at the micro level304

makes it extremely difficult to “scale up”, hence, to link local dynamics robustly and coherently with economic305

and institutional structures at the macro level (Lippe et al.,2019; Niamir et al., 2020). Indeed, many selected306

articles are based as standalone case studies.307

However, social dimension dynamics investigations, still appear to be largely superficial. Only a quarter of308

studies (26%) go beyond the inclusion of standard economic variables to venture into a deeper social analysis309
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(Garaffa et al., 2021; Holscher et al., 2022; Cunico et al., 2024 and others). Even when included, the social310

dimension is often limited, although there are important contributions that attempt to overcome this limitation311

(Ciarli et al., 2019; Lippe et al., 2019; D’Alessandro et al., 2020; Distefano et al., 2023;O’Neill et al., 2024).312

However, institutional arrangements, norms, power relations and structural inequalities, remain almost always313

absent from the field of analysis.314

Furthermore, this brief review of the analysed literature remarks, as it will later be shown, two main limita-315

tions. First, the predominant methodological nationalism, as many works take the nation-state level as the primary316

and, sometimes only unit of analysis. Even when examining regional phenomena, although, some inter-regional317

analysis are performed (table 4), the majority of work mainly employ a unitary dimension approach that can either318

be at urban, provincial or regional level, yet lacks the multi-scale hierarchical dynamics between these jurisdic-319

tional levels. Secondly, the persistent disconnect between economic and social analysis leaves critical questions320

about policy impacts on vulnerable groups unanswered. Hence in this section, the results from the analysis of the321

selected body of scientific literature are presented and discussed. The methodological approach is twofold: first,322

the semantic and conceptual structure of the papers is explored through an advanced textual analysis, with the aim323

of mapping dominant themes and identifying significant gaps. Secondly, a deep analysis is conducted to trace the324

quantitative models employed. The integration of these two perspectives offers a comprehensive and critical view325

of the field of study, highlighting not only what the literature has investigated, but also, and more importantly,326

what it has been overlooked, being the most delicate and critical finding (Heymans et al., 2019).327

4.1 Lexicographical analysis of the corpus: emerging themes and semantic gaps328

In order to investigate the internal structure of the scientific discourse in our sample of studies, the software329

IRAMUTEQ was employed. This allows statistical analysis techniques to be applied to textual bodies (Jungell-330

Michelsson and Heikkurinen, 2022; Haynes and Alemna, 2022). Two complementary techniques were employed:331

Descending Hierarchical Classification (CHD) to identify thematic clusters and similarity analysis to visualise the332

network of interconnections between the most significant lemmas. CHD, (Reinert 1980, 1983), is a clustering333

method that performs a progressive partition of the text corpus into thematically homogeneous and maximally334

differentiated clusters. The algorithm analyses the co-occurrence of lemmas (basic forms of words) within homo-335

geneous text segments, clustering segments that share a similar and statistically significant vocabulary. The result336

is a dendrogram that visualises the hierarchical relationship between clusters, showing how the corpus breaks down337

into macro-themes and then into more specific sub-themes. The analysis of our corpus produced a stable and ro-338

bust classification, dividing 98.1% of the text into five distinct clusters, as illustrated in the dendrogram (table 4).339

The first and most fundamental division of the corpus separates cluster 4 and 5 from all others, highlighting a pri-340

mary distinction between research centered on climate targets, mitigation pathways and technological–economic341

assessments. The remaining four classes are further divided into two sub-groups: one (clusters 1 and 2) dealing342

with governance, adaptation, and spatial and regional assessments, and another (cluster 3) purely methodological.343

Table 4: CHD Dendrogram and relevant cluster identified

Table 4

Spatial analysis
and regional
assessment

Governance and
socio-environmental

management

Methodological
framework
and IAMs

Climate
targets

and mitigations
pathways

Energy systems
and economic

impacts

15.1% 13.8% 29.9% 18.0% 23.2%
Cluster 1 Custer 2 Cluster 3 Cluster 4 Cluster 5
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Table 4: CHD Dendrogram and relevant cluster identified

Table 4
Regional Sustainable IAM Degree Growth

Multi Socio LCA Emission Baseline

Spatial Adaptation Framework Target RE (Renewable Energy)

CGE Management Integrate Paris Fuel

Land Governance Approach Temperature Coal

China Institutional Indicator Mitigation GDP

National Development Uncertainty Limit Income

MRSUT Ecosystem Complexity Carbon Fossil

Interregional Transformation Quantitative Pathway Consumption

Urban Environmental MEDEAS Budget CCS

Provincial Climate Develop Overshoot Solar

I-O Economic Dynamic CDR Storage

MRIO Challenge Recommendation Co2 Wind

Trade Research Advance NZE Power

Municipality Transformative Climate NOx Employment

Grassland Finance Policy GHG Scenario

Flow Intervention Flexibility Reduction Revenue

Cultivate Cooperation modelling IAMs Health

PM2

Source: Authors’ elaboration based on WoS and elaborated with IRAMUTEQ.

4.1.1 Cluster 1: Spatial analysis and regional assessment344

This cluster represents the 15.1% of the sample and it is characterized by a spatially and application-oriented345

vocabulary. It includes terms such as “regional”, “multi”, “spatial”, “land”, “national”, "interregional", "urban",346

"provincial", "municipality", "China","I-O" "MRIO", "MRSUT", "CGE", "trade" and "flow". It reflects stud-347

ies adopting regional or sub-national approaches for environmental and economic assessments, often employing348

MRIO models or referring to specific case studies, particularly in China. The simultaneous presence of terms such349

as "I-O", "MRIO", "trade", and "flow" indicates a focus on economic interdependencies and material and energy350

flows between regions, while words such as "land", "cultivate" and "grassland",imply a strong connection with351

land use and agriculture, often in relation to bioenergy and territorial impacts. The inclusion of CGE suggests352

that some of this literature integrates spatial analysis with general equilibrium approaches. However, this cluster353

appears more oriented towards empirical application than towards methodological integration with complex IAM354

frameworks, and it lacks explicit consideration of scenario-building, uncertainty analysis, or the social distribution355

of impacts at the local level.356

4.1.2 Cluster 2: Governance and socio-environmental management357

This thematic cluster captures 13.8% of the total sample and focuses on institutional and policy-oriented lex-358

icon. The dominant headwords are “sustainable”, “socio”, “adaptation”, "governance", "institutional" "man-359

agement","transformation", "ecosystem", "climate", "finance", "intervention" and “cooperation”. It represents360

research focusing on governance and climate adaptation, describing environmental management practices and361
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institutional processes that enable or hinder sustainability transitions. This cluster captures conceptual and norma-362

tive discussions on policy design, institutional dynamics, and the policy instruments available to public authorities363

and territorial stakeholders, whilst maintaining qualitative policy analysis rather than quantitative modelling, as364

no models are mentioned. Once again, there is little integration with scenario-based or parameterized modelling,365

and the social distribution of climate impacts (across income groups, genders, or vulnerable populations) remains366

largely absent. The occurrence of the term "sustainable" is particularly significant, as it positions this body of work367

firmly within the broader sustainability discourse, indicating an explicit concern with long-term environmental,368

social, and economic viability. Similarly, the presence of "socio", typically used as a prefix in expressions like369

socio-economic or socio-environmental, suggests an awareness, at least at the conceptual level, of the interdepen-370

dencies between human systems and environmental change. Nevertheless, in the current literature, this integration371

remains rare. The emphasis on sustainability and socio-economic considerations does not typically translate into372

formalised, scenario-based, or parametrised modelling exercises.373

4.1.3 Cluster 3: Methodological frameworks and IAMs374

Cluster 3 covers 29.9% of the total analyzed sample, making it the major cluster. It includes terminology associ-375

ated with IAMs and methodological frameworks such as: "IAM", "LCA", "framework", "integrate", "approach",376

"modelling", "indicator", "uncertainty", "complexity", "quantitative". This set of terminology represents method-377

ological literature on IAMs, with references to specific platforms, frameworks such as MEDEAS and database378

as LCA. I also includes discussions of uncertainty, parametrization, and complexity. This cluster constitutes the379

conceptual core where the design, articulation, and interpretation of integrated models are defined. In this cluster,380

even though uncertainty and parameter sensitivity are well represented, there is less evidence of equity metrics and381

socially disaggregated modelling modules which might suggest that in the analyzed works socially comprehensive382

analysis of climate policy has not been prioritized.383

4.1.4 Cluster 4: Climate targets and mitigation pathways384

Cluster 4, which comprises 18.0% of the corpus, is centered on the terms concerning policy objectives and goals.385

For example "degree", "emission", "target", "Paris", "temperature", "mitigation", "limit", "carbon", "pathway",386

"budget","overshoot", "CDR" (Carbon Dioxide Removal) "CO2","NZE" (Net zero Emissions), "GHG". It repre-387

sents the literature that translates international climate goals—such as those in the Paris Agreement—into carbon388

budgets and emission-reduction pathways. Analyses here address both quantitative aspects, such as cumulative389

carbon budget calculations, and the technological and policy strategies required to meet these goals, including390

CDR and overshoot scenarios. Although IAMs are the main tools for generating such pathways, there is less sys-391

tematic use of CGE or I-O models to evaluate the economic and distributional implications of these trajectories.392

However, the works mainly address macroeconomic consequences of these policies implication. Nevertheless, the393

discussions of the material, territorial, and social sustainability of proposed mitigation solutions are marginal, and394

the distributive consequences of climate policies are rarely addressed.395

4.1.5 Cluster 5: Energy systems and economic impacts396

This fifth and last cluster encompasses 23.5% of the analyzed sample and focuses on energy systems, technolo-397

gies, and economic effects. The CHD analysis highlights the following words: "growth", "baseline", "renewable398

energy", "fuel", "coal", "GDP", "income", "fossil","consumption", "ccs" (Carbon Capturing and Storage), "solar",399

"storage", "wind", "power", "employment", "scenario", "revenue", "health" and "pm2". This research also ad-400

dresses co-benefits such as air pollution reduction and macroeconomic effects, measured in GDP or employment401
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terms. The recurrent appearance of the term employment is noteworthy, as it indicates that IAMs models (while402

predominantly focused on economic aggregates) do incorporate labour market effects into their projections. This403

suggests an entry point for a broader treatment of social dimensions within these modelling frameworks. However,404

the consideration of employment remains largely tied to its role as an economic variable, serving as a proxy for405

macroeconomic performance rather than as an indicator of labour conditions, job quality, or regional and sectoral406

disparities in employment outcomes.407

4.1.6 Comments on clusters results408

The analysis of these five clusters reveals a clear and well-defined thematic structure. Indeed, the dendogram409

highlights two major semantic categories. The first encompassing clusters 1, 2 and 3 is more oriented towards410

methodological institutional and territorial analysis. The proximity between the methodological cluster and the411

governance/adaptation cluster indicates that much of the methodological literature explicitly discusses policy im-412

plications and management tools, while the spatial/territorial cluster is positioned slightly more peripherally, serv-413

ing as a concrete application of broader frameworks. The second (clusters 4 and 5) focuses on climate targets414

and mitigation scenarios and strongly intertwines with technologies and their economic impacts. This division415

suggests a clear division between research that develops and discusses models and their policy relevance, and416

research that applies these models to define climate objectives and assess technological options.417

Despite the wide range of topics covered by the corpus and the particular attention devoted to climate targets418

and mitigation strategies and their alignment with international agreements, as well as technological and economic419

assessments (particularly of the energy sector), the social dimension of sustainability appears relevantly lacking.420

Apart from few terms, as "socio" in cluster 2, key terms for the analysis of inequality and social welfare are sys-421

tematically missing. Words such as inequality, GINI index, distribution, social welfare or equity (Clench-Aas et422

al., 2018; Barbalat and Frank, 2020; Bilan et al., 2020) do not emerge in the vocabulary of the corpus. These omis-423

sions are not trivial. It suggests that the literature analysed, although methodologically sophisticated in integrating424

regional and economic dimensions, tends to treat “society” as a homogeneous entity or, at best, is limited to aggre-425

gate indicators such as GDP or total employment (as per cluster 5). There is a lack of structured reflection on the426

distributional impacts of environmental and economic policies, e.g. on how the costs and benefits of these policies427

are distributed among different social groups, income categories or generations. This “distributional blindness” is428

a significant limitation, as policies perceived as unfair can generate social opposition and fail, regardless of their429

environmental effectiveness or economic efficiency (Maestre-Andres et al., 2019; Huber et al., 2020;Im, 2024).430

4.2 IAMs and static modelling literature431

As IAMS and static modelling techniques vary widely in terms of scope, complexity and temporal dynamics432

(Weyant, 2017,) so are the topics investigated by their literature. To highlight such dynamic, the same CHD433

analysis, previously described, has been performed separating the overall sample in two sub-samples. The first434

contains the 55 papers related to static models (table 5), whereas the second includes the remaining articles (183)435

regarding IAMs (table 6).436

On one hand static models (MRIO, I-O, CGE etc.) work within a limited temporal and systemic bound-437

aries and are designed to capture interactions within specific economic sectors, as evidenced by dominant terms438

like "trade," "regional," and "component" in their CHD clusters. Moreover, their analytical power stems from439

deterministic formulations with fixed parameters, making them particularly valuable for assessing short-term pol-440

icy impacts such as carbon pricing mechanisms or sectoral employment changes (Ward et al., 2019). However,441

this ability also represents their greatest limitation as they do not incorporate dynamic feedback loops or tempo-442

ral evolution of systems, hence, fundamentally missing the complex interdependencies characteristic of coupled443
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human-environment systems (Ferraro et al., 2018).444

On the other, IAMs deriving from dynamic systems theory, are specifically designed to capture time variant445

impacts by including feedback loops in their computational mechanisms (Cronin et al., 2018). Unlike their static446

counterparts, IAMs explicitly incorporate feedback mechanisms between economic activity, energy systems, and447

biogeochemical cycles, as documented by Weyant (2017). The CHD analysis reveals their distinctive lexicon,448

dominated by terms like "dynamic," "projection," and "policy," reflecting their core purpose of simulating long-449

term, cross-system interactions. However IAMs’ ability to capture feedbacks and long-term dynamics comes at a450

cost, as increased complexity and computational demands are significantly higher than their counterparts. Terms451

as "MEDEAS" and "decisions" underscores IAMS’ policy-oriented design, intended to inform strategic climate452

mitigation pathways.453

Moreover, the methodological approach differences are more clearly evident in their treatment of socio-454

economic dimensions. Interestingly, IAM clusters include broader institutional and adaptation-related terminology455

("institutional," "adaptation"), consistent with their whole-system perspective. However, even static models reveal456

unexpected social considerations through terms like "poverty" and "health," particularly in emission reduction457

policy analyses. Nevertheless, it must be noticed that the term poverty in the analyzed sample is often employed458

in reference to "energy poverty" rather than to address poverty in its social aspects.459

Other relevant differences are found in the geographic analysis of the two sub-samples. IAMs naturally oper-460

ate at global or continental scales as per "Europe," "Asia," and "federal" lexicon. This macroscopic view enables461

analysis of transboundary impacts and international policy coordination for the medium and long run (Riahi et462

al., 2017). Static models, conversely, provide finer spatial resolution, with terms like "urban" and "regional"463

highlighting their utility for local-scale decision-making with particular focus on short-term insights. Hence, the464

highlighted complementarity opens to potential strategic model coupling, where IAMs establish boundary condi-465

tions for static models to perform detailed sectoral analyses (Gilbert et al., 2018).466

This dynamic is further confirmed by the most commonly employed databases. IAM literature employs467

cross-national databases such as the World Input-Output Database (Nieto et al., 2020; Capellan-Perez et al., 2020;468

D’Alessandro et al., 2020; D’Alessandro et al, 2025 and others) or the IIASA (International Institute for Applied469

Systems Analysis) database (Rao et al., 2017; Yang et al., 2018; Tokimatsu et al., 2019 and others) often combined470

with the IPCC scenarios (Schleussner et al., 2016; Fuhrman et al., 2019; Lamb, 2024; Minx et al., 2024 and others)471

other commonly employed database are LCIA (Life Cycle Impact Assesment) (Tokimatsu et al., 2020; Georgiades472

et al., 2023, Mueller et al., 2024; de Bortoli et al., 2025), EXIOBASE (Pulido-Sánchez et al., 2022; Wiedenhofer473

et al., 2024). Static literature, instead often opts for regional I-O table (Horridge and Wittwer, 2008; Rokicki et474

al., 2021; Rum et al., 2024; Wei and Xu, 2024) or tends to isolate broader I-O tables as EXIOBASE and EORA475

(Bachmann et al., 2015; Guo et al., 2021; Rum et al., 2022 and others).476

Table 5: CHD Dendrogram and relevant cluster identified for static models

Table 5

Sustainability and
Decision making

Emission reduction
policies

MRIO CGE
Land use

and spatial
dynamics

20.9% 25.1% 15.4% 16.2% 22.4%
Sustainability Emission I-O CGE Land

Stakeholder Carbon Trade Regional Spatial

Decision Reduction System Model Cultivate

European Price MRIO Multi Efficiency
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Table 5: CHD Dendrogram and relevant cluster identified for static models

Table 5
Alternative Poverty Component Dynamic Grain

Integrate Domestic Illustrate Australia Differentiation

Support Consumption Flow Sinoterm Force

Vision Beijing Loop Economy Eco

Europe Revenue Program Impact Arable

Assessment Concentration Algorithm Capital Factor

Scenario Pm2 Approach Labor China

Framework Technological Simulation Poland ESSI

Climate Progress Difference Federal Interprovincial

Intervention Storage Market Simulate Development

Generation Urban

Source: Authors’ elaboration based on WoS and elaborated with IRAMUTEQ.

Table 6: CHD Dendrogram and relevant cluster identified for IAMs models

Table 6

Climate targets
and policy

Energy transition
and emissions

Sustainable
development
challenges

Climate-economic
modelling

14.8% 29.6% 21.8% 33.8%
Degree Reduction Challenge IAM

Temperature Energy Research Model

Paris Gas Process Dynamic

Target Renewable Sustainable Climate

Limit CO2 Socio Policy

Emission Population Propose Projection

Pledge GHG Development Change

Carbon Sea Ecosystem MEDEAS

Mitigation Domestic Ecological Limitation

Feasibility Health Dimension Decision

Budget Extreme Economic Europe

Overshoot Decrease Adaptation Application

Ceiling Efficiency Institutional Asia

Removal Income Transition Structural

Source: Authors’ elaboration based on WoS and elaborated with IRAMUTEQ.

4.3 Lemmas’ network analysis477

The similarity analysis, represented graphically as a network map (figure 3), confirms and deepens the insights478

gained from the CHD.479

In this visualisation, the lemmas are the nodes and the links between them represent their co-occurrence in the480
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same text segments; the thickness of the links is proportional to the strength of this association. The map reveals481

the conceptual architecture of the field of study, highlighting the central constructs and the most interconnected482

subject areas.483

At the center of the network lies a structural core composed of high-frequency and highly connected lemmas,484

which act as pillars of the literature. These include: “climate”, “model”, “emission”, “policy”, “IAM”, “energy”485

and “scenario”. This core describes the essence of the analysed research: it consists of studies that use mainly486

employ IAMs to assess the environmental impact of climate policies and show the results. This core is generic487

but reveals a strong applied and evaluation-oriented focus. The strong co-occurence links between "economic",488

"impact", and "policy", connecting through terms such as "model" and "climate" indicate that the field’s core489

intellectual activity remains the evaluation of policy interventions through an economic–environmental lens.490

Peripheral but still visible clusters, such as those related to land use ("land", "spatial") and methodological491

approaches ("CGE, "I-O"), suggest the presence of specialized subdomains, yet their positioning underscores492

their secondary role within the dominant economy–climate paradigm. However, it must also be mentioned that493

the peripherical position of "CGE" and "I-O" could be influenced by the sample selection, as the majority of494

articles considered deal with IAMs rather than static models (55 vs 183).495

Nevertheless, the structure highlighted by the network is coherent with the result provided by the CHD anal-496

ysis. Indeed the central hub of the networks (“climate”, “model”, “emission”, “policy”, “iam”, “energy” and497

“scenario”) strongly resembles cluster 3 (table 4) "Methodological framework and IAMs" that also accounts for498

the largest share of the corpus, 29.9%.499

The left-hand side of the network, where "model" links to "economic", "impact", "region", and "land",500

matches cluster 1 (Spatial analysis and regional assessment) and cluster 5 (Energy systems and economic im-501

pacts). Terms like "regional", "CGE", "land", and urban from cluster 1 are embedded in the network near the502

“regional modelling” subspace, while "GDP", "fuel", "renewable energy", and "coal" from cluster 5 form part of503

the energy–economy axis connecting energy to impact.504

The right-hand side of the network, were terms as "emission", "reduction", "target", "carbon" are present505

aligns with cluster 4 ( Climate targets and mitigation pathways). The CHD’s lexical set ("Paris", "temperature",506

"mitigation", "pathway", "NZE") can be found in this emission–policy–scenario pole, reflecting the corpus’s con-507

cerns towards mitigation strategies and their quantified targets.508

Lastly, the governance oriented lexicon characterising cluster 2 (Governance and socio-environemtal manage-509

ment) appears in the network’s periphery, most often linked to policy and impact. Its relatively marginal placement510

in the similarity map is consistent with its lower proportional weight in the CHD output (13.8%) and corroborates511

the earlier observation that social and governance aspects, while present, are secondary to the dominant econ-512

omy–climate framing.513

The most significant absence, which fully corroborates the CHD analysis, is the lack of a "social pole" in514

the network. There is no cluster of terms related to inequality, justice, or social well-being that holds a centrality515

comparable to that of the economic or environmental poles. Social lemmas are either absent or relegated to an516

extremely peripheral position in the network, with weak and sporadic connections. Such dynamic appears to be517

compatible with what has been defined as "epistemic narrowing" (Beck and Mahony, 2018) that is the modelling518

tendency to privilege economically quantifiable metrics over multidimensional societal outcomes. This graphical519

visualization makes the semantic gap even more apparent, as the scientific corpus analysed seems to not have yet520

developed a structured and shared language to integrate the social dimension within itself.521
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Figure 3: Most relevant terminology network

Source: Authors’ elaboration based on WoS and elaborated with IRAMUTEQ.

5 Discussion522

Climate-economy modelling has long relied on IAMs and static equilibrium frameworks to inform policy and523

evaluate climate mitigation strategies. Despite both modellistic approach being robust tools that simulate how524

environmental policy and shocks propagate to the entire economy, while capturing links between sectors and525

spatial regions, they often ignore social heterogeneity (income, vulnerability, age, gender, education...) (Niamir et526

al., 2020; Süsser et al., 2020). This leads to a “distributive blindness” that makes these models unable to show how527

policies impact unequally amongst different social groups. Indeed, the lemma analysis highlights that the selected528

corpus reveals a strong bond between terminology related to “economy” and “environment”; however, the policy529

impact produced is mainly analysed through monetary variables, not including other dimensions like the social530

one, often seen as an outcasts in the modelist world (Merli et al., 2018). A standard CGE model, for example,531

typically uses a “representative agent” for each region, assuming that all households behave in the same way. Such532
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a model can predict that a carbon tax will increase GDP and reduce emissions, but it can say nothing about how533

the burden of that tax will be distributed between the rich and the poor, given that the latter spend a larger share of534

their income on essential energy goods (Gough, 2017). Similarly, an MRIO model can trace the carbon footprint535

of goods consumed in Europe, but it does not reveal whether the low-emission jobs created in Europe compensate536

for the higher-emission ones lost in other parts of the world, nor the quality or stability of those jobs.537

Therefore, there are deep implications related to this gap. At a theoretical level, a reductive vision of sus-538

tainability is perpetuated, confined to the economy-environment nexus. It ignores the growing body of literature539

that places social justice and equity at the center of the ecological transition (Agyeman et al., 2003; Schlosberg,540

2007). Moreover, the aforementioned “distributive blindness” is not simply an omission but rather a structural541

characteristic of the current research. Indeed, it implies that society and its dynamics are to be seen as a passive542

aggregated entity unable to undergo differentiated impacts and to provide with a nuanced reaction (Cappelli et al.,543

2020).544

Furthermore, even in the few instances were multi-regional (or "inter-regional") approaches are employed,545

often, the social consequences of the shocks analysed are not taken into account nor discussed. Also, the regional-546

national dynamic is lacking, limiting the analysis solely to a selected number of provinces or at most to interactions547

between provincial and regional levels (Rum et al., 2024, Guo et al., 2021, Horridge and Wittwer, 2008).548

A common limit in many models, particularly those of multisectoral nature, is the inability to represent dy-549

namics at multiple spatial and hierarchical scales. Models often focus on a single scale (national, regional or550

local) or a single spatial level of aggregation, neglecting the complex interconnections and feedbacks between551

them. This limitation, which is particularly evident in static models, shows how they are not able to incorporate552

the fluidity and variability of cross-scale interactions. Similarly, IAMs face challenges in analysing local and553

regional dynamics due to their macro-level focus (Gambhir et al., 2019).554

For example, an IAM national or global model may not capture the regional specificities of climate impacts or555

socio-economic responses, while a static, local, model may not consider the influences of higher-level policies or556

markets (Horridge and Wittwer, 2008). The lack of a multi-regional and multi-level perspective, limits the ability557

to identify how environmental shocks or policies propagate across different jurisdictions and social strata, and how558

inequalities may be amplified or mitigated depending on interactions between scales (Hertel et al., 2019; Holscher559

et al., 2022;).560

It is at this critical juncture (between the urgency of the climate crisis, the reality of regional disparity and the561

inadequacy of current analytical approaches) that this paper finds its motivation. To build an effective argument562

that pushes towards a new modelling and climate policy approach a deep analysis for the existing literature has563

been performed. Systematically mapping the most recurring themes, identifying the most employed methodology564

and tracking research trends evolution, allows us to have a better and precise understanding of the state of the art565

of the existing literature.566

Perhaps more important, such analysis highlights critical gaps and blind spots in the literature. The unan-567

swered questions that represent the frontiers of research and the most pressing needs for policy-oriented analysis.568

5.1 Limitations569

While this study provides a comprehensive analysis of multi-regional and multi-level modelling approaches in the570

context of sustainability and climate policy, few limitations should be acknowledged.571

First, the research focused on English written articles and publications, inevitably this could have excluded572

potentially valuable contributions written in different languages.573

Secondly, the lexical analysis performed employing IRAMUTEQ, while robust, is inherently limited by the574

vocabulary and terminology used in the selected sample of literature, which might not be fully representative575
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of the nuances of the studies. Furthermore, the clustering technique, though effective for identifying dominant576

themes, might have oversimplified complex interactions between variables or interdisciplinary linkages that do577

not precisely fall within the represented clusters.578

Third, while the selected search words and WoS fields (Tables 2 and 3) were chosen to ensure thematic579

consistency and a broad selection of works, we might inadvertently have excluded studies that employ innovative580

or hybrid methodologies, not explicitly referencing the selected research words and criteria.581

Despite these limitations, this study offers a valuable synthesis of the current state of multi-level modelling,582

highlighting critical gaps and providing a foundation for future research to build upon. Addressing these limita-583

tions in subsequent studies could further enrich the understanding of how these models can better integrate social584

dimensions and multi-level dynamics to support equitable and effective climate policies.585

5.2 Concluding remarks586

The analysis of the results offers a two-faced picture. On one hand, a field of study emerges methodologically587

sophisticated, and rapidly evolving, having developed powerful tools to analyse the complex interdependencies588

between economic and environmental systems on a multi-regional and multi-level scale. The growing diversi-589

fication of models, from IAMs passing through CGE and MRIO to hybrid approaches, epitomises the scientific590

community’s ability to respond to the new challenges of globalisation and sustainability. On the other hand,591

however, our textual analyses have revealed a deep and systemic gap: the failure to integrate the social dimen-592

sion, particularly concerning distributional aspects and equity and multilevel analysis. The analysed literature,593

while speaking of "impact" and "sustainability," seems to adopt an implicitly technocratic perspective, where the594

objective is to optimise interactions between economic variables and environmental ones, treating society as an595

aggregated and passive entity. This approach, however, is insufficient to guide a transition that is not only green596

but also equitable. A more comprehensive multi-regional and multi-level approach cannot be limited to disaggre-597

gating the analysis geographically or sectoral. It must also carefully evaluate the societal impacts, recognising the598

existence of multiple levels of heterogeneity within it, by incomes, skills, genders, age and regions. As argued by599

Amartya Sen (1999), development cannot be reduced to the growth of per-capita income but must be understood600

as an expansion of people’s real capabilities and freedoms. Consequently, a policy, as per Rawl’s principle, can601

only be considered “successful” if it improves the living conditions of the most vulnerable and does not exacerbate602

existing inequalities. Current models, as emerged from our analysis, are largely blind to these dynamics.603

To overcome this limitation, a deeper dialogue between economic modelling and the social sciences is neces-604

sary, integrating concepts such as distributive, procedural, and recognition justice within evaluation frameworks.605

In this dynamic PNS could offer a valuable perspective for critically examining the shortcomings of conven-606

tional quantitative models in addressing complex, uncertain, and contested socio-ecological challenges. Despite607

its limitations (potential difficulties in reconciling diverse stakeholder values, the risk of politicizing scientific608

processes, and challenges in scaling participatory methods), PNS shows the fallacies of traditional modelling ap-609

proaches. On one hand static models struggle to consider non-linear dynamics, often reducing socio-ecological610

dynamics to oversimplified representation unable to describe adaptive behaviours and institutional and cultural611

contexts. On the other, IAMs show challenges concerning data intensity, computational difficulties, model devel-612

opment and calibrations and interdisciplinary coordination. Although PNS does not provide alternatives to these613

models, it calls for more flexible, adaptive and inclusive approaches. By acknowledging uncertainty, embrac-614

ing plural perspectives, and prioritizing learning over prediction, PNS-aligned methodologies could complement615

traditional models.616

Lastly, at an application and policy level, the risk is designing policies that are technically effective but so-617

cially unsustainable. Implementing environmental measures without an adequate assessment of their distributional618

21



impacts can lead to an increase in poverty and social polarization. Despite this clear and present threat and PNS619

emphasis on integration of uncertainty and plural perspectives, policymakers often face pressure to implement620

interventions without waiting for "perfect" data or consensus. In this sense both static models and even multi-level621

IAMs struggle. Their reliance on fixed parameters, linear projections, and deterministic assumptions can delay622

action. Hence, the future challenge lies avoiding two extremes: paralysis by analysis (over-relying on models)623

and reckless expediency (where actions are taken without scientific consultation). This issue could potentially624

be addressed by integrating AI in the policy design process. AI could, indeed, assist in dynamically linking lo-625

cal, regional, and global dynamics as well as socio-environmental and socio-economical ones, addressing key626

weaknesses of IAMs or CGE models.627
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A Appendix

A.1 Tables

Table A1.1: List of abbreviations.

Acronym Definition

ABM Agent Base Model

CCS Carbon Capturing Systems

CGE Computable General Equilibrium

CHD Descending Hierarchical Classification

CDR Carbon Dioxide Removal

DICE Dynamic Integrated Climate Economy model

DID Difference-in-Difference

EEIO Environmentally Extended Input-Output

EM Ecological Macroeconomics

EMM Ecological Macroeconomic Model

GHG Greenhouse gas

GCAM Global Change Analysis Model

GLOBIOM Global Biosphere Management Model

IAM Integrated Assessment Model

IIASA International Institute for Applied Systems Analysis

LCA Life Cycle Assessment

LCIA Life Cycle Impact and Assessment

MEDEAS Modelling the Energy Development under Environmental And Socioeconomic constraint

MGWR Multi-Scale Geographically Weighted Regression

MRIO Multi Regional Input Output

MSMRIO Multi-scale and Multi-regional Input Output

NZE Net Zero Emissions

SFC Stock Flow Consistent

SD System Dynamics

SOS System of Systems

WIOD World Input-Output Database
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