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Abstract

The theory of repeated games asserts that, when past conduct is unobservable, the ef-
ficient outcome is attainable for any given payoff structure, if players are sufficiently
patient. Here, we establish a complementary result: the efficient outcome is attainable
for any degree of patience, if moving off equilibrium generates limited gains. This result
builds on a class of punishment norms less extreme than “grim,” which, in fact, may be
counterproductive if losses are small, as it prevents cooperation among patient players.
Our analysis reveals that adoption of moderate punishment schemes can support cooper-
ation when players are impatient, and provides a rationale for the empirical observation
that grim punishment is uncommon in laboratory studies of cooperation.
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1 Introduction

Individuals who interact repeatedly, are patient, and can perfectly monitor each

other’s past conduct can cooperate rather easily. According to theory, all they

need is to punish a defection with a suitably long spell of defections (Friedman,

1971; Fudenberg and Maskin, 1986; Abreu et al., 1990). Things, however, are not
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so simple when private monitoring and random meetings shroud past conduct.

Here, individuals are “strangers” who cannot build reputations, so theory asserts

that cooperation requires two separate ingredients. Roughly speaking: the com-

mon adoption of a grim form of punishment—forever ceasing all cooperation—and

the deterrent of significant losses for being lenient or forgiving. This ensures that

refusing to cooperate initiates a punishment process that is individually ratio-

nal, and inexorably spreads from person to person until everyone plunges into a

permanent uncooperative state (Kandori, 1992).

The extreme severity of this community punishment scheme raises two kinds

of issues. One is purely theoretical. Grim punishment can be counterproductive

and may in fact destroy cooperative equilibrium. Players who are sufficiently pa-

tient would not want to carry out the punishment threat when the loss caused

by meeting a defector is small (Ellison, 1994). This is why—unless a public co-

ordination device is available—the theory imposes restrictions on off-equilibrium

payoffs: it is a way to deter cooperators from condoning defections that cause a

small loss. Second, grim punishment is empirically implausible. One would be

hard pressed to find societies, present or past, which adopt extreme punishment

threats to deter anything but the biggest crimes. Moreover, laboratory evidence

reveals that grim punishments are infrequent both among strangers and among

partners, while strategies that are lenient or forgiving are much more common

(Camera et al., 2012; Fudenberg et al., 2012; Dal Bó and Fréchette, 2011). The

question is why.

Standard theory has focused on the grim punishment, and little is known

about the feasibility—and the possible advantages—of more moderate punishment

schemes. In a way, the theory asserts that communities will tacitly coordinate on

the most severe punishment form to deter any kind of deviation, even one that

generates only small immediate gains to the deviator (a small temptation payoff).

This seems unreasonable and, in fact, is counterproductive when the infractions

are minor, i.e., when to small temptation payoffs also correspond small losses

(sucker’s payoff). The analysis in Ellison (1994) shows that moderate punishments
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can support full cooperation also when losses are small if players are sufficiently

patient. Here, instead, we establish existence of cooperative equilibrium for the

converse case where players can be arbitrarily impatient. We demonstrate that

for any value of the discount factor there exist strategies supporting efficient play

as long as the temptation payoff is sufficiently small. To do so, we adopt a new

methodology that allows us to provide closed-form solutions of the discount factor

boundaries and the continuation payoffs for generic punishment strategies.

Importantly, we show that there may be multiple strategies that support full

cooperation independent of the size of losses to defectors. This is accomplished

by studying a class of punishment schemes that do not destroy all cooperation off

equilibrium and, in fact, are designed to guarantee partial cooperation if someone

derives a small benefit by deviating from efficient play. In this sense, the moti-

vation for the use of moderate punishments is entirely strategic: patient players

should not dissipate the gains from future cooperation to sanction minor infrac-

tions.

The argument is developed using a repeated Prisoner’s Dilemma with random

matching, as done in Kandori (1992) and Ellison (1994). We start by showing

that, if the sucker’s payoff is small, then a grim strategy cannot generally support

full cooperation among patient players. Full cooperation might be attainable only

if players are moderately—but not excessively—patient. This result builds on

Ellison (1994, Proposition 4), and expands upon it by adopting a methodology

allowing us to calculate exact expressions for the discount factor boundaries.

We thus proceed by demonstrating how to solve this equilibrium non-existence

problem for (excessively) patient players by reducing the severity of community

punishment. This second step builds on Ellison (1994, Lemma 2), which recog-

nizes the importance of softening punishment—spreading it out over time—when

players are patient. We expand upon it, by uncovering the relationship between

temptation payoff and frequency of punishment, and by determining continuation

payoffs as functions of parameters. As the temptation payoff becomes small, the

equilibrium interval of the discount factor covers the open unit interval.
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The rest of the paper is organized as follows. In Section 2, we present the

model. In Section 3, we develop the main result, while Section 4 concludes.

2 Model

There are N = 2n ≥ 4 infinitely-lived players. In every period t = 0, 1, 2, . . ., play-

ers are matched in pairs using a uniform random matching mechanism. Therefore,

in each period t, the probability that player i meets any player j 6= i is 1
N − 1.

Every pair (i, j) plays a Prisoner’s Dilemma, with action set {C,D} (“cooperate”

and “defect”). To facilitate comparisons between our analysis and existing theory,

we retain the same payoff matrix and basic notation as in the classical models in

Kandori (1992) and Ellison (1994). The stage game payoffs are in the table below.

Player j

C D

Player i
C 1, 1 −l, 1 + g

D 1 + g, −l 0, 0

Table 1: The stage game between player i and j.

As usual, we assume g, l > 0. Full cooperation (C,C) is mutually beneficial and

corresponds to the efficient outcome.1 Full defection (D,D) is the unique Nash

equilibrium in the one-shot game. Players have linear preferences and discount

future payoffs with a common discount factor δ ∈ (0, 1). The payoff to player i in

the indefinitely repeated game is therefore
∞∑
t=0

δtπi(ai,t, aj,t) (1)

where we use πi(ai,t, aj,t) to denote the payoff to player i in period t when the

action profile is (ai,t, aj,t).
1The usual assumption in this game is 1 > g − l. However, the results in this paper hold also if
this inequality is not fulfilled.
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There is private monitoring: players can only observe outcomes and actions in

their pair and cannot observe the history of play of their opponents.

Since we are interested in studying strategies that support the efficient out-

come, we start by considering the trigger strategy proposed in Kandori (1992),

which is based on the threat of an unforgiving “grim punishment.”

Definition 1 (Grim punishment). In period t = 0, the player cooperates. In

period t ≥ 1, the player cooperates if she has not observed a defection, otherwise

if a defection was observed in any period τ ≤ t, then the player defects in periods

(τ + h)∞h=1.

This strategy encompasses two modes of behavior: cooperation, when the player

has experienced a fully cooperative outcome in every match; punishment, if the

player defected or suffered a defection at any point in the past. The strategy

supports full cooperation by threatening a sanction prescribing defection in every

period of the continuation game. A player who is in the grim punishment mode will

never revert to cooperating, not even occasionally. This explains why punishment

is called grim: punishment is antithetical to any form of future cooperation, even

some limited form of cooperation. An illustration is in Figure 1.

τ−1 τ τ+1 τ+2

C C D D

deviation

punish punish

in equilibrium off equilibrium

Figure 1: Grim punishment: Defect in every period after a deviation.

We are interested in studying whether or not the efficient outcome can be

sustained by punishments that are not so extreme. In particular, punishments

that leave the door open to some degree of cooperation in the continuation game.

Consequently, we define another strategy that is based on a form of punishment

that can be more restrained, if needed.
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Definition 2 (Generalized punishment). Fix T ≥ 1. In period t = 0, the player

cooperates. In period t ≥ 1, the player cooperates if she has not observed a defec-

tion; otherwise, if a defection was observed in any period τ ≤ t, then the player

only defects in periods (τ + hT )∞h=1 and in no other periods.

The strategy in Definition 2 is illustrated in Figure 2. As for the case of grim

punishment, this strategy also encompasses two modes of behavior: cooperation,

when the player has experienced a fully cooperative outcome in every match;

punishment, if the player defected or suffered a defection at any point in the past.

However, unlike the grim punishment strategy, full cooperation is supported by

threatening a sanction that prescribes defection only in a subsequence of periods

of the continuation game. The defections will take place at regular intervals,

T, 2T, 3T, . . ., following the first observed defection. In all other periods the player

cooperates, even if, the player is in the punishment mode. Notice that the strategy

in Definition 1 can be obtained by simply fixing T = 1 in Definition 2.

τ−1 τ τ+1 τ+T τ+2T

C C C C D C C D C

T T T

deviation

punish punish

in equilibrium off equilibrium

Figure 2: Restrained punishment: Defect every T periods after a deviation.

We say that a strategy is a social norm if it is adopted by every player. The

two social norms in Figure 1 and 2 share a fundamental similarity: each norm

exploits an implicit threat of community enforcement. The central idea is that this

threat should be sufficient to support full cooperation in equilibrium. Independent

of the strategy adopted, the observation of a defection moves the economy off

equilibrium, as it triggers a switch from the cooperative mode to some punishment
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mode. Because of random matching and private monitoring, this switch will spread

in the economy over time, similarly to a process of “contagion.”

In Figure 1 and 2 the long-run consequences of punishment are different. Grim

punishment leaves no hope for any kind of future cooperation because the initial

defection is never forgiven. The strategy illustrated in Figure 2 supports some

cooperation off equilibrium, in the long run since T > 1. The initial defection

gives rise to punishment at a pre-specified frequency 1/T , pinning down an infinite

sequence of equidistant periods in which punishment must take place. Players will

therefore alternate “punishment periods” to “cooperation cycles” in which—so to

speak—all defections are periodically forgiven and there is no further contagion.

3 The main result

In the repeated matching game we just described, if players adopt a social norm

based on the strategy in Definition 2, then the efficient outcome is a sequential

equilibrium for values of δ sufficiently large (Ellison, 1994, Proposition 4). That

is to say, for any Prisoner’s Dilemma players can always support full cooperation

as a sequential equilibrium if they are sufficiently patient.

This section develops a unique result. Arbitrarily patient players can attain

full cooperation as a sequential equilibrium, independent of the size of the sucker’s

payoff; all is needed is a temptation payoff g sufficiently small. As g declines to

zero, full cooperation is an equilibrium for any value of players’ discount factor;

multiple strategies that support efficiency also may exist.

Let players adopt the generalized punishment strategy in Definition 2.

Theorem 1. For any δ ∈ (0, 1), there exists T ≥ 1 such that the generalized pun-

ishment strategy supports cooperative equilibrium if g is sufficiently small. More-

over, for some δ ∈ (0, 1), there exist multiple strategies that support cooperative

equilibrium.

We prove this theorem in three steps. First, we present a new proof to show

that a fully cooperative equilibrium always exists for some values of δ when the

social norm is based on the strategy in Definition 2, with T = 1. We also show that
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full cooperation may not be an equilibrium for δ sufficiently close to 1. These first

two results build on the analysis in Ellison (1994, Proposition 4). To prove them,

we demonstrate that, for any l, a social norm based on the strategy in Definition

2, with T = 1, supports the efficient outcome in sequential equilibrium on an

interval [δ1, δ2] ⊂ (0, 1) of δ values. However, in this case where no restrictions

are imposed on the sucker’s payoff l, the equilibrium might not exist unless δ is

bounded away from one. That is to say, full cooperation might be attainable only

if players are moderately—but not excessively—patient. This result is reported

in Ellison (1994, Proposition 4); our contribution relative to Ellison (1994) is to

formalize this result using a unique methodology, which allows us to calculate

exact expressions for the boundaries of the interval of the δ values.

Second, we expand the set of discount factors to include values above δ2 by

working with strategies that reduce the severity of community punishment through

an appropriate modulation of its frequency. This step relies on realizing that

patient players may be incentivized to punish off equilibrium by appropriately

choosing the punishment frequency 1/T . We demonstrate that a social norm

based on the strategy in Definition 2, with T ≥ 1, supports the efficient outcome

in sequential equilibrium on a set D of δ values, which is generally disconnected

and such that [δ1, δ2] ⊂ D ⊂ (0, 1).

Finally, using the two partial results discussed above, we prove our main result.

As g becomes small, then the set D becomes connected and equal to (0, 1) as g

approaches zero. This step is accomplished by developing a methodology that

allows us to determine exact expressions for payoff functions, thus identifying

the relationship between the temptation payoff and the frequency of punishment

necessary to support cooperation.

We start by characterizing continuation payoffs in and out of equilibrium under

the grim strategy in Definition 2, with T = 1.

3.1 Cooperation under a grim punishment threat

Suppose that every player adopts the strategy in Definition 2, with T = 1. Recall

that when T = 1, the strategy in Definition 2 is the grim strategy in Definition 1.
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On the equilibrium path there is full cooperation and the payoff to any player is

v0 = 1
1− δ . (2)

Off equilibrium, there is someone (possibly everybody) who defects in every

period (Figure 1). To calculate payoffs off equilibrium, since we have random

matching and private monitoring, we must characterize the contagious process of

defection. Suppose for a moment that the population is composed of a generic

number M ≥ 4 of players. Partition the population into defectors (who are in the

punishment mode) and cooperators (who are in the cooperation mode). According

to the strategy in Definition 1 cooperators become defectors at random points in

time, via a contagious process of defection which is fully described by the M ×M

upper-triangular Markov matrix QM , where

QM :=



0 1 0 0 0 0 . . . 0 0 0
0 Q22 0 Q24 0 0 . . . 0 0 0
0 0 0 Q34 0 Q36 . . . 0 0 0
...

...
...

...
...

... . . .
...

...
...

0 0 0 0 0 0 . . . QM−2,M−2 0 QM−2,M
0 0 0 0 0 0 . . . 0 0 1
0 0 0 0 0 0 . . . 0 0 1


. (3)

To describe the elements of QM , suppose that at the start of a period there are

k = 1, . . . ,M defectors. The generic element Qkk′ = Qkk′(M) is the probability to

transition from k to k′ ≥ k defectors across two periods. We can show that

Qkk′(M) :=
(k′ − k)!

(
k

k′−k

)(
M−k
k′−k

)
(2k − k′ − 1)!!(M − k′ − 1)!!

(M − 1)!! , (4)

where the number of additional defectors created in a period is

k′ − k ∈

 {0, 2, 4, . . . ,min(k,M − k)} if k = even
{1, 3, 5, . . . ,min(k,M − k)} if k = odd.

The details of this derivation are in Camera and Gioffré (2014).

Now consider M = N . Let vk denote the expected payoff to a generic defector,

when there are k defectors and N − k cooperators. Due to uniform random

matching, a defector meets a cooperator with probability σk := N − k
N − 1 . Thus, the
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expected payoff to the generic defector can be recursively defined by

vk = (1 + g)σk + δ
N∑
k′=k

Qkk′(N)vk′ .

Again, following Camera and Gioffré (2014), vk can be rewritten as

vk = φk(δ)
1− δ (1 + g), (5)

with

φk(δ) := (1− δ)eT
k (I − δQN)−1σ,

where σ := (σ1, . . . , σN)T and ek is the N−dimensional column vector with 1 in

the kth position and 0 everywhere else. The right-hand side of (5) is the expected

gain that the defector would receive from meeting cooperators. To discuss φk(δ)

note that preferences are linear in payoffs. Hence, we can interpret 1 − δ as

the probability that the game ends after each period. Under this interpretation,

φk(δ) can be considered the expected number of future meetings with cooperators

divided by the expected duration of the continuation game. For convenience we

call it the “contact rate.”

The following result holds:

Lemma 1. For all k = 1, . . . , N − 1, φk(δ) is a decreasing function of δ ∈ (0, 1).

Proof. The first derivative of φk(δ), for all k = 1, . . . , N − 1 is

φ′k(δ) = −eT
k (I − δQN)−1[I − (1− δ)QN(I − δQN)−1]σ,

where we have used A−1(δ)
dδ

= −A−1(δ)dA(δ)
dδ
A−1(δ), with A(δ) := I − δQN . To

prove that φ′k(δ) < 0 if k < N , notice that (1− δ)(I − δQN)−1σ ≤ σ (with strict

inequality for all k ≤ N − 1) since (1 − δ)(I − δQN)−11 = 1 and σk ∈ σ is

decreasing in k.2 Therefore, QN(1− δ)(I − δQN)−1σ ≤ QNσ ≤ Iσ. But then we

also have

(I − δQN)−1(1− δ)QN(I − δQN)−1σ ≤ (I − δQN)−1σ,

2Each element of matrix (I − δQN )−1 is non-negative and its rows sum to (1 − δ)−1, hence
(1− δ)(I − δQN )−11 = 1, where 1 = (1, 1, . . . , 1)T.
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which holds with strict inequality if k ≤ N − 1, i.e.,

eT
k (I − δQN)−1(1− δ)QN(I − δQN)−1σ < eT

k (I − δQN)−1σ, k = 1, . . . , N − 1.

As we show later, it is convenient to rewrite vk as the sum of two expected

payoffs depending on whether the defector earns the temptation payoff 1 + g in

a meeting with a cooperator (with probability σk) or the defection payoff 0 in a

meeting with another defector (with probability 1− σk), i.e.,

vk = σk

[
1 + g + δ

N−2∑
k′=k−1

Qk−1,k′(N − 2)vk′+2

]
+ (1− σk)δ

N−2∑
k′=k−2

Qk−2,k′(N − 2)vk′+2,

(6)

Qkk′(N −2) is the element of the transition matrix QM when M = N −2, because

we are considering the n−1 matches other than the one between the defector and

her opponent. There are two cases to consider.

First, the opponent is a cooperator. Here, next period we expect k′ + 2 de-

fectors. The number 2 includes the defector and her opponent. The number

k′ depends on the remaining n − 1 random matches between k − 1 defectors

and N − k − 1 cooperators. In this case, the expected continuation payoff is∑N−2
k′=k−1 Qk−1,k′(N − 2)vk′+2.

Second, the opponent is a defector. Here, in the remaining n−1 matches there

are k− 2 defectors and N − k cooperators. In this case, the continuation payoff is∑N−2
k′=k−2 Qk−2,k′(N − 2)vk′+2.

Therefore, expression (6) simply splits the expected payoff ∑N
k′=kQkk′(N)vk′

into two parts:

N∑
k′=k

Qkk′(N)vk′ = σk
N−2∑
k′=k−1

Qk−1,k′(N−2)vk′+2 +(1−σk)
N−2∑
k′=k−2

Qk−2,k′(N−2)vk′+2.

This observation allows us to prove a result that mirrors Ellison (1994, Propo-

sition 4).
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Proposition 1. There exists 0 < δ1 < δ2 ≤ 1 such that for δ ∈ [δ1, δ2] ∩ (0, 1)

the strategy in Definition 2, with T = 1, supports full cooperation as a sequential

equilibrium.

We prove Proposition 1 by establishing three separate results. First, we show

that there exists a value δ1 ∈ (0, 1) such that equilibrium deviations are suboptimal

for δ ≥ δ1. Then, we show that there exists a value δ2 ∈ (0, 1] such that off-

equilibrium punishment is incentive compatible for δ ≤ δ2. Third, we prove that

δ1 < δ2 for all payoff matrices of the Prisoner’s Dilemma.

3.1.1 Equilibrium deviations

A deviation in equilibrium is never optimal if v1 ≤ v0. Using the definitions of v0

and vk, for k = 1, we have

v1 − v0 ≤ 0 ⇔ φ1(δ) ≤ 1
1 + g

, (7)

where the left-hand side is the contact rate if the player is the first to defect and

moves the economy off equilibrium. The right-hand side is the ratio between the

payoff from full cooperation and the temptation payoff; it measures the relative

gain from defecting against a cooperator. Notice that φ1 maps [0, 1) into (0, 1]

and it is a strictly monotone, decreasing function of δ (Camera and Gioffré, 2014).

Then, it is invertible, i.e., δ = φ−1
1 (x) for x ∈ (0, 1]. Now, since 1

1+g ∈ (0, 1), there

exists a value δ1 ∈ (0, 1) such that

δ1 := φ−1
1

( 1
1 + g

)
. (8)

Therefore, monotonicity of φ1 ensures that for all δ ∈ [δ1, 1) expression (7) is

satisfied and deviating in equilibrium is suboptimal.

3.1.2 Off-equilibrium deviations

Suppose that there are k defectors in the economy, and let player i be one of them.

If player i deviates by choosing C instead of D, then she loses l in a match with

another defector and earns 1 in a match with a cooperator. The expected payoff
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to deviator i from a one-time deviation is therefore

ṽk = σk

i meets a cooperator︷ ︸︸ ︷[
1 + δ

N−2∑
k′=k−1

Qk−1,k′(N − 2)vk′+1
]

+(1−σk)

i meets a defector︷ ︸︸ ︷[
− l + δ

N−2∑
k′=k−2

Qk−2,k′(N − 2)vk′+2
]
.

(9)

Comparing expression (6) to (9) reveals that deviating by choosing C instead of D

affects the expected payoff of player i in two ways. First, it reduces the expected

current earnings by σkg + (1− σk)l. Second, if meeting a cooperator, it increases

the continuation payoff to vk′+1 instead of vk′+2; it is an increase as vk falls in k.

Deviating by choosing C instead of D off equilibrium is suboptimal if ṽk ≤ vk,

with k ≥ 2. Using (6) and (9), this inequality can be rewritten as

σkδ
N−2∑
k′=k−1

Qk−1,k′(N − 2)(vk′+1 − vk′+2) ≤ σkg + (1− σk)l. (10)

The left-hand side represents the expected gain from slowing down the contagious

defection process, while the right-hand side represents the expected loss. Using

(5), expression (10) can be rearranged as

δ

1− δ

N−2∑
k′=k−1

Qk−1,k′(N − 2)[φk′+1(δ)− φk′+2(δ)] ≤ g

1 + g
+ 1− σk

σk

l

(1 + g) . (11)

Since φk(δ) − φk+1(δ) is decreasing in k (Camera and Gioffré, 2014, Theorem 2)

and 1−σk

σk
is increasing in k, the most stringent case for (11) is k = 2.

Given that the first row of transition matrix QM has 1 as the second element

and 0 otherwise, for any M , then we need

δ

1− δ [φ3(δ)− φ4(δ)] ≤ g

1 + g
+ 1− σ2

σ2

l

(1 + g) . (12)

To demonstrate that this inequality holds for some δ we need an additional

piece of information.

Lemma 2. For any δ ∈ [0, 1) we have

δ

1− δ [φ1(δ)− φ2(δ)] = 1− φ1(δ).

Proof. Suppose that player i moves off equilibrium, i.e., she is the only defector
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in the economy. Next period there will be two defectors in the economy with

certainty. Accordingly, player i’s expected payoff must satisfy

v1 = 1 + g + δv2.

Using (5) we obtain

φ1(δ)
1− δ (1 + g) = 1 + g + δφ2(δ)

1− δ (1 + g),

which, rearranging, gives us the result.

Now we show that there exists a value δ2 ∈ (0, 1] such that deviations off

equilibrium are suboptimal for all δ ∈ (0, δ2] ∩ (0, 1).

Using Lemma 2 and recalling that φk(δ)− φk+1(δ) is decreasing in k, we have

δ

1− δ [φ3(δ)− φ4(δ)] ≤ 1− φ1(δ).

Therefore, to ensure that (12) holds, it is sufficient to show that

1− φ1(δ) ≤ g

1 + g
+ 1− σ2

σ2

l

(1 + g) .

The expression can be rearranged as

1− l/(N − 2)
1 + g

≤ φ1(δ) (13)

where we note 1− σ2

σ2
= 1

N − 2. There are two cases. If l ≥ N − 2 then (13)

holds for all δ ∈ [0, 1) since φ1(δ) ≥ 0. This is in line with the analysis in Kandori

(1992). Instead, if 0 < l < N − 2 then the left-hand side of (13) lies in the unit

interval. Hence, by continuity of φ1 there exists a value δ2 ∈ (0, 1) such that (13)

holds with equality. Since φ1 is a decreasing function of δ we can conclude that

(13) is satisfied for all δ ∈ [0, δ2]. It follows that deviating from the proposed
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punishment is suboptimal off equilibrium for all δ ∈ (0, δ2] ∩ (0, 1), where

δ2 :=


φ−1

1

(
1−l/(N−2)

1+g

)
if 0 < l < N − 2

1 if l ≥ N − 2.
(14)

To conclude we demonstrate the following:

Lemma 3. We have δ1 < δ2 for all l > 0 and δ2 → δ1 as l→ 0.

Proof. For l ≥ N − 2 the proof is obvious since δ2 = 1. For 0 < l < N − 2, we use

the definition of δ2 and δ1 to derive the following inequality:

φ1(δ2) = 1− l/(N − 2)
1 + g

<
1

1 + g
= φ1(δ1).

Since φ1(δ) is decreasing in δ ∈ (0, 1) then φ1(δ2) < φ1(δ1) implies δ2 > δ1, and we

immediately have δ2 → δ1 as l→ 0.

The previous analysis also allows us to demonstrate a result that is discussed

in Ellison (1994), albeit not formally proved.

Corollary 1. Full cooperation can be supported independent of l as long as play-

ers are not too patient. Otherwise, full cooperation cannot be supported as an

equilibrium for l sufficiently small.

The proof of this corollary is an immediate consequence of expression (12). If δ

is close to 1 the left-hand side of this inequality is bounded away from 0, while its

right-hand side goes to 0 as g and l become arbitrarily small. Full cooperation is

part of a sequential equilibrium for δ ∈ [δ1, δ2] ∩ (0, 1). No other condition on the

game parameters is needed to ensure existence of cooperative equilibrium. Figure

3 provides an illustration.
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Figure 3: Discount factor lower bound δ1 and upper bound δ2 for N = 40

3.2 Cooperation under a generalized punishment threat

Under a grim punishment threat, cooperation is supported for δ ∈ [δ1, δ2]∩ (0, 1).

The problem is that δ2 is generally bounded away from 1 unless we make additional

assumptions on the size of the sucker’s payoff l. Here we demonstrate that we

can partly solve this problem by reducing the severity of community punishment.

Doing so allows us expand the set of discount factors to include values above δ2,

in a manner that reflects the intuition in Ellison (1994, Lemma 2).

Let players adopt a social norm based on the strategy in Definition 2, with

T ≥ 1.

Proposition 2. There exists a superset D ⊃ [δ1, δ2], such that the strategy in

Definition 2 supports full cooperation for all δ ∈ D ∩ (0, 1) and some T ≥ 1.

Proof. If players adopt a social norm based on the strategy in Definition 2, with

T ≥ 1, then this means that they will respond to a defection observed in period

τ by punishing only in periods τ + T, τ + 2T, . . . (Figure 2). We can therefore

study the problem faced by a player who is considering moving off equilibrium in

period τ by splitting the continuation game into two pairwise disjoint supergames

Sτ and its complement SCτ . The supergame SCτ includes all periods greater than

τ where the strategy does not call for punishment, i.e., all periods outside of the
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punishment sequence

τ := (τ + jT )∞j=1.

The supergame Sτ includes only the periods specified by the punishment sequence

τ where players who are in the punishment mode never cooperate. This means

that if we restrict attention to the supergame Sτ , players behave as if using grim

punishment.

This last observation suggests that we can apply the same technique developed

in Section 3 to define payoffs in and out of equilibrium in the supergame Sτ . The

only adjustment we have to make is the discount factor, which is now δT due to the

selector T used to pinned down the sequence through the frequency of punishment

1/T . We provide this analysis in what follows.

Consider the supergame Sτ . Let v0(τ ) denote the full cooperation payoff and

let vk(τ ) denote the payoff to a defector when there are k defectors. Given the

discussion above, along the sequence τ players behave as if they have adopted a

social norm of grim punishment (as in Definition 1). If so, the equilibrium payoff

function is v0(τ ) = 1
1− δT . The off-equilibrium payoff earlier defined in (5) implies

vk(τ ) = φk(δT )
1− δT (1 + g).

Using the previous analysis, moving off equilibrium on date τ is suboptimal if

v1(τ ) ≤ v0(τ ), which implies

φ1(δT ) ≤ 1
1 + g

= φ1(δ1).

The above inequality holds for all δ ≥ δ
1
T
1 because φ1 is a decreasing function of δ.

Similarly to what done in the proof of Proposition 1 punishing off equilibrium

in the sequence τ is optimal if ṽk(τ ) ≤ vk(τ ) for all k, which implies

φ1(δT ) ≥ 1− l/(N − 2)
1 + g

= φ1(δ2).
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Notice that the above inequality is satisfied for all δ ≤ δ
1
T
2 .

For any given T ≥ 1, consider [δ
1
T
1 , δ

1
T
2 ]. This interval is non-empty (Lemma 3).

Therefore, for any δ ∈ [δ
1
T
1 , δ

1
T
2 ]∩ (0, 1) there exists a fully cooperative equilibrium

supported by the strategy in Definition 2. Letting D :=
∞⋃
T=1

[δ
1
T
1 , δ

1
T
2 ], we can

support a fully cooperative equilibrium for all δ ∈ D ∩ (0, 1) for an appropriately

chosen punishment frequency 1/T .

Note that if the frequency 1/T is sufficiently small the set D includes discount

factors arbitrarily close to 1. Hence, we may support cooperative equilibrium,

independent of l, even if agents are very patient.

3.3 Cooperative equilibrium for arbitrarily patient players

An issue here is that the set D can be generally disconnected, so that it might

not include the value taken by δ in the game. We now find a sufficient condition

under which D is connected.

Lemma 4. If δ
1
2
1 ≤ δ2, then the set D = [δ1, 1].

Proof. We claim that if δ
1
2
1 ≤ δ2 then δ

1
T +1
1 ≤ δ

1
T
2 for any T ≥ 2. In this case

D is connected. To prove the claim suppose δ
1
T
1 ≤ δ

1
T−1
2 ; we want to show that

δ
1

T +1
1 ≤ δ

1
T
2 . We have

δ
1
T
1 ≤ δ

1
T−1
2 ⇒ δ

1
T
1 ≤ δ

T +1
T 2

2 ⇒ δ
1

T +1
1 ≤ δ

1
T
2

where the second inequality holds because 1
T−1 > T+1

T 2 for T ≥ 2 and the third

inequality holds because

δ
1

T +1
1 =(δ

1
T
1 )

T
T +1 ≤ (δ

T +1
T 2

2 )
T

T +1 = δ
1
T
2 .

Noting that limT→∞ δ
1
T
2 = 1 concludes the proof.

Given the results above we can finally prove Theorem 1,

Proof of Theorem 1. Suppose that for some values of the parameters of the game

[δ1, δ2]∩ [δ
1
2
1 , δ

1
2
2 ] 6= ∅, i.e., δ

1
2
1 ≤ δ2. Then from the proof of Lemma 4 it follows that
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set D defined in the previous section is connected and D = [δ1, 1]. Therefore, for

any δ ∈ D ∩ (0, 1) cooperative equilibrium can be sustained using the strategy in

Definition 2 for some appropriate T . Moreover, since [δ
1
T
1 , δ

1
T
2 ] ∩ [δ

1
T +1
1 , δ

1
T +1
2 ] 6= ∅

for all T in this case, we have that for δ ∈ [δ
1
T
1 , δ

1
T
2 ] ∩ [δ

1
T +1
1 , δ

1
T +1
2 ] cooperative

equilibrium can be sustained using strategies in Definition 2, for either T or T + 1

(multiple strategies).

To show that [δ1, δ2] ∩ [δ
1
2
1 , δ

1
2
2 ] 6= ∅ we need δ

1
2
1 ≤ δ2, since we already know

δ1 < δ2 ≤ δ
1
2
2 . If l ≥ N − 2 the nonempty condition always holds because δ2 = 1,

see expression (14). If 0 < l < N − 2 then in order to ensure that δ
1
2
1 ≤ δ2, we

need δ1 sufficiently small.

Using the definition of δ1 and δ2 the expression δ
1
2
1 ≤ δ2 gives

[
φ−1

1

( 1
1 + g

)] 1
2
≤ φ−1

1

(1− l/(N − 2)
1 + g

)
,

and since limx→1 φ
−1
1 (x) = 0, this inequality holds for g sufficiently small.

Finally, using the definition of δ1 and δ2, we have limg→0 δ1 = 0 and limg→0 δ2 >

0, because φ−1
1 (x) is a decreasing continuous function of x that maps (0, 1) into

(0, 1). This implies that as g → 0 then D = (0, 1) and, thus, for any value of the

discount factor the cooperative equilibrium can be sustained by the generalized

punishment in Definition 2, for some given T .

4 Conclusions

Consider a group of anonymous individuals who face an indefinite sequence of

Prisoner’s Dilemma games in random pairs and under private monitoring. The

theory of social norms developed in Kandori (1992) suggests that these strangers

can attain the efficient, fully cooperative outcome by using a strategy that brings

the entire group into a terminal state of full defection, if anyone acts uncoopera-

tively. The incentive to follow such an indiscriminate and extreme sanction hinges

on the size of the loss imposed by defectors on cooperators—the so-called “sucker’s
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payoff.” Ellison (1994) argues that if this payoff is small, then cooperative equi-

librium cannot be sustained if players are too patient, but can be re-established

if punishment is made infrequent. Intuitively, a patient individual may prefer to

forgive a defection that causes a small temporary loss, and carry on cooperating,

instead of participating in bringing about a grim state of full defection.

We have shown that players can attain full cooperation when a deviation cor-

responds to a minor infraction, i.e., both the temptation to defect as well as the

damage it causes are sufficiently small. Here, for any value of the discount factor,

the strategy ensures that players have an incentive to punish because punishment is

moderate and does not fully destroy future cooperation. Moreover, we have shown

that there could be multiple strategies, which support efficient play. Each of these

strategies gives rise to a norm of punishment characterized by a specific frequency

of defection and, consequently, various cooperation levels off-equilibrium.
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