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Abstract 

 

This study introduces a non linear model for commodity futures prices 

which accounts for the pressures due to hedging and speculative 

activities. The interaction with the corresponding spot market is 

considered assuming that a long term equilibrium relationship holds 

between futures and spot pricing. Over the 1990-2010 time period, a 

dynamic interaction between spot and futures returns in five commodity 

markets (copper, cotton, oil, silver, and soybeans) is empirically validated. 

An error correction relationship for the cash returns and a non linear 

parameterization of the corresponding futures returns are combined with  

a bivariate CCC-GARCH representation of the conditional variances.   

Hedgers and speculators are contemporaneously at work in the futures 

markets, the role of the latter being far from negligible.  Finally, in order 

to capture the consequences of the growing impact of financial flows on 

commodity market pricing, a two-state regime switching model for futures 

returns is developed. The empirical findings indicate that hedging and 

speculative behavior change significantly across the two regimes, which 

we associate with low and high return volatility. High volatility regimes 

are, as expected, characterized by a stronger impact of speculation on 

futures return dynamics. 
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Introduction 

 

A position in a commodity futures market is based on expectations about 

the future price behavior and profits (or losses) depend on the accuracy of 

the latter. Commodity futures trading does not usually contemplate the 

physical delivery upon expiration of the contract. Indeed, offsetting the 

position by selling (or buying) back the futures contract is not only doable 

but a cheaper strategy. 

In this paper we will focus on the two main activities associated with 

futures trading: hedging and speculation. They do not have to be 

considered as referring to two separate agents. It may well be that typical 

hedgers, such as commercial firms, take a view on the market (speculate 

on price direction). Alternatively, speculators can find it profitable to 

engage in hedging activities (see Stulz, 1996, and Irwin et al., 2009). 

Consequently it could be misleading to consider hedgers as pure risk–

averse agents and speculators as risk-seekers. The futures’ demand 

functions used in this paper will avoid this simplistic divide.    

Futures trading involves an exchange between people with opposite views 

of the market (as to the future behavior of prices) and/or a different 

degree of risk aversion. It allows to shift the risk from a party that desires 

less risk to a party that is willing to accept it in exchange for an expected 

profit.1  

Why hedging with futures? Futures trading started – historically - when 

commodity producers and consumers tried to offset the losses due to 

unfavorable price fluctuations. Indeed, the main purpose of hedging is to 

reduce the price risk. In the case of an expected price decline, the 

hedging strategy of a producer will be to sell a futures contract at time t 

and to buy it back at expiration at time t+n. Assuming for simplicity that 

tt CF =  where tF  is the futures price and tC  is the corresponding cash 

price of a given commodity, the producer will earn the difference 

0>− +ntt CF . (The futures price converges to the spot price at the expiry 

and ntnt CF ++ ≡ .) In the case of an expected price increase, the hedging 

                                                 
1  Fagan and Gencay (2008) find that hedgers and speculators are often counterparties, 
since they tend to take opposing positions. Their respective long positions exhibit a strong 
negative correlation. 



 2 

strategy for a consumer will be to buy a futures contract (with maturity at 

time t+n) at time t at price tt CF =  and sell it at time t+n. He will obtain 

the difference 0>−+ tnt FC  that will cover the loss due to the increase in 

the spot price from tC  to ntC + . In general futures and cash prices at time 

t  do not coincide. The difference is known as basis and can be either 

positive or negative. It is usually considered an estimate of storage costs, 

transportation costs, and profit margins for sellers, but it could also reflect 

the local supply and demand conditions. When tt CF < (contango) then the 

market is dominated by risk averse commodity producers willing to pay a 

premium for their price insurance. On the contrary, when tt CF > (normal 

backwardation) the futures market is dominated by risk averse commodity 

consumers. 

Speculation is essential for the smooth functioning of commodity markets 

as it assures liquidity and assumes the risks laid off by the hedgers. 

Speculators, mainly non commercial firms or private investors, are ready 

to take up risks in order to earn profits stemming from expected price 

changes. No physical delivery is involved in this futures trade and 

speculation does not intervene directly in the cash market. 

The literature has studied hedging and speculation in commodity futures 

from very different perspectives. 

In the sixties optimal hedging behavior was identified by Johnson (1960), 

Stein (1961), and McKinnon (1967). They associated it with the 

minimization of the variance of the return of the portfolio of an hedger, 

constructed with cash and futures contracts. This approach allows to 

compute an optimal cover ratio β  (the Minimum Variance Hedge ratio), 

defined as the percentage of cash contracts matched by futures positions 

that minimizes the variance of the hedged portfolio. It owes its popularity 

to its simplicity, since β  - given by the ratio between the covariance of 

cash and futures returns and the variance of futures returns  - can be 

easily estimated. 

This approach has been refined both from a theoretical point of view - by 

introducing a larger spectrum of objective functions to be optimized - and 

from an empirical standpoint – by utilizing more complex econometric 
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methods that allow for time series heteroskedasticity and time variation of 

the hedge ratio. 

The MVH strategy focuses on the variance of the hedged portfolio and 

pays no attention to its expected return. Subsequent improvements 

include strategies based on hedged portfolio return mean and variance 

expected utility maximization2 (Cecchetti et al., 1988, Lence, 1995),  

minimization of the extended mean-Gini coefficient (Kolb and Okunev, 

1992), or based on the Generalised Semivariance (GSV) (Lien and Tse, 

2000). It has been shown, however, that if futures prices are martingale 

processes and if the spot and futures returns are jointly normal then the 

optimal hedge ratio will converge to the ratio obtained with the MVH 

strategy. As for commodity futures, Chen et al. (2008) find that it is not 

possible to reject the pure martingale hypothesis while the joint normality 

holds only selectively and over long horizons. 

The correlation between spot and futures is not perfect and, given the 

stochastic nature of futures and spot prices, the hedge ratio is unlikely to 

be constant. Static OLS hedge ratio estimation recognizes that the 

correlation between the futures and spot prices is less than perfect 

(Ederington, 1979, Figlewski, 1984), but imposes the restriction of a 

constant correlation between spot and futures price rates of changes. As 

such it could lead to sub-optimal hedging decisions in periods of high basis 

volatility and/or to inefficient revisions of the hedge ratio.  

Recently, a large body of  literature has arisen to cope with the dynamics 

of the joint distribution of the returns and with the time-varying nature of 

the optimal hedge ratio, using the large family of GARCH models. These 

studies suggest that optimal hedge ratios are time dependent and that 

dynamic hedging reduces in-sample portfolio variance substantially more 

than static hedging.  

The out-of-sample advantages of the GARCH hedge ratio are much more 

controversial. Some argue that the GARCH hedge ratio enhances the out-

of-sample hedging effectiveness (see, among others, the seminal works of 

Baillie and Myers, 1991, and of Kroner and Sultan, 1993, Lee and Yoder, 

                                                 
2 The MVH is not only compatible with a quadratic utility function but, as shown by 
Benninga et al. (1983), under certain conditions, it is consistent with expected utility 
maximization, a result that does not depend upon the nature of the utility function. 
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2007, who implement a Markov switching GARCH, and Chan and Young, 

2006, who incorporate a jump component in a bivariate GARCH). Others, 

however, considering the trade off  between the benefits of a dynamic 

hedge and both the complexity of the implementation of the GARCH 

method and the costs of portfolio rebalancing, conclude that static 

hedging is to be preferred (Lence, 1995, Miffre, 2004, and Alexander and 

Barbosa, 2007). Recent mixed evidence is set forth by Park and Jei 

(2010), while Lien (2009) finds that GARCH modeling raises hedging 

effectiveness mostly in small samples, when there are sufficiently large 

fluctuations in the conditional variance of the futures returns.  

The literature on commodity market speculation has followed two main 

strands. A direct approach based on an attempt to micro model 

simultaneously speculative and hedging behavior and an indirect 

approach, which analyzes the excess co-movement of commodity prices 

(with respect to common fundamentals) and ascribes this evidence to 

'herding' behavior. In addition some recent studies have tried to exploit 

the information, extrapolated from the data provided by the CFTC, on the 

commitments of traders.  

In an important paper Johnson (1960) suggests that hedging and 

speculation in the futures markets are interrelated. Speculation is mainly 

attributed to traders’ expectations on future price changes that bring 

about an increase/decrease of the optimal hedging ratio in a short 

hedging context. Ward and Fletcher (1971) generalize Johnson’s approach 

to both long and short hedging and find that speculation is associated with 

optimal futures positions (short or long) that are in excess of the 100 

percent hedging level.  

A different strand of analysis on speculation in the commodity markets 

focuses on the presence of excess (with respect to a component explained 

by fundamentals) co-movement of returns of unrelated commodities 

(Pyndick and Rotemberg, 1990). Subsequent research - see among others 

Cashin et al. (1999), Ai et al. (2006), and Lescaroux (2009) - challenged 

the excess co-movement hypothesis on both empirical and methodological 

grounds. The overall results are mixed and could indeed depend on the 

selection of the estimation techniques and/or of the information set (Le 

Pen and Sevi, 2010).   
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In recent year the availability of data on the Commitments of Traders 

Reports, provided by the Commodity Futures Trading Commission, has 

generated a body of papers that try to assess the impact of speculation on 

commodity prices measuring speculative positions in terms open interest. 

The weekly open interest of each commodity is broken down, according to 

the purposes of traders, in long and short reporting commercial hedging, 

long and short speculation by reporting non commercial firms, and 

positions of non reporting traders. The empirical results, however, are 

mixed (Fagan and Gencay, 2008). 

This  paper contributes to the current debate in different ways.   

a. Using a complex non linear CCC-GARCH approach we model 

explicitly the reaction  of hedgers and speculators to volatility shifts 

in the commodity markets. In this way the literature is extended by 

adding a dynamic component to the standard two-step optimal 

hedge ratio computation.  

b. A two-state Markov switching procedure is used to model the 

impact of changes in the behavior of commodity markets, changes 

due to bullish/bearish reactions to futures price changes and/or to 

shifts in risk aversion brought about by return volatility changes. 

We identify in this way a financial pattern that seems to play a 

growing role in recent commodity market pricing. 

c. We model and assess empirically the relative impact of speculative 

vs. hedging drivers on futures pricing, and show that periods of 

high futures return volatility are usually to be associated with a 

more intense speculative activity.  

  

Section 1  The model 
 

Commodity future trading is analyzed in this section, focusing on hedging 

and speculative behavior. A hedging transaction is intended to reduce the 

risk of unwanted future cash price changes to an acceptable level. Spot 

market trades are then associated with trades of the opposite sign in the 

corresponding futures market. If the current cash and futures prices are 

positively correlated, the financial loss in one market will be compensated 



 6 

by the earnings obtained from holding the opposite position in the other 

market.   

In more detail, let 
i
t

i
tc Cr log, ∆=  and 

i
t

i
tf Fr log, ∆= , where 

i
tC  is the cash 

(spot) price of commodity i and 
i

tF  is the price of the corresponding 

futures contract. An investor who takes a long (short) position of one unit 

in the cash market i will hedge by taking a short (long) position of β  units 

in the corresponding futures market, which he will buy (sell) back when he 

sells (buys) the cash. The hedge ratio β  can be seen as the proportion of 

the long (short) cash position that is covered by futures sales 

(purchases).3 

The revenue of this hedging position (or portfolio), i.e. the hedger’s return 

i
tHr , , is given by 
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The optimum hedge ratio *β  is derived from the first order condition of 

the hedging portfolio variance minimization and reads as (from now on we 

drop the superscript i ): 
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3 The hedge ratio is also defined as the ratio between the number of futures and cash 
contracts. 
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The optimum hedge ratio depends upon both the covariance between the 

changes in futures and cash prices and the variance of the futures price 

changes.  

In the empirical analysis below we will assess the effectiveness of the 

optimum hedge ratio using as benchmarks the unhedged cash position 

(when 0=β ), and the naïve hedge portfolio ( 1=β ), where the futures 

position is opposite in sign but of equal magnitude to the cash position.   

In order to analyze the reaction of hedgers to shifts in commodity returns, 

we extend the standard hedging model by introducing a dynamic 

component.  

We assume that the expected utility of hedgers is an inverse function of 

the expected variability of their optimally hedged position. The variance of 

this position (or portfolio) can be defined, replacing in equation (2) the 

optimal hedge ratio *β  by its determinants set out in equation (3), as  
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The demand of futures contracts of an hedger wishing to minimize the 

variance of his optimal portfolio is defined as 

  

)1( 2
,

2
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t fcc
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An increase in the minimum portfolio variance may be due to a rise in the 

variability of cash price changes and/or to a decrease in the correlation 

between cash and futures price changes. We can thus reasonably assume 

that 
Hb is positive if consumers’ hedging is prevailing since consumers, 

concerned about cash price increases, will demand more futures contracts 

whenever the portfolio variance increases. Conversely, 
Hb  will be negative 

if producers’ hedging is prevailing, since producers, worried about possible 
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cash price decreases, will supply more (i.e. demand less) contracts if the 

variability of their hedged position rises. 

The demand for futures contracts of a speculator is defined as 

  

2
,,10 tr

S
tft

SS
t f

erEdcD σ−+= −                                                               (6)  

 

Sd is always positive because of the positive impact on speculation of an 

increase in expected futures returns, whereas 
Se  can be either positive or 

negative, according to the reaction of speculators to risk. We assume that 

0<Se  for risk lover and 0>Se  for risk averse agents.  

It is generally accepted that futures trading is a zero sum game. As 

pointed out by Hieronymus (1977), among others, “for everyone who 

thinks the price is going up there is someone who thinks it is going down, 

and for everyone who trades with the flow of the market, there is 

someone trading against it“(pg 302).  Thus we can assume that the net 

demands of both agents are balanced or equivalently that  the demands of 

hedgers and speculators add up to 1, i.e. that 
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H
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Substituting equations (4) and (5) in equation (6) and readjusting terms, 

we obtain the following expression for the expected futures return 
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where 
SdcaC /)1( 00 −−= . Equation (8) relates futures returns to their 

own volatility and to the variability of the optimally hedged portfolio. The 
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absolute value of the ratio )1(/ 2
,

2
,

2
, trrtr

H
tr

S

fccf
be ρσσ −  measures the 

relative impact of speculation on futures returns the so-called “level of 

importance”.4 

The dynamics of this relationship is in line with the stylized facts detected 

in a paper by Fagan and Gencay (2008), where the negative correlation 

between futures returns and hedger net long positions supports the idea 

that large speculators are net buyers in rising markets, while large 

hedgers are net sellers. This behavior is encompassed by our (more 

general) model, when it contemplates the case of hedgers being net 

sellers - when 
Hb is negative - and futures returns going up. 

 

Section 2  A bivariate non linear CCC-GARCH representation 

 

We focus on futures prices since commodity prices are typically discovered 

in futures markets and price changes are passed from futures to cash 

markets (Garbade and Silber, 1983). Indeed, trading is quicker and 

cheaper in the futures than in the cash markets. Economic theory, 

however, suggests that the prices of the cash assets and of the 

corresponding futures contracts are jointly determined (Stein, 1961). Our 

empirical estimation thus includes a relationship that describes the 

behavior of cash returns, along a futures returns relationship, and 

analyzes the covariance between these two variables. Over the longer 

term equilibrium prices are ultimately determined in the cash market as 

all commodity futures prices at delivery date converge to the cash price 

(plus or minus a constant). This behavior justifies the existence of a 

cointegration relationship between futures and cash prices and the use of 

an error correction parameterization of the (conditional) mean equation 

for tcr , . 

In order to investigate empirically the presence of hedging and 

speculation in the commodity markets we estimate a non linear bivariate 

GARCH model for futures and spot returns. The conditional mean of the 

futures returns is modeled by equation (9’),  the conditional mean of the 

                                                 
4 Achen (1982, pg 72-73). 
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cash returns, equation (9), is parameterized by an autoregressive error 

correction structure, and the conditional second moments are quantified 

by a bivariate CCC-GARCH(1,1). 
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Section 3  The empirical behavior of five commodity markets 

 

Our daily data span the 3 January 1990 - 26 January 2010 time period. All 

the contracts are traded on the NYMEX (New York Mercantile Exchange) 

and are taken from Datastream.  Both spot ( tC ) and futures prices ( tF ) 

are expressed in US dollars. Futures prices correspond to the highly liquid 

1 month (nearest to delivery) futures contract.5 Returns are computed as 

first differences of the logarithms of the price levels. The model is tested 

for 5 commodities belonging to different commodity sectors: cotton 

(industrial materials), copper (industrial metals), crude oil (energy), silver 

(precious metals), and soybeans (grains). 

Summary statistics of cash and futures returns are presented in Table 1.  

< INSERT TABLE 1 ABOUT HERE > 

                                                 
5 The futures contract expires on the 3rd business day prior to the 25th calendar day of the 
month preceding the delivery month. If the 25th calendar day of the month is a non-
business day, trading ceases on the third business day prior to the business day preceding 
the 25th calendar day.  
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Average daily returns are small but not negligible, higher for oil and lower 

for soybeans, a pattern that holds also for the daily standard deviations.6 

The distributions of both cash and futures returns are always mildly 

skewed and significantly leptokurtic, the departure from normality being 

confirmed by the size of the corresponding Jarque Bera (JB) test statistics. 

Volatility clustering is detected in all cases a finding which supports the 

choice of a GARCH parameterization of the conditional second moments. 

Tables 2 to 6 present parsimonious estimates of the equations of the 

bivariate non linear CCC-GARCH(1,1) system set forth in section 2 for 5 

commodities. The overall quality of fit is satisfactory. The estimated 

parameters are significantly different from zero and the conditional 

heteroskedasticity of the residuals has been captured by our GARCH 

parameterization.7 The usual misspecification tests suggest that the 

standardized residuals tν  are always well behaved; for each system 

0][ =tE ν , 1][ 2 =
tt

E ν , and 2
tν  is serially uncorrelated. 

< INSERT TABLE 2 ABOUT HERE > 

< INSERT TABLE 3 ABOUT HERE > 

< INSERT TABLE 4 ABOUT HERE > 

< INSERT TABLE 5 ABOUT HERE > 

< INSERT TABLE 6 ABOUT HERE > 

The futures return mean equation (9’) provides the following useful 

information on the market drivers. (i) Coefficient Hb estimates are 

negative in the case of cotton, copper and soybeans - reflecting the 

predominance of producers on the markets - and positive for the 

remaining commodities of the sample (oil and silver), because of the 

preponderance of consumers. This result is also in line with the effects of 

hedging pressure, where futures prices increase when hedgers trade short 

and decrease when hedgers are long.8  

(ii) The absolute value of the ratio between speculative and hedging 

factors  set forth in Table 7 measures the relative impact of risk on futures 

                                                 
6 The logarithms of the prices of the cash and futures contracts are always I(1) and their 
first differences I(0). The test statistics are not reported for lack of space. 
7 The t-ratios reported in the tables are based on the robust quasi-maximum likelihood 
estimation procedure of Bollerslev and Wooldridge (1992). 
8 See Chang (1985) and Bessembinder (1992). 
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returns. It is higher than 1 for the copper, oil and soybeans markets, 

where speculators seem to be more reactive to futures risk than hedgers. 

Speculators are risk averse (since the corresponding 
Se coefficient 

estimates are positive) in the oil and silver markets only, a finding that 

may be due to the size of the volatility shocks. This issue shall be further 

investigated in the next section as is affected by the futures pricing 

regime shifts. (iii) The estimates of coefficient 
sd , which represents the 

component of speculators’ demand that is associated with price 

expectations, are always positive and significant. They tend to be small, 

however, if compared with those of the coefficients of the corresponding 

futures returns volatilities.9  

< INSERT TABLE 7 ABOUT HERE > 

The dynamic specification of our model might introduce distortive effects 

in the estimation of the optimal hedge ratio β , that reduce its 

effectiveness. We have thus performed the standard comparison of its 

hedging performance with the performance of a naïve portfolio hedge ratio 

( 1=β ) and of an OLS hedge ratio, obtained as the futures return 

coefficient estimate in a regression of cash returns on a constant and on 

futures returns. An artificial daily portfolio is introduced where an investor 

is assumed to buy (sell) one unit of the cash asset and to sell (buy) β  

units of the corresponding futures contract. The unconditional portfolio 

return standard deviations are computed over the whole sample and are 

set forth in Table 8 for the three hedge ratio estimators. The naïve hedge 

portfolios are clearly outperformed by the optimal hedge portfolios, a 

finding that differs from the results obtained by Alexander and Barbosa 

(2007). Commodity markets, in spite of their growing financiarization, 

cannot compare, in terms of efficiency, with the major stock markets and 

optimal hedging remains an effective risk reduction technique. Our CCC-

GARCH model provides the minimum risk hedge in three out of five 

markets, a finding that corroborates the validity of its parameterization. 

                                                 
9 Equation (9’) imposes coefficient restrictions that are justified by the model. We have 
estimated a reduced form version of our CCC-GARCH(1,1) model, replacing  (bH /dS ) and  
(eS /dS ) with the corresponding unrestricted coefficients. We were unable to reject the null 
associated with these restrictions performing standard LR tests. The corresponding tests 
statistics are available from the authors upon request. 
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Only in the case of cotton and soybeans, among the less volatile markets 

of the sample, does the OLS optimal hedge provide the best results.10     

< INSERT TABLE 8 ABOUT HERE > 

 

4 Hedging, speculation, and futures pricing regime shifts 

 

Sarno and Valente (2000) and Alizedeh and Nomikos (2004) analyzed the 

changes in the relationship between futures and spot stock index returns 

using a Markov switching model set out originally by Hamilton (1994). In 

our investigation we use this technique in order to analyze the shifts over 

two regimes in commodity market hedging and speculative behavior.  

Using the full sample estimates of the conditional second moments 

obtained in the previous section, equation (9’) is adapted in a second step 

to a two-state Markov switching framework in which the drivers of futures 

returns are assumed to switch between two different processes, dictated 

by the state of the market. 

Equation (9’) is thus rewritten as 

 

tsrtr
S
s

S
strtrrtr

S
s

H
sstf tffttffccttt

uhdehhhdber ,
2

,
2

,
2

,
2

,0, )/()/)(/( ++−−=                      (10) 

 

where ),0(~ 2
, ttf stsr Nu σ , and the unobserved random variable ts  indicates 

the state in which is the market.  

The value of the current regime ts  is assumed to depend on the state of 

the previous period only, 1−ts , and the transition probability 

ijtt pisjsP === − }{ 1  gives the probability that state i will be followed by 

state j. In the two state case 11211 =+ pp  and 12122 =+ pp , and the 

corresponding transition matrix is  

                                                 
10 If we repeat the exercise using weekly returns estimates of our CCC-GARCH(1,1) model 
and introduce a weekly portfolio rebalancing, the CCC-GARCH beta portfolios consistently 
outperform both the OLS beta and naïve beta portfolios in all commodity markets. 
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),(),;(),,( 11,1, ψψψ −−− ==== tttttftttf YjsPYjsrfYjsrp             2,1=j          (12) 

 

where 1−tY  is the information set that includes all past information on the 

population parameters and ),,,,( 2
0 ttttt s

S
s

S
s

H
ss edbe σψ =  is the vector of 

parameters to be estimated. (.)f  is the density of tfr , , conditional on the 

random variable ts , and (.)P  is the conditional probability that ts will take 

the value j .  
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(1994, Chapter 22)  
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where
tsr tf

u ,
is the residual of equation (10). 

If the unobserved state variable ts  is i.i.d. maximum likelihood estimates 

of the parameters in ψ  are obtained maximizing the following log 

likelihood function with respect to the unknown parameters 

 

L ∑
=

−=
T

t
ttf Yrg

1
1, ),(log)( ψψ                                                                 (14) 

 

where T is the total number of sample observations.  

In this paper we base the identification process of the nature of the 

regimes, essential for the interpretation of a Markov switching model, on 
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the estimates of equation (10) and on the analysis of the behavior over 

time of the state probabilities. 

< INSERT TABLE 9 ABOUT HERE > 

In Table 9 are set out the estimates of equation (10) for the five 

commodity markets. The quality of fit is highly satisfactory since, with the 

exception of cotton, the relevant coefficients change across regimes and 

are significantly different from zero. The restriction of equal residual 

variances is strongly rejected by LR tests performed for each model. The 

regime (state) 2 variances are from two to three time larger than those of 

regime (state) 1. The probability of switching from a low variance to a 

high variance state 12p  is lower than the probability of switching from a 

high variance to a low variance state 21p . For instance, in the case of oil,  

the transition probabilities are %9.012 =p  and %5.621 =p ; these findings 

indicate that the average expected duration of being in state 1 is close to 

111 working days (about 5 months) and the average expected duration of 

being in state 2 is of 15 working days.11 The number of days of high 

volatility is, on the whole, rather small.  

A relevant difference across regimes in hedging and speculative behavior 

can be easily detected. The reaction of hedgers is not homogeneous in the 

various markets. In the case of copper and soybeans hedgers seem to be 

more sensitive to portfolio risk in state 2 while in the remaining markets 

the opposite reaction can be detected. The behavior of speculators too 

changes with the market. In the case of copper and soybeans a risk 

averse behavior in state 1 is reversed with the change of regime; 

speculators increase their demand for futures contracts whenever the 

volatility rises. In the remaining markets speculators behave in the 

opposite way. Their reaction to (a high) futures return volatility decreases 

in the case of oil and becomes nil in the case cotton and silver. This 

finding is of interest for the interpretation of the main drivers of the 

volatility movements for these commodities. It suggests that volatility 

changes, in regime 2, may be due more to spillovers from monetary, 

                                                 
11 The average expected duration  of being in state 1 is computed according to Hamilton 

(1989) as ∑
∞

=

−−− =−=−
1

1

12

1

1111

1

11 )()1()1(
i

i pppip   
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financial, and exchange rate markets than to endogenous market 

speculation.        

The estimates of the weighted coefficient ratio (SPEC) set forth in Table 9 

strongly suggest that in state 2 the impact of speculation on futures price 

dynamics is much stronger than in state 1 of the market. Finally, the 

optimal hedge ratio β  tends to increase during the high volatility period in 

the case of oil, silver, and copper (a result due to the significant increase 

in correlation between spot and futures returns), while for cotton and 

soybeans the reverse holds true.12  

< INSERT FIGURE 1 ABOUT HERE > 

< INSERT FIGURE 2 ABOUT HERE > 

< INSERT FIGURE 3 ABOUT HERE > 

Figures 1 to 3 provide useful insights on the dating of the regime shifts. In 

the upper graph of each figure is set forth the behavior over the sample of 

the time t probability that the market is in regime 1. In the lower graph is 

set out the rate of return of the corresponding futures contract. Visual 

inspection suggests that regime 1 may be associated with periods in which 

return variability is low (and thus regime 2 with periods in which it is 

high).13 

< INSERT TABLE 10 ABOUT HERE > 

In table 10 are finally reported the correlation coefficients between the 

probability 1 regime and the daily rate of return and standard deviation of 

the corresponding futures contract. As expected, we find a large negative 

and significant correlation coefficient between the regime 1 probabilities 

and the daily standard deviations. We detect, however, also a significant 

positive correlation of these regime probabilities with futures returns. This 

result indicates, especially for silver, a more complex identification of the 

nature of the state variable ts . Regime 1 is to be associated with both low 

futures return variability and, to a lesser extent, with positive futures price 

                                                 
12 The correlation between the spot and futures returns is generally stronger in the high 
volatility regime. In the case of cotton and soybeans, however, the increase is small (3.75 
and 1.16 percent, respectively). This lack of reaction to volatility shifts may explain the 
portfolio risk minimization results of Table 8, where, for these commodities, the time-
varying conditional hedge ratios are outperformed by the constant OLS optimal hedges. 
13 For each market, bouts of high variability are clearly identified. They do not coincide in 
the first half of the sample and tend to be more synchronized in the second half, a 
symptom of the growing financial integration of the commodity markets. 



 17 

rates of change (i.e. possibly with a bullish market), and regime 2 with 

high return variability and negative futures price rates of change (i.e. with 

a bearish market).14 

    

5  Conclusions 

 

This paper examines the dynamic behavior of futures returns on five 

commodity markets. The interaction between hedgers and speculators is 

modelled using a highly non linear parameterization where hedgers react 

to deviations from the minimum variance of the hedged portfolio and 

speculators respond to standard expected risk returns considerations. The 

relationship between expected spot and futures returns and time varying 

volatilities is estimated using a non linear in mean CCC-GARCH approach. 

The results point to the suitability of this choice because of the quality of 

fit and of the sensible meaning of the model’s parameter estimates. 

In spite of the growing role of speculation, over the 1990-2010 sample 

period, hedgers do play a relevant role since futures returns dynamics is 

mostly associated with the variability of the hedged portfolio, especially in 

the low volatility regime. 

We account for the impact of financial integration of the commodity 

markets by allowing the demand of futures to be dependent upon the 

“state of the market” via a Markov regime switching approach. Both visual 

inspection and correlation analysis suggest that regime 1 be associated 

with periods in which return variability is low and regime 2 with periods in 

which it is high. Optimal hedging ratios computed in each state are larger 

in high volatility regimes for oil, copper and silver, while the reverse holds 

true for cotton and soybeans. The differences across regimes in hedging 

and speculative behavior are distinctive and not homogeneous across 

commodities. The role of speculators appears to be very strong, and 

significant, when market  volatility is high in the case of copper, soybeans, 

and oil. However, the positive correlation of the regime probabilities with 

the futures daily rates of returns suggests, especially for silver, a more 

complex identification of the nature of the state variable. Thus further 

                                                 
14 According to the standard ADF unit root tests, the time t regime 1 probability time series 
are always I(0). 
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investigation, e.g. introducing a four regime framework, could provide 

additional insights about the nature of the volatility of the futures returns 

for some of the commodities of our study.       

 

 

 

TABLE 1  Descriptive statistics  

Daily sample from 3 January 1990 to  26 January 2010  (5325 observations) 

Return Mean St.dev. Sk. Kurt. JB ARCH(1)[pr.] ARCH(5)[pr.] 

Copper futures 0.000229 0.0169 -0.22 4.53 4520.46 181.57[0.00] 570.36[0.00] 

Copper cash 0.000210 0.0169 -0.21 4.51 4483.09 346.76[0.00]      876.66[0.00]     

Cotton futures 0.000112 0.0175 -0.79 22.07 106878.63 14.45[0.00] 91.93[0.00] 

Cotton cash 0.000122 0.0174  0.02 2.43 1290.37 177.66[0.00] 843.85[0.00] 

Oil futures 0.000270 0.0250 -0.95 17.52 67710.6 73.16[0.00] 365.74[0.00] 

Oil cash 0.000240 0.0240 -1.23 24.63 1333762.2 20.55[0.00] 94.68[0.00] 

Silver futures 0.000220 0.0165 -0.39 6.89 10498.5 120.53[0.00] 401.85[0.00] 

Silver cash 0.000220 0.0177 -0.23 4.40 3521.0 121.88[0.00] 334.44[0.00] 

Soybeans futures 0.000095 0.0148 -0.59 5.94 8020.7 29.21[0.00] 206.73[0.00] 

Soybeans cash 0.000097 0.0152 -0.75 7.24 11964.7 60.45[0.00] 360.72[0.00] 
 
Notes: Sk.: skewness; Kurt.: kurtosis; JB: Jarque Bera test statistic; ARCH(.): Lagrange Multiplier test foth the kth 
order Arch, probability levels are in square brackets. These notes also apply to the following tables. 
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TABLE 2 Copper  
 2,41,32,2 ;; −−− tftftc rarara  
 

Conditional Mean Equation Conditional Variance Equation 

 tcr ,  tfr ,   
2
,tch  

2
,tfh  

0a  
0.010 
(21.45) 

 ϖ  
8.9E-06 
(37.18) 

1.0e-05 
(13.43) 

1a  
-0.303 
(-27.26) 

 α  
0.907 

(314.72) 
0.904 

(448.05) 

2a  
0.247 
(28.50) 

 β  0.058 
(21.59) 

0.054 
(54.59) 

3a
 

-0.172 
(-17.07) 

 12ρ  
0.878 

(696.38) 

4a  
0.161 
(16.94) 

 
Funct 
Value 

32667.4212 

1ε  
0.036 

(151.44) 
 

0d  
0.249 
(27.93 

 

1d
 

1.005 
(203.40) 

 

0e
 

                                             -1.0E-04         
                                             (-194.48)       

Hb
 

 
-9.526 
(-19.76) 

Se   
-2.165 
(-19.40) 

Sd   
0.370 
(1516) 

][ tE ν
 

0.02 
(1.67) 

0.02 
(1.58) 

][ 2
tE ν  0.99 0.99 

Sk. -0.34 -0.19 

Kurt.
 

3.77 2.88 

ARCH(1)
 

0.24 
[0.63] 

2.74 
[0.10] 

ARCH(6) 
3.00 
[0.81] 

5.12 
[0.53] 

JB 3214.64 1840.19 
 

 

 

Note: An AR(1) filter pre-whitens the futures returns time series;  
νt : standardized conditional mean residual. 
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TABLE 3 Cotton 

2,31,2 ; −− tftf rara ; 2,4 −tsra in the cash return eq.; k : dummy in the futures return eq. 

 
 
 

 
 

 

Conditional Mean Equation Conditional Variance Equation  

 tcr ,  tfr ,   
2
,tch  

2
,tfh  

0a  
-0.0179 
(-248.61) 

 ϖ  
9.0e-06 
(113.66) 

1.2e-05 
(91.29) 

1a  
-0.081 
(-8.94) 

 α  
0.913 
(996.6) 

0.885 
(1485.67) 

2a  
0.084 
(13.62) 

 β  
0.053 
(59.05) 

0.074 
(105.90) 

3a  
-0.026 
(-3.42) 

 12ρ  
0.786 

(517.60) 

1ε  
0.030 

(115.93) 
 Funct.  value 30728.6361 

0d  
-0.291 

(-136.79) 
 

1d
 

0.939 
(1030.11) 

 

0e
 

                             -5.6e-04 
                           (-8.08) 

Hb
 

                            -0.365 
                            (-14.09) 

Se  
                              -0.067 
                             (-7.98) 

Sd  
                             0.039 
                            (6.72) 

k  
                             -0.280 
                             (-44.68) 

][ tE ν
 

0.007 
(0.50) 

0.005 
(0.36) 

][ 2
tE ν  1.000 1.000 

Sk. -0.008 0.03 

Kurt.
 

1.66 4.09 

ARCH(1)
 

0.77 
[0.38] 

0.003 
[0.95] 

ARCH(6) 
0.28 
[0.21] 

5.51 
[0.47] 

JB 602.16 3648.43 
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TABLE 4 Oil  

γ : the asymmetry coefficient ; 1,1 −tcra ; 2a 1, −tfr ; 2,3 −tcra ; 2,4 −tfra ; 3,5 −tcra ; 3,6 −tfra  

 
Conditional Mean Equation Conditional Variance Equation  

 tcr ,  tfr ,   
2
,tch  

2
,tfh  

0a  
-0.012 
(-86.90) 

 ϖ  
1.9e-05 
(65.65) 

2.2e-05 
(39.09) 

1a  
-0.219 
(-25.74) 

 α  
0.866 

(691.56) 
0.850 
(577.38) 

2a  
0.235 
(32.58) 

 β  
0.097 
(82.38) 

0.099 
(55.07) 

1ε  
0.065 
(89.90) 

 γ   
0.029 
(9.30) 

0d  ---  12ρ  
0.75 

(318.52) 

1d
 

0.957 
(1547.6) 

 Funct.  value 27488.1794 

0e
 

                                  2.06e-04 
                             (1.51) 

Hb
 

                                0.787 
                               (5.51) 

Se  
                              0.448 
                              (7.62) 

Sd  
                                0.186 
                               (3.45) 

][ tE ν
 

-0.016 
(-1.16) 

-0.012 
(-0.89) 

][ 2
tE ν  0.999 1.000 

Sk. -0.29 -0.33 

Kurt.
 

4.55 3.08 

ARCH(1)
 

0.59 
[0.44] 

4.76 
[0.03] 

ARCH(6) 
12.07 
[0.06] 

1.63 
[0.95] 

JB 4591.16 2167.16 
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TABLE 5 Silver 
 

 

Conditional Mean Equation Conditional Variance Equation 

 
tcr ,  tfr ,   

2
,tch  

2
,tfh  

0a  0.002 
(26.22) 

 ϖ  
7.0e-06 
(88.20) 

9.0e-06 
(74.88) 

1a  -0.143 
(-22.75) 

 α  
0.896 

(1071.1) 
0.905 

(1238.1) 

2a  0.164 
(43.36) 

 β  
0.069 
(76.05) 

0.059 
(71.29) 

1ε  0.592 
(142.88) 

 γ    

0d  -0.0038 
(29.75) 

 12ρ  
0.82 

(491.1) 

1d
 

1.000 
(49342.6) 

 Funct. value 32604.3302 

0e
  

0.0002  
(2.65) 

Hb
  

0.202  
(9.32) 

2e  
 

0.032  
(6.07) 

3e  
 

0.013  
(3.88) 

][ tE ν
 

0.03 
(1.94) 

0.02 
(1.61) 

][ 2
tE ν  0.999 0.999 

Sk. -0.38 -0.31 

Kurt.
 

4.62 3.83 

ARCH(1)
 

4.22 
[0.04] 

1.49 
[0.22] 

ARCH(6) 
13.07 
[0.04] 

9.76 
[0.13] 

JB 4793.24 3284.07 
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TABLE 6 Soybeans 
 

Conditional Mean Equation Conditional Variance Equation 

 tcr ,  tfr ,   
2
,tch  

2
,tfh  

0a  
0.003 
(41.43) 

 ϖ  
2.0e-06 
(26.77) 

2.0e-06 
(32.0) 

1a  
-0.231 
(-39.22) 

 α  
0.920 

(1861.1) 
0.934 

(3072.8) 

2a  
0.215 
(41.30) 

 β  
0.072 

(160.59) 
0.058 

(178.19) 

1ε  
0.047 
(59.49) 

 12ρ  
0.884 

(1657.4) 

0d  
0.09 

(65.68) 
 Funct. Value 34179.3979 

1d
 

0.997 
(4670.9) 

 

0e
 

 
0.0003 
(4.90) 

Hb
 

 
-48.24 
(-12.62) 

Se   
-14.48 
(-17.67) 

Sd   
2.45 
(7.38) 

][ tE ν
 

0.010 
(0.74) 

0.012 
(0.88) 

][ 2
tE ν  1.00 1.00 

Sk. -0.21 -0.02 

Kurt.
 

2.71 2.88 

ARCH(1)
 

1.95 
[0.16] 

0.58 
[0.45] 

ARCH(6) 
5.11 
[0.53] 

3.74 
[0.71] 

JB 1646.9 1814.2 
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TABLE 7  Relative importance of speculative drivers on futures 

pricing (absolute value of )1(/ 2
,

2
,

2
, trrtr

H
tr

S

fccf
be ρσσ − ) 

 

Copper 1.03 

Cotton 0.44 

Oil 1.34 

Silver 0.37 

Soybeans 1.13 

 
 

 
TABLE 8 Optimal hedge ratios and portfolio second moments 
 

 CCC-GARCH Estimates OLS Estimates Naïve 

 Optimal 
hedge 

ratio β  

St. Dev. of the 
optimal hedge 

portfolio 
 

Optimal  
hedge 

ratio β  

 

St. Dev. of the 
optimal hedge 

portfolio 
 

St. Dev. of the 
naive portfolio 

 

Copper 0.87 0.008240 0.91 0.008374 0.008518 

Cotton 0.81 0.011268 0.76 0.011179 0.011894 

Oil 0.74 0.016322 0.70 0.016416 0.018017 

Silver 0.71 0.010867 0.72 0.010868 0.011857 

Soybeans 0.90 0.007627 0.89 0.007605 0.007770 
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TABLE 9 Markov switching regime estimates of equation (10) 
  
 Copper Cotton Oil Silver Soybeans 

 st=1 st=2 st=1 st=2 St=1 st=2 st=1 st=2 st=1 st=2 
pst,not st 0.023 

(9.10) 
0.066 
(9.73) 

0.054 
(11.50) 

0.216 
(13.26) 

0.009 
(6.00) 

0.065 
(7.21) 

0.070 
(11.77) 

0.173 
(14.55) 

0.034 
(10.26) 

0.084 
(10.59) 

e0 st -0.001 
(-4.76) 

0.002 
(3.16) 

-0.000 
(-2.14) 

-0.002 
(-1.65) 

-0.000 
(0.68) 

-0.002 
(-1.26) 

-0.001 
(-12.18) 

-0.001 
(-1.04) 

-0.000 
(-0.69) 

0.002 
(4.25) 

bH
 st -0.479 

(-4.11) 
-3.756 
(-5.98) 

-0.164 
(-3.55) 

-0.067 
(-0.67) 

1.884 
(5.96) 

0.742 
(4.04) 

-0.337 
(-19.57) 

0.164 
(2.68) 

4.237 
(3.24) 

-5.641 
(-2.04) 

eS 
st 0.108 

(3.62) 
-1.915 
(-12.2) 

0.014 
(0.77) 

-0.010 
(-0.25) 

1.335 
(9.54) 

0.235 
(4.28) 

-0.008 
(-1.91) 

0.021 
(1.31) 

1.628 
(5.45) 

-5.767 
(-7.68) 

dS
 st 0.034 

(7.63) 
0.178 
(6.23) 

0.026 
(4.30) 

0.019 
(0.43) 

0.265 
(4.43) 

0.066 
(1,81) 

0.007 
(15.94) 

0.015 
(1.44) 

0.373 
(2.46) 

0.648 
(5.79) 

2
stσ   

0.012 
(75.94) 

0.027 
(54.68) 

0.012 
(72.00) 

0.030 
(109.3) 

0.018 
(94.79) 

0.048 
(37.31) 

0.010 
(79.15) 

0.028 
(67.26) 

0.010 
(69.30) 

0.023 
(71.17) 

n. of days 
in st * 

43 15 19 7 111 15 14 8 29 12 

SPEC 0.60 2.96 0.26 0.34 1.16 3.76 0.05 0.40 1.25 4.23 

Optimal h. 

ratio β 0.86 0.93 0.92 0.68 0.88 0.96 0.73 0.87 0.94 0.87 

Function 
value 14444.017 14250.008 12672.172 14568.325 15168.223 

LR 538 
[0.00] 

684 
[0.00] 

692 
[0.00] 

852 
[0.00] 

60 
[0.00] 

Notes: *: Average expected duration of being in state st ; SPEC: speculative to hedging factors ratio 

defined as )1(/ 2
,

2
,

2
, trrtr

H
tr

S

fccf
be ρσσ − ; LR: Likelihod Ratio test of the null hypothesis 0H : 

2
2

2
1 σσ = , distributed 2χ with 1 degree of freedom.  

 

 
 
 

TABLE 10 Correlation between regime 1 probability and daily 
futures returns and standard deviations   
 

 Copper Cotton Oil Silver Soybeans 

tfr ,  0.032 
(2.54) 

0.051 
 (3.62) 

0.077 
(5.42) 

0.113 
(8.02) 

0.029 
(2.08) 

tfr ,
σ  -0.601 

(-52.98) 
-0.715 
(-72.02) 

-0.554 
(-4.96) 

-0.716 
(-72.21) 

-0.627 
(-56.77) 
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FIGURE 1 
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FIGURE 2 
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FIGURE 3 
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