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1 Introduction

The random walk hypothesis (RWH) of Fama (1965), in its simplest form, states that

the fundamental information flow is unobservable but reflected in the innovations of the

efficient price of assets. In this paper, I propose an adjustment to the simple RWH to

account for the effects on price volatility of heterogeneity among investors, as well as

between liquidity providers and takers. Specifically, the approach leverages the structural

covariation between price and demand to derive a conditionally independent stochastic

innovation of the efficient price which is free not only from microstructural noise but, more

importantly, from the impact of investor heterogeneity that manifest itself through demand

flows.

The simple RWH approach does not require reliance on standard stochastic discount rate

models or on rational expectations. The contradiction in the subsequent joint-hypothesis

framework of Fama (1976) is underscored by the argument of Cochrane (1991) that excess

volatility tests only document time variation in discount rates, expected returns and risk

premia that is not fully explained by discount rate models. In other terms, whenever

excess volatility is detected, either markets are inefficient or asset pricing models fail to

reflect the actual diversity of investor beliefs. But the latter suggests that these models

could overestimate excess volatility, therefore undermining any evidence against market

efficiency. In contrast, the simple RWH avoids this overestimation problem, making any

detected excess volatility more robust. Moreover, the simple RWH approach does not

necessitate restricting the analysis to specific news events. This is particularly appropriate

given that, despite the recent explosion of available data, there are good reasons to believe

that prices remain the most reliable manifestation of fundamental information. From this

perspective, the approach of this paper might help to explain the apparent puzzle of “so

few news and so many jumps” in prices (Aı̈t-Sahalia et al., 2024).
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While evidence against the simple RWH is robust at low frequencies (Lo and MacKin-

lay, 1988; Liu and He, 1991), there are compelling arguments in favor of asset prices being

unpredictable at high frequencies. This unpredictability, in turn, supports the notion that

fundamental information is primarily reflected in prices. The limited deviations from the

RWH observed at high frequencies, such as those reported in Cai and Zhang (2016) and

Laurent and Shi (2022), can be attributed to market microstructural factors, including

rounding errors from discrete price grids, temporary liquidity shocks, or inventory manage-

ment by market makers. Microstructural effects are not the only source of non-fundamental

volatility. Factors related to heterogeneity and informational asymmetry must also be taken

into account. To assess these effects, I decompose volatility into separate endogenous and

exogenous components within a properly specified statistical model, as detailed in the fol-

lowing sections.

The choice of the EUR/USD currency market for the empirical analysis is consistent

with the general purpose of the paper to avoid the overestimation problem mentioned

above. Indeed, the EUR/USD pair is exchanged on a highly traded market, in which

liquidity shocks that could impact volatility are less likely to happen. Moreover, some

forms of informational asymmetry like insider trading are less relevant on a liquid currency

market than on, say, the stock market. Therefore, although the paper does not engage in

a systematic analysis of different asset classes, there are reasons to believe that its results

establish a realistic lower bound for excess volatility across markets. The main limitation

of the proposed analysis resides in the lack of freely available demand data, which makes

it more difficult to replicate its results. Therefore, extensions of the empirical analysis are

left for future research.

The main finding of the paper is that excess volatility in the EUR/USD interdealer

market was substantial in 2016. After discounting microstructural factors, the conditional

volatility of efficient price variations would, on average, have been 46% lower if the time-
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varying response of liquidity providers to demand shocks had been absent. A natural

interpretation of this result is that information is incorporated into asset prices through

an informed component of demand. Prices thus reflect fundamental information because

liquidity providers adjust rapidly to informed net order flows. The key implication is that

excess volatility arises from the very mechanism through which financial markets operate.

The remaining of the paper is organized as follows. The following Section briefly reviews

the relevant literature. Section 3 presents the time varying VAR model employed to gauge

microstructural effects. Section 4 introduces the analysis of structural covariance by means

of a combined GAS - GARCH model. Section 5 contains the empirical results on the

EUR/USD interdealer market. Finally, section 6 concludes.

2 Literature Review

In a risk-neutral framework with full information, and under the absence of arbitrage,

the volatility of an asset coincides with the volatility of the fundamental information flow

(Ross, 1989). By contrast, the seminal work of Shiller (1981) showed that stock volatility

substantially exceeded the restrictions implied by standard valuation models under ratio-

nal expectations. This discrepancy, commonly referred to as excess volatility, sparked a

broad debate on the efficiency of financial markets. Since then, excess volatility has been

explained by models incorporating risk aversion, informational asymmetry, heterogeneity,

or by frameworks that abandon the assumption of full rationality altogether (Thaler, 2005;

Shiller, 2015). Although subsequent statistical refinements have weakened Shiller’s original

findings (Mankiw et al., 1991; Cochrane, 1991; Cuthbertson and Hyde, 2002), the issue has

re-emerged more recently with the “inelastic demand hypothesis” of Gabaix and Koijen

(2021), which, according to Bouchaud (2022), aligns with the “order-driven view” advo-

cated in the MM literature. Indeed, the latter has provided the primary inspiration of
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this paper, particularly through its applications to currency markets (King et al., 2013),

which emphasize the role of informational asymmetry as a driver of volatility. According to

MM theory, the main channel for information transmission to the market is the order flow

from informed traders, while uninformed traders respond to price innovations, generating

a complex interdependence between price movements and demand.

Accurately capturing the diversity of views among market participants is a daunting

task. Traders not only hold different information, but also rely on distinct and often

imperfect models, pursue different objectives, and operate over varying time horizons. Even

though more detailed data on the information flow are becoming available (Baker et al.,

2019), we still lack a solid theory of asset pricing. As a result, the same piece of information,

received at the same time, may be interpreted in markedly different ways. Heterogeneity

makes it difficult, if not impossible, to measure directly the fundamental flow of information

to the market, and helps to explain why, despite a large body of literature documenting

the significant impact of announcements and news on returns (Andersen et al., 2003; Neely

and Dey, 2010) and volatility (Maheu and McCurdy, 2004; Andersen et al., 2003; Neely

and Dey, 2011; Chan and Gray, 2018), as well as the influence of macroeconomic volatility

on financial volatility (Engle and Rangel, 2008; Diebold and Yilmaz, 2008), studies such

as Roll (1984), and more recently Filimonov and Sornette (2012) and Aı̈t-Sahalia et al.

(2024), emphasize the troubling disconnect between price and fundamental volatility when

the latter is measured by the flow of public news 1.

The analysis of volatility in this paper builds on the identification through heteroscedas-

ticity (IH) approach introduced by Rigobon (2003), which avoids the standard coefficient

restrictions imposed in structural vector autoregression (S-VAR) models. In particular, I

relax the restriction, first adopted by Hasbrouck (1991) and subsequently by much of the

1According to Djeutem and Kasa (2013), model uncertainty might be an important source of excess
volatility on the foreign exchange market if agents attempt to construct forecasts that are robust to model
misspecification. This type of uncertainty might explain the high sensitivity of currency markets to macroe-
conomic announcements.
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MM literature, that price variations have no contemporaneous effect on net order flows. I

also allow for the possibility that the sensitivity of price variations and demand to innova-

tions is both time-varying and persistent (Berger et al., 2009), by employing the generalized

autoregressive score (GAS) framework (Creal et al., 2011; Blasques et al., 2023) to estimate

a VAR model with time-varying coefficients. Ignoring this dimension risks overlooking part

of excess volatility, since VAR models with fixed coefficients cannot capture the dynamic

nature of microstructural effects. In this respect, the paper extends the common approaches

used to quantify such effects, namely state-space model estimation (Menkveld et al., 2007;

Brogaard et al., 2014) and VAR-based estimation (Hasbrouck, 1991).

To exploit heteroscedasticity for identification, it is necessary to specify the process gov-

erning the covariance matrices of the structural errors in a GAS-S-VAR model. Common

choices include variance regimes (Rigobon, 2003), restricted or unrestricted multivariate

ARCH/GARCH processes (Rigobon, 2002), and constant or dynamic conditional correla-

tion processes (Weber, 2010)2. In this paper, I adopt a GARCH specification for structural

volatility, since simulation studies show that a GARCH-based Gaussian ML approach per-

forms particularly well when the underlying data-generating process is conditionally het-

eroscedastic, even if the distribution of the structural errors is misspecified3. The main

methodological contribution of this paper relative to the existing literature is to combine

the IH approach with a GAS process, thereby closing an apparent gap between unrestricted

linear models such as Lanne et al. (2022) and restricted nonlinear models such as Primiceri

(2005) and Berger et al. (2009).

2A detailed review is provided by Kilian and Lütkepohl (2017).
3See Herwartz et al. (2019), who employ skewed and leptokurtic distributions consistent with the prop-

erties of financial time series.
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3 GAS-VAR Model

One common assumption in the MM literature is that the returns of an asset can be de-

composed into a permanent component, embedding fundamental factors, and a transitory

component, embedding non fundamental factors. Following the inspiration of Hasbrouck

(1991), I choose to represent the latter through an autoregressive process involving both

price variations and order flows. A process of this sort can account for market under-

reaction or overreaction to information which is generated by microstructural effects. In

particular, according to the VAR framework, prices might incorporate information directly

or indirectly, through the impact of informed order flows. Alternatively, state space models

assume that efficient prices, reflecting fundamentals, are observed with a measurement error

which is due to microstructural noise. In general, a VAR framework appears to be more

consistent with the bivariate framework that I adopt, which is linked to the subsequent

analysis of volatility explained in section 4.

Another well known fact of financial markets is that the impact of information on the

market changes over time. In order to take into account this feature, I incorporate the

additional flexibility of observation driven models into the VAR framework. For a given

time series yT = {y1, . . . , yT}, the general form of observation driven models is as follows:

yt ∼ p(yt−1, ft, θ) (1)

ft = ϕ(yt−1, f t−1, θ) (2)

where p is the conditional distribution of yt, y
t−1 = {y1, . . . , yt−1}, f t−1 = {ft−k, . . . , ft−1}

with k ≥ 1, and θ is a vector of parameters to estimate. One popular example in this class

is given by score-driven (SD) models, also called generalized autoregressive score (GAS)
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models (Creal et al., 2011), in which Eq.(2) takes the following form:

ft = θ0 +Θ1 st−1 +Θ2 ft−1 (3)

st−1 = St−1(ft−1, θ)∇t−1 (4)

∇′
t−1 =

∂ log p(yt−1|ft−1, θ)

∂f ′
t−1

(5)

where St−1 is a scaling matrix and (θ0,Θ1,Θ2) ∈ θ. In order to introduce my approach,

I adopt the standard representation for VAR models with p lags. A VAR(p) model with

time-varying coefficients can be written in the following compact form:

zt = ct + Atzt−1 + ξt (6)

where zt =
[
y′t, . . . , y

′
t−p+1

]′
, ct = [µ′

t 0′]′, ξt = [u′t 0′]′, and finally:

At =



B1,t B2,t . . . Bp−1,t Bp,t

I 0 . . . 0 0

0 I . . . 0 0

...
...

. . .
...

...

0 0 . . . I 0


(7)

where At is of size np × np, ξt ∼ N (0,Σt) with Σt =

Ht 0

0 0

 and ut ∼ N (0, Ht)

with Ht = B−1
0,tGtB

−1′

0,t and Gt positive definite and diagonal4. The vector of time varying

parameters to be estimated from the reduced form model is given by ft = [µ′
t b

′
t , h

′
t]
′,

where

bt ≡ vec

([
B1,t B2,t . . . Bp−1,t Bp,t

]′)
(8)

4In principle all the arguments below can be extended to the case of a Student t distribution as in Creal
et al. (2011). I avoid doing so for sake of the simplicity of exposition.
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and ht ≡ vech(Ht). In order to close the model we need to specify the updating equations

for the components for ft in Eq. (3). In Appendix A.1 I derive the following specifications:

sµt = ut (9)

sbt = ut ⊗ zt−1 (10)

where⊗ stands for the Kronecker product. The scaling matrix Sbt = ∥zt−1∥2 I−1
bt|t−1 is chosen

to avoid that sbt is non linearly dependent on zt−1, since this dependency would make it

impossible to guarantee that the residuals ut are stationary, as required to guarantee that

ft itself is stationary (see Blasques et al. (2023), lemma 1). One convenient feature of Eqs.

(9)-(10) is that the r.h.s. does not depend on ht. Therefore it is possible to estimate the

parameters of the process (µt, bt) independently from those of ht. Instead, (µt, bt) must be

estimated jointly since they are connected through ut.

4 GAS-S-MGARCH Model

As remarked in Sec. 1, I suppose that volatility depends partially on endogenous factors.

This claim is supported by the MM literature which highlights the simultaneous impact of

order flows on returns (Evans and Lyons, 2002; Dańıelsson and Love, 2006). On the other

hand, many contributions underline the ubiquitous role of feedback/ momentum trading

across asset classes (Jegadeesh and Titman, 2001; Dańıelsson and Love, 2006; Osler, 2011;

Asness et al., 2003). These results converge to support the assumption of a simultaneous

feedback effect between returns, or price variations, and demand, whose causal direction is

difficult to disentangle. Indeed, some papers find empirical support for these simultaneous

effects (Dańıelsson and Love, 2006; Bargigli and Cifarelli, 2023). In general, they will

manifest themselves in the form of a positive correlation between price variations and
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demand, which is consequential to market models with asymmetric information (Kyle,

1985).

In order to connect the idea of endogenous volatility with the GAS-VAR model of the

previous section, I define ut = B−1
0,t ϵt, where B0,t is an invertible matrix with unit diagonal.

Milunovich and Yang (2013) propose the following model for ϵt:

ϵt|Ft−1 ∼ Q(0, Gt) Gt = ωω′ + βGt−1β
′ + a diag(ϵt−1) diag(ϵt−1)

′ a′ (11)

where Gt, ω, β, diag(ϵt−1) and a are n×n diagonal matrices. In Appendix A.4 I show that,

in the event that the distribution Q is a multivariate normal (or student) distribution, it’s

possible to derive the model above as a special case of the GAS framework of Creal et al.

(2011). Following Milunovich and Yang (2013), model (11) can be rewritten as follows:

Gt = ωω′ + βGt−1β
′ + α (In ⊗ ϵt−1)(In ⊗ ϵ′t−1)α

′ (12)

where α = diag(α1, . . . , αn) is a n× n2 block diagonal matrix where αi = (0, . . . , ai, . . . , 0)

is a 1×n vector with ai as its sole nonzero element. Given that we assume that ϵt = B0,tut

and therefore Gt = B0,tHtB
′
0,t, we obtain the following observable counterpart of model

(11), which I label as GAS-S-BEKK model and is connected to the GAS-VAR model of

the previous section through Ht:

Ht = ψtψ
′
t + ρtHt−1ρ

′
t + ϕt(In ⊗ ut−1)(In ⊗ u′t−1)ϕ

′
t (13)

where ρt and ψt are n×nmatrices with ψt being lower triangular, while ϕt = diag(ϕ1,t, . . . , ϕn,t)

is a n × n2 matrix with ϕi,t being diagonal matrices. Althoug the parameters in (13) are

time varying, it’s possible to show that the model is globally identified under mild con-

ditions (see Appendix A.5). The mapping from the structural parameters to the reduced
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form ones is

ψtψ
′
t = B−1

0,t ωω
′B′ −1

0,t ρt = B−1
0,t βB0,t−1 ϕt = B−1

0,t α (In ⊗B0,t−1) (14)

For simplicity of notation the mapping (14) is not written as a function of the parameters

driving the process for B0,t, for which a GAS specification is provided below. Since we

already know that these parameters are locally identified w.r.t. the process itself, we

only need to check that the latter is locally identified by the mapping (14). This means,

in practice, that we need to show that any change to b0,t, which is the column vector

containing the free parameters in B0,t, has an independent impact on Ht. Since model (13)

is globally identified, in order to prove that (b0,t, ω, α, β) is locally identifiable we can follow

the arguments of Milunovich and Yang (2013) who rely on Theorem 6 in Rothenberg (1971).

According to the latter, given a mapping from (b0,t, ω, α, β) to (ψt, ϕt, ρt), if (b0,t, ω, α, β) is

a regular point of the Jacobian of the mapping5, then it is locally identifiable if and only if

the Jacobian has rank n2 + 2n (full column rank) 6.

The local identification conditions for the structural parameters can be summarized in

the following proposition:

Proposition 1. Suppose that all elements of ω are non-zero and that B0,t is invertible with

unit diagonals. Then (b0,t, ω, α, β) is a regular point of the Jacobian of the mapping (14)

which is locally identifiable.

Proof. See Appendix A.6.

The reduced form model (13) inherits the poor scaling properties of the original BEKK

model of Engle and Kroner (1995), which are often contrasted with the better scaling

5A point is regular if there is a neighborhood of it in which the rank of the Jacobian does not change.
6Note that requiring local identifiability and regularity for b0,t provides a justification for a GAS specifi-

cation of the process for b0,t since it guarantees that I(b0,t)−1 exists according to Theorem 1 in Rothenberg
(1971).
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properties of the DCC model of Engle (2002). Indeed, it would be more convenient to

estimate the independent GARCH processes of the structural errors instead of the coupled

BEKK processes of the reduced form errors. This is the approach followed by Weber

(2010) in a linear context (i.e. one where B0,t = B0), which is extended to a time-varying

framework by rewriting Eq. (12) as follows:

Gt = ωω′ + βGt−1β
′ + ϕt(In ⊗ ut−1)(In ⊗ u′t−1)ϕ

′
t (15)

where

ϕt = α (In ⊗B0,t−1) (16)

Since Gt in Eq. (15) is a restriction of Ht in Eq. (13), model (15), which I label as

GAS-S-MGARCH, is globally identified under the same conditions of the GAS-S-BEKK

model. Therefore we can proceed along the same lines of Proposition 1 to establish the

following:

Proposition 2. Suppose that all elements of a are non-zero, and B0,t is invertible with unit

diagonals. Then (b0,t−1, α) is a regular point of the Jacobian of the mapping (16) which is

locally identifiable.

Proof. See Appendix A.8.

Another advantage of the GAS-S-MGARCH model of Eq. (15) is that the score takes

a much simpler form than the one of the GAS-S-BEKK model of Eq. (13) (for the latter

see Appendix A.7). Indeed, from the results of Appendix A.9 it’s possible to check that

the elements of the gradient vector (A.9.4) take the following form:

∂Lt
∂b0,n,m,t

= − ϵn,t
gn,t

um,t for n ̸= m (17)
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In order to simplify further the estimation process, it’s possible to multiply these terms

by gn,t. Therefore our final choice for the GAS specification of this model is:

sb0,n,m,t = −ϵn,tum,t for n ̸= m (18)

5 Empirical Analysis

5.1 Data Overview

The empirical analysis employs tick-by-tick interdealer transaction data, recorded on the

EBS FX Spot trading platform and provided by NEX data7. The dataset spans the time

interval from 3 January 2016, 5.55 pm, to 30 December 2016, 9.55 pm, and, for the purpose

of the analysis, it is sampled at the 5 minutes frequency. Weekends, holidays and late-

evening / night periods are excluded, in order to remove the main sources of daily and

weekly seasonal patterns of volatility. Fig. 1 exhibits the EUR/USD exchange rate in first

differences (∆pt), together with net demand zt measured in Million of Euros. The outcome

of the Brexit referendum (June 24) and the first election of Donald Trump as US president

(November 9), together with few other events, are marked with a thick vertical line in the

graph. The largest price swings followed a controversial announcement by the ECB of a

further expansion of Quantitative Easing on March 10 8 and the announcement of weak

US jobs data on June 39, both of which lead to a stark appreciation of the Euro. The

largest demand swing instead was triggered by the Euro falling below the critical 1.04 $

benchmark for the first time in 14 years on December 15 10.

It must be stressed that, since the FX market is highly decentralized, the interdealer

7According to the EBS Level 1 terminology, our time series refers to “deals” (i.e. transactions closed
after a market order, called a “hit” in the EBS terminology) and doesn’t include “quotes” (i. e. limit
orders).

8https://www.ft.com/content/02ec97ea-e6d9-11e5-bc31-138df2ae9ee6
9https://www.ft.com/content/eb77d7d6-2937-11e6-8ba3-cdd781d02d89

10https://www.ft.com/content/25fba186-fc9f-3bf2-a020-82efe29f1f7b
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segment represents only a single component of a larger and much opaque market infrastruc-

ture, where it is very difficult to detect insider trading activities (Batten et al., 2021). The

resulting informational asymmetries are likely reflected in the dynamics of the interdealer

market. The main purpose of the methodology introduced in the previous section is to

disentangle their impact on the volatility of the EUR/USD exchange rate.

Jan 04 Mar 01 May 03 Jul 01 Sep 01 Nov 01 Dec 30

∆pt 2016−01−04 06:00:00/2016−12−30 18:00:00

−0.5

 0.0

 0.5

 1.0

−0.5

 0.0

 0.5

 1.0

Jan 04 Mar 01 May 03 Jul 01 Sep 01 Nov 01 Dec 30

zt 2016−01−04 06:00:00/2016−12−30 18:00:00

−500

   0

 500

−500

   0

 500

Figure 1: Time series plots for the EUR/USD exchange rate variation ∆pt (above) and net
order flow zt (below), both measured at the 5 minutes frequency, in 2016. The sequence
of dashed vertical lines correspond to the following events: QE announcement from ECB
(March 10); weak US jobs data (June 3); Brexit referendum (June 24); Trump election
(November 9); EUR/USD passing the 1.04 threshold (December 15)

From Fig. 1, we see that large demand swings do not necessarily correspond to large

price swings and vice versa. The explanation is twofold. On the one hand, information

can be incorporated directly into the exchange rate. On the other hand, the EUR/USD
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market is liquid enough to absorb large demand imbalances without large price effects. At

any rate, the Pearson correlation coefficient between ∆pt and zt is 0.305. The source of

this correlation can be twofold. On the one hand, it might depend on interactions between

market participants in a context where fundamental innovations only affect ∆pt. On the

other hand, it might additionally depend on the exogenous flow of fundamental innovations

affecting ∆pt and zt at the same time. As we will see, the empirical analysis lends more

support to the latter option.

5.2 GAS-VAR Analysis

The first step of the analysis is to quantify the temporary microstructural effects by means

of the GAS-VAR model given by Eq. (6) with yt = (∆pt, zt)
′11. For the sake of clarity I

rewrite the system (6) more explicitly as follows:

∆pt = µ1,t +

p∑
s=1

b0s,tyt−s + u1,t (19)

zt = µ2,t +

p∑
s=1

b1s,tyt−s + u2,t (20)

The model is completed by Eqs. (9)-(10), which specify the sµt and sbt terms in the GAS

equation (4) for µt = (µ1,t, µ2,t)
′ and the entries of the matrices B1,t =

 b01,t

b11,t

 , . . . , Bp,t =

 b0p,t

b1p,t

. In other terms, I set ft = (µ′
t, b

′
t)

′ where bt is defined as in Eq. (8). An ordinary

VAR model is also estimated as term of comparison. The lags of both models are selected

as the largest ones among those which minimize the set of information criteria reported

in Tab. 1. The restrictions implied by the VAR model are strongly rejected from the

data. Therefore, the GAS-VAR model provides evidence that microstructural effects are

11The reader can observe that, since all the coefficients are time varying, the system (19)-(20) can be
rewritten in terms of returns simply by rescaling the coefficient themselves.
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better captured by a model which takes into account the time varying conditions of the

market. There is also a marked improvement w.r.t. VAR in terms of explained volatility

as measured by the coefficient of determination of the two equations of the model. Under

this respect, there is also an improvement w.r.t. the non-parametric approach suggested

by Aslanidis and Casas (2013) and Casas and Fernandez-Casal (2019) for time-varying

regression estimation, which is reported in the last line of the table under the label NP-

VAR12. On the other hand, according to unreported results, the GAS-VAR and NP-VAR

models do not improve the low forecasting power of the VAR model. Thus, the time varying

coefficients of the two models do not appear to convey information about future movements

of the exchange rate, which supports their interpretation as microstructural effects.

Model(lags) L AIC BIC HQIC LR R2(∆pt) R2(zt)
VAR(24) - 37,692 75,580 76,414 75,845 1,389.03∗∗∗ 0.005 0.019
GAS-VAR(24) - 36,995 74,578 76,080 74,451 - 0.031 0.028
NP-VAR(24) 0.008 0.023

*** significant at the 1% level. Note: L = likelihood; AIC = −2×L+2×d; BIC = −2×L+lnT ×d;

HQIC = −2× L+ 2× ln lnT × d; LR = loglikelihood ratio test statistics. The GAS-VAR model is

given by Eqs. (19)-(20) with further specifications given by Eqs. (3)-(4) and (9)-(10). The NP-VAR

model is the nonparametric approach of Aslanidis and Casas (2013) and Casas and Fernandez-Casal

(2019).

Table 1: Comparison of VAR, GAS-VAR and NP-VAR models

In order to quantify the impact of microstructural effects, I adopt a relative excess

volatility indicator as defined in Tab. 2, which measures the relative deviation of the

volatility of observed price variations ∆pt from the volatility of efficient price variations

∆p̃t. The definition of the latter is model dependent. For the VAR, NP-VAR and GAS-

VAR models, it is given by the standard deviation of the estimation residuals. For the

state space estimation of the efficient price, it is given by the standard deviation of the

state variable. From Tab. 2 we see that the GAS-VAR estimation is closer to the estimate

of the SS model than the VAR and NP-VAR alternatives. At any rate, the comparative

12In this case the number of lags is set to be equal to those of the VAR model.
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analysis confirms that microstructural effects have a limited bearing on price volatility.

(1) (2) (3) (4)
VAR(24) GAS-VAR(23) NP-VAR(24) SS

σ(∆p)
σ(∆p̃)

− 1 0.003 0.016 0.004 0.028

The GAS-VAR model is given by Eqs. (19)-(20) with further specifi-

cations given by Eqs. (3)-(4) and (9)-(10). The NP-VAR model is the

nonparametric approach of Aslanidis and Casas (2013) and Casas and

Fernandez-Casal (2019). The SS model is efficient price estimation by

means of a state space model. For models (1)-(3), the volatility of ef-

ficient price variations σ(∆p̃) is given by the standard deviation of the

estimation residuals. For model (4), it is given by the standard deviation

of the state variable.

Table 2: Relative excess volatility of price variations due to microstructural effects, com-
parison of models

5.3 GAS-S-MGARCH Analysis

The second step of the analysis is to quantify the endogenous components of volatility,

represented by the terms in B0,t, given that ϵt = B0,tut. In this case the system (6) can be

rewritten as follows:

∆pt = µ′
1,t + b0,1,2,tzt +

p∑
s=1

b0∗s,tyt−s + ϵ1,t (21)

zt = µ′
2,t + b0,2,1,t∆pt +

p∑
s=1

b1∗1,syt−s + ϵ2,t (22)

Here b0,1,2,t and b0,2,1,t represent simultaneous reaction coefficients, which might be re-

lated to the interplay between liquidity providers and liquidity takers on the market, and

B∗
s,t = B0,tBs,t for s = 1, . . . , p.

Setting ϵt ∼ N (0, Gt) with Gt = diag(gt), gt = (g1,t, g2,t)
′ and b0,t = (−b0,1,2,t,−b0,2,1,t)′,

according to Eqs. (15)-(16) we have that ft = (b′0,t, g
′
t)

′. The model is completed by Eq.

(18), which provides the sb0,t term in the GAS equation (4), whereas from Eq. (15) gt
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follows an ordinary GARCH(1,1) process. Making some adjustments to the notation of

the previous paragraphs, the model of Eqs. (15)-(16) is estimated through the following

recursions:

ϵ1,t−1 = u1,t−1 − b0,1,2,t−1u2,t−1 (23)

b0,1,2,t = θ0,1 + θ1,1ϵ1,t−1u2,t−1 + θ2,1b0,1,2,t−1 (24)

g1,t = ω1 + α1ϵ
2
1,t−1 + β1g1,t−1 (25)

ϵ2,t−1 = u2,t−1 − b0,2,1,t−1u1,t−1 (26)

b0,2,1,t = θ0,2 + θ1,2ϵ2,t−1u1,t−1 + θ2,2b0,2,1,t−1 (27)

g2,t = ω2 + α2ϵ
2
2,t−1 + β2g2,t−1 (28)

Eqs. (23)-(25) and (26)-(28) refer respectively to Eq. (21) and to Eq. (22), and their

parameters can be estimated separately. Table 3 reports the maximum likelihood estimates

of the parameters of Eqs. (23)-(25) for the EUR/USD dataset in 2016, which are compared

with two alternatives. The first one is an ordinary GARCH(1,1) model, which is obtained

from Eqs. (23)-(25) by setting θ0,1 = θ1,1 = θ2,1 = 0. The second one is a S-GARCH(1,1)

model with time invariant b0,1,2,t = θ0,1, obtained by setting θ1,1 = θ2,1 = 0. All the

coefficient estimates in Table 3 are highly significant, and the restrictions implied by the

GARCH(1,1) and the S-GARCH(1,1) models are rejected from the data. Table 4 reports

instead the results for Eq.(26)-(28). In this case I need to resort to variance targeting

because of the near unit root behavior of Eq. (28). The coefficients are all 1% significant

with the only exception of θ2,2 which is non significant. Again, the restriction implied by

GARCH(1,1) and the S-GARCH(1,1) models are rejected.

The range of the reaction coefficients b0,1,2,t and b0,2,1,t of Eqs.(24) and (27) is remarkably

wide (see Fig. 2). These coefficients occasionally turned negative in the period of study

(respectively in the 0.049% and 0.019% of periods). More importantly, sometimes they
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Parameter GARCH(1,1) S-GARCH(1,1) GAS-S-GARCH(1,1)

θ0,1 - 0.3840 0.0348
(0.0058) (0.0020)

θ1,1 - - 0.0521
(0.0088)

θ2,1 - - 0.9109
(0.0052)

ω1 0.0123 0.0110 0.0110
(0.0005) (0.0005) (0.0005)

α1 0.1715 0.1732 0.1741
(0.0056) (0.0057) (0.0058)

β1 0.7879 0.7860 0.7852
(0.0058) (0.0061) (0.0061)

L -19,382 -17,257 -17,237
LR 4,250.7∗∗∗ 39.8∗∗∗ -

*** significant at the 1% level. Notes: Standard errors in parentheses; L = like-

lihood; LR = loglikelihood ratio test statistics with respect to the model on the

next column The GARCH(1,1) model is obtained from Eqs. (23)-(25) by setting

θ0,1 = θ1,1 = θ2,1 = 0. The S-GARCH(1,1) model is obtained from Eqs. (23)-(25)

by setting θ1,1 = θ2,1 = 0.

Table 3: Maximum likelihood estimates for the GAS-S-GARCH model of Eqs. (23)-(25)
and two alternative models (see notes)
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Parameter GARCH(1,1) S-GARCH(1,1) GAS-S-GARCH(1,1)

θ0,2 - 0.2360 0.2360
(0.0038) (0.0073)

θ1,2 - - 0.0530
(0.0102)

θ2,2 - - 0.0093
(0.0262)

α2 0.1594 0.1581 0.1584
(0.0032) (0.0010) (0.0010)

β2 0.7827 0.7831 0.7828
(0.0045) (0.0003) (0.0003)

L -11,139 -9,215 -9,204
LR 3,848.5∗∗∗ 22.8∗∗∗ -

*** significant at the 1% level. Notes: Variance targeting adopted; Standard

errors in parentheses; L = likelihood; LR = loglikelihood ratio test statistics

with respect to the model on the next column; g2 = unconditional volatility

of ϵ2. The GARCH(1,1) model is obtained from Eqs. (26)-(28) by setting

θ0,2 = θ1,2 = θ2,2 = 0. The S-GARCH(1,1) model is obtained from Eqs. (26)-(28)

by setting θ1,2 = θ2,2 = 0.

Table 4: Maximum likelihood estimates for the GAS-S-GARCH model of Eqs. (26)-(28)
and two alternative models (see notes)

exceeded unity when positive, leading to dynamic instability (respectively in the 0.025%

and 0.001% of periods). From Fig. 2 we see that jumps in the coefficients coincide with some

of the events highlighted in Fig. 1. In particular, the dynamics of b0,2,1,t captures with a big

jump upwards the peculiarity of the EUR/USD exchange rate passing the 1.04 threshold

on December 15. Indeed, at that juncture, there were probably many limit and stop orders

set at the 1.04 threshold, which made demand extremely sensitive to price crossing it. On

the other hand, big informational surprises (like the US job announcement of June 3 which

changed the interest rate outlook for the US economy) make price extremely reactive to

demand variations, with a jump upwards of b0,1,2,t. This result could be interpreted as

liquidity providers becoming more fearful of adverse selection in these moments. But, since

the reactivity coefficient of demand to price variations b0,2,1,t becomes larger as well, it is

likely that also uninformed liquidity takers are reacting more intensely to the information
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shock at this juncture.

Fig. 2 shows the large movements of endogenous volatility of price variations as mea-

sured by the relative excess conditional volatility
(
h1,t
g1,t

)1/2

− 1. This quantity was on

average of 46%, but reached a maximum of 1008% on September 2, when US jobs data

disappointed, and a minimum of -86% on March 1, when b0,1,2,t briefly turned negative.

Indeed, the relative excess volatility was negative in 12% of the periods. As explained in

Sec. 5.5 below, a negative b0,1,2,t can occurr as a combination of lower risk aversion of

liquidity providers and of lower reactivity of liquidity takers to price variations.
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Figure 2: Time series plots for b0,1,2,t, b0,2,1,t, from Eqs. (24) and (27), and relative excess

volatility of price variations
(
h1,t
g1,t

)1/2

− 1. For the sequence of dashed vertical lines see Fig.

1.
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5.4 Excess volatility, Information and Jumps

Excess volatility should become more intense when informational surprises occur. In order

to analyze more systematically the relationship between the variables in Fig. 2 and the flow

of information, I employ a sample of 1,219 standardized surprises referring to U.S. fixed-

time macroeconomic announcements collected from the economic calendar of Bloomberg13.

The focus is on news related to the U.S. economy because these are likely to impact most

the EUR/USD exchange rate. I compute the cross-correlation functions between the abso-

lute value of these surprises at t and the values of b0,1,2,t+h, b0,2,1,t+h and
(
h1,t+h

g1,t+h

)1/2

− 1 for

h ∈ [−100, 100] . From Fig. 3 we see that informational surprises have a positive impact

on relative excess volatility, with a delay of 2 periods aka 10 minutes (bottom panel). This

effect is linked to the increased demand reactivity of liquidity takers b0,1,2,t (top panel),

while demand reactivity to price variations b0,2,1,t appears completely disconnected from

informational surprises. This asymmetry speaks in favor of the “order-driven view” men-

tioned in Sec. 2, underlining that information is embedded into the price mainly through

trade.

This conclusion is corroborated by the analysis of price jumps, which are detected

with the approach of Lee and Mykland (2008) as implemented in Boudt et al. (2022).

According to the stated methodology, the dataset contains 50 jumps at the 5 minutes

frequency. Fig. 4 depicts the average value of b0,1,2,t+h, b0,2,1,t+h and
(
h1,t+h

g1,t+h

)1/2

− 1 when

a price jump occurs at t for h ∈ [−100, 100]. From the bottom panel we see that relative

excess volatility increases on average from 23% to 115% one period after the jump. From

the top panel we see that this increase is connected with a significant increase of b0,1,2,t+h,

while b0,2,1,t+h is not reactive. The alignment with the previous results is not surprising

since jumps and informational surprises are correlated (Neely and Dey, 2011). Overall, the

13A surprise is nothing but a z-score, where the mean and the standard deviation are computed from
the expectations of a sample of experts.
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Figure 3: Cross correlation function R between the absolute U.S. news surprise χt at t and

b0,1,2,t+h, b0,2,1,t+h and the relative excess volatility of price variations
(
h1,t+h

g1,t+h

)1/2

−1 at t+h

for h ∈ [−100, 100]. News surprises refer to a sample of 1,219 macroeconomic prescheduled
announcements, and are obtained from the economic calendar of Bloomberg. The shaded
area represents 95% confidence intervals obtained with bootstrap estimation.
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GAS-S-GARCH(1,1) approach highlights the connection between fundamental surprises

and excess volatility. According to these results, endogenous and exogenous volatility are

complements rather than substitutes.
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Figure 4: Average value of b0,1,2,t, b0,2,1,t and of relative excess volatility of price variations(
h1,t+h

g1,t+h

)1/2

− 1 at t+h when a price jump occurs at t for h ∈ [−100, 100]. The shaded area

represents 95% confidence intervals obtained with bootstrap estimation.

5.5 Discussion

In order to provide an economic interpretation of the GAS-S-MGARCH analysis of Sec.

5.3, it’s possible to sketch two simple models where liquidity takers and providers interact

under conditions of informational asymmetry. The first model, described in Appendix A.2,

devises a condition of milder, possibly less realistic, asymmetry of information, whereby
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in particular the liquidity provider is perfectly informed on fundamentals and on demand

conditions, while the liquidity taker has imperfect information on the price charged by

the liquidity provider. Under these assumptions, efficient price variations (which coincide

the residuals u1,t of Eq. (19)) are correlated with net demand shocks (i.e. u2,t of Eq.

(20)) but the structural errors ϵt are independent of each other. Instead, if we assume

that the information held by liquidity takers as a whole convey fundamental innovations to

the market and that liquidity providers are imperfectly informed on fundamentals, like in

the model of Appendix A.3, we obtain that the ϵt themselves are correlated, representing

time varying linear combinations of two independent factors, which are respectively the

fundamental information process η1,t and the fundamental noise process η2,t.

Although, as a consequence of general results like proposition 2 in Rigobon (2003), the

resulting empirical model lacks identification (see Eqs.(A.3.8)-(A.3.9) in Appendix A.3),

it is nevertheless possible to test for the (conditional) correlation of the ϵt. A rejection of

the hypothesis of no correlation would suggest that the model of Appendix A.3 fits better

the data than the model of Appendix A.2. The most important implication of a rejection

would be that the true excess volatility on the EUR/USD market is even larger than the

one devised in the empirical analysis above. In order to proceed, I rely on the Dynamic

Conditional Correlation (DCC) model of Engle (2002), whereby we have (see Eq. (A.3.4)):

At = DtRtDt (29)

Dt = diag(
√
gt) (30)

Rt = diag(Qt)
− 1

2Qtdiag(Qt)
− 1

2 (31)

Qt = (1− a− b)Q+ a
(
(Dt−1)

−1B0,t−1ut−1

) (
(Dt−1)

−1B0,t−1ut−1

)′
+ bQt−1 (32)

where a, b are scalars and gt is still given by Eqs. (15)-(16). We cannot estimate the
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volatilities of (η1,t, η2,t) with this approach, since it relaxes the condition of independence

of structural errors at the cost of normalizing the variance of η0,t and η1,t to g̃1,t = g̃2,t = 1.

Therefore, as explained above, the sole purpose of the estimation is to test the hypothesis

of no conditional correlation of ϵ1,t and ϵ2,t. The results are summarized in the following

particolarization of eq. (32):

Qt =

(
1− 0.002781

(0.002126)
− 0.865727

(0.059939)

) 1.000003 −0.296153

−0.296153 1.148114

+

+ 0.002781
(0.002126)

(
D−1
t−1B0,t−1ut−1

) (
D−1
t−1B0,t−1ut−1

)′
+ 0.865727

(0.059939)
Qt−1

(33)

A loglikelihood ratio test for the restrictions implied by setting At = I in Eq. (A.3.4),

as required by the model of Appendix A.2, is strongly rejected by the data14. This result

states that the model of Appendix A.3 provides a better explanation of the empirical results

of Sec. 4, and corroborates the conjecture that our previous estimate of excess volatility

provides a lower bound for the true excess volatility on the market.

6 Conclusions

This paper studies excess volatility in the EUR/USD exchange rate, using a GAS frame-

work (Creal et al., 2011) coupled with identification through heteroscedasticity (IH) (Prim-

iceri, 2005), with the main aim to establish a realistic lower bound for excess volatility on

financial markets. This is accomplished by adopting a broad definition of fundamental

information flow as a properly derived conditionally independent stochastic innovation of

price measured at the intra-daily frequency. This definition requires no commitment to a

14In pratice, I compare the loglikelihood of the DCC model (LDCC = −25.735) with the sum of the
loglikelihoods in Tabs. 3 and 4.
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specific asset pricing model and no assumptions on rationality or homogeneity of market

participants. By decomposing volatility into endogenous (non fundamental) and exogenous

(fundamental) components, this study aims to provide a more nuanced understanding of the

forces driving exchange rate fluctuations. The empirical analysis, based on high-frequency

transaction data of the EUR/USD interdealer market in 2016, highlights the significant role

of informational asymmetry and feedback trading in amplifying exogenous price volatility.

Market participants react to both public information and private signals according to their

own trading strategies, creating a complex interdependency between price movements and

demand dynamics. The empirical findings of the previous sections suggest that, even in a

highly liquid market such as the EUR/USD pair, a notable portion of volatility arises from

endogenous mechanisms rather than from fundamental shocks.

According to results of Sec. 5.3, excess volatility depends on the reactivity of price

variations to demand shocks, which becomes higher when fundamental shocks occur. The

simple theoretical model of Appendix A.3 explains the larger reactivity at these times in

terms of liquidity providers becoming more risk adverse. This interpretation is consistent

with the assumption, in that model, that liquidity providers learn fundamental information

from liquidity takers, and therefore are more likely to charge a wider bid-ask spread when

they are less informed than the latter. Indeed, the main implication of the model of Ap-

pendix A.3 is that the structural innovations of price variations and demand are themselves

correlated. The empirical evidence presented in Sec. 5.5 favors this implication, lending

further support to the idea that information is incorporated into asset prices through an

informed component of demand, as claimed by the MM literature. While the increase of the

bid-ask spread on the interdealer market implied by my results is consistent with standard

adverse selection models, it does not contradict the evidence that dealers decrease bid-ask

spreads for their over-the-counter informed clients (Osler, 2011). Instead, it supports the

standard explanation of this behavior, i.e. that dealers try to capture informed order flow
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to then use the information extracted in subsequent interdealer trading.

The main implication of the results above is that excess volatility on the foreign ex-

change market is related to fundamental volatility. As mentioned in the introduction, this

conclusion is similar in spirit to the one of Wehrli and Sornette (2022), who explain excess

volatility by a combination of exogenous and endogenous factors, where the latter act as

amplifiers. Instead, it is rather distant from the “inelastic demand hypothesis” of Gabaix

and Koijen (2021). In the first place, these authors adopt a different identification strategy

which relies on instrumental variables, with all their potential pitfalls. In the second place,

they adopt a narrow definition of fundamental information for stocks, by relying on divi-

dends. In the third place, they don’t take into account the possibility that endogenous and

exogenous volatility may interact. Lastly, they admit no role for asymmetry of information.

This last point deserves further comments. Indeed, the evidence provided by this pa-

per, which support the view that asymmetry of information is extremely relevant on the

EUR/USD market, align with the recent work of Ranaldo and Somogyi (2021), which

refers to a large set of currency pairs and years and allow for agent heterogeneity. The

main differences from their work are that these authors sideline the issue of interdepen-

dency between price and demand, which is at the heart of the GAS-IH approach, that

they do not focus specifically on volatility, and that their study involves all segments of

the market, while mine only regards the interdealer market and requires no subdivision

of demand components. Therefore, we might see one relevant advantage of the combined

GAS-IH methodology in the fact that it makes it possible to consistently detect excess

volatility, on a single market platform, whenever aggregate demand data are available.

I thank Corrado Di Guilmi for his insightful comments. All the usual disclaimers apply.
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A Appendices

A.1 GAS-VAR model

In order to specify the SD-VAR model, we need to pin down the score function and the

information matrix for the time-varying likelihood. In the following, we make use of the

standard notation for VAR models detailed in Sec. 3. The general form of SD models (Creal

et al., 2011) is given by Eqs. (1) and (3)-(5). In our case we have that ft = [µ′
t b

′
t h

′
t]
′ as

detailed in Sec. 3, and the first differential of the normal loglikelihood function reads as

follows (Abadir and Magnus, 2005):

dLt =
1

2
tr
(
(dΣt) Σ

+
t (ξtξ

′
t − Σt) Σ

+
t

)
+ d (Atzt−1)

′ Σ+
t ξt + dc′tΣ

+
t ξt (A.1.1)

where Σ+
t denotes the Moore-Penrose inverse of the matrix Σt. In order to specify the

process for µt according to the SD model we need to compute the score function of Eq.

(5), which only depends on the third additive term on the rhs of (A.1.1):

∇µt = P ′
np×nΣ

+
t ξt (A.1.2)

where

∂ ct
∂ (vecµt)′

=

 In

0n(p−1)×n

 ≡ Pnp×n (A.1.3)

and where 0i×j is an empty matrix of shape i× j. In general, it is convenient to normalize

the score function by the information matrix, since this choice makes the estimation of the

parameters of (µt, bt) independent from the estimation of the parameters of ht. In the case

of µt the information matrix is as follows:

Iµt|t−1 ≡ Et−1[∇µt∇′
µt ] = P ′

np×nΣ
+
t Pnp×n (A.1.4)
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Therefore we can write sµt as follows:

sµt = P ′
np×nξt = ut (A.1.5)

with Sµt = I−1
µt|t−1 as scaling matrix.

In order to specify the process for bt ≡ vec
(
[B1,t B2,t . . . Bp−1,t Bp,t]

′), we need to com-

pute a score function which only depends on the second additive term on the rhs of (A.1.1)

:

∇bt = P ′
n2p2×n2p vec

(
zt−1 ξ

′
tΣ

+
t

)
(A.1.6)

where

∂ vec(A′
t)

∂ (vecBt)′
=

 In2 p

0n2 p (p−1)×n2p

 ≡ Pn2p2×n2p (A.1.7)

The information matrix is as follows:

Ibt|t−1 ≡ Et−1[∇bt∇′
bt ] = P ′

n2p2×n2p

(
Σ+
t ⊗ zt−1 z

′
t−1

)
Pn2p2×n2p (A.1.8)

where the symbol ⊗ stands for the Kronecker product. Taking into account (A.1.6) and

(A.1.8), we can write sbt as follows:

sbt = ∥zt−1∥2 P ′
n2p2×n2pvec

( (
z′t−1zt−1

)−1
zt−1ξ

′
t

)
= ut ⊗ zt−1 (A.1.9)

with Sbt = ∥zt−1∥2 I−1
bt|t−1 as scaling matrix. We remark that the processes µt and bt

depend on each other through ut. Therefore, they must be jointly estimated.
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A.2 A model of endogenous volatility with a perfectly informed

liquidity provider

Let’s consider the following system:

B0,ty
∗
t = ϵt (A.2.1)

with y∗t = (∆pt−v∗1,t, zt−v∗2,t)′, where ∆pt and zt represent respectively price variations and

net demand for a zero-yield asset at t and v∗1,t, v
∗
2,t represent (reduced form) microstructural

factors affecting the two variables. Therefore ∆p̃t ≡ ∆pt−v∗1,t is the efficient price variation

whose volatility is analyzed in Tab. 2. Furthermore, ϵt ∼ N (0, Gt) and Gt is diagonal. In

this appendix I show how it is possible to derive a system like (A.2.1) from a very simple

economic model involving heterogeneous liquidity takers (LT), which are not perfectly

informed on price variations occurring at t (i.e. they need to infer the trading price in

advance of submitting market orders), and a monopolistic liquidity provider (LP) which is

perfectly informed on zt and on fundamental innovations. In the following, assume that all

random variables involved are normal and distinguish the conditional expectations of the

econometrician Et[·] from those of LT of types i = 1, . . . , S, which are denoted as Eit[·].

Assume that price variations charged by the LP reflect fundamental information, which

we identify with ϵ1,t in Eq. (A.2.1), plus a spread variation δt(zt) = st(zt) − st−1(zt−1),

where st is the source of profits for the LP at t, and microstructural factors v1,t which are

independent of ϵ1,t. If we let v1,t absorb st−1, we may write:

∆pt = st(zt) + ϵ1,t + v1,t (A.2.2)

LT are of different types regarding expectations, and they are endowed with CARA

preferences and different levels of risk aversion D−1
i . The profit at t of the LT of type i on
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her net trade at t− 1 is given by:

Πi,t = (pt − pt−1)zi,t−1 (A.2.3)

From the latter we derive

Ei,t [Πi,t+1] = (Ei,t [pt+1]− pt) zi,t (A.2.4)

Vi,t [Πi,t+1] = Vi,t [pt+1] z
2
i,t (A.2.5)

Taking into account Eqs. (A.2.4) and (A.2.5), and letting Vi,t [pt+1] be absorbed by

D−1
i,t = Vi,t [pt+1] /Di, we may write the objective for LT as follows:

max
zi,t

{
Ei,t[∆pt+1] zi,t −

z2i,t
2Di,t

}
(A.2.6)

We solve the FOC for zi,t to obtain the optimal demand of a generic LT of type i:

zi,t = Di,tEi,t[∆pt+1] (A.2.7)

Then the total market demand is

zt =
S∑
i=1

Di,tEi,t[∆pt+1]Ni,t (A.2.8)

where Ni,t is the number of LT of type i at t. Introduce the following specification for

Ei,t[∆pt+1]:

Ei,t[∆pt+1] = giEi,t [∆pt] (A.2.9)

where the gi are type specific fixed coefficients (not necessarily positive), measuring

the impact of the expected price increment at t on the expectation the next period’s price
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increment for LTs of type i. Eq. (A.2.9) reflects the fact that the execution price for the

market orders of LTs at t is uncertain. Substituting (A.2.9) in (A.2.8) we obtain

zt =
S∑
i=1

Di,tNi,tgiEi,t [∆pt] (A.2.10)

LTs of type i receive a noisy signal ξi,t = ∆pt + ϵ′i,t , where the ϵ′i,t are normal with

zero mean, reciprocally independent as well as independent from ϵ1,t. Supposing that the

prior of all LT for ∆pt is null, from the distributional assumptions we get that Ei,t [∆pt] =

ρi,t∆pt+ρi,tϵ
′
i,t, where ρi,t =

τϵ′
i,t

τϵ′
i,t

+τ∆pt
and τϵ′i,t ≡ 1/σ2

ϵ′i,t
,τ∆pt ≡ 1/σ2

∆pt
. Further suppose that

ϵ′i,t is composed by two independent noise components, i.e. ϵ′i,t = ν1,i,t + ν2,i,t. The latter

originate from uncertainty referring respectively to ϵ1,t (fundamental related uncertainty)

and to δt(zt) + v1,t (non fundamental related uncertainty) but are independent of these

variables. Then define 
γt ≡

∑S
i=1Di,tNi,tgiρi,t

ϵ2,t ≡
∑S

i=1Di,tNi,tgiρi,tν1,i,t

v2,t ≡
∑S

i=1Di,tNi,tgiρi,tν2,i,t

(A.2.11)

Finally, we obtain that market demand is a time varying function of current price

variations:

zt = γt∆pt + ϵ2,t + v2,t (A.2.12)

According to the hypothesis of perfect information and assuming that the LP is risk

neutral but that it is costly to maintain an inventory of the asset, her profit is specified as

Πd,t = stzt − ωt

2
z2t . Maximizing Πd,t with respect to st and substituting into Eq. (A.2.2),

we obtain

∆pt =

(
ωt −

1

γt

)
zt + ϵ1,t + v1,t (A.2.13)
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from which, we obtain Eq. (A.2.1) with B0,t =

 1 −
(
ωt − 1

γt

)
−γt 1

 and v∗t = B−1
0,t vt

where vt = (v1,t, v2,t)
′.

A.3 A model of endogenous volatility with an imperfectly in-

formed liquidity provider

In the following, still assume that all random variables involved are normal, but now distin-

guish between the conditional expectations of the econometrician (which are equal to those

of the public), denoted by Et[·], those of a monopolistic liquidity provider (LP), denoted

by Ed
t [·], and those of a set of liquidity takers (LT) of types i = 1, . . . , S, denoted by Eit[·].

Still, LTs are of different types regarding expectations, all of them are endowed with CARA

preferences, and their profit is given by Eq. (A.2.3). Therefore, assuming (A.2.9), we get

to Eq.(A.2.10). Then we define



γt ≡
∑S

i=1Di,tNi,tgi

η2,t ≡
∑S

i=1Di,tNi,tgiEi,t [∆p̃t]− γtEt [∆pt]

v2,t ≡
∑S

i=1Di,tNi,tgiEi,t [v1,t]

ϵ1,t ≡ ∆pt − Et[∆pt]

(A.3.1)

We still obtain Eq. (A.2.12) but with some differences since now

ϵ2,t = η2,t − γtϵ1,t (A.3.2)

Eq. (A.3.2) states that the statistical error on zt depends on the private information of

LTs, represented by η2,t, which is channeled to the market through their trading activity.

Since Et[η2,t] = Et[ϵ1,t] = 0, from (A.2.12) we obtain that ∂Et[zt]
∂st

= γt
15.

15For simplicity we have assumed that γt is an exogenous, non random, variable. If it was a random
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Assuming that η2,t ∼ N (0, g̃2,t) represents the flow of fundamental information to the

market, price variations charged by the LP become as follows:

∆pt = st
(
Ed [zt]

)
+ Ed

t [η2,t] + v1,t (A.3.3)

The price equation now reflects the uncertainty of the LP regarding net demand zt and

fundamental information η2,t. Eq. (A.3.3) takes into account that the LP cannot observe

η2,t directly. Instead, she receives a noisy signal ξt on fundamentals which is correlated with

the private information of LTs: ξt = η2,t + η1,t, where η1,t ∼ N (0, g̃1,t) is independent from

η2. From the distributional assumptions we get that Ed
t [η2,t] = ρtξt, where ρt =

τt,η1
τt,η1+τt,η2

and τt,η1 ≡ g̃−1
1,t , τt,η2 ≡ g̃−1

2,t .

In order to proceed further, we need to conjecture that the solution for ϵt is of the

following form, which satisfies the assumption Et[ϵt] = 0:

ϵt = Qtηt (A.3.4)

Furthermore, we assume (and later verify) that the elements of Qt do not depend on

st. Then we can compute

 Ed
t [zt] = E[zt] + Ed

t [ϵ2,t] = E[zt] + (1− γtq1,2,t)ρtξt

Ed
t [z

2
t ] = Et[zt]

2 + 2Et[zt](1− γtq1,2,t)ρtξt + g2,t

(A.3.5)

where q1,2,t is to be determined later and g2,t = q2,1,tg̃1,t + q2,2,tg̃2,t.

The LP is again risk neutral but subject to inventory costs. She maximizes her expected

profits Ed
t [Πd,t] = stE

d
t [zt]− ωt

2
Ed
t [z

2
t ] with respect to st. Since by hypothesis g2,t does not

variable, the same results would follow by substituting γt with its conditional expectation value according
to the public, provided that the latter is independent from pt. This assumption is consistent with the
literature, since γt cannot covariate with price, and liquidity γ−1

t cannot covariate with demand, if liquidity
based speculation is to be excluded (Huberman and Stanzl, 2004).
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depend on st, we obtain

∆pt =

(
ωt −

1

γt

)
zt + ϵ1,t + v1,t (A.3.6)

where

ϵ1,t = ρtξt +

(
ωt −

1

γt

)
[(1− γtq1,2,t)ρtξt − ϵ2,t] (A.3.7)

We can solve the system formed by Eqs. (A.3.2) and (A.3.7) to obtain an explicit

solution of the form (A.3.4) where Qt depends only on (ωt, γt, ρt), none of which depends

on st.

Since ηt = Q−1
t B0,tut, in order to bring the model to the data with the aspiration to

estimate G̃t = diag(g̃1,t, g̃2,t), we need to adapt the model of Eq. (12) as follows:

G̃t = ωω′ + βG̃t−1β
′ + ϕt(In ⊗ ut−1)(In ⊗ u′t−1)ϕ

′
t (A.3.8)

where now

ϕt = α (In ⊗Q−1
t−1B0,t−1) (A.3.9)

It is easy to check that the jacobian of the mapping (A.3.9) w.r.t (a1, a2, γt−1, ωt−1),

where (a1, a2) are the non zero elements in α, is not of full column rank. Therefore the model

is not identified according to Theorem 6 in Rothenberg (1971). This result is consistent

also with Proposition 2 in Rigobon (2003).
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A.4 Proof that (11) is a special case of Eq. (3)

For a multivariate normal distribution we have that

∇gt =
1

2
Ψ′
tD

′
nG

−1
t⊗vec(ϵt ϵ

′
t −Gt) (A.4.1)

Igt|t−1 =
1

2
Ψ′
tD

′
nG

−1
t⊗DnΨt (A.4.2)

sgt = Ψ+
t D

+
n vec(ϵt ϵ

′
t −Gt) = Ψ+

t vech(ϵt ϵ
′
t −Gt) (A.4.3)

where Gt⊗ ≡ Gt⊗Gt, Ψt ≡ ∂vech(Gt)
∂g′t

is a n(n+1)/2×n matrix and gt = (g1, . . . , gn)
′; Dn

is the n2 × n(n+ 1)/2 duplication matrix, such that, for a symmetric matrix A, vec(A) =

Dnvech(A). Given our assumptions, Ψt is an orthogonal matrix, which implies Ψ+
t = Ψ′.

Therefore, we can simplify the expression for sgt in (A.4.3) to obtain the following:

sgt = (ϵt⊙ − gt) (A.4.4)

where ⊙ stands for the Hadamard product and ϵt⊙ ≡ ϵt⊙ ϵt. If we finally assume, using

the notation of (3), that θ0 = ω⊙, Θ1 = diag(a⊙) and Θ2 = diag(a⊙ + β⊙), we obtain the

vectorized equivalent of (11).

A.5 Proof that the model (13) is globally identified

The BEKK formulation, proposed in Engle and Kroner (1995), developed a general quadratic

form for the conditional covariance equation. The model (13) has terms of the form

hl,l,t = (ψtψ
′
t)l,l +

∑
i

∑
j

ρi,l,tρj,l,thi,j,t−1 +
∑
i

∑
j

ϕi,l,tϕj,l,tui,t−1uj,t−1 (A.5.1)

hl,m,t = (ψtψ
′
t)l,m +

∑
i

∑
j

ρi,l,tρj,m,thi,j,t−1 l ̸= m (A.5.2)
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We can apply the arguments of Engle and Kroner (1995), Proposition 2.1, to Eqs.(A.5.1)-

(A.5.2) in order to verify that the coefficients appearing in them are identified if (1) ψt is

lower triangular with positive diagonals, (2) ρ1,1,t > 0 and (3) ϕ1,1,t > 0.

A.6 Proof of Proposition 1

The Jacobian Jt of the mapping (14) has the following block-form:

Jt =


Jψt
ω Jψt

b0,t
0 0

0 Jϕtb0,t Jϕta 0

0 Jρtb0,t 0 Jρtβ

 (A.6.1)

The sub-jacobians Jψt
ω , Jψt

b0,t
, Jϕta are the same of Milunovich and Yang (2013), apart

from the time indices in B0,t and B0,t−1:

Jψt
ω = C(ψt)

−1 [D′
nB0,t⊗Dn]

−1
2D′

nSn ω (A.6.2)

Jψt

b0,t
= C(ψt)

−1 [D′
nB0,t⊗Dn]

−1
2D′

n (In ⊗ ωω′B′−1
0,t )KnRn (A.6.3)

Jϕta = (In ⊗B′
0,t−1)Sn (A.6.4)

where C(ψt) is the invertible Jacobian of the mapping from vech(ψt) to vech(ψtψ
′
t)

. For this mapping to be unique, it is required that ψt has a positive diagonal, which

also ensures that the model (13) is globally identified. In the previous equations, Kn =

[In ⊗ In,·1, . . . , In ⊗ In,·n] is the n
2 × n2 commutation matrix such that, for any matrix A,

dvecA′ = Kn dvecA, and Sn = ∂vec(ω)
∂(ω1,...,ωn)

= ∂vec(α)
∂(a1,...,an)

is a n2 × n block diagonal matrix as

follows:
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Sn =


In,·1 . . . 0

...
. . .

...

0 . . . In,·n

 (A.6.5)

where In,·i is the ith column of In. The remaining sub-Jacobians are instead slightly

different:

Jρtβ = (B′
0,t−1 ⊗B−1

0,t )Sn (A.6.6)

Jρtb0,t = −(B′
0,t−1 ⊗B−1

0,t )(βB
′−1
0,t ⊗ In)Rn (A.6.7)

Jϕtb0,t = −V ′
n(ϕ

′
t ⊗ In)Rn = 0 (A.6.8)

where Vn =


In ⊗ In,·1 . . . 0

...
. . .

...

0 . . . In ⊗ In,·n

 is a n3 × n2 matrix such that dvec(ϕt) =

Vn [ϕ1,t, . . . , ϕn,t]
′ and Rn = ∂vec(Bt)

∂b′0,t
is a n2 × n(n− 1) block diagonal matrix as follows:

Rn =


In,−1 . . . 0

...
. . .

...

0 . . . In,−n

 (A.6.9)

where In,−i is the submatrix of In with the ith column removed. Finally we have
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Jt =


C(ψt)

−1 [D′
nB0,t⊗Dn]

−1 2D′
n 0 0

0 (In ⊗B′
0,t−1) 0

0 0 (B′
0,t−1 ⊗B−1

0,t )



Sn ω (In ⊗ ωω′B′−1

0,t )KnRn 0 0

0 0 Sn 0

0 −(β B′−1
0,t ⊗ In)Rn 0 Sn

 (A.6.10)

The system Jv = 0 can be simplified to


Sn ωv1 + (In ⊗ ωω′B′−1

0,t )KnRnv2

Snv3

(β B′ −1
0,t ⊗ In)Rnv2 + Snv4

 = 0 (A.6.11)

Eq. (A.6.11) implies immediately that v3 = 0 since Sn is full rank. For the same

reason, v4 = 0 if v2 = 0 in the third equation. Therefore we only need to check that the

first equation in (A.6.11) has a solution only if [v′1, v
′
2]

′ = 0. Using Sylvester’s inequality,

together with the fact that B0,t is invertible by assumption and Rn and Kn are of full

column rank, we obtain the following lower bound

rank
[
(In ⊗ ωω′B′ −1

0,t )KnRn

]
≥ n(nω + n− n) + n(n− 1)− n2 = n (nω − 1) (A.6.12)

where nω is the number of non zero elements in ω. This inequality proves that, if nω = n,

then the ranks of Jψt
ω and Jψt

b0,t
are respectively n and n(n− 1). Moreover, the columns of

Jψt
ω and Jψt

b0,t
are independent from each other according to Lemma 2 in Milunovich and

Yang (2013). We finally need to check that (B0,t, ω, α, β) is a regular point of Jt in order
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to satisfy the assumption of Theorem 6 in Rothenberg (1971). This immediately follows

from the fact that, under the assumptions of the proposition, the rank of Jt never changes.

This completes the proof.

A.7 SD-S-BEKK specification for B0,t

We start from the reduced form normal loglikelihood:

Lt(Ht) = −1

2

[
n log(2π) + log |Ht|+ u′tH

−1
t ut

]
(A.7.1)

Its differential is

dLt = −1

2

[
tr(H−1

t dHt) + u′t(dH
−1
t )ut

]
=

=
1

2

[
u′tH

−1
t (dHt)H

−1
t ut − tr(HtH

−1
t dHtH

−1
t )

]
(A.7.2)

where we use dH−1
t = −H−1

t (dHt)H
−1
t and the cyclic property of trace. Using the vec

operator and the identities vec(abc) = (c′ ⊗ a)vec(b) and tr(AB) = vec(A)′vec(B) where A

is symmetric, applying the vec operator to both sides of (A.7.2) we can rewrite it as follows

dLt =
1

2

[
u′t⊗ − (vecHt)

′]H−1
t⊗ dvecHt (A.7.3)

We are interested in Lt as a function of Bt. Since Ht = B−1
0,tGtB

′−1
0,t , we have that

dHt = (dB−1
0,t )GtB

′−1
0,t +B−1

0,tGt (dB
−1
0,t )

′ (A.7.4)

Applying the vec operator to both sides of (A.7.4) we obtain (see Abadir and Magnus

(2005), p. 364)

dvecHt = (In2 +Kn) (B
−1
0,tGt ⊗ In) dvecB

−1
0,t (A.7.5)
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whereKn is the commutation matrix defined in Appendix A.6. Substituting (A.7.5) into

(A.7.3), and noting that dB−1
0,t = −B−1

0,t (dB0,t)B
−1
0,t implies dvecB−1

0,t = −
(
B′−1

0,t ⊗B−1
0,t

)
dvecB0,t

, we obtain:

dLt = −
[
u′t⊗ − (vecHt)

′]H−1
t⊗Nn(B

−1
0,tGt ⊗ In)

(
B′−1

0,t ⊗B−1
0,t

)
dvecB0,t =

= −vec (utu
′
t −Ht)

′
H−1
t⊗ Nn (Ht ⊗B−1

0,t ) dvecB0,t (A.7.6)

where the properties of Nn ≡ 1
2
(In2 +Kn) can be found in Abadir and Magnus (2005),

pp. 299-317. Given the constraints on the diagonal elements of B0,t, we have that

∂vecB0,t

∂b′0,t
= Rn =


In,−1 . . . 0

...
. . .

...

0 . . . In,−n

 (A.7.7)

where b0,t = (b0,2,1,t, . . . , b0,n−1,n,t)
′ contains only the off diagonal terms in B0,t and In,−i

is the sub-matrix of In with the ith column deleted. Using the properties of Nn we obtain

∇b0,t = −R′
n

(
In ⊗B′ −1

0,t H
−1
t

)
vec (utu

′
t −Ht) (A.7.8)

Ib0,t|t−1 = 2nR′
n(Ht ⊗B′ −1

0,t )NnH
−1
t⊗Nn(Ht ⊗B −1

0,t )Rn (A.7.9)

A.8 Proof of Proposition 2

The Jacobian Jt of the mapping (16) has the following block-form:

Jt =

[
Jϕtb0,t−1

Jϕta

]
(A.8.1)

where
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Jϕtb0,t−1
=


a1 (In ⊗ In,)

′Rn

...

an (In ⊗ In,)
′Rn

 (A.8.2)

and

Jϕta = (In ⊗B′
0,t−1)Sn (A.8.3)

Following Milunovich and Yang (2013), lemma 1, the mapping (16) ensures that rank(Jϕta ) =

n and rank
(
Jϕtb0,t−1

)
= na(n− 1), where na is the number of non zero elements in a. Since

under the assumptions the rank of Jt don’t change, (b0,t−1, α) is a regular point for Jt and

therefore the Theorem 6 in Rothenberg (1971) applies.

A.9 GAS-S-MGARCH specification for B0,t

The likelihood function of model (15) is

Lt = −1

2

(
log |Gt|+ u′tB

′
0,tG

−1
t B0,tut

)
(A.9.1)

Then the following holds (Abadir and Magnus, 2005), p. 357:

dvecLt = −1

2
u′t⊗dvec

(
B′

0,tG
−1
t B0,t

)
(A.9.2)

Using the identities vec(abc) = (c′b′ ⊗ I)vec a = (I ⊗ ab)vec c we obtain:

dvec
(
B′

0,tG
−1
t B0,t

)
=

= vec
(
dB′

0,tG
−1
t B0,t

)
+ vec

(
B′

0,tG
−1
t dB0,t

)
=

=
(
B′

0,tG
−1
t ⊗ In

)
Qt dvecB0,t

(A.9.3)
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where Qt = Kn +
(
Gt ⊗B′

0,t

) (
B′

0,t ⊗Gt

)−1
and Kn is the commutation matrix defined

in Appendix A.6. From the expressions above we can derive the following:

∇b0,t = −1

2
R′
nQ

′
t

(
G−1
t B0,t ⊗ In

)
ut⊗ (A.9.4)

In order to obtain Ib0,t|t−1 we must compute the expectation E [(utu
′
t ⊗ utu

′
t)]. Since

ut = B−1
0,t Gt vt where vt ∼ N (0, 1), it is easier to compute E [(vtv

′
t ⊗ vtv

′
t)] which is given

by the matrix Z with elements

Z[(i− 1) · k + l, (j − 1) · k +m] = δijδlm + δilδjm + δimδil (A.9.5)

where δij is the Kronecker delta (see Creal et al. (2011), p. 562). Making some simpli-

fications, we obtain:

Ib0,t|t−1 =
1

4
R′
nQ

′
t

(
In ⊗B−1

0,tGt

)
Z

(
In ⊗GtB

′−1
0,t

)
QtRn (A.9.6)

It is possible to check that the elements of the gradient vector (A.9.4) take the following

form:

∂Lt
∂b0,n,m,t

= − ϵn,t
gn,t

um,t for n ̸= m (A.9.7)
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