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Abstract

A buyer needs to procure a good from either of two potential suppliers offering differentiated products

and with privately observed costs. The buyer privately observes the own valuations for the products and

(ex ante) decides how much of this information should be revealed to suppliers before they play a first score

auction. We show that the more significant is each supplier’s private information on the own cost, the less

information the buyer should reveal. Part of our analysis is linked to the comparison between a first and

a second price auction in an asymmetric setup with a distribution shift.
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1 Introduction

In this paper we study a procurement auction in which the auctioneer is a (male) buyer interested in

purchasing an object that can be supplied by two different (female) suppliers; each supplier is privately

informed about her own production cost. The suppliers offer differentiated products, and the buyer is

interested both in the price he pays and in the degree of fitness of a product with his own needs — the latter

is a sort of ”quality assessment” of the object from the buyer’s subjective point of view.1 We assume that

the buyer’s assessments of the products’ qualities are not observed by suppliers, and we inquire how much

(if any) of his assessments the buyer should reveal to suppliers before the bidding process. Our main result

is that (under suitable assumptions on the distributions of costs and qualities) the more significant is each

supplier’s private information on the own cost, the less information on qualities the buyer should reveal.

The literature on procurement when quality matters often analyzes multidimensional auction models in

which the buyer announces a scoring rule, and then each bidder makes a multi-dimensional bid specifying

both a price and quality level(s): see Che (1993), Branco (1997), Asker and Cantillon (2008, 2010). How-

ever, a few papers consider settings in which the buyer subjectively evaluates the quality of each product,

and inquire the impact of different information disclosure strategies on the outcome of the auction: see for

instance Gal-Or et al. (2007), Rezende (2009), Kostamis et al. (2009), and Kaplan (2011) for theoretical

analyses; Haruvy and Katok (2010) and Thomas and Wilson (2011) rely on experimental methods for some

specific parameter values.

These issues are relevant, for instance, in electronic procurement auctions in which buyers often evaluate

the qualities of different offers according to their own individual tastes, and the influence of non-price

attributes is proved by the common use of ”non-binding” auctions, in which a buyer is not bound to

select a bidder who submitted the lowest price (as documented by the above mentioned papers). A

further application of these family of models is represented by conservation auctions. These auctions are

competitive mechanisms adopted by some governments (see for instance the Conservation Reserve Program

in the US and the Bush Tender Program in Australia) to allocate financial subsidies to farmers in exchange

for the implementation of natural resource management programs on their lands. In that context, each

farmer privately knows his opportunity cost from joining the program, while the regulator privately knows

the program’s environmental benefits on each specific land (see Chan et al., 2003). Cason et al. (2003)

study experimentally how different disclosure policies of the regulator’s information affect the outcome.

The starting point for our analysis is a model studied by Gal-Or et al. (2007) (GGD henceforth), in

which the products’ qualities are realization of i.i.d. random variables that the buyer privately observes. A

first score auction is held in which each supplier bids a price, and the product with the highest difference

between quality and price is selected. However, before observing the qualities the buyer commits to one

of three possible information revelation policies: public revelation (PU henceforth), private revelation

(PR), and concealment (C). Under policy PU, before the auction the buyer publicly discloses his quality

assessments for each product; under policy PR, he reveals to each supplier only the quality of the supplier’s

product; under policy C, he does not reveal any information. Hence, the stage of information revelation is

an additional (intermediate) stage with respect to a standard auction procedure.2 Clearly, the information

1 In some cases the buyer’s assessments take into account some features of a supplier i — such as the supplier’s reliability

and logistic costs — as long as they are going to affect the buyer’s payoff from choosing the product of supplier i.
2Notice that (as already remarked by GGD) PR does not require private communication from the buyer to each supplier.

Precisely, in order to implement policy PR it suffices that the buyer announces the different attributes of a product he

takes into account and the weights he assigns to each attribute in order to determine the degree of fit. After receiving this

information, each supplier can determine the quality of the own product as seen by the buyer.
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a supplier receives before the auction affects her bidding, and thus the buyer chooses a policy in view of

the ensuing suppliers’ behavior in the auction. Assuming that suppliers are risk neutral and have identical

and commonly known costs, GGD prove that the buyer is indifferent between PR and PU, and prefers

these policies to C under suitable restrictions on the distribution of qualities.

We assume that there are only two suppliers, and introduce in this environment a privately observed

production cost for each supplier, which can be high (cH) or low (cL) with σ ≡ cH − cL.
3 In our model

therefore each agent holds some relevant private information, which considerably complicates the analysis

with respect to the setting of GGD, especially for policy C. As a consequence, in our study of this policy we

need to assume that each product’s quality is uniformly distributed over an interval, with θ > 0 denoting

the interval length.4

We derive equilibrium bidding under each of the three information policies, and then study the buyer’s

preferences over the policies. Our main result states that the buyer’s preferred policy is PU for small values

of the ratio σ/θ, is PR for intermediate values of σ/θ, and is C for large values of σ/θ. Therefore, the

amount of information the buyer should reveal (weakly) decreases monotonically with respect to σ/θ: the

more relevant is the suppliers’ private information on costs, with respect to the maximal quality difference

between products, the less information on qualities the buyer should reveal to suppliers.

In order to discuss this result for the comparison between PU and PR, we notice that in both these

policies each supplier learns the quality of the own product, and this makes the first score procurement

auction equivalent to a first price auction (FPA henceforth) with two bidders in which the auctioneer is

the seller of an object, and for each bidder i the value of the object is given by the difference between her

quality qi and her cost ci. Indeed, when supplier i with quality qi chooses a bid pi, she implicitly offers a

score qi − pi to the buyer. Thus we can express her choice problem in terms of selecting a score, and in

case of victory her payoff is given by her valuation, qi− ci, minus the score offered, like in a standard FPA.

Under policy PR the suppliers’ valuations are i.i.d., thus standard auction results apply. In particular,

the supplier with the highest value wins, and (by revenue equivalence) the buyer’s payoff is equal to the

expected second highest valuation, as in a second price auction (SPA henceforth). Under policy PU,

given q1, q2 announced by the buyer — with q2 > q1 to fix the ideas — the set of possible valuations is

{q1−cH , q1−cL} for bidder 1 and {q2−cH , q2−cL} for bidder 2. This is an asymmetric auction environment
in which the asymmetry is generated by a distribution shift with size q2−q1. For the purposes of comparison
we can view the buyer’s payoff under PR, given q1, q2, as the expected second highest valuation in the above

asymmetric setting. Therefore the ranking between PR and PU is closely related to the ranking between

the FPA and the SPA in an asymmetric setting with a distribution shift. For this sort of asymmetry,

Maskin and Riley (2000) and Kirkegaard (2011) prove that with continuously distributed valuations (and

under some regularity conditions) the FPA is superior to the SPA. However, the valuations in our setting

have binary supports and we obtain an opposite result for the case of a small shift. In fact, somewhat

counterintuitively, a shift which is small with respect to σ reduces the buyer’s payoff in PU (whereas it

increases the buyer’s payoff in PR) because it induces supplier 1 (the disadvantaged supplier) to bid less

aggressively.5 This suggests that PR is better than PU for a large σ/θ. On the other hand, under PU a

3Colucci et al. (2011) consider the framework of GGD but assume that suppliers have different production costs, which

are still common knowledge. Thus suppliers are asymmetric ex ante.
4With reference to policy C in a setting similar to our, Thomas and Wilson (2011) claim that "theoretical characterization

of equilibrium behavior in the settings we consider remains an open problem" to explain their use of experimental methods.
5This fact is explored in detail in Doni and Menicucci (2011), which analyze equilibrium bidding in the FPA with two

bidders when the valuations are asymmetrically distributed with binary supports. For the same setting, they compare the

seller’s revenue in the FPA with the revenue in the SPA.
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large shift with respect to σ gives supplier 2 (the preferred supplier), a large advantage with respect to

supplier 1, and this induces her to bid aggressively enough to outbid supplier 1 whatever are the realized

costs. This is the so-called ”Getty effect”, described in Maskin and Riley (2000), and it makes the payoff

of the buyer under PU larger than under PR for a small σ/θ (from GGD we know that PR is better than

C for small σ/θ, thus PU is superior to C as well).

When σ/θ is large, C emerges as the optimal policy because it is effective in controlling suppliers’ rents.

Precisely, for a large σ/θ under policy C a supplier with cost cL always wins when facing a supplier with

cost cH — as a consequence the highest valuation supplier always wins — and in Subsection 3.1 we show

that this makes the suppliers’ rents independent of σ/θ.6 Conversely, under PR standard auction theory

suggests that suppliers’ rents are given by the expected difference between the highest and the second

highest valuation, and considering the states of the world in which suppliers have different costs reveals

that this expectation is increasing in σ/θ. Since C and PR generate the same social surplus as the winner

is always efficiently selected, it is intuitive that C is superior to PR (and superior to PU as well, as PR is

better than PU for a large σ/θ).

The rest of the paper is organized as follows. Next section describes the model, Section 3 derives the

suppliers’ equilibrium behavior for each information policy, and Section 4 examines the buyer’s preferences

over the three polices. Section 5 concludes offering some suggestions for further research. The appendix

contains the proofs of all our results.

2 The model

In our setting a male buyer denoted with B needs to buy a certain object (for instance, an industrial firm

needs to procure an input) and faces two female suppliers which can provide the object. Supplier i, for

i = 1, 2, privately observes the own production cost ci ∈ {cL, cH}; we use σ ≡ cH − cL > 0 to denote the

difference between cH and cL. Furthermore, (c1, c2) are i.i.d. with λ ≡ Pr{ci = cL} ∈ (0, 1).
The products offered by the suppliers are differentiated and for each supplier i there is a parameter

qi ∈ [q, q̄], with θ ≡ q̄ − q > 0, which represents the degree of fitness of i’s product with B’s needs; in a

sense, qi represents the quality of product i from the subjective point of view of B. Precisely, if B buys

the object offered by supplier i and pays pi, then his payoff is qi − pi; we use si to denote the difference

between qi and pi, which we call the score offered by supplier i to B. The buyer is risk neutral and uses a

first score auction in which suppliers simultaneously submit bids p1 ≥ 0, p2 ≥ 0, and then B buys product

i such that qi − pi > qj − pj (that is such that si > sj),
7 paying pi to supplier i and nothing to j. We

suppose that each supplier i is risk neutral and that she wants to maximize (pi − ci) times her probability

of winning. For each supplier i we define vi ≡ qi− ci as the value of supplier i; thus vi is the social surplus

which is generated if B buys product i.

Before running the auction, B observes the values q1, q2 but suppliers do not: each supplier views q1, q2

as uniformly distributed over Q ≡ [q, q̄]×[q, q̄],8 and stochastically independent of (c1, c2). Before observing
q1, q2, B has the same beliefs as the suppliers about q1, q2, and we inquire whether at this stage B should

commit to a policy of no information revelation (concealment policy, denoted by C), or to a policy in which

he will reveal to each supplier i only the value of qi (private revelation policy, denoted by PR), or to a

6 In fact, this property implies that no pure-strategy equilibrium exists under policy C if σ/θ is sufficiently large.
7 In order to fix the ideas, we suppose that each supplier wins with probability 1

2
in case of tie. However, the equilibrium

outcomes we find do not depend on this assumption.
8Some of our results (Propositions 2, 3 and 5) do not depend on this assumption.
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policy in which he will publicly reveal both q1, q2 (public revelation policy, denoted by PU). Our main

objective is to find out the information revelation policy which is most profitable for B.9

In order to summarize, we consider a game with the following timing:

• Stage one: B chooses an information revelation policy.

• Stage two: Nature selects qualities (q1, q2) and costs (c1, c2); B observes (q1, q2), supplier i observes
ci, for i = 1, 2.

• Stage three: B sends a message to each supplier, consistently with his choice at stage one.

• Stage four: Suppliers bid in the auction and B selects the winner.

In some cases our results are conveniently described by using the ratio σ/θ (as in the introduction) and

thus we define ω ≡ σ
θ .

3 Equilibrium under different information policies

3.1 Concealment

Under the policy of concealment, no supplier receives any information about q1, q2. However, each supplier

(privately) observes her own cost before bidding, and therefore her bid is a function of the cost. Precisely,

we use piL, piH to denote the bid of supplier i if she has cost cL (i.e., if she is type L) and her bid if she

has cost cH (i.e., if she is type H), respectively.

As we mentioned in Section 2, given qualities (qi, qj) and bids (pi, pj), supplier i wins if qi−qj > pi−pj .
Therefore, in order to obtain an expression for the payoff function of supplier i, it is useful to define the

random variable t ≡ qj − qi,
10 with support [−θ, θ] and the following c.d.f. F and density f = F ′:

F (t) =

�
1
2 +

1
θ t+

1
2θ2

t2 for t ∈ [−θ, 0]
1
2 +

1
θ t− 1

2θ2
t2 for t ∈ (0, θ] f(t) =

�
1
θ +

1
θ2
t for t ∈ [−θ, 0]

1
θ − 1

θ2
t for t ∈ (0, θ] (1)

Now consider type k of supplier i, for k = L,H, and notice that bidding pik gives her a probability of

winning against type L of supplier j 	= i equal to Pr{t < pjL − pik} = F (pjL − pik); the probability of

winning against type H of supplier j is Pr{t < pjH − pik} = F (pjH − pik). As a consequence, the payoff

function of type k of supplier i is

(pik − ck)[λF (pjL − pik) + (1− λ)F (pjH − pik)] for j 	= i, k = L,H (2)

Since suppliers are ex ante symmetric, we focus on symmetric Bayes-Nash equilibria (BNE in the

following), in which both type L of supplier 1 and type L of supplier 2 submit the same bid pL and both

type H of supplier 1 and type H of supplier 2 submit the same bid pH . We find a (unique) pure-strategy

BNE if the difference σ between cH and cL is not too large, that is if σ < 1
λθ; in such a case pH − pL < θ,

which means that a supplier with type H wins with positive probability when her opponent has type L. If

instead σ ≥ 1
λθ, then we find a pure-strategy BNE if (λ, σ) belongs to the set

C ≡
�
(λ, σ) : λ ∈ (2

5
, 1] and max{ 1

λ
,
9

5
λ− 3

10
}θ ≤ σ ≤ 5λ+ 1

3λ
θ

�
(3)

9We suppose that q is sufficiently large to make B’s payoff positive under B’s most convenient policy.
10Since qi, qj are indentically distributed, the distribution of qj − qi is identical to the distribution of qi − qj .
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Moreover, for the special case in which λ = 1
2 and σ ∈ {52θ, 3θ, 72θ} we described a mixed BNE. We discuss

this result after the proposition, in which we denote with UBC the buyer’s expected payoff in equilibrium.

Proposition 1 Consider policy C.

(i) For the case in which σ < 1
λθ, there exists a unique symmetric BNE and is described as follows:

• If λ = 1
2 , then

pL = cL +
1

4
σ +

2θ2

4θ − σ
, pH = cH +

4θ2 + (2θ − σ)2

4(4θ − σ)
= pL +

1

2
σ (4)

UBC = q − cL +
64θ4 − 256θ3σ + 72θ2σ2 − 10σ3θ + σ4

96θ2 (4θ − σ)

• If λ 	= 1
2 , then

pL = cL +
(1 + 2λ)∆2 − 2 (2θ + λσ)∆ + 2θσ

2 (1− 2λ)∆
, pH = pL +∆ (5)

UBC = q − pL +
2

3
θ − (1− λ)∆

3θ2 − 3λ∆θ + λ∆2

3θ2

in which ∆ is the unique solution in (0, θ) to the equation

4λ (1− λ)∆3 − [3θ + 4λ (1− λ) θ + 2λ (1− λ)σ]∆2 + (5θ − 2λθ + 2σ) θ∆− 2θ2σ = 0 (6)

(ii) For the case in which (λ, σ) ∈ C there exists a symmetric BNE such that pH − pL ≥ θ and is described

as follows:

pL = cL + (
1

λ
− 1

2
)θ, pH = cH +

1

2
θ (7)

UBC = q − cL −
1

6
(4λ2 − 16λ+ 11)θ − (1− λ)2σ

(iii) If λ = 1
2 and σ ∈ {52θ, 3θ, 72θ}, then there exists a symmetric mixed-strategy BNE which is characterized

by three bids paL, p
b
L, pH and a probability µ ∈ (0, 1) such that each type L bids paL with probability µ, bids

pbL with probability 1− µ, and each type H bids pH . The equilibrium values of paL, p
b
L, µ, pH are

ω paL pbL µ pH UBC
5
2 cL + 1.51598θ cL + 2.08744θ 0.98747 cH + 0.4995θ q − cL − 1. 30808θ

3 cL + 1.79273θ cL + 2.58746θ 0.84623 cH + 0.49355θ q − cL − 1.71114θ
7
2 cL + 2.12145θ cL + 3.07096θ 0.75271 cH + 0.49109θ q − cL − 2.15294θ

The setting studied by GGD is such that cH = cL, that is σ = 0, and they obtain pL = pH = cL +
1
2θ.

In order to compare the result of GGD with Proposition 1 it is useful to think of cL as fixed while

cH = cL + σ > cL. Furthermore, in this discussion we focus on the case of λ =
1
2 since then equilibrium

bids have simple expressions.

From (4) it is straightforward to see that increasing σ increases the bid of both type L and type H; in

fact, it is intuitive that pH increases as σ increases, and moreover also pL increases since bids are strategic

complements. Furthermore, the suppliers’ ex ante expected payoff increases with σ. From the viewpoint

of B, higher bids obviously reduce his payoff and indeed UBC is decreasing in σ. Regarding social surplus,

we notice that pH − pL =
1
2σ, which means that the difference between the bid of type H and the bid of
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type L is smaller than the cost difference.11 This generates an efficiency loss from a social point of view

since it is not always the case that the supplier with the highest value wins. Precisely, when c1 = cL and

c2 = cH (a symmetric argument applies when c1 = cH, c2 = cL) supplier 2 wins as long as q1, q2 satisfy

q2−pH > q1−pL, which reduces to q2 > q1+
1
2σ, although 2 has the highest value if and only if q2 > q1+σ,

and the former condition is satisfied more often than the latter. Thus supplier 2 wins too often from a

social point of view.

On the other hand, it is intuitive that a sufficiently large σ induces a large difference in bids such that

a type L always wins against a type H, that is pH − pL ≥ θ. In fact, this occurs if (λ, σ) belongs to the

set C defined in (3) (in this case the equilibrium prices — in (7) — are simple enough that we do not need

to restrict to λ = 1
2), which requires that σ is larger than

θ
λ , but not too larger. When (λ, σ) ∈ C and

c1 = cL, c2 = cH , for any (q1, q2) ∈ Q supplier 1 has a higher value than supplier 2 and the inequality

q1 − pL > q2 − pH holds for any q1, q2, which means that a supplier of type L certainly wins against a

supplier with type H; thus social surplus is maximized. However, we can prove the existence of a BNE

with this feature only if (λ, σ) ∈ C. In order to see why, consider type L and notice that (i) bidding pL
gives her a probability of winning equal to λ2 +1−λ (she wins with probability 1

2 against type L, and with

probability 1 against type H); (ii) on the other hand, bidding pH −θ(> pL) yields a probability of winning

at least equal to 1− λ (she still wins with probability 1 against type H); (iii) if σ is large and λ is small,

then pH − θ is significantly larger than pL and the probability of winning has decreased only slightly; this

makes bidding pH − θ a profitable deviation for type L.12

In addition, when λ is large we need that σ is sufficiently larger than θ
λ because otherwise there exists

a profitable deviation for type H which consists of bidding slightly above cH . Precisely, for a large λ the

equilibrium payoff for a type H is small since he wins with positive probability only if his opponent has type

H (an event with probability 1−λ). If instead he bids below pL+θ, then he wins with positive probability

also if his opponent has type L, and moreover increases his probability of winning against type H. Such

a behavior is profitable for type H if cH is sufficiently lower than pL + θ; the inequality σ > (95 − 3
10λ)θ

guarantees that cH is large enough to make unprofitable the above described deviation. Finally, we notice

that the suppliers’ payoffs do not depend on σ if (λ, σ) ∈ C, thus an increase in σ in C has the only effect
of reducing B’s payoff.

When (λ, σ), an important feature of the BNE is that the suppliers’ rents are constant with respect to

σ: the payoff of type L is (14λ+
1
λ −1)θ and the payoff of type H is 1−λ4 θ. This occurs because pH−pL > θ

implies that (i) supplier 1L wins against 2H for any p1L close to pL, and thus pL does not depend on cH nor

on σ since small changes in the bid, such as those considered by the first order condition, do not affect the

probability for 1L to win against 2H ; (ii) type 1H effectively competes only against type 2H , and thus cH

has an additive effect on pH but does not affect the mark-up. Therefore suppliers’ rents are independent

of σ for (λ, σ) ∈ C, and even though the suppliers’ private informations on costs become more significant,
under policy C the suppliers are unable to increase their rents. As we will see, this is not the case for the

other information policies.

For a large σ, no symmetric pure strategy BNE exists, but a mixed strategy BNE exists since for each

type ik of supplier, as the payoff function in (2) is continuous in bids. However, characterizing such a BNE

is not straightforward, and in Proposition 1(ii) we describe a mixed strategy BNE for λ = 1
2 and a few

11This results holds because (pik − ck)[λF (pL − p) + (1− λ)F (pH − p)] (the demand function for the product of a supplier

choosing price p) is log-concave in p, as we show in the proof of Proposition 1 in the appendix.
12Obviously, the first order conditions which deliver the prices in (7) fail to take into account this (non-local) deviation by

type L. Notice also that we are considering the specific deviation in which type L bids pH − θ only to fix the ideas, but it is

conceivable that there exist even more profitable deviations for type L.
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values of σ. In such a BNE each type H bids slightly less than cH + 1
2θ, whereas each type L randomizes

between two bids paL, p
b
L which are both larger than cL +

3
2θ. This makes the profit of each type L larger

than when 1L and 2L play the pure strategy cL +
3
2θ, and in particular p

b
L is relatively close to pH − θ,

which implies that type L obtains in equilibrium the payoff from bidding close to pH − θ. Notice that in

this BNE the winner may be selected inefficiently, since a type L loses with a positive probability against

a type H.

3.2 Private revelation

Under the policy of private revelation, B privately (and truthfully) reveals qi to supplier i, for i = 1, 2, that

is before the auction is held. A strategy for supplier i is thus a function Pi which associates a bid to each

pair (ci, qi) ∈ {cL, cH}× [q, q̄]. Since suppliers are ex ante symmetric, we focus on symmetric BNE in which
the function P1 is identical to P2, denoted with P . Precisely, a symmetric BNE in which all suppliers bid

according to a function P is such that

for any ci ∈ {cL, cH} and any qi ∈ [q, q̄],
(pi − ci)Pr{qi − pi > qj − P (cj , qj) for j 	= i}
is maximized with respect to pi at pi = P (ci, qi)

(8)

This setting with bidimensional private information turns out to be closely linked to a ”standard

auction” environment in which (i) an object is sold through a first price auction with two bidders; (ii) vi

is the valuation (privately observed) of bidder i for i = 1, 2; (iii) (v1, v2) are i.i.d., each with c.d.f. G. In

such a setting a symmetric BNE is characterized by a bidding function β such that each bidder with type

vi bids β(vi), and it is well known that a unique symmetric BNE exists [see for instance Monteiro (2009)].

Proposition 2 below relies on this result to find the unique symmetric BNE under the PR policy and

the key idea is quite simple. In (8), replace ci using vi = qi − ci and then employ si = qi − pi, the score,

as the choice variable of supplier i. Then the problem

max
pi

(pi − ci)Pr{qi − pi > qj − P (cj , qj) for j 	= i} (9)

can be written as

max
si

(vi − si)Pr{si > qj − P (cj , qj) for j 	= i} (10)

The formulation in (10) is useful since it is the decision problem of a bidder with valuation vi in a standard

auction, in which qj −P (cj , qj) is the bid of her opponent. Moreover, (10) reveals that the score si offered

by supplier i depends only on vi, and not on qi and ci separately.

Proposition 2 Consider policy PR, and let G denote the common c.d.f. of v1 and v2. Then the unique

symmetric BNE is such that

P (ci, qi) = ci +

� qi−ci

q−cH

G(y)

G(qi − ci)
dy for any ci, qi (11)

The supplier with the highest value wins and the buyer’s expected payoff UBPR is E[min{v1, v2}], the expected

second highest valuation.

We notice that (an analogous formulation of) Proposition 2 holds under much more general assumptions:

we can allow for any number of suppliers and for any (i.i.d.) distributions of qualities and costs. We restrict

to the particular setting described in Section 2 in order to compare PR with the other information policies.
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The c.d.f. G of v1 and v2 is simple to derive, but we need to distinguish two cases. If σ > θ, that is if

ω > 1, then the value of a supplier with cost cL is certainly larger than the value of a supplier with cost

cH , and G is

G(v) =






(1− λ)
v+cH−q

θ if v ∈ [q − cH , q̄ − cH ]

1− λ if v ∈ (q̄ − cH , q − cL]

1− λ+ λ
v+cL−q

θ if v ∈ (q − cL, q̄ − cL]

such that G is constant for values between q̄ − cH and q − cL. In the opposite case of ω ≤ 1, the set of

possible values is the interval [q − cH , q̄ − cL] and G is13

G(v) =






(1− λ)
v+cH−q

θ if v ∈ [q − cH , q − cL]

(1− λ)
v+cH−q

θ + λ
v+cL−q

θ if v ∈ (q − cL, q̄ − cH ]

1− λ+ λ
v+cL−q

θ if v ∈ (q̄ − cH , q̄ − cL]

Given G, it is straightforward to evaluate E[min{v1, v2}]; we describe the results in next Corollary.

Corollary 1 Under policy PR,

(i) when ω ≤ 1 the buyer’s payoff UBPR is equal to q − cL +
1
3 [1 − (1− λ) (3 + 3λω − λω2)ω]θ and the

suppliers’ rents USPR are 1
3 [1 + 2λ(1− λ)ω2(3− ω)]θ;

(ii) when ω > 1 the buyer’s payoff is q − cL +
1
3 [1 + λ − λ2 − 3(1 − λ2)ω]θ and the suppliers’ rents are

[13(1− 2λ+ 2λ2) + 2λ(1− λ)ω]θ.

It is simple to see that an increase in ω above zero is harmful for B since it reduces (increases) the

probability of high (low) values. More formally, the c.d.f. for each supplier’s value when ω > 0 is first order

stochastically dominated by the c.d.f. when ω = 0 and E[min{v1, v2}] is decreasing in ω. Conversely, as in
C, an increase in ω increases the suppliers’ ex ante expected rents.

3.3 Public revelation

Under the policy of Public revelation the buyer truthfully and publicly reveals the suppliers’ qualities q1, q2

before the auction is held. Thus q1, q2 become commonly known, and without loss of generality we suppose

that q2 ≥ q1 and use t ≥ 0 to denote the difference q2 − q1. Since each supplier privately observes the

own cost, we use piL, piH to denote the bid of supplier i if she has cost cL, and her bid if she has cost

cH , respectively. This is the same notation employed for policy C, but notice that under PU the common

knowledge of q1, q2 generically puts the suppliers on an asymmetric footing since q1 	= q2 except in a zero-

measure set. We use 1L and 1H to denote the type of supplier 1 with cost cL and the type with cost cH ,

respectively; likewise, we use 2L, 2H to denote the two types of supplier 2.

In fact, this game is equivalent to a standard first price auction like the one described in Subsection 3.2,

except that bidders have asymmetrically (and independently) distributed valuations such that the set of

possible values for bidder 1 is {q1−cH , q1−cL}, the set of possible values for bidder 2 is {q2−cH , q2−cL},
and Pr{v1 = q1 − cL} = Pr{v2 = q2 − cL} = λ. We study this setting in Doni and Menicucci (2011), and

indeed our Proposition 3, in which we describe the unique equilibrium outcome,14 follows from Proposition

1 in Doni and Menicucci (2011).

13 In case that ω = 1, the middle interval collapses to one point.
14Multiple BNE exists because type 1H (and type 1L in one case) never wins in equilibrium, but equilibrium conditions

require that she bids above cH (above cL) with probability one, and in a way that no type of supplier 2 has incentive to bid

above t+ cH (above t+ cL). Since there are many strategies of 1H (of 1L) which achieve this goal, multiple BNE exist, but

this is not an issue since each BNE generates the same outcome in the sense that the winner and the payoff of each type of

supplier and of B are the same across different BNE.
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Notice that in Proposition 3(ii) an important role is played by two specific bids p̃ and p̂, such that p̃ is

the larger solution to the equation

(1− λ)p2 − [(1− 2λ)t+ (1− λ)(cH + cL)]p+ (1− λ)(t+ cH)cL − λtcH = 0 (12)

and p̂ ≡ (1 − λ)p̃ + λ(t + cL). Precisely, satisfying (12) guarantees that the c.d.f. for the mixed strategy

of supplier 1L is continuous at p = p̃ − t. Furthermore, p̂ is such that the c.d.f. for the mixed strategy of

supplier 2L has value 0 at p = p̂. In the proof of Proposition 3(ii) we show that p̃ satisfies max{t+cL, cH} <
p̃ < t+ cH , and therefore t+ cL < p̃ < t+ cL + (1− λ)σ.

Proposition 3 Consider policy PU and suppose that B has revealed qualities q1, q2, with t ≡ q2 − q1 > 0.

Then multiple BNE exist, but they all generate the same outcome as the following BNE.

Type 1H bids more than cH with probability one and in such a way that no type of supplier 2 has incentive

to bid above t+ cH ; the bids of the other types depend on the parameters as follows.

(i) If λt ≥ σ, then types 2L and 2H bid t + cL; type 1L bids more than cL with probability one and in

such a way that no type of supplier 2 has incentive to bid above t+ cL.

(ii) If λt < σ, then types 1L,2L,2H play mixed strategies with support [p̂ − t, cH) for 1L, [p̂, p̃] for 2L,

[p̃, t+ cH ] for 2H , in which p̃ is the larger solution to (12) and p̂ ≡ (1− λ)p̃+ λ(t+ cL). The c.d.f. Φ1L,

Φ2L, Φ2H for the mixed strategies are

Φ1L(p1L) =

�
p1L+t−p̂

λ(p1L+t−cL) for p1L ∈ [p̂− t, p̃− t)

1− 1−λ
λ
cH−p1L
p+t−cH for p1L ∈ [p̃− t, cH)

Φ2L(p2L) = 1−1− λ

λ

p̃− p2L
p2L − cL − t

for p2L ∈ [p̂, p̃], Φ2H(p2H) =

�
p2H−p̃

p2H−cL−t for p2H ∈ [p̃, t+ cH)

1 for p2H = t+ cH

and are such that Φ1L is continuous at p1L = p̃− t and Φ2L(p̂) = 0.

When λt ≥ σ, Proposition 3(i) establishes that each type of supplier 2 bids t+cL and wins against each

type of supplier 1,15 a quite intuitive result since a large t gives a large advantage to supplier 2 with respect

to the differences in costs which may be determined by the suppliers’ private signals. More in detail, (i)

1L (1H) will not offer to B a score higher than q1− cL (higher than q1− cH); (ii) a bid of t+ cL of supplier

2 is equivalent to offering a score of q2− (t+ cL) = q1− cL, thus supplier 2 certainly wins if she bids t+ cL

(or perhaps slightly less); (iii) if q2 is sufficiently larger than q1 (i.e., if t is sufficiently large), then both 2L

and 2H is willing to bid t+ cL in order to earn t (for 2L) or t − σ (for 2H). Precisely, when λt ≥ σ type

2H prefers winning for sure by bidding t + cL rather than bidding t + cH and winning only against type

1H, that is with probability 1− λ.

On the other hand, if σ is large with respect to t (that is, if the advantage of 2 is small), then λt < σ

holds and 2H is less aggressive since she prefers to bid t + cH and win only against type 1H rather than

bidding t+ cL and winning with certainty, as the latter alternative yields a low profit margin. Indeed, 2H

bids in the interval [p̃, t+ cH ], with p̃ > t+ cL (and with an atom at t+ cH), which means that she offers

a score in [q1 − cH , q2 − p̃]. The less aggressive bidding of 2H allows 1L to win with positive probability

by bidding somewhat above cL, and indeed the support for the equilibrium bids of 1L is [p̂ − t, cH) with

p̂ − t > cL, which corresponds to a score in (q1 − cH , q2 − p̂]. As a consequence, also the lowest bid of

2L is larger than t + cL, as we see from Proposition 3(ii). Precisely, 2L bids in the interval [p̂, p̃], which

corresponds to a score in [q2 − p̃, q2 − p̂]. Therefore, a large cost difference with respect to t generates a

15 In a related setting, Maskin and Riley (2000) identify an analogous BNE and provide the intuition we describe here.
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less aggressive behavior of all suppliers, compared to the case of a small value of σ, because 2H is less

aggressive and this induces also the other suppliers to be less aggressive.

Notice that, when λt < σ, the highest valuation supplier does not always win. Precisely, let Pr{1L def
2L} and Pr{1L def 2H} denote the probability that 1L wins against 2L and the probability that 1L wins
against 2H , respectively. Since 1L offers a score in (q1− cH , q2− p̂], 2L offers a score in [q2− p̃, q2− p̂], and

2H offers a score in [q1 − cH , q2 − p̃], it follows that Pr{1L def 2L} > 0 even though q2 − cL > q1 − cL and

Pr{1L def 2H} ∈ (0, 1) even though q2 − cH 	= q1 − cL.
16

In next corollary we use uBPU(q1, q2) to denote B’s equilibrium payoff given q1, q2. From Proposition

3(i) it follows that uBPU (q1, q2) = q1 − cL when λt ≥ σ, whereas if λt < σ we can evaluate uBPU(q1, q2) as

the difference between the social surplus (the expected value of the winner) and the suppliers’ payoff.

Corollary 2 Under policy PU, given q1, q2 such that t = q2 − q1 > 0, the buyer’s payoff is

uBPU(q1, q2) =






q1 − cL if λt ≥ σ

q1 − cL + λ (2− λ) t− (1− λ2)σ − λ
	
[t+ (1− λ)σ]2 − 4λ (1− λ) t2

−λ2tPr{1L def 2L}+ λ(1− λ)(σ − t)Pr{1L def 2H}
if λt < σ

In the setting of GGD with σ = 0, given q2 > q1, supplier 2 wins by bidding t+ cL and u
B
PU (q1, q2) =

q1 − cL. As σ increases above 0, B’s payoff is still q1 − cL as long as the inequality λt ≥ σ is satisfied, but

if λt < σ then Proposition 3(ii) applies and each supplier offers a score between q1 − cH and q2 − p̂. Since

p̂ > t+ cL, it follows that q1 − cH < uBPU (q1, q2) < q1 − cL. Therefore a positive σ reduces B’s payoff only

in the states of the world such that λt < σ. As we have explained above, a σ satisfying λt ≤ σ induces 2H

to bid higher [i.e., less aggressively] than t+ cL, which in turn elicits less aggressive bidding also from 1L

and 2L; this reduces B’s payoff.

After the buyer’s payoff uBPU (q1, q2) is obtained for any q1, q2, we can derive B’s ex ante expected

payoff UBPU as Eq1,q2 [u
B
PU (q1, q2)]. However, given that Pr{1L def 2L} and Pr{1L def 2H} have complicated

expressions, also UBPU has a complicated expression. Nevertheless, in next section we show that in some

cases it is possible to compare UBPU with U
B
PR without resorting to numerical methods.

4 The optimal information policy

In this section we compare the three information revelation policies from the point of view of B.

4.1 Comparison between PR and C

Proposition 4 (i) If σ ≤ θ, then UBPR > UBC for any λ ∈ (0, 1).
(ii) If (λ, σ) ∈ C and σ > 2λ2−14λ+13

12λ(1−λ) θ, then UBC > UBPR.

Given that UBPR > UBC when σ = 0, Proposition 4(i) can be interpreted as an extension of the result

obtained by GGD. On the other hand, when σ > 2λ2−14λ+13
12λ(1−λ) θ and (λ, σ) ∈ C we find that UBC > UBPR, and

a simple intuition applies to this result. In Subsections 3.1 we have seen that under C a large σ separates

type L from type H in the sense that type L always wins against type H. This implies that the winner is

always the supplier with the highest valuation, and therefore C and PR generate the same social surplus.

Thus the buyer’s preferences between C and PR are determined by the suppliers’ payoffs under the two

policies, USC and U
S
PR. In this respect, we have noticed in Subsection 3.1 that U

S
C is constant with respect

16The precise values of Pr{1L def 2L} and Pr{1L def 2H} are obtained in the proof of Proposition 3.
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to σ if (λ, σ) ∈ C, and from Corollary 1(ii) it follows that USPR is increasing in σ. This suggests that C is

superior to PR for a large σ because is more effective at controlling the suppliers’ rents.

4.2 Comparison between PR and PU

In Subsection 3.3 (Corollary 2) we have obtained the buyer’s payoff under PU for given values of q1, q2

such that q2 ≥ q1, uBPU(q1, q2), and noticed that B’s ex ante payoff UBPU is equal to Eq1,q2 [u
B
PU (q1, q2)].

In order to compare PU with PR, we recall that B’s payoff under PR is given by the expected second

highest value: UBPR = Ev1,v2 [min{v1, v2}] = Eq1,c1,q2,c2 [min{q1 − c1, q2 − c2}], and we define uBPR(q1, q2) as
Ec1,c2 [min{q1−c1, q2− c2}|q1, q2] in order to satisfy UBPR = Eq1,q2 [u

B
PR(q1, q2)]. Thus U

B
PR can be obtained

by first evaluating uBPR(q1, q2) for each q1, q2, and then taking the expectation of u
B
PR(q1, q2) with respect

to q1, q2. Since U
B
PU = Eq1,q2 [u

B
PU (q1, q2)], this suggests that comparing u

B
PR(q1, q2) with uBPU (q1, q2) for

different (q1, q2) may give some insights about the comparison between U
B
PR and U

B
PU .

To this purpose it is useful to recall our earlier remark that the first score auction under PU is equiv-

alent to a standard first price auction (FPA henceforth) in which the set of possible values for bidder

1 is {q1 − cH , q1 − cL}, the set of possible values for bidder 2 is {q2 − cH , q2 − cL}, and v1, v2 are in-

dependently distributed with Pr{v1 = q1 − cL} = Pr{v2 = q2 − cL} = λ. Conversely, for PR we have

uBPR(q1, q2) = Ec1,c2 [min{q1 − c1, q2 − c2}|q1, q2], which is a seller’s expected revenue in a second price
auction (SPA henceforth) given the same information environment described just above. Therefore, com-

paring uBPR(q1, q2) with u
B
PU (q1, q2) leads us to the long standing problem in auction theory of comparing

the seller’s expected revenue in the FPA with the expected revenue in the SPA when the bidders’ values

are asymmetrically distributed.

In particular, in our environment the asymmetry is generated by a distribution shift with size q2−q1. The
literature on asymmetric auctions has studied a related setting: Maskin and Riley (2000) and Kirkegaard

(2011) prove that with continuously distributed valuations (and some regularity conditions) the FPA is

superior to the SPA. However, we consider a model with discretely distributed valuations, and the above

results do not necessarily apply. In particular, we obtain an opposite result in the case of a small shift.

In order to compare uBPU(q1, q2) with u
B
PR(q1, q2), it is useful to define three subsets of Q = [q, q̄]× [q, q̄],

which we denote Q1, Q2, Q3:

Q1 ≡ {(q1, q2) ∈ Q : q1 ≤ q2 < q1 + σ}
Q2 ≡ {(q1, q2) ∈ Q : q1 + σ ≤ q2 < q1 +

σ

λ
}

Q3 ≡ {(q1, q2) ∈ Q : q1 +
σ

λ
≤ q2}

Clearly, Q3 is empty if
σ
λ > θ and Q2 is empty if σ > θ. Figure 1 represents graphically Q1, Q2, Q3

Insert figure 1 here

The buyer’s payoff depends as follows on the set in which (q1, q2) is located.

• Under PU, if (q1, q2) ∈ Q3 then Proposition 3(i) applies and uBPU(q1, q2) = q1 − cL. Conversely,

Proposition 3(ii) applies if (q1, q2) ∈ Q1 ∪Q2 and then q1 − cH < uBPU (q1, q2) < q1 − cL.

• Under PR, for each (q1, q2) ∈ Q2 ∪Q3 we have q2 − q1 ≥ σ, thus q1 − c1 < q2 − c2. This implies that

uBPR(q1, q2) = Ec1,c2 [min{q1 − c1, q2 − c2}|q1, q2] = Ec1(q1 − c1|q1) = q1 − cL − (1− λ)σ. Conversely,

for (q1, q2) ∈ Q1 we find uBPR(q1, q2) = λ2(q1−cL)+λ(1−λ)(q1+ t−cL−σ)+λ(1−λ)(q1−cL−σ)+

(1−λ)2(q1− cL−σ) = q1− cL− (1−λ)σ−λ(1−λ)(σ− t), which is smaller than q1− cL− (1−λ)σ.
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Next proposition relies on the above arguments to compare UBPR with U
B
PU , and we remark that it does

not use the assumption that (q1, q2) are uniformly distributed.

Proposition 5 Suppose that q1, q2 are i.i.d. with common support [q, q̄]. Then

(i) UBPU > UBPR when σ > 0 is about zero;

(ii) UBPR > UBPU when σ ≥ max{3(1+λ)2(3−λ) ,
3λ−1
2(1−λ)}θ.

The basic idea for Proposition 5(i) is quite simple. When σ > 0 is small, Pr{(q1, q2) ∈ Q1 ∪ Q2}
is about 0, which suggests that the comparison between PU and PR is determined by the comparison

between uBPU (q1, q2) and u
B
PR(q1, q2) for (q1, q2) ∈ Q3. Then (i) under PU each type of supplier 2 offers a

score q1 − cL in order to win against both types of supplier 1; (ii) under PR the second highest value is

v1 = q1 − c1, which in expectation is equal to q1 − cL − (1− λ)σ, smaller than q1 − cL. This is the "Getty

effect" described by Maskin and Riley (2000), which applies when the size of the shift is large relative to

σ. Although this argument may appear sufficient to establish UBPU > UBPR, it is necessary to notice that

uBPU(q1, q2)− uBPR(q1, q2) = (1− λ)σ when (q1, q2) ∈ Q3, and thus the advantage of PU over PR is small

when σ is small. However, in the proof of Proposition 5(i) we show that PR cannot be much better than

PU in Q1 ∪Q2, as uBPU (q1, q2)− uBPR(q1, q2) > −λσ for any (q1, q2) ∈ Q1 ∪Q2, and then the property that
Pr{(q1, q2) ∈ Q1 ∪Q2} is close to 0 for σ close to zero yields UBPU > UBPR.

Proposition 5(ii) relies on a different argument. First notice that max{3(1+λ)2(3−λ) ,
3λ−1
2(1−λ)} > λ, thus Q3 is

empty when σ ≥ max{3(1+λ)2(3−λ) ,
3λ−1
2(1−λ)}θ, and any feasible (q1, q2) (such that q2 ≥ q1) belongs to Q1 ∪ Q2,

which makes Proposition 3(ii) apply. Then we show that for any (q1, q2) ∈ Q1∪Q2, the suppliers’ aggregate
rents are lower under PR than under PU given σ ≥ max{3(1+λ)2(3−λ) ,

3λ−1
2(1−λ)}θ. Moreover, we know from

Proposition 2 that social surplus is maximized under PR since the higher value supplier always wins under

PR. Conversely, under PU social surplus is not maximized as the lowest valuation supplier may win with

positive probability. Therefore it follows that UBPR > UBPU if σ ≥ max{3(1+λ)2(3−λ) ,
3λ−1
2(1−λ)}θ.

In fact, there is another interesting way of seeing this result, which relies on inquiring how a small

shift q2 − q1 > 0 affects the suppliers’ bids with respect to the case of q2 = q1. We find that type 1L

bids less aggressively while the bidding of types 2L and 2H in terms of score is unchanged (up to a second

order effect). This has the consequence that the buyer’s payoff under PU decreases as a consequence

of the shift, that is uBPU(q1, q2) < uBPU(q1, q1) [see Doni and Menicucci (2011) for more details on this

result]. On the other hand, the buyer’s payoff under PR is the expected second highest valuation, and thus

uBPR(q1, q2) > uBPR(q1, q1), which suggests that PR is superior to PU for a small shift, or equivalently for a

large σ/θ.

The main message of Proposition 5 is as follows. When σ > 0 is small, revealing q1, q2 typically puts

the bidders in a very asymmetric setting such that λt ≥ σ is satisfied, and then the supplier with the

highest quality bids aggressively in order to win against each type of the other supplier. This makes PU

superior to PR. When instead σ is large such that λt < σ holds in any case (i.e., for any t), no supplier has

a sufficiently large advantage to bid aggressively in PU (in fact, a modest asymmetry reduces the buyer’s

payoff under PU), and then we find PR is better.

4.3 General ranking

By using Propositions 4 and 5 we obtain next Proposition. It does not cover all parameter values, but

shows that for each fixed policy there is a set of parameter values for which the given policy is optimal.
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Proposition 6 (i) The best information revelation policy is PU if σ is about zero; PR if max{3(1+λ)2(3−λ) ,
3λ−1
2(1−λ)}θ ≤

σ ≤ θ;C if (λ, σ) ∈ C and σ ≥ max{2λ2−14λ+1312λ(1−λ) , 3λ−1
2(1−λ)}θ.

(ii) For the special case in which λ = 1
2 , there exists ω∗ ≃ 0.3949 such that the best information

revelation policy is PU if ω < ω∗, is PR if ω∗ < ω < 13
6 , is C if ω ∈ (136 , 2

√
3− 1] ∪ {52 , 3, 72}.

Under the assumptions of Proposition 6(ii), the analysis of GGD reveals that ω = 0 implies UBPR =

UBPU > UBC . Proposition 6(ii) establishes that these results are not robust to allowing ω > 0: UBPU 	= UBPR
for any ω 	= ω∗, and C is the best policy for large values of ω. More generally, Proposition 6(ii) implies that

the amount of information B should release is decreasing with respect to ω. Precisely, revealing q1 and q2

is the best policy for B when each supplier’s private information on costs is scarcely significant (since cL

is relatively close to cH when ω is small), but private revelation is optimal when ω takes on intermediate

values, and no revelation at all is optimal when ω is large, that is when suppliers’ private information is

very significant with respect to quality differences. As we have seen in the previous subsections, PU is

optimal for ω ≃ 0 as it elicits aggressive bidding from the supplier with higher quality, whereas C is optimal

for a large ω since it is good at controlling rents.

5 Conclusions

In some procurement settings a product’s perceived quality depends on the buyer’s subjective needs or

tastes. In these cases buyers have to choose how much of their information to reveal to suppliers before

the bidding occurs. In this paper we have studied the outcomes of different information revelation policies

in a procurement auction. GGD have already delved into this issue, under the assumption that suppliers

have identical, commonly known costs. We introduce uncertainty in each suppliers’ cost, and therefore

suppliers can be heterogeneous both because of the qualities of their products and because of their costs.

Under uniformly distributed qualities, our main finding is (Proposition 6) that the amount of information

the buyer should reveal is decreasing in the degree of uncertainty on suppliers’ costs with respect to the

degree of uncertainty on supplier’s qualities. In order to derive this result we compared the revenue in a

FPA with the revenue in a SPA in an asymmetric setting with a distribution shift, and we have proved

that some known results for asymmetric auctions with continuos valuations do not hold in an environment

with discretely distributed types.

Future research could extend our analysis along several directions. For instance, we could allow for

an endogenous number of suppliers, which requires to analyze how the information policy affects each

supplier’s entry incentives. Another extension would allow for vertically differentiated products. Precisely,

sometimes the qualities of two different products can be unambiguously ranked, and the uncertainty is

only about the buyer’s willingness to pay for the higher quality product rather than for the lower quality

one. This suggests the question of how different information policies affect a supplier’s incentives to invest

in improving the quality of the own product when vertical differentiation is endogenous. Finally, the

evaluation of a procurement policy should take into account its vulnerability to corruption and collusion

[see Katok and Wambach (2008)]. Therefore, it would be useful to have an analysis of pros and cons of

different procurement policies when qualitative evaluations are expressed by public officials who can pursue

their private interest, or when suppliers can create a cartel.
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6 Appendix

6.1 Proof of Proposition 1

Without loss of generality, we consider supplier 1. Given the bids pL, pH of the two types of supplier 2, the

payoff of type L of supplier 1 is (p1L−cL)[λF (pL−p1L)+(1−λ)F (pH −p1L)], and the payoff of type H of

supplier 1 is (p1H − cH)[λF (pL− p1H) + (1− λ)F (pH − p1H)]. In equilibrium these payoffs are maximized

at p1L = pL and at p1H = pH , respectively. The associated first order conditions are written as follows,

with ∆ = pH − pL (clearly, ∆ ≥ 0 since cH > cL):
17

λF (0) + (1− λ)F (∆) = (pL − cL)[λf(0) + (1− λ)f(∆)] (13)

λF (−∆) + (1− λ)F (0) = (pH − cH)[λf(−∆)+ (1− λ)f(0)] (14)

As it is intuitive, we need to distinguish the case in which ∆ ≤ θ from the case in which ∆ > θ, since

F (−∆) = 0, F (∆) = 1 and f(−∆) = f(∆) = 0 when ∆ > θ, whereas 0 < F (−∆) < F (∆) < 1 and

f(−∆) = f(∆) > 0 when ∆ < θ.

6.1.1 The case in which ∆ < θ

Step 1 Derivation of equilibrium bids and the payoff of the buyer When ∆ ≤ θ, using (1) we

can write (13) and (14) as follows:

1

2
θ + (1− λ)∆(1− ∆

2θ
) = (pL − cL)[1− (1− λ)

∆

θ
] (15)

1

2
θ − λ∆(1− ∆

2θ
) = (pH − cH)(1−

λ∆

θ
) (16)

and taking the difference between (15) and (16) yields

1

2
∆(2θ −∆) = (θ −∆+ λ∆)(σ −∆) + (pH − cH)(2λ− 1)∆ (17)

If λ = 1
2 , then (17) has solutions ∆ = 1

2σ and ∆ = 2θ. The second solution violates ∆ ≤ θ, whereas

inserting ∆ = 1
2σ in (15)-(16) we obtain (4).

If λ 	= 1
2 , then from (17) we obtain pH = cH + (3−2λ)∆2−2(2θ+(1−λ)σ)∆+2θσ

2(1−2λ)∆ and pH − ∆ is equal to

pL in (5). Inserting the expression for pH into (16) yields (6), in which ∆ is the unique unknown; we are

interested in the solutions of (6) which belong to [0, θ]. It is useful to divide the left hand side in (6) by

θ3, with x ≡ ∆
θ , ω ≡ σ

θ , and then (6) is written as

4λ (1− λ)x3 − (3 + 4λ (1− λ) + 2λ (1− λ)ω)x2 + (5− 2λ+ 2ω)x− 2ω = 0 (18)

There exists a ∆ ∈ [0, θ] which solves (6) if and only if there exists x ∈ [0, 1] which solves (18). We

use Ψ(x) to denote the left hand side of (18) and notice that Ψ(0) = −2ω < 0, Ψ(1) = 2 (1− λ) (1− λω);

thus there exists a solution in (0, 1] as long as ω ≤ 1
λ , which is equivalent to λσ ≤ θ. Moreover, Ψ′′(x) =

24λ(1− λ)x− 2(3 + 4λ (1− λ) + 2λ (1− λ)ω) is negative for any x ∈ (0, 1), thus Ψ is strictly concave in

[0, 1] and the solution to (18) in (0, 1] is unique for ω < 1
λ . Precisely, let x

∗ denote the smallest solution to

(18) in (0, 1) and notice that the strict concavity of Ψ and Ψ(1) > 0 imply Ψ(x) > 0 for each x ∈ (x∗, 1].

Hence, (6) has a unique solution in (0, θ] if λσ < θ.

17Notice that the payoff functions are continuously differentiable in prices.
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Given the equilibrium prices in (4)-(5), we find that the payoff of the buyer is

UBC = λ2(E[max{q1, q2}]− pL) + (1− λ)2(E[max{q1, q2}]− pL −∆)

+2λ(1− λ)(

� q+θ−∆

q

� q+θ

q1+∆

(q2 − pL −∆)
1

θ2
dq2dq1 +

� q+θ

q

� min{q1+∆,q+θ}

q

(q1 − pL)
1

θ2
dq2dq1)

= q − pL +
2

3
θ − (1− λ)∆

3θ2 − 3λ∆θ + λ∆2

3θ2

Step 2 Proof that pL, pH in (3) constitute a BNE if λσ < θ Clearly, merely satisfying the first order

conditions does not guarantee that a BNE is obtained. In order to verify that this is the case, consider the

function R(y) ≡ λf(y)+(1−λ)f(∆+y)
λF (y)+(1−λ)F (∆+y) defined for y ∈ (−θ −∆, θ]. If R is monotone decreasing in y, then it

is straightforward to prove that pL, pH in (3) constitute a BNE. Next lemma establishes that R is strictly

decreasing when λ ≤ 1
2 , but not necessarily when λ >

1
2 .

Step 2.1 The function R(y) = λf(y)+(1−λ)f(∆+y)
λF (y)+(1−λ)F (∆+y) is strictly decreasing in y in the interval (−θ−

∆, θ] if λ ≤ 1
2 ; if λ >

1
2 , then R is strictly decreasing in the interval [−∆, θ] We start by exploiting

(1) to derive an expression for R(y):

R(y) =






2
θ+∆+y for y ∈ (−θ −∆,−θ]

2(θ+∆+y−λ∆)
y2+2(∆+θ−λ∆)y+θ2+2θ∆−2λθ∆+∆2−λ∆2 for y ∈ (−θ,−∆]

2[(2λ−1)y+λ∆+θ−∆]
(2λ−1)y2+2(θ−∆+λ∆)y−∆2+θ2+2θ∆−2λθ∆+λ∆2

for y ∈ (−∆, 0]
2(θ−∆−y+λ∆)

−y2+2(θ−∆+λ∆)y+θ2+2θ∆−2λθ∆−∆2+λ∆2
for y ∈ (0, θ −∆]

2λ(y−θ)
λθ2−2λθy+λy2−2θ2 for y ∈ (θ −∆, θ]

• For y ∈ (−θ −∆,−θ] it is straightforward that R is decreasing in y.

• For y ∈ (−θ,−∆], R′(y) has the same sign as ρ1(y) ≡ −y2 − 2(∆ + θ − λ∆)y − θ2 − 2 (1− λ)∆θ +

(2λ− 1)(1− λ)∆2, which is decreasing in y and ρ1(−θ) = −(1− 2λ)(1− λ)∆2 ≤ 0 for λ ≤ 1
2 .

• For y ∈ (−∆, 0], R′(y) has the same sign as

ρ2(y) ≡ − (2λ− 1)2 y2 − 2 (2λ− 1) (θ −∆+ λ∆) y − (3− 2λ) θ2 + 2 (2λ+ 1) (1− λ)∆θ − (1− λ)∆2

Case of λ ≤ 1
2 . Then ρ2 is increasing and ρ2(0) = − (3− 2λ) θ2 + 2 (2λ+ 1) (1− λ)∆θ − (1− λ)∆2,

which is decreasing in θ. Hence, from θ > ∆ we see that ρ2(0) is smaller than − (3− 2λ)∆2 +

2 (2λ+ 1) (1− λ)∆2 − (1− λ)∆2 = −(2− 5λ+ 4λ2)∆2 < 0.

Case of λ > 1
2 . Then ρ2 is decreasing and ρ2(−∆) = − (3− 2λ) θ2 + 2λ (3− 2λ)∆θ − λ∆2, which is

decreasing in θ. Hence, from θ > ∆ we see that ρ2(−∆) < − (3− 2λ)∆2 + 2λ (3− 2λ)∆2 − λ∆2 =

(4λ− 3) (1− λ)∆2, which is negative or zero for λ ≤ 3
4 . For λ > 3

4 , notice that θ ≥ ∆
2− 4

3
λ
since

Ψ(2− 4
3λ) =

2
9(4λ

2−6λ+3)(4λ2−10λ+3)ω+ 2
27(2λ−3)(64λ

4−208λ3+216λ2−90λ+9) is non negative
for each ω ∈ [0, 1λ ], and thus ρ2(−∆) < −(3−2λ)( ∆

2− 4

3
λ
)2+2λ(3−2λ)∆ ∆

2− 4

3
λ
−λ∆2 = − (4λ−3)2

4(3−2λ)∆
2 < 0.

• For y ∈ (0, θ−∆], R′(y) has the same sign as ρ3(y) ≡ −y2 + 2 (θ −∆+ λ∆) y − 3θ2 +2(1− λ)∆θ+

(2λ− 1) (1− λ)∆2, which is increasing in y and ρ3(θ−∆) = −2θ2+λ∆2−2λ2∆2 ≤ −(2−λ+2λ2)∆2 <

0.

• For y ∈ (θ −∆, θ], R′(y) has the same sign as ρ4(y) ≡ −λy2 + 2λθy − λθ2 − 2θ2, which is increasing

in y and ρ4(θ) = −2θ2 < 0.
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Step 2.2 If type L and type H of supplier 2 play pL and pH in (3), respectively, then playing

pH is a best reply for type H of supplier 1 As we have specified above, the payoff function of type

H is πH(p1H) = (p1H − cH)[λF (pL − p1H) + (1− λ)F (pH − p1H)], and

π′H(p1H) = [λf(pL − p1H) + (1− λ)f(pH − p1H)][
λF (pL − p1H) + (1− λ)F (pH − p1H)

λf(pL − p1H) + (1− λ)f(pH − p1H)
− p1H + cH ]

We know that π′H(pH) = 0 and Step 2.1 reveals that if λ ≤ 1
2 , then the second factor in π

′
H(p1H) is strictly

decreasing in p1H — interpret pL − p1H as y — for p1H ∈ [pL − θ, pH + θ). Thereforeπ′H(pH) = 0 implies

that π′H(p1H) > 0 for p1H ∈ [pL − θ, pH) and π
′
H(p1H) < 0 for p1H ∈ (pH , pH + θ). If instead λ > 1

2 , then

the second factor in π′H(p1H) is strictly decreasing in p1H for p1H ∈ [pL − θ, pH). For p1H ∈ (pH, pL + θ]

we obtain

π′H(p1H) =
1

2
+
λ

θ
(pL − p1H +

1

2θ
(pL − p1H)

2) +
1− λ

θ
(pH − p1H +

1

2θ
(pH − p1H)

2) +

−p1H − cH
θ

(1 +
λ

θ
(pL − p1H) +

1− λ

θ
(pH − p1H))

Since π′H is convex and π
′
H(pH) = 0, the inequality π′H(p1H) ≤ 0 holds for each p1H ∈ (pH , pL + θ] if and

only if π′H(pL + θ) ≤ 0. We find that π′H(pL + θ) = 1−λ
2λ−1 [2λx̂

2 − (1− λω + ω + 2λ)x̂+ ω], where x̂ is the

unique solution to Ψ(x) = 0 in (0, 1) [see (18)].

Step 2.2.1 For ω < 1, the inequality π′H(pL + θ) ≤ 0 is satisfied First we prove that 12ω < x̂ < 3
4ω,

given λ > 1
2 and ω < 1, by verifying that Ψ(12ω) < 0 < Ψ(34ω). Precisely, we find that Ψ(12ω) =

1
4ω (2λ− 1) (2λω − ω − 2) < 0 and Ψ(34ω) =

1
16ω(9ω (4− ω)λ2 +



9ω2 − 36ω − 24

�
λ + 28 − 3ω). Let

ξω(λ) = 9ω (4− ω)λ2+


9ω2 − 36ω − 24

�
λ+28−3ω. For ω ≤ 2− 2

3

√
3, we find that ξω is maximized with

respect to λ ∈ (12 , 1] at λ = 1and ξω(1) = 9ω (4− ω)+


9ω2 − 36ω − 24

�
+28−3ω = 4−3ω > 0; for ω ∈ (2−

2
3

√
3, 1], we find that ξω is maximized with respect to λ ∈ ( 12 , 1] at λ = 8+12ω−3ω2

6ω(4−ω) , with ξω(
8+12ω−3ω2
6ω(4−ω) ) =

9ω (4− ω) (8+12ω−3ω
2

6ω(4−ω) )2 +


9ω2 − 36ω − 24

�
8+12ω−3ω2
6ω(4−ω) + 28 − 3ω = −9ω4+84ω3−256ω2+256ω−64

4ω(4−ω) , which is

positive for ω ∈ (2− 2
3

√
3, 1].

Finally, at x = 1
2ω we find π

′
H(pL+θ) =

1−λ
2λ−1(2λ(

1
2ω)

2−(1−λω+ω+2λ)12ω+ω) = −1
2 (1− ω)ω (1− λ) ≤

0; at x = 3
4ω we find π

′
H(pL+θ) =

1−λ
2λ−1(2λ(

3
4ω)

2−(1−λω+ω+2λ)34ω+ω) =
ω(1−λ)
8(2λ−1)(15λω+2−6ω−12λ).

max wrto λ: λ = 1
2 if ω < 4

5 , λ = 1 if ω > 4
5 . In the first case, 15 · 12ω + 2− 6ω − 12 · 12 = 3

2ω − 4 < 0; in

the second case, 15ω + 2− 6ω − 12 = 9ω − 10 < 0.

Step 2.2.2 For ω ∈ [1, 1λ ], the inequality π′H(pL+θ) ≤ 0 is satisfied Notice that the equation 2λx2−
(1− λω + ω + 2λ)x+ω = 0 has two roots x1 =

1
4λ (1 + 2λ− λω + ω −X) and x2 =

1
4λ (1 + 2λ− λω + ω +X)

with X =
�
(1− λ)2 ω2 − 2



3λ− 1 + 2λ2

�
ω + (2λ+ 1)2. Since x1 ∈ (0, 1) and x2 > 1,18 we infer that

π′H(pL + θ) ≤ 0 if and only if x̂ ≥ x1.

18The inequality x1 > 0 is equivalent to 1 + 2λ− λω + ω > X, which after squaring reduces to 8λω > 0. The inequality

x1 < 1 is equivalent to 1− 2λ− λω+ ω < X, which holds if the left hand side is negative, otherwise after squaring we get an

equivalent inequality which boils down to ω < 1

λ
. Finally, the inequality x2 > 1 is equivalent to X > λ(2+ω)− 1−ω, and it

is satisfied if the right hand side is negative, otherwise after squaring we get an equivalent inequality which reduces to ω < 1

λ
.
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The inequality x̂ ≥ x1 is equivalent to ψ(x1) < 0 and we find that

ψ(x1) =
1

16λ2






−(1− λ)X3 + (−λ− 8λω + 3ω − 2λ2 + 5λ2ω)X2

+((7λ− 3) (λ− 1)2 ω2 − 2λ


−3λ+ 6λ2 + 1

�
ω + 3− 9λ− 4λ3 + 16λ2)X

+(3λ− 1) (λ− 1)3 ω3 + λ (1− λ)


10λ2 − 5λ+ 3

�
ω2

+


20λ3 − 47λ2 − 3 + 4λ4 + 18λ

�
ω + (2λ+ 1)



4λ3 − 12λ2 + 13λ− 2

�






=
2λ− 1

8λ2

� 

−4λ2ω + 2λ2ω2 − λω − 4λω2 + 4λ− 1 + ω + 2ω2

�
X

−2(1− λ)3ω3 + (1− λ)(8λ2 + 7λ− 3)ω2 + 2λ(4λ2 + 5λ− 5)ω − 8λ2 − 2λ+ 1

�

=
2λ− 1

8λ2
[αλ(ω) + βλ(ω)X]

with α(λ,ω) = 2(1−λ)2ω2−(4λ2−1+λ)ω+4λ−1 and β(λ, ω) = −2(1−λ)3ω3+(1−λ)(8λ2+7λ−3)ω2+
2λ(4λ2+5λ−5)ω−8λ2−2λ+1. We show in the following that Ψ(x1) < 0 in the setK = {(λ, ω) : λ ∈ (12 , 1]
and ω ∈ [1, 1λ ]}. We use numerical methods to find that β(λ, ω) < 0 below the medium thick curve, and

β(λ, ω) > 0 above that curve; notice that the set K includes some points (λ, ω) such that β(λ, ω) > 0,

even though it is impossible to see this set in the picture. Furthermore, numerical methods to find that

α(λ, ω) > 0 to the left of the very thick curve, and α(λ, ω) < 0 to the right of that curve. Also notice that

the two curves cross at (λ, ω) = (23 ,
3
2).

0.5 0.6 0.7 0.8 0.9 1.0
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

x

y

To the left of the dashed curve we have α > 0 and β < 0, thus αX+β ≤ 0 is equivalent to β2−α2X2 ≥ 0,

which reduces to −14λω + 6ω + 12λ − 3 ≥ 0. Let µ(λ, ω) ≡ −14λω + 6ω + 12λ − 3 and notice that

for each λ > 1
2 , µ is decreasing with respect to ω. For λ ≤ 2

3 , the maximal ω is 1
λ and µ(λ, 1λ) =

−14λ 1λ+6 1λ+12λ−3 =
(2−3λ)(3−4λ)

λ ≥ 0. For λ ∈ ( 23 ,
√
17−1
4 ], we can solve α(λ,ω) = 0 with respect to ω and
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find that the maximal ω is 1
2(2λ2−4λ+2)

�
4λ2 + λ− 1−

	
16λ4 − 24λ3 + 65λ2 − 50λ+ 9

�
. It turns out that

µ(λ, 1
2(2λ2−4λ+2)

�
4λ2 + λ− 1−

	
16λ4 − 24λ3 + 65λ2 − 50λ+ 9

�
) =

(7λ−3)
√
16λ4−24λ3+65λ2−50λ+9−9−4λ3−49λ2+46λ

2(1−λ)2 ,

which is positive for λ ∈ (23 ,
√
17−1
4 ].

To the right of the dashed curve, the inequality αX + β ≤ 0 obviously holds if α < 0 and β < 0.

However, there is a very small region in which α < 0 and β > 0 (it consists of points such that ω is close

to 1
λ and

2
3 < λ < 1√

2
). In such a case, αX + β ≤ 0 is equivalent to α2X2 − β2 ≥ 0, which reduces to

−µ(λ, ω) ≥ 0. At the points in the lower part of the region β = 0, hence −µ(λ, ω) ≥ 0 holds since it is

equivalent to α2X2 − β2 ≥ 0, that is α2X2 ≥ 0. Moreover, the function −µ is increasing in ω and thus we
infer that −µ(λ, ω) ≥ 0 is satisfied at each point in the region.

Values of p1H in [pL+θ, pH+θ]. Then π
′
H(p1H) = (1−λ)(12+1

θ (pH−p1H)+ 1
2θ2

(pH−p1H)2)−(1−λ)(p1H−
cH)(

1
θ +

1
θ2
(pH−p1H)), which is convex in p1H and π′H(pL+θ) = 1−λ

2λ−1 [2λx
2−(1− λω + ω + 2λ)x+ω] ≤ 0

(proved above) and π′H(pH + θ) = 0. Hence π′H(p1H) < 0 holds for p1H ∈ (pL + θ, pH + θ).

Step 2.3 If type L and type H of supplier 2 play pL and pH in (3), respectively, then playing

pL is a best reply for type L of supplier 1 The payoff function of type L is πL(p1L) ≡ (p1L −
cL)[λF (pL − p1L) + (1− λ)F (pH − p1L)], and

π′L(p1L) = [λf(pL − p1L) + (1− λ)f(pH − pL)][
λF (pL − p1L) + (1− λ)F (pH − p1L)

λf(pL − p1L) + (1− λ)f(pH − p1L)
− p1L + cL]

Step 2.1 reveals that if λ ≤ 1
2 , then the second factor in π′L(p1L) is strictly decreasing in p1L — interpret

pL− p1L as y — for p1L ∈ [pL− θ, pH + θ). Therefore π′L(pL) = 0 implies π′L(p1L) > 0 for p1L ∈ [pL− θ, pL)

and π′L(p1L) < 0 for p1L ∈ [pL, pH + θ). If instead λ > 1
2 , then the second factor in π′L(p1L) is strictly

decreasing in p1L for p1L ∈ [pL − θ, pH); therefore π′L(p1L) > 0 for p1L ∈ [pL − θ, pL) and π′L(p1L) < 0 for

p1L ∈ (pL, pH ]. For p1L ∈ (pH , pL + θ) we obtain

π′L(p1L) =
1

2
+
λ

θ
(pL − p1L +

1

2θ
(pL − p1L)

2) +
1− λ

θ
(pH − p1L +

1

2θ
(pH − p1L)

2) +

−p1L − cL
θ

(1 +
λ

θ
(pL − p1L) +

1− λ

θ
(pH − p1L))

The inequality π′L(p1L) < 0 holds for any p1L ∈ (pH , pL + θ) since cL < cH implies π′L(p1L) < π′H(p1L)

and we know that π′H(p1L) < 0 for any p1L ∈ (pH , pL + θ).

Values of p1L in [pL + θ, pH + θ]. Then π′L(p1L) = (1− λ)(12 +
1
θ (pH − p1L) +

1
2θ2

(pH − p1L)
2)− (1−

λ)(p1L − cL)(
1
θ +

1
θ2
(pH − p1L)) and π

′
L(p1L) < 0 for any p1L ∈ (pL + θ, pH + θ) since π′L(p1L) < π′H(p1L)

(as cL < cH) and π
′
H(p1L) < 0 for any p1L ∈ (pL + θ, pH + θ].

6.1.2 The case in which ∆ > θ

Step 1 Derivation of equilibrium bids and the payoff of the buyer When ∆ > θ, the first order

conditions (13)-(14) boil down to

λ

2
+ 1− λ = (pL − cL)

λ

θ
and

1− λ

2
= (pH − cH)

1− λ

θ

Thus we obtain pL = cL + ( 1λ − 1
2)θ, pH = cL + σ+ 1

2θ as in (7), and the inequality ∆ > θ is equivalent to

σ > 1
λθ. Given pL, pH , the payoff of type L is

(2−λ)2
4λ θ and the payoff of type H is 14 (1− λ)θ.
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The payoff of the buyer is

UBC = λ2(E[max{q1, q2}]− pL) + (1− λ)2(E[max{q1, q2}]− pH) + 2λ(1− λ)[E(q1)− pL]

= q − cL −
1

6
(4λ2 − 16λ+ 11)θ − (1− λ)2σ

Step 2 Proof that pL, pH in (6) constitute a BNE if (λ, σ) belongs to C First notice that (λ, σ) ∈ C
implies pH−θ < pL+θ, and therefore for a supplier choosing price z the probability η(z) of winning depends

on z as follows

η(z) =






1− λ+ λF (pL − z) for pL − θ ≤ z < pL

1− λ+ λF (pL − z) for pL ≤ z < pH − θ

(1− λ)F (pH − z) + λF (pL − z) for pH − θ ≤ z < pL + θ

(1− λ)F (pH − z) for pL + θ ≤ z < pH

(1− λ)F (pH − z) for pH ≤ z < pH + θ

=






1− λ+ λ(12 +
1
θ (pL − z)− 1

2θ2
(pL − z)2) for pL − θ ≤ z < pL

1− λ+ λ(12 +
1
θ (pL − z) + 1

2θ2
(pL − z)2) for pL ≤ z < pH − θ

(1− λ)(12 +
1
θ (pH − z)− 1

2θ2
(pH − z)2) + λ(12 +

1
θ (pL − z) + 1

2θ2
(pL − z)2) for pH − θ ≤ z < pL + θ

(1− λ)(12 +
1
θ (pH − z)− 1

2θ2
(pH − z)2) for pL + θ ≤ z < pH

(1− λ)(12 +
1
θ (pH − z) + 1

2θ2
(pH − z)2) for pH ≤ z < pH + θ

Step 2.1 If type L and type H of supplier 2 play pL and pH in (6), respectively, then playing

pL is a best reply for type L of supplier 1 Consider first type L, for which the payoff from playing

z is πL(z) = (z − cL)η(z). We prove that z = pL is a best reply for type L.

• Values of z in [pL − θ, pL) = [cL + ( 1λ − 3
2)θ, cL + ( 1λ − 1

2)θ). Then πL(z) = (z − cL)(1− λ+ λ(12 +
1
θ (cL+(

1
λ − 1

2)θ− z)− 1
2θ2

(cL+(
1
λ − 1

2)θ− z)2)) and π′L(z) =
3λ
2θ2

(z− cL− 2−9λ
6λ θ)(cL+(

1
λ − 1

2)θ−z)

is positive for each z ∈ [cL + ( 1λ − 3
2)θ, cL + ( 1λ − 1

2 )θ) since cL + ( 1λ − 3
2)θ − cL − 2−9λ

6λ θ > 0.

• Values of z in [pL, pH−θ) = [cL+(
1
λ− 1

2)θ, cL+σ− 1
2θ). Then πL(z) = (z−cL)(1−λ+λ( 12+ 1

θ (cL+(
1
λ−

1
2)θ−z)+ 1

2θ2
(cL+(

1
λ− 1

2)θ−z)2)) and π′L(z) = 3λ
2θ2

(cL+(
7
6+

1
3λ)θ−z)(cL+( 1λ− 1

2)θ−z) is negative for
any z ∈ (cL+( 1λ− 1

2)θ, cL+σ− 1
2θ) since σ < 5λ+1

3λ θ is equivalent to cL+(
7
6+

1
3λ)θ−(cL+σ− 1

2θ) > 0.

• Values of z in [pH − θ, pL + θ) = [cL + σ − 1
2θ, cL + ( 1λ +

1
2)θ). Then πL(z) = (z − cL)((1 − λ)( 12 +

1
θ (cL+σ+ 1

2θ− z)− 1
2θ2

(cL+σ+ 1
2θ− z)2)+λ(12 +

1
θ (cL+( 1λ − 1

2)θ− z)+ 1
2θ2

(cL+( 1λ − 1
2)θ− z)2))

with π′L(z) =
3(2λ−1)
2θ2

(z − cL)
2 − 3θ−2σ+2σλ

θ2
(z − cL) +

−4λ(1−λ)σ2+4λ(1−λ)θσ+(4+11λ−6λ2)θ2
8λθ2

.

Case of λ ≤ 1
2 . Then π

′
L(z) ≤ 0 for any z ∈ [cL+σ− 1

2θ, cL+(
1
λ+

1
2)θ) since π

′
L(cL+σ− 1

2θ) =
3λ
2θ2

(σ−
θ
λ)(σ− 5λ+1

3λ θ) ≤ 0 and π′′L(z) =
3(2λ−1)
θ2

(z−cL)− 3θ−2σ+2λσ
θ2

< 0 for each z ∈ [cL+σ− 1
2θ, cL+(

1
λ+

1
2)θ),

given σ ≤ 5λ+1
3λ θ.

Case of λ > 1
2 . Then π′L(cL + σ − 1

2θ) =
3λ
2θ2

(σ − θ
λ)(σ − 5λ+1

3λ θ) < 0 and π′L is convex, thus

if π′L(cL + ( 1λ +
1
2)θ) ≤ 0 then π′L(z) ≤ 0 for any z ∈ [cL + σ − 1

2θ, cL + ( 1λ +
1
2)θ). If instead

π′L(cL + ( 1λ +
1
2)θ) > 0, then there exists a ẑ > cL + ( 1λ +

1
2)θ which is a local maximum point for

πL, and we analyze it in next step.

• Values of z in [pL+θ, pH) = [cL+(
1
λ+

1
2)θ, cL+σ+ 1

2θ). Then πL(z) = (z−cL)(1−λ)(12+ 1
θ (cL+σ+

1
2θ−z)− 1

2θ2
(cL+σ+ 1

2θ−z)2) and π′L(z) = 1−λ
θ2

[−3
2(z−cL)2+(2σ−θ)(z−cL)+ 1

8(7θ
2+4θσ−4σ2)]

is decreasing since π′′L(z) =
1−λ
θ2

[−3(z−cL)+2σ−θ] < 0 for any z ∈ [cL+( 1λ+ 1
2)θ, cL+σ+

1
2θ), given
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σ ≤ 5λ+1
3λ θ. We find that π′L(cL+(

1
λ +

1
2 )θ) = (1− λ) −λ

2σ2+λ(4+3λ)θσ−(3+5λ)θ2
2θ2λ2

, and if π′L(cL+( 1λ +
1
2)θ) ≤ 0 then π′L(z) < 0 for any z ∈ [cL + ( 1λ +

1
2)θ, cL + σ + 1

2θ). If instead π
′
L(cL + ( 1λ +

1
2)θ) > 0,

then we find a local maximum for πL at ẑ ≡ cL +
2
3σ − 1

3θ +
1
6

	
4σ2 − 4θσ + 25θ2, with πL(ẑ) =

1−λ
216θ2

[−8σ3+12θσ2+138σθ2−71θ3+(4σ2−4θσ+25θ2)3/2]. It turns out that πL(ẑ) is increasing in
σ,19 and at σ = 5λ+1

3λ θ we obtain πL(ẑ) =
1−λ
5832λ3

(4193λ3+1002λ2−84λ−8+


265λ2 + 28λ+ 4

�3/2
)θ,

which is smaller than (2−λ)2
4λ θ for any λ > 2

5 .

• Values of z in [pH , pH +θ] = [cL+σ+ 1
2θ, cL+σ+ 3

2θ]. Then πL(z) = (z− cL)(1−λ)(12 +
1
θ (cL+σ+

1
2θ−z)+ 1

2θ2
(cL+σ+ 1

2θ−z)2) and π′L(z) =
3(1−λ)
2θ2

(z−cL)2−(1− λ) 3θ+2σ
θ2

(z−cL)+(1− λ) (3θ+2σ)
2

8θ2

is negative for any z ∈ [cL + σ + 1
2θ, cL + σ + 3

2θ) since π
′
L is convex and π

′
L(cL + σ + 1

2θ) = −1−λ
θ σ

and π′L(cL + σ + 3
2θ) = 0.

Step 2.2 If type L and type H of supplier 2 play pL and pH in (6), respectively, then playing

pH is a best reply for type H of supplier 1 Now we consider type H, for which the payoff from

playing z is πH(z) = (z− cH)η(z). We prove that z = pH is a best reply for type H. Since the cost of type

H is cH = cL+σ, we do not need to consider z < cL+σ. Precisely, we start with z ∈ [cL+σ, cL+( 1λ+ 1
2)θ)

if σ < ( 1λ +
1
2)θ; otherwise we start with z ∈ [cL + σ, cL + σ + 1

2θ).

• Values of z in [cL + σ, pL + θ) = [cL + σ, cL + ( 1λ +
1
2)θ). Then πH(z) = (z − cL − σ)((1 − λ)( 12 +

1
θ (cL+σ+ 1

2θ− z)− 1
2θ2

(cL+σ+ 1
2θ− z)2)+λ(12 +

1
θ (cL+( 1λ − 1

2)θ− z)+ 1
2θ2

(cL+( 1λ − 1
2)θ− z)2))

and π′H(z) =
3(2λ−1)
2θ2

(z − σ − cL)
2 − 3θ−2σλ

θ2
(z − σ − cL) +

[(λ+2)θ−2λσ]2+7λ(1−λ)θ2
8λθ2

.

Case of λ ≤ 1
2 . Then π′H(z) > 0 for any z ∈ [cL + σ, cL + ( 1λ +

1
2)θ) since π

′
H is concave and

π′H(cL + σ) = [(λ+2)θ−2λσ]2+7λ(1−λ)θ2
8λθ2

> 0, π′H(cL + ( 1λ +
1
2)θ) = (1− λ) (σλ− θ) (5λ+3)θ−3λσ

2θ2λ2
≥ 0.

Case of λ > 1
2 . We have seen above that π

′
H(cL + ( 1λ +

1
2)θ) ≥ 0, and π′′H(z) =

3(2λ−1)
θ2

(z − σ −
cL)− 3θ−2σλ

θ2
. We can prove that if λ ∈ (12 , 56 ], then π′′H(z) ≤ 0 for any z ∈ [cL + σ, cL + ( 1λ +

1
2)θ),

which implies that π′H(z) > 0 for any z ∈ [cL + σ, cL + ( 1λ +
1
2)θ). Precisely, π

′′
H(cL + ( 1λ +

1
2)θ) =

1
2λθ2

(2λ (3− 4λ)σ + 3(2λ2 + λ − 2)θ) and (i) if 12 < λ < 3
4 , then 2λ (3− 4λ)σ + 3(2λ2 + λ− 2)θ ≤

2λ (3− 4λ) 5λ+13λ θ + 3(2λ2 + λ − 2)θ = −1
3(22λ

2 − 31λ + 12)θ < 0; (ii) if 3
4 ≤ λ <

√
17−1
4 , then

2λ (3− 4λ)σ + 3(2λ2 + λ − 2)θ < 0 since 3 − 4λ < 0 and 2λ2 + λ − 2 < 0; (iii) if
√
17−1
4 ≤ λ ≤ 5

6 ,

then 2λ (3− 4λ)σ + 3(2λ2 + λ − 2)θ ≤ 2λ (3− 4λ) θλ + 3(2λ2 + λ − 2)θ = −λ (5− 6λ) θ ≤ 0. If

λ > 5
6 , we need to study the sign of π

′′
H(cL + ( 1λ +

1
2)θ). This is positive for λ > 5

6 , at σ =
θ
λ ; for a

larger σ, it may become negative. Hence π′H has a minimum in the interval [cL + σ, cL + ( 1λ +
1
2)θ)

if λ > 5
6 and σ is close to θ

λ . Precisely, it is necessary that σ < 3
2
2λ2+λ−2
λ(4λ−3) θ, and we find that the

minimum value is −4λ
2(3−2λ)σ2+12(2+λ−2λ2)θλσ−3θ2(4−28λ2+15λ+12λ3)

24λ(2λ−1)θ2 , which is positive for σ between

(95λ− 3
10)θ and

3
2
2λ2+λ−2
λ(4λ−3) θ, since



8λ3 − 12λ2

�
((95λ− 3

10)θ)
2+


12θλ2 − 24θλ3 + 24θλ

�
((95λ− 3

10 )θ)+

84θ2λ2 − 45λθ2 − 36θ2λ3 − 12θ2 = 3
25 (1− λ) (6λ+ 1) (6λ− 5)



20 + 11λ− 6λ2

�
θ2 > 0.

• Values of z in [pL + θ, pH) = [cL + ( 1λ +
1
2)θ, cL + σ + 1

2θ). Then πH(z) = (z − cL − σ)(1− λ)(12 +
1
θ (cL + σ + 1

2θ − z)− 1
2θ2

(cL + σ + 1
2θ − z)2), and π′H(z) =

3
2
1−λ
θ2

(z − cL − σ + 7
6θ)(cL + σ + 1

2θ − z)

is positive for any z ∈ [cL + ( 1λ +
1
2), cL + σ + 1

2θ) since cL + ( 1λ +
1
2)θ − cL − σ + 7

6θ > 0 given

σ < 5λ+1
3λ θ.20

19First set ω = σ
θ
and notice that ω ≤ 5λ+1

3λ
≤ 5

2
for any (λ, σ) ∈ C. Then notice that 1

θ
πL(ẑ) = −8ω3 + 12ω2 + 138ω −

71 + (4ω2 − 4ω + 25)3/2 which is increasing in ω for ω ∈ [1, 5
2
].

20 In case that σ > ( 1
λ
+ 1

2
)θ, our proof for values of z in [cL + (

1

λ
+ 1

2
)θ, cL + σ +

1

2
θ) covers the set of values of z in

[cL + σ, cL + σ +
1

2
θ).
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• Values of z in [pH , pH +θ] = [cL+σ+ 1
2θ, cL+σ+ 3

2θ]. Then πH(z) = (z− cL−σ)(1−λ)(12 +
1
θ (cL+

σ+ 1
2θ− z) + 1

2θ2
(cL + σ + 1

2θ− z)2) and π′H(z) =
3(1−λ)
2θ2

(z − cL − σ− 3
2θ)(z − cL − σ − 1

2θ) ≤ 0 for

any z ∈ (cL + σ + 1
2θ, cL + σ + 3

2θ].

6.1.3 Proof of Proposition 1(iii)

When λ = 1
2 , a pure strategy BNE exists for any ω ≤ 2

√
3 − 1. For values of ω larger than 2

√
3 − 1,

a mixed-strategy symmetric BNE exists since for each type ik of supplier the payoff function in (2) is

continuous in bids. Thus we can apply a standard existence result which can be found, for instance, in

Fudenberg and Tirole, 1991 (Theorem 1.3 in Subsection 1.3.3).

The strategy profiles described by Proposition 1(ii) are such that each type L bids paL with probability

µ, bids pbL with probability 1−µ, and each type H bids pH . We need to prove that for each ω ∈ {52 , 3, 72},
the corresponding strategy profile in Proposition 1(ii) is a BNE. First notice that in each of the three cases

we have

paL − θ < pbL − θ < paL < pH − θ < pbL < paL + θ < pH < pbL + θ < pH + θ (19)

Therefore the payoff of type L of supplier 1 from bidding p1L ∈ [paL − θ, pH + θ], denoted with π1L(p1L),

is given by






(p1L − cL){12 +
µ
2 [
1
2 +

pa
L
−p1L
θ − (pa

L
−p1L)2
2θ2

] + 1−µ
2 } if p1L ∈ [paL − θ, pbL − θ)

(p1L − cL){12 +
µ
2 [
1
2 +

pa
L
−p1L
θ − (pa

L
−p1L)2
2θ2

] + 1−µ
2 [12 +

pb
L
−p1L
θ − (pb

L
−p1L)2
2θ2

]} if p1L ∈ [pbL − θ, paL)

(p1L − cL){12 +
µ
2
(θ+pa

L
−p1L)2
2θ2

+ 1−µ
2 [12 +

pb
L
−p1L
θ − (pb

L
−p1L)2
2θ2

]} if p1L ∈ [paL, pH − θ)

(p1L − cL){12 [12 +
pH−p1L

θ − (pH−p1L)2
2θ2

] + µ
2
(θ+pa

L
−p1L)2
2θ2

+ 1−µ
2 [12 +

pb
L
−p1L
θ − (pb

L
−p1L)2
2θ2

]} if p1L ∈ [pH − θ, pbL)

(p1L − cL){12 [12 +
pH−p1L

θ − (pH−p1L)2
2θ2

] + µ
2
(θ+pa

L
−p1L)2
2θ2

+ 1−µ
2

(θ+pb
L
−p1L)2
2θ2

} if p1L ∈ [pbL, paL + θ)

(p1L − cL){12 [12 +
pH−p1L

θ − (pH−p1L)2
2θ2

] + 1−µ
2

(θ+pb
L
−p1L)2
2θ2

} if p1L ∈ [paL + θ, pH)

(p1L − cL)[
1
2
(θ+pH−p1L)2

2θ2
+ 1−µ

2
(θ+pb

L
−p1L)2
2θ2

] if p1L ∈ [pH , pbL + θ)

(p1L − cL)
1
2
(θ+pH−p1L)2

2θ2
if p1L ∈ [pbL + θ, pH + θ]

Likewise, the payoff of type H of supplier 1 from bidding p1H ∈ [paL−θ, pH+θ], denoted with π1H(p1H),
is given by






(p1H − cH){12 +
µ
2 [
1
2 +

pa
L
−p1H
θ − (pa

L
−p1H)2
2θ2

] + 1−µ
2 } if p1H ∈ [paL − θ, pbL − θ)

(p1H − cH){12 +
µ
2 [
1
2 +

pa
L
−p1H
θ − (pa

L
−p1H)2
2θ2

] + 1−µ
2 [12 +

pb
L
−p1H
θ − (pb

L
−p1H)2
2θ2

]} if p1H ∈ [pbL − θ, paL)

(p1H − cH){12 +
µ
2
(θ+pa

L
−p1H)2
2θ2

+ 1−µ
2 [12 +

pb
L
−p1H
θ − (pb

L
−p1H)2
2θ2

]} if p1H ∈ [paL, pH − θ)

(p1H − cH){12 [12 +
pH−p1H

θ − (pH−p1H)2
2θ2

] + µ
2
(θ+pa

L
−p1H)2
2θ2

+ 1−µ
2 [12 +

pb
L
−p1H
θ − (pb

L
−p1H)2
2θ2

]} if p1H ∈ [pH − θ, pbL)

(p1H − cH){12 [12 +
pH−p1H

θ − (pH−p1H)2
2θ2

] + µ
2
(θ+pa

L
−p1H)2
2θ2

+ 1−µ
2

(θ+pb
L
−p1H)2
2θ2

} if p1H ∈ [pbL, paL + θ)

(p1H − cH){12 [12 +
pH−p1H

θ − (pH−p1H)2
2θ2

] + 1−µ
2

(θ+pb
L
−p1H)2
2θ2

} if p1H ∈ [paL + θ, pH)

(p1H − cH)[
1
2
(θ+pH−p1H)2

2θ2
+ 1−µ

2
(θ+pb

L
−p1H)2
2θ2

] if p1H ∈ [pH , pbL + θ)

(p1H − cH)
1
2
(θ+pH−p1H)2

2θ2
if p1H ∈ [pbL + θ, pH + θ)
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We need to prove that for each ω ∈ {52 , 3, 72}, the prices paL, pbL given by Proposition 1(iii) are both
maximum points for π1L, and that pH is a maximum point for π1H .21

We start by considering type L of supplier 1, and in order to simplify notation we define y as p1L−cLθ ,

and write the profit of type L as a function of y: π̃1L(y) ≡ 1
θπ1L(cL+ yθ) (we have inserted the factor 1θ —

which is irrelevant from the point of view of the incentives of type L — in order to get a simpler expression

for π̃1L and π̃
′
1L). Furthermore, we define a ≡ pa

L
−cL
θ , b ≡ pb

L
−cL
θ , and h ≡ pH−cH

θ . Then π̃1L is defined as

follows as a function of y ∈ [a− 1, ω + h+ 1]

π̃1L(y) =






y[12 +
µ
2 (

1
2 + a− y − (a−y)2

2 ) + 1−µ
2 ] if y ∈ [a− 1, b− 1)

y{12 +
µ
2 [
1
2 + a− y − (a−y)2

2 ] + 1−µ
2 [12 + b− y − (b−y)2

2 ]} if y ∈ [b− 1, a)

y{12 +
µ
2
(a+1−y)2

2 + 1−µ
2 [12 + b− y − (b−y)2

2 ]} if y ∈ [a, h+ ω − 1]

y{12 [12 + ω + h− y − (ω+h−y)2
2 ] + µ

2
(a+1−y)2

2 + 1−µ
2 [12 + b− y − (b−y)2

2 ]} if y ∈ [ω + h− 1, b)

y{12 [12 + ω + h− y − (ω+h−y)2
2 ] + µ

2
(a+1−y)2

2 + 1−µ
2

(b+1−y)2
2 } if y ∈ [b, a+ 1)

y{12 [12 + ω + h− y − (ω+h−y)2
2 ] + 1−µ

2
(b+1−y)2

2 } if y ∈ [a+ 1, ω + h)

y[12
(1+ω+h−y)2

2 + 1−µ
2

(b+1−y)2
2 ] if y ∈ [ω + h, b+ 1)

y 12
(1+ω+h−y)2

2 if y ∈ [b+ 1, ω + h+ 1]

and therefore

π̃′1L(y) =






−3
4µy

2 − µ(1− a)y + 1− 1
4µ(1− a)2 if y ∈ [a− 1, b− 1)

−3
4y
2 + (µa+ b− 1− µb)y + 3

4 +
µ
4 a(2− a) + 1−µ

4 b(2− b) if y ∈ [b− 1, a)

( 32µ− 3
4)y

2 + (b− µa− 1− µb)y + 3
4 +

µ
4a(2 + a) + 1−µ

4 b(2− b) if y ∈ [a, ω + h− 1)
�

3
2(µ− 1)y2 + (ω + h− 2− µa+ b− µb)y

+1
2(1 + ω + h)− 1

4(ω + h)2 + µ
4 a(2 + a) + 1−µ

4 b(2− b)

�

if y ∈ [ω + h− 1, b)

(ω + h− 2− µa− b+ µb)y + 1
2(1 + ω + h)− 1

4(ω + h)2 + µ
4 a(2 + a) + 1−µ

4 b(2 + b) if y ∈ [b, a+ 1)

−3
4µy

2 + (ω + h− 2− b+ µ+ µb)y + 1
4 +

1
2ω +

1
2h− 1

4(ω + h)2 + 1
4(1− µ)(b+ 1)2 if y ∈ [a+ 1, ω + h)

( 32 − 3
4µ)y

2 + (µb− ω − h− 2− b+ µ)y + 1
4(1 + ω + h)2 + 1

4 (1− µ)(b+ 1)2 if y ∈ [ω + h, b+ 1)

3
4(y − 1+h+ω

3 )(y − 1− h− ω) if y ∈ [b+ 1, ω + h+ 1]

The property that paL, p
b
L are both maximum points for π1L is equivalent to the property that a, b are both

maximum points for π̃1L, and in order to prove this property we examine the sign of π̃
′
1L. For instance, in

21Therefore the following conditions are necessary (but not sufficient): π′
1L(p

a
L) = π′

1L(p
b
L) = 0, π1L(p

a
L) = π1L(p

b
L),

π′
1H(pH) = 0, and indeed in order to find p

a
L, p

b
L, µ, pH given by Proposition 1(iii) we have solved (using numerical methods)

the system given by these four equations, for ω ∈ { 5
2
, 3, 7

2
}.
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the case of ω = 5
2 we have a = 1.515976, b = 2.087441, µ = 0.987465, h = 0.499498. Then

π̃′1L(y) =






−0.74059 875y2 + 0.50950 82408y + 0.93427 6494 if y ∈ [0.51597 6, 1.087441)

−0.75y2 + 0.52313 9314y + 0.93057 07471 if y ∈ [1.087441, 1.515976)

0.73119 75y2 − 2. 47080 7168y + 2. 06525 85 if y ∈ [1.515976, 1.99949 8)

−0.018802 5y2 − 0.47130 9168y + 1. 06576 0437 if y ∈ [1.99949 8, 2.087441)

−0.52364 1314y + 1. 09307 0504 if y ∈ [2.087441, 2.515976)

−0.74059 875y2 + 1.96079 6927y − 0.46962 62432 if y ∈ [2.515976, 2.99949 8)

0.75940 125y2 − 4. 03819 9073y + 4.02886 7883 if y ∈ [2.99949 8, 3.087441)
3
4y
2 − 3.99949 8y + 3.99899 6063 if y ∈ [3.087441, 3.99949 8]

and it is simple to see that π̃′1L(y) > 0 in [0. 51597 6, 1.515976), π̃′1L(y) < 0 in (1.515976, 1. 86315), π̃′1L(y) >

0 in (1. 86315, 2.087441), π̃′1L(y) < 0 in (2.087441, 3. 99949 8), and π̃1L(1.515976) = π̃1L(2.087441) =

1. 14086. A similar argument applies when ω ∈ {3, 72}.
Regarding type H, we define y as p1H−cHθ and write the profit of type H as a function of y: π̃1H(y) ≡

1
θπ1H(cH + yθ); again, the factor 1θ is irrelevant from the point of view of the incentives of type H. Then

π̃1H is defined as follows as a function of y ∈ [a− 1− ω, h+ 1]:

π̃1H(y) =






y{12 +
µ
2 [
1
2 + a− y − ω − (a−ω−y)2

2 ] + 1−µ
2 } if y ∈ [a− 1− ω, b− 1− ω)

y{12 +
µ
2 [
1
2 + a− y − ω − (a−ω−y)2

2 ] + 1−µ
2 [12 + b− y − ω − (b−y−ω)2

2 ]} if y ∈ [b− 1− ω, a− ω)

y{12 +
µ
2
(1+a−ω−y)2

2 + 1−µ
2 [12 + b− y − ω − (b−y−ω)2

2 ]} if y ∈ [a− ω,h− 1)

y{12 [12 + h− y − (h−y)2
2 ] + µ

2
(1+a−ω−y)2

2 + 1−µ
2 [12 + b− y − ω − (b−y−ω)2

2 ]} if y ∈ [h− 1, b− ω)

y{12 [12 + h− y − (h−y)2
2 ] + µ

2
(1+a−ω−y)2

2 + 1−µ
2

(1+b−y−ω)2
2 } if y ∈ [b− ω, a− ω + 1)

y{12 [12 + h− y − (h−y)2
2 ] + 1−µ

2
(1+b−y−ω)2

2 } if y ∈ [a− ω + 1, h)

y[12
(h+1−y)2

2 + 1−µ
2

(1+b−y−ω)2
2 ] if y ∈ [h, b− ω + 1)

y 12
(h+1−y)2

2 if y ∈ [b− ω + 1, h+ 1]
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and therefore

π̃′1H(y) =






−3
4µy

2 + µ (a− ω − 1) y + 1− 1
4µ(a− ω − 1)2 if y ∈ (a− 1− ω, b− 1− ω)

�
−3
4y
2 + (µa− 1 + b− ω − µb) y

+3
4 +

1
4µ(a− ω)(2− a+ ω) + 1

4(1− µ)(b− ω)(2− b+ ω)

�

if y ∈ [b− 1− ω, a− ω)

�
(32µ− 3

4)y
2 + (b− 1− ω − µa− µb+ 2µω) y

+3
4 +

1
4µ(a− ω)(2 + a− ω) + 1

4 (1− µ) (b− ω)(2− b+ ω)

�

if y ∈ [a− ω, h− 1]

�
3
2(µ− 1)y2 + (h− 2− µa+ 2µω + b− ω − µb) y

+2+2h−h2
4 + 1

4µ(a− ω)(2 + a− ω) + 1
4(1− µ)(b− ω)(2− b+ ω)

�

if y ∈ [h− 1, b− ω)

�
(ω + h− 2− µa− b+ µb)y + 1

4 (2 + 2h− h2)

+1
4µ(a− ω)(2 + a− ω) + 1

4(1− µ)(b− ω)(2 + b− ω)

�

if y ∈ [b− ω, a− ω + 1)

�
−3
4µy

2 + (h− 2 + µ+ (µ− 1)(b− ω))y

+1
4(1 + 2h− h2) + 1

4 (1− µ) (b+ 1− ω)2

�

if y ∈ [a− ω + 1, h)

�
3
4(2− µ)y2 + (−h− 2 + µ+ (µ− 1)(b− ω))y

+1
4(h+ 1)2 + 1

4(1− µ)(b+ 1− ω)2

�

if y ∈ [h, b− ω + 1)

3
4



1+h
3 − y

�
(1 + h− y) if y ∈ [b− ω + 1, h+ 1]

The property that pH is a maximum point for π1H is equivalent to the property that h is a maximum

point for π̃1H , and in order to prove this property we examine the sign of π̃
′
1H . For instance, in the case of

ω = 5
2 we have a = 1.515976, b = 2.087441, µ = 0.987465, h = 0.499498. Clearly, a type H will not choose

y ≤ 0 and π̃′1H(y) is defined as follows for y > 0:

π̃′1H(y) =






−0.52364 1314y + 0. 43851 88615 if y ∈ [0, 0.015976)

−0. 74059 875y2 − . 50786 55729y + 0. 43845 58532 if y ∈ [0.015976, 0.499498)

0. 75940 125y2 − 1. 50686 1573y + 0. 56320 49792 if y ∈ [0.499498, 0.58744 1)
3
4y
2 − 1. 49949 8y + 0. 56212 35629 if y ∈ [0.58744 1, 1.49949 8]

and it is simple to see that π̃′1H(y) > 0 in [0, 0.499498), π̃′1H(y) < 0 in (0.499498, 1. 49949 8]. A similar

argument applies when ω ∈ {3, 72}.
In order to evaluate UBC in the BNE described by Proposition 1(ii), for ω ∈ {52 , 3, 72}, notice that

UBC =
1

4

�
µ2E(max{q1, q2} − paL) + (1− µ)2E(max{q1, q2} − pbL) + 2µ(1− µ)E(max{q1 − paL, q2 − pbL})

�

1

4
E(max{q1, q2} − pH) +

1

2

�
µE(q1 − paL) + (1− µ)E(max{q1 − pbL, q2 − pH})

�

Moreover, E(max{q1, q2}) = q+ 2
3θ and, given x and y which satisfy x < y < θ+x, we find that E(max{q1−

x, q2−y}) =
� q+θ+x−y
q

� q+θ
q1+y−x(q2−y)

1
θ2
dq2dq1+

� q+θ+x−y
q

� q1+y−x
q

(q1−x) 1θ2 dq2dq1+
� q+θ
q+θ+x−y

� q+θ
q

(q1−
x) 1
θ2
dq2dq1. Then for each ω ∈ {52 , 3, 72} we obtain UBC as described by Proposition 1(iii).
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6.2 Proof of Proposition 2

In this proof we use SA to denote the standard auction environment described in subsection 3.2. In that

setting there exists a symmetric BNE in which both bidders bid according to a function β if and only if

for any vi
(vi − bi)Pr{bi > β(vj) for j 	= i}

is maximized with respect to bi at bi = β(vi)
(20)

Step 1 For any symmetric BNE in the PR setting there exists a symmetric BNE in the SA environment,

and viceversa.

Proof First assume that P satisfies (8) and notice from (9)-(10) that the optimal score offered by type ci, qi,

qi − P (ci, qi), depends only on vi. We denote by S(vi) this score, which means that qi − P (ci, qi) = S(vi).

Condition (20) is thus satisfied with the bidding function S. Hence, to each symmetric BNE under PR we

can associate a symmetric BNE in SA.

Now assume that β satisfies (20) and define P (ci, qi) = qi − β(qi − ci); we verify that P satisfies (8). We

know that (9) can be written as maxbi(vi− bi)Pr{bi > β(vj) for j 	= i}, and bi = β(vi) solves this problem

because (20) holds. Thus, pi = P (ci, qi) as defined above solves (9). Hence, to each symmetric BNE in SA

we can associate a BNE in PR.

Step 2 The unique symmetric BNE in PR is (11).

Proof Step 1 establishes a one-to-one correspondence between symmetric BNE in PR and in SA. Since we

know that β(vi) = vi −
� vi
v

G(t)
G(vi)

dt is the unique symmetric BNE in SA (in which v is the lowest possible

valuation), it follows that the unique symmetric BNE under PR is such that P (ci, qi) = qi − [qi − ci −� qi−ci
q−cH

G(t)
G(qi−ci)dt], as stated in (11).

In each state of the world, B selects the supplier which offers the highest score, that is he selects supplier

i if and only if qi−P (ci, qi) > qj−P (cj , qj). Given (11), this inequality is equivalent to β(qi−ci) > β(qj−cj),
which reduces to qi − ci = vi > qj − cj = vj since β is strictly increasing. The expected payoff of B is

equal to the payoff of a seller in SA, that is the expected second highest valuation in view of the revenue

equivalence theorem.

6.3 Proof of Corollary 1

Let G̃(v) ≡ G2(v)+2G(v)[1−G(v)] = 1−[1−G(v)]2 denote the c.d.f. ofmin{v1, v2}. Then E[min{v1, v2}] =� q̄−cL
q−cH vdG̃(v) and in case that σ ≤ θ we find

E[min{v1, v2}] =

� q̄−cL

q−cH
vdG̃(v) = [vG̃(v)]q̄−cLq−cH −

� q̄−cL

q−cH
G̃(v)dv

= q + θ − cL −
� q−cL

q−cL−σ

�
1− (1− (1− λ)

v + cL + σ − q

θ
)2
�
dv

−
� q+θ−cL−σ

q−cL

�
1− (1− (1− λ)

v + cL + σ − q

θ
− λ

v + cL − q

θ
)2
�
dv

−
� q+θ−cL

q+θ−cL−σ

�
1− (1− (1− λ+ λ

v + cL − q

θ
))2
�
dv

= q − cL +
1

3
θ − 1

3
(1− λ)σ

3λθσ + 3θ2 − λσ2

θ2
= q − cL +

1

3
[1− (1− λ)(3 + 3λω − λω2)ω]θ
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Suppliers’ rents are

USPR = 2

� q̄−cL

q−cH
G(v)[1−G(v)]dv =

1

3
θ +

2

3
λ(1− λ)

σ2(3θ − σ)

θ2
=
1

3
[1 + 2λ(1− λ)(3− ω)ω2]θ

In case that σ > θ we find

E[min{v1, v2}] =

� q̄−cL

q−cH
vdG̃(v) = [vG̃(v)]q̄−cLq−cH −

� q̄−cL

q−cH
G̃(v)dv

= q + θ − cL −
� q+θ−cL−σ

q−cL−σ

�
1− (1− (1− λ)

v + cL + σ − q

θ
)2
�
dv

−
� q−cL

q+θ−cL−σ
(1− (1− (1− λ))2)dv −

� q+θ−cL

q−cL

�
1− (1− (1− λ+ λ

v + cL − q

θ
))2
�
dv

= q − cL +
1

3
(1 + λ− λ2)θ − (1− λ2)σ = q − cL +

1

3
[1 + λ− λ2 − 3(1− λ2)ω]θ

Suppliers’ rents are

USPR = 2

� q̄−cL

q−cL−σ
G(v)[1−G(v)]dv =

1

3
(1− 2λ+ 2λ2)θ + 2λ(1− λ)σ = [

1

3
(1− 2λ+ 2λ2) + 2λ(1− λ)ω]θ

6.4 Proof of Proposition 3

We first notice that for given q1, q2, the first score auction we are considering is equivalent to a standard

first price auction with two bidders in which the bidders’ values are asymmetrically (and independently)

distributed such that the set of possible values for bidder 1 is {q1 − cH , q1 − cL}, the set of possible values
for bidder 2 is {q2−cH , q2−cL} and Pr{v1 = q1−cL} = λ = Pr{v2 = q2−cL}. Precisely, consider supplier
ik, which wins if and only if his opponent jh bids pjh such that qi − pik > qj − pjh, and in this case ik

earns a profit equal to pik − ck. Let vik = qi − ck and sik = qi − pik. Then supplier ik wins if and only if

sik > sjh, and in such a case his payoff is vik − sik, just like in the standard first price auction in which

sik denotes the monetary bid of bidder ik. Therefore there is a one-to-one correspondence between BNE

in the two settings, and in Proposition 1 in Doni and Menicucci (2011) we prove that a unique equilibrium

outcome exists in a standard first price auction; thus we obtain the same result for the first score auction

under policy PU.22

We prove in the following that the strategy profiles described by Proposition 3 are indeed BNE. For

each supplier ik, given the bids of the types of supplier j, let wi(pik) and πik(pik) denote respectively his

probability of winning (which does not depend on the type k) and his payoff when bidding pik.

(i) Type 1L and 1H . Both type 2L and type 2H offer a score of q1− cL. Therefore the payoff of 1L is

zero if he offers as specified by Proposition 3(i), and in order to win he needs to bid below cL. This yields

a negative payoff in case of victory, and therefore his strategy in Proposition 3(i) is a best reply. A very

similar argument applies for type 1H .

Type 2H . Given the strategies in Proposition 3(i), the payoff of 2H is t + cL − cH (notice that

t+ cL − cH > 0 since λt > σ). It is obviously unprofitable for him to bid below t+ cL, since then he still

wins with certainty but his revenue is smaller. Regarding bids above t + cL, the strategies of 1L and 1H

need to be such that no p > t+ cL is profitable. We prove that this is the case if, for instance, Φ1L is the

22Strictly speaking, Proposition 1 in Doni and Menicucci (2011) is stated with reference to a tie-breaking rule which is

different fromt the tie-breaking rule considered in this paper, but in fact the tie-breaking rule is irrelevant for the case in

which the distribution of values of one bidder is obtained by shifting the distribution of values of the other bidder.
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uniform distribution on [cL, αcL] and Φ1H is the uniform distribution on [cH , αcH ] with α > 1 and close to 1.

Precisely, if 2H bids p2H ∈ (t+cL, t+αcL], then w2(p2H) = 1−λ+λ(1−Pr{p1L < p2H−t}) = 1−λp2H−t−cL(α−1)cL
and π2H(p2H) = (p2H−cH)[1− λ(p2H−t−cL)

(α−1)cL ] and it is simple to see that π2H is decreasing in (t+cL, t+αcL]

for α close to 1. For bids in (t + αcL, t + cH ], the resulting score is between q1 − cH and q1 − αcL, thus

w2(p2H) = 1− λ and π2H(p2H) = (1− λ)(p2H − cH) for p2H ∈ (t+ αcL, t+ cH]; thus π2H is increasing in

this interval, with π2H(t + cH) = (1 − λ)t, which is smaller than t − σ since λt ≥ σ. Finally, if 2H bids

p2H ∈ (t + cH , t + αcH ], then w2(p2H) = (1− λ)(1− Pr{p1H < p2H − t}) = (1 − λ)(1− p2H−t−cH
(α−1)cH ); thus

π2H(p2H) = (1−λ)(p2H−cH)[1− p2H−t−cH(α−1)cH ], and it is simple to see that π2H is decreasing in (t+cH , t+αcH ]

for α close to 1.

Type 2L. Given the strategies in Proposition 3(i), the payoff of 2L is t. Thus we need to prove that

(p2L−cL)w2(p2L) ≤ t for any p2L ≥ t+cLWhen arguing about type 2H we have proved that (p−cH)w2(p) ≤
t+ cL− cH for any p > t+ cL, and this property can be written as (p− cL)w2(p) + σ ≤ t+ σw2(p) for any

p > t+ cL, which implies (p− cL)w2(p) ≤ t for any p ≥ t+ cL.

(ii) Let p̃ be the largest solution to h(p) ≡ (1 − λ)p2 − [(1 − 2λ)t + (1 − λ)(cH + cL)]p + (1 − λ)(t +

cH)cL − λtcH = 0, that is

p̃ = cL +
1

2
σ +

1− 2λ

2(1− λ)
t+

1

2 (1− λ)

	
[t+ (1− λ)σ]2 − 4λ (1− λ) t2 (21)

and notice that h(t+ cL) = t(λt−σ) < 0, h(cH) = −(1−λ)tσ < 0, h(t+ cH) = λt2 > 0. This implies that

max{t+ cL, cH} < p̃ < t+ cH and t+ cL < p̂ < p̃, given p̂ = (1− λ)p̃+ λ(t+ cL).

Type 1H . Given Φ2L,Φ2H , each type of supplier 2 offers a score larger or equal to q1− cH . Hence, the

same argument given for type 1H in the proof of Proposition 3(i) applies here.

Type 1L. Given Φ2L,Φ2H , we show that π1L(p1L) = (1− λ)(p̃− t− cL) > 0 for any p1L ∈ [p̂− t, cH),

and π1L(p1L) < (1− λ)(p̃− t− cL) if p1L /∈ [p̂− t, cH).

If p1L ∈ [p̂ − t, p̃ − t), then the score offered by 1L belongs to (q2 − p̃, q2 − p̂] and w1(p1L) = 1 − λ +

λ[1−Φ2L(t+ p1L)] = (1− λ) p̃−t−cLp1L−cL , π1L(p1L) = (1− λ)(p̃− t− cL). Likewise, if p1L ∈ [p̃− t, cH) (which

corresponds to a score in (q1 − cH , q2 − p̃]) then w1(p1L) = (1− λ)[1−Φ2H(t+ p1L)] = (1− λ) p̃−t−cLp1L−cL and

π1L(p1L) = (1− λ)(p̃− t− cL). Hence, π1L(p1L) = (1− λ)(p̃− t− cL) > 0 for any p1L ∈ [p̂− t, cH).

No p1L /∈ [p̂ − t, cH) is profitable for 1L since (i) if p1L > cH , then w1(p1L) = 0 and π1L(p1L) = 0;

(ii) if p1L < p̂ − t, then w1(p1L) = 1 (since his score is larger than q2 − p̂) but π1L(p1L) < p̂ − t −
cL = (1 − λ)(p̃ − t − cL); (iii) if p1L = cH , then 1L may win only tying with type 2H , which occurs

with probability (1 − λ)(1 − t+cH−p̃
σ ) = (1 − λ) p̃−t−cLσ (see Φ2H), and thus w1(cH) = (1 − λ) p̃−t−cL2σ ,

π1H(cH) = (1− λ) p̃−t−cL2 < (1− λ)(p̃− t− cL).

Type 2H . Given Φ1L, we show that π2H(p2H) = (1 − λ)t for any p2H ∈ [p̃, t + cH ] and π2H(p2H) <

(1− λ)t for p2H /∈ [p̃, t+ cH ].

If p2H ∈ [p̃, t+cH ] (which corresponds to a score in [q1−cH , q2− p̃]), then w2(p2H) = 1−λ+λ[1−Φ1L(p2−
t)] = (1−λ)t

p2−cH and π2H(p2H) = (1− λ)t.

No p2H /∈ [p̃, t + cH ] is profitable for 2H since (i) Φ1H is such that type 2H has no incentive to bid

above t + cH (for instance, this is the case if Φ1H is the uniform distribution on [cH , αcH ] with α > 1

and α close to 1); (ii) if p2H ∈ [p̂, p̃) (which corresponds to a score in (q2 − p̃, q2 − p̂]), then w2(p2H) =

1 − λ + λ[1 − Φ1L(p2 − t)] = p̂−cL
p2H−cL and π2H(p2H) =

(p2H−cH)(p̂−cL)
p2H−cL , which is increasing in p2H ; (iii) if

p2H < p̂, then w2(p2H) = 1 and π2H(p2H) = p2H − cH < p̂− cH = π2H(p̂).

Type 2L. Given Φ1L, we show that π2L(p2L) = p̂− cL for any p2L ∈ [p̂, p̃] and π2L(p2L) < p̂− cL for

any p2L /∈ [p̂, p̃].
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We already know that w2(p2L) =
p̂−cL
p2L−cL if p2L ∈ [p̂, p̃] and w2(p2L) =

(1−λ)t
p2−cH if p2L ∈ (p̃, t+ cH ]. Therefore

π2L(p2L) = p̂ − cL if p2L ∈ [p̂, p̃] and π2L(p2L) = (1 − λ)t p2L−cLp2L−cH if p2L ∈ (p̃, t + cH ], which is decreasing

in p2L. No bid below p̂ is profitable for 2L since w2(p2L) = 1 and π2L(p2L) = p2L − cL < p̂− cL for any

p2L < p̂. Finally, no bid above t+ cH is profitable since Φ1H is such that type 2L has no incentive to bid

above t+ cH (for instance, this is the case if Φ1H is the uniform distribution on [cH , αcH ] with α > 1 and

α close to 1).

Evaluation of Pr{1L def 2L} Notice that

Pr{1L def 2L} = Pr{q1 − p1L > q2 − p2L} = Pr{p2L > t+ p1L} =
� p̃−t

p̂−t
Φ′1L(p1)[1−Φ2L(t+ p1)]dp1

and since

Φ′1L(p) =

�
p̂−cL

λ(p+t−cL)2 for p ∈ [p̂− t, p̃− t)
1−λ
λ

t
(p+t−cH)2 for p ∈ (p̃− t, cH)

(22)

we obtain

Pr{1L def 2L} =
� p̃−t

p̂−t

p̂− cL
λ(p1 + t− cL)2

1− λ

λ

p̃− t− p1
p1 − cL

dp1 =
(p̂− cL)(1− λ)

λ2

� p̃−t

p̂−t

p̃− t− p1
(p1 + t− cL)2(p1 − cL)

dp1

We exploit
�

p̃− t− p1
(p1 + t− cL)2(p1 − cL)

dp1 =
p̃− cL − t

t2
ln

����
p1 − cL

p1 − cL + t

����+
p̃− cL

t(p1 − cL + t)

to obtain
� p̃−t

p̂−t

p̃− t− p1
(p1 + t− cL)2(p1 − cL)

dp1 =
p̃− cL − t

t2
ln

����
(p̃− t− cL)(p̂− cL)

(p̃− cL)(p̂− t− cL)

����−
p̃− p̂

t (p̂− cL)

and finally

Pr{1L def 2L} =
(p̂− cL)(1− λ)

λ2

� p̃−t

p̂−t

p̃− t− p1
(p1 + t− cL)2(p1 − cL)

dp1

=
(p̂− cL)(1− λ)(p̃− cL − t)

λ2t2
ln

����
(p̃− t− cL)(p̂− cL)

(p̃− cL)(p̂− t− cL)

����−
(1− λ)(p̃− p̂)

λ2t

Evaluation of Pr{1L def 2H} Notice that

Pr{1L def 2H} = Pr{q1 − p1L > q2 − p2H} = Pr{p2H > t+ p1L}

= Φ1L(p̃− t) +

� cH

p̃−t
Φ′1L(p1)[1−Φ2H(t+ p1)]dp1

and using again (22) we obtain

Pr{1L def 2H} =
1

λ

p̃− p̂

p̃− cL
+

� cH

p̃−t

1− λ

λ

t

(p1 + t− cH)2
(1− t+ p1 − p̃

p1 − cL
)dp1

=
1

λ

p̃− p̂

p̃− cL
+
(1− λ)t(p̃− cL − t)

λ

� cH

p̃−t

1

(p1 + t− cH)2(p1 − cL)
dp1

We exploit
�

1

(p1 + t− cH)2(p1 − cL)
dp1 =

1

(t− σ)2
ln

����
p1 − cL

p1 + t− cH

����+
1

(t− σ) (p1 + t− cH)
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to obtain
� cH

p̃−t

1

(p1 + t− cH)2(p1 − cL)
dp1 =

1

(t− σ)
2 ln

σ(p̃− cH)

t(p̃− t− cL)
+

p̃− cH − t

(t− σ) t (p̃− cH)

and finally

Pr{1L def 2H} =
1

λ

p̃− p̂

p̃− cL
+
(1− λ)t(p̃− cL − t)

λ

� cH

p̃−t

1

(p1 + t− cH)2(p1 − cL)
dp1

=
1

λ

p̃− p̂

p̃− cL
+
(1− λ)t(p̃− cL − t)

λ (t− σ)2
ln

σ(p̃− cH)

t(p̃− t− cL)
+
(1− λ)(p̃− cL − t)(p̃− cH − t)

λ (t− σ) (p̃− cH)

6.5 Proof of Corollary 2

We have explained in the text that uBPU(q1, q2) = q1 − cL when λt ≥ σ. When λt < σ we can evaluate

uBPU(q1, q2) as the difference between the social surplus ssPU (q1, q2) and the suppliers’ payoff uSPU (q1, q2):

uBPU(q1, q2) = ssPU (q1, q2)− uSPU (q1, q2). Precisely,

ssPU(q1, q2) = λ2(q2 − cL − tPr{1L def 2L}) + λ(1− λ)(q2 − cH − (t− σ)Pr{1L def 2H})
+(1− λ)(q2 − λcL − (1− λ)cH)

= q2 − cL − (1− λ)σ − λ2tPr{1L def 2L} − λ(1− λ)(t− σ) Pr{1L def 2H}

Moreover, in the proof of Proposition 3(ii) we see that the rents of types 1L, 2L, 2H are (1−λ)(p̃− t− cL),

p̂− cL, (1− λ)t, respectively. Hence

uSPU(q1, q2) = λ(1− λ)(p̃− t− cL) + λ(p̂− cL) + (1− λ)2t

= (1− λ)2 t+ λ (1− λ)σ + λ
	
[t+ (1− λ)σ]2 − 4λ (1− λ) t2

in which the second equality is obtained using p̂ = (1 − λ)p̃ + λ(t + cL) and (21). From ssPU(q1, q2) −
uSPU(q1, q2) we obtain the expression of u

B
PU(q1, q2) provided by Corollary 2 for the case of λt < σ.

6.6 Proof of Proposition 4

(ii) In view of Propositions 1(ii) and Corollary1(i), we find that UBC −UBPR = 2λ(1−λ)σ− 1
6(2λ

2−14λ+13)θ,
which yields the result.

(i) The proof is organized in 9 steps.

Step 1 There exists a unique solution to Ψ(x) = 0 [i.e., equation (18)] in (0, 1), which we denote with x̂,

and Ψ(x) < 0 for x ∈ [0, x̂), Ψ(x) > 0 for x ∈ (x̂, 1].
Proof The proof is found in proof of Proposition 1.

Step 2 Let ω = σ/θ. When σ ≤ θ, the inequality UBPR > UBC is equivalent to (1− 2λ)Γ(x̂) > 0 with

Γ(x) = 2λ(1− 2λ)(1− λ)(x− 3)x3 + (9− 12λ+ 12λ2)x2

−


2ω2λ(1− 2λ)(1− λ)(3− ω) + (12λ2 − 12λ+ 6)ω + 14− 4λ

�
x+ 6ω
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Proof When σ ≤ θ, the difference between the payoff of the buyer under PR and his payoff under C is

UBPR − UBC = (q − cL +
1

3
θ − (1− λ)ω(1 + λω − 1

3
λω2)θ)− (q − pL +

2

3
θ − (1− λ) (1− λx̂+

1

3
λx̂2)∆̂) (23)

= (1− λ) x̂(1− λx̂+
1

3
λx̂2)θ +

(1 + 2λ)x̂− 2 (2 + λω) + 2ωx̂
2 (1− 2λ)

θ − (1− λ)ω(1 + λω − 1

3
λω2)θ − 1

3
θ

=
θ

6x̂(1− 2λ)2
(1− 2λ)Γ(x̂)

Step 3 There exists a unique solution to Γ(x) = 0 in (0, 1), which we denote with x′, and Γ(x) > 0 for

x ∈ (0, x′), Γ(x) < 0 for x ∈ (x′, 1).
Proof We find that Γ(0) = 6ω > 0 and Γ(1) = 2λ (2λ− 1) (λ− 1)ω3−6λ (2λ− 1) (λ− 1)ω2+12λ (1− λ)ω−
12λ+ 24λ2 − 8λ3 − 5; we prove that vλ(ω) ≡ Γ(1) is negative, which implies that a solution to Γ(x) = 0

exists in (0, 1). Since v′′λ(ω) = 12λ (2λ− 1) (1− λ) (1− ω), it follows that v′′λ(ω) ≥ 0 if λ ≥ 1
2 ; then from

vλ(0) = −λ2 − (1 − λ)(5 + 17λ − 8λ2) < 0, vλ(1) = −λ3 − (1 − λ)(5 + 9λ − 15λ2) < 0 we infer that

vλ(ω) < 0 for any ω ∈ [0, 1] if λ ≥ 1
2 . For λ < 1

2 , we see that vλ(ω) < 0 for any ω ∈ [0, 1] since

v′λ(ω) = 6λ(1 − λ)(2 − 2ω + ω2 − 2λω2 + 4λω) is positive for any ω ∈ (0, 1), and vλ(1) < 0 (mentioned

above).

We now show that Γ is strictly convex; this implies that the solution x′ to Γ(x) = 0 is unique and that

Γ(x) > 0 for x ∈ (0, x′), Γ(x) < 0 for x ∈ (x′, 1). Indeed, Γ′′(x) = 18−24λ+24λ2+12λ (2λ− 1) (1− λ) (3x−
x2), and since 18− 24λ+ 24λ2 > 0 for any λ ∈ (0, 1) we infer that Γ′′(x) > 0 for λ ≥ 1

2 . If instead λ <
1
2 ,

then we exploit 3x− 2x2 ≤ 3
2 for x ∈ (0, 1) and thus Γ′′(x) ≥ 18− 24λ+ 24λ2 + 12λ (2λ− 1) (1− λ) 32 =

6(3− 7λ+ 13λ2 − 6λ3) > 0.

Step 4 If ξ(ω, λ) is such that Ψ[ξ(ω, λ)] > 0 and Γ[ξ(ω, λ)] > 0 for any ω ∈ (0, 1] and any λ ∈ (0, 12),

then UBPR > UBC for any ω ∈ (0, 1] and any λ ∈ (0, 12).
Proof From Ψ[ξ(ω, λ)] > 0 and Step 1 we infer that x̂ < ξ(ω, λ). From Γ[ξ(ω, λ)] > 0 and Step 3 we infer

that Γ(x̂) > 0, thus UBPR > UBC since λ < 1
2 .

Step 5 Let ξ(ω,λ) ≡






2
5ω +

4
25ωλ+

2
25ωλ

2 for ω ∈ (0, 512 ]
3
8ω +

1
5ωλ+

1
10ωλ

2 for ω ∈ ( 512 , 710 ]
9
25ω +

17
75ωλ+

8
75ωλ

2 for ω ∈ ( 710 , 56 ]
7
20ω +

9
40ωλ+

3
20ωλ

2 for ω ∈ (56 , 1]

.Then Ψ[ξ(ω, λ)] > 0 for any ω ∈ (0, 1]

and any λ ∈ (0, 12).
Proof Using ξ(ω, λ) we obtain

Ψ[ξ(ω, λ)] =






2ω(1−2λ)
15625 ψλ1(ω) for ω ∈ (0, 512 ]
ω(1−2λ)
16000 ψλ2(ω) for ω ∈ ( 512 , 710 ]
ω(1−2λ)
421875 ψλ3(ω) for ω ∈ ( 710 , 56 ]
ω(1−2λ)
16000 ψλ4(ω) for ω ∈ (56 , 1]

.
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with

ψλ1(ω) = −4λ (2λ+ 5) (1− λ) (λ2 + 2λ+ 5)2ω2 − 50(λ2 + 2λ+ 5)(2λ3 + 3λ2 + 6λ− 10)ω + 625λ2

ψλ2(ω) = −λ(2λ+ 5)(1− λ)(4λ2 + 8λ+ 15)2ω2 − 10(4λ2 + 8λ+ 15)(8λ3 + 12λ2 + 14λ− 35)ω − 400(5− 4λ2)

ψλ3(ω) =

�
−2λ (8λ+ 21) (1− λ)



27 + 17λ+ 8λ2

�2
ω2

−75


27 + 17λ+ 8λ2

� 

16λ3 + 26λ2 + 21λ− 69

�
ω + 625(72λ2 − 135 + 9λ)

�

ψλ4(ω) =

�
−3λ(λ+ 2)(1− λ)(14 + 9λ+ 6λ2)2ω2

−10(14 + 9λ+ 6λ2)(12λ3 + 12λ2 + 7λ− 38)ω − 400(10 + 3λ− 6λ2)

�

Now we prove that ψλ1(ω) > 0 for any ω ∈ [0, 512 ], ψλ2(ω) > 0 for any ω ∈ [ 512 , 710 ], ψλ3(ω) > 0 for any

ω ∈ [ 710 ,
5
6 ], and ψλ4(ω) > 0 for any ω ∈ [56 , 1]. The proof relies on the fact that, for i = 1, 2, 3, 4, ψλi is

concave and is positive at the extreme points of the interval to which ψλi refers.

• ψλ1(ω) > 0 for any ω ∈ [0, 512 ] since ψλ1(0) = 625λ2 > 0, ψλ1(
5
12) =

3125
3 − 10625

36 λ− 3875
9 λ3− 925

9 λ4−
625
36 λ

5 + 9125
36 λ2 + 275

36 λ
6 + 25

18λ
7 > 3125

3 − 10625
36 ( 12) − 3875

9 (12)
3 − 925

9 (
1
2)
4 − 625

36 (
1
2 )
5 = 959975

1152 > 0 for

any λ ∈ (0, 12).

• ψλ2(ω) > 0 for any ω ∈ [ 512 , 710 ] since ψλ2( 512) = 375
2 − 78475

72 λ3 − 6175
18 λ4 − 50λ5 + 4625

48 λ+ 42025
48 λ2 +

275
9 λ6 + 50

9 λ
7 > 375

2 − 78475
72 (12)

3 − 6175
18 (

1
2)
4 − 50( 12)

5 = 5425
192 > 0, ψλ2(

7
10) = 1675− 245

4 λ− 3563
2 λ3 −

10878
25 λ4 + 1115

4 λ2 + 56
5 λ

5 + 2156
25 λ6 + 392

25 λ
7 > 1675− 245

4 (
1
2)− 3563

2 (12)
3 − 10878

25 (12)
4 = 557797

400 > 0 for

any λ ∈ (0, 12).

• ψλ3(ω) > 0 for any ω ∈ [ 710 , 56 ] since ψλ3( 710) = 26865
2 − 104265

2 λ3 − 144151
10 λ4 + 1121859

50 λ+ 219438
25 λ2 +

5404
5 λ5+73696

25 λ6+ 12544
25 λ7 > 26865

2 − 104265
2 (12 )

3− 144151
10 (12 )

4 = 962399
160 > 0 and ψλ3(

5
6) =

64125
2 −300λ2−

368875
6 λ3− 264875

18 λ4+ 44475
2 λ+ 27500

9 λ5+ 37600
9 λ6+ 6400

9 λ7 > 64125
2 −300(12)2− 368875

6 (12)
3− 264875

18 (12)
4 =

6734275
288 > 0 for any λ ∈ (0, 12).

• ψλ4(ω) > 0 for any ω ∈ [56 , 1] since ψλ4( 56) = 1300
3 − 16525

6 λ3− 3625
4 λ4− 25

4 λ
5+ 50

3 λ+
5200
3 λ2+300λ6+

75λ7 > 1300
3 − 16525

6 (12)
3 − 3625

4 ( 12)
4 − 25

4 (
1
2)
5 = 4125

128 > 0, ψλ4(1) = 1320− 3330λ3 − 945λ4 + 64λ+

1446λ2 + 135λ5 + 432λ6 + 108λ7 > 1320− 3330(12)
3 − 945( 12)

4 = 13515
16 > 0 for any λ ∈ (0, 12).

Step 6 For the same ξ(ω, λ) introduced in Step 5, the inequality Γ[ξ(ω, λ)] > 0 holds for any ω ∈ (0, 1]

and any λ ∈ (0, 12). In view of Steps 4 and 5, we conclude that U
B
PR > UBC for any ω ∈ (0, 1] and any

λ ∈ (0, 12).
Proof For ω ∈ (0, 512 ] we have

Γ[ξ(ω, λ)] =
2ω (1− 2λ)

390625






2λ (1− λ)


λ2 + 2λ+ 5

� 

2λ2 + 4λ+ 35

� 

4λ4 + 16λ3 + 6λ2 − 20λ+ 475

�
ω3

−150λ (1− λ)


λ2 + 2λ+ 5

� 

4λ4 + 16λ3 + 56λ2 + 80λ+ 725

�
ω2

−3750


λ2 + 2λ+ 5

� 

2λ3 + 3λ2 − 16λ+ 10

�
ω + 78125 + 31250λ− 31250λ2






We use γλ1(ω) to denote the term in parenthesis and notice that

γ′′λ1(ω) = 12λ (1− λ)


λ2 + 2λ+ 5

�
� 


2λ2 + 4λ+ 35
� 

4λ4 + 16λ3 + 6λ2 − 20λ+ 475

�
ω

−2000λ− 400λ3 − 18125− 100λ4 − 1400λ2

�

is negative for ω ∈ (0, 512 ].
23 Hence γλ1 is concave and γλ1(ω) > 0 for any ω ∈ (0, 512 ] since γ1(0) =

78125+31250λ (1− λ) > 0 and γλ1(
5
12) = λ(36828125864 − 875

108λ
8− 125

108λ
9)+ 1878125

96 λ2+ 13559375
864 λ3+ 2783125

288 λ4+
6625
9 λ5 + 51125

27 λ6 + 2375
6 λ7 + 125

2 λ8 > 0 for λ ∈ (0, 12).
23γ′′λ1 is increasing and γ

′′

λ1(
5

12
) = −5λ(1− λ)(λ2 + 2λ+ 5)(26875 + 3600λ+ 2280λ2 + 416λ3 + 24λ4 − 48λ5 − 8λ6) < 0.
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For ω ∈ ( 512 , 710 ] we have

Γ[ξ(ω, λ)] =
ω (1− 2λ)

1280000






λ (1− λ)


4λ2 + 8λ+ 15

� 

4λ2 + 8λ+ 55

� 

16λ4 + 64λ3 + 24λ2 − 80λ+ 1225

�
ω3

+120λ (λ− 1)


4λ2 + 8λ+ 15

� 

16λ4 + 64λ3 + 184λ2 + 240λ+ 1825

�
ω2

−2400


4λ2 + 8λ+ 15

� 

8λ3 + 12λ2 − 54λ+ 35

�
ω − 64000 (2λ+ 3) (2λ− 5)






We use γλ2(ω) to denote the term in parenthesis and notice that

γ′′λ2(ω) = 6λ (1− λ)


4λ2 + 8λ+ 15

�
� 


4λ2 + 8λ+ 55
� 

16λ4 + 64λ3 + 24λ2 − 80λ+ 1225

�
ω

−9600λ− 2560λ3 − 73000− 640λ4 − 7360λ2

�

is negative for ω ∈ ( 512 ,
7
10 ].

24 Hence γλ2 is concave and γλ2(ω) > 0 in ( 512 ,
7
10 ] since γλ2(

5
12) = 435000−

3500
27 λ9 − 500

27 λ
10 + 166345375

576 λ + 32639875
1728 λ2 + 12248125

108 λ3 + 5045125
108 λ4 + 236875

54 λ5 + 1083625
54 λ6 + 138500

27 λ7 +
20500
27 λ8 > 435000 − 3500

27 (
1
2)
9 − 500

27 (
1
2)
10 = 10022 39375

2304 > 0 and γ2(
7
10) = 78000 − 932845

8 λ − 76832
125 λ9 −

10976
125 λ10 + 2701325

8 λ2 + 1445206
5 λ3 + 5525534

25 λ4 + 5330276
125 λ5 + 6376076

125 λ6 + 1440992
125 λ7 + 130144

125 λ8 > 78000 −
932845
8 ( 12)− 76832

125 (
1
2)
9 − 10976

125 (12)
10 = 15756721

800 > 0 for λ ∈ (0, 12).
For ω ∈ ( 710 , 56 ] we have

Γ[ξ(ω, λ)] =
ω (1− 2λ)

31640625






2λ (1− λ)


27 + 17λ+ 8λ2

� 

8λ2 + 17λ+ 102

� 

64λ4 + 272λ3 + 121λ2 − 357λ+ 4329

�
ω3

−450λ (1− λ)


27 + 17λ+ 8λ2

� 

64λ4 + 272λ3 + 721λ2 + 918λ+ 6354

�
ω2

−16875


27 + 17λ+ 8λ2

� 

16λ3 + 26λ2 − 105λ+ 69

�
ω

−6750000λ2 + 5906250λ+ 30375000






We use γλ3(ω) to denote the term in parenthesis and notice that

γ′′λ3(ω) = 12λ (1− λ)


27 + 17λ+ 8λ2

�
� 


8λ2 + 17λ+ 102
� 

64λ4 + 272λ3 + 121λ2 − 357λ+ 4329

�
ω

−20400λ3 − 4800λ4 − 476550− 68850λ− 54075λ2

�

is negative for ω ∈ ( 710 ,
5
6 ].

25 Hence γλ3 is concave and γλ3(ω) > 0 for any ω ∈ ( 710 ,
5
6 ] since γλ3(

7
10) =

16736625
2 − 10278 44181

250 λ− 526848
25 λ9 − 351232

125 λ10 + 28636 18029
500 λ2 + 38580 09939

500 λ3 + 244816677
50 λ4 + 669985309

500 λ5 +
769607769

500 λ6+ 46400648
125 λ7+ 2839648

125 λ8 ≥ 16736625
2 − 10278 44181

250 (12)− 526848
25 (12)

9− 351232
125 (12)

10 = 31562 90117
500 > 0

and γλ3(
5
6) =

8353125
2 − 21070125

2 λ+ 35516125
4 λ2− 320000

9 λ9− 128000
27 λ10+ 41704875

4 λ3+ 15135625
2 λ4+ 229970375

108 λ5

+ 74512625
36 λ6 + 12487000

27 λ7 + 212000
27 λ8 > 8353125

2 − 21070125
2 λ+ 35516125

4 λ2 − 320000
9 (12 )

9 − 128000
27 (12)

10, which

is decreasing in λ and at λ = 1
2 has value

8353125
2 − 21070125

2 (12)+
35516125

4 (12)
2− 320000

9 (12)
9− 128000

27 ( 12)
10 =

487604875
432 > 0.

For ω ∈ (56 , 1] we have

Γ[ξ(ω, λ)] =
ω (1− 2λ)

1280000






9λ (1− λ)


2λ2 + 3λ+ 18

� 

12λ4 + 36λ3 + 3λ2 − 36λ+ 412

� 

14 + 9λ+ 6λ2

�
ω3

−120λ (1− λ)


36λ4 + 108λ3 + 249λ2 + 252λ+ 1796

� 

14 + 9λ+ 6λ2

�
ω2

−2400


14 + 9λ+ 6λ2

� 

12λ3 + 12λ2 − 55λ+ 38

�
ω + 576000λ+ 1408000− 384000λ2






We use γλ4(ω) to denote the term in parenthesis and notice that

γ′′λ4(ω) = 6λ (1− λ)


14 + 9λ+ 6λ2

�
�

9


2λ2 + 3λ+ 18

� 

12λ4 + 36λ3 + 3λ2 − 36λ+ 412

�
ω

−4320λ3 − 1440λ4 − 10080λ− 9960λ2 − 71840

�

24γ′′
2
is increasing and γ′′

2
( 7
10
) = 3

5
λ (1− λ) (4λ2+8λ+15)(448λ6+2688λ5+4016λ4−1856λ3−34540λ2−58200λ−258375) <

0.
25γ′′λ3 is increasing and γ

′′

λ3(
5

6
) = 10λ(1−λ)(27+17λ+8λ2)(512λ6+3264λ5+6360λ4+2465λ3−23985λ2−45441λ−130302) <

0.
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is negative for ω ∈ (56 , 1].26 Hence γλ4 is concave and γλ4(ω) > 0 for any ω ∈ (56 , 1] since γλ4(56) = 344000−
367750
3 λ− 3750λ9− 750λ10+ 354250

3 λ2+ 889375
3 λ3+ 1081250

3 λ4+ 205375
8 λ5+ 1060625

8 λ6+38500λ7+5375λ8 >

344000− 367750
3 (12)− 3750(12)

9 − 750(12)
10 = 434227625

1536 > 0 and γλ4(1) = 131200− 479664λ + 248208λ2 +

379368λ3 + 542520λ4 + 65313λ5 + 181143λ6 + 48384λ7 + 4104λ8 − 6480λ9 − 1296λ10 > 0 for λ ∈ (0, 12).

Precisely, the inequality γλ4(1) > 0 is not straightforward to prove. It is obvious that 131200− 6480λ9 −
1296λ10 ≥ 131200− 6480( 12)9− 1296(12)10 = 8395909

64 , and the inequality 8395909
64 − 479664λ+248208λ2 < 0

requires λ > 13
40 . For λ > 13

40 , we have that γλ4(1) >
8395909
64 − 479664λ + 248208λ2 + 379368( 1340)

3 +

542520(1340)
4 + 65313(1340)

5 + 181143(1340)
6 + 48384(1340)

7 + 4104(1340)
8, and this expression negative requires

λ > 7
18 . For λ > 7

18 we have that γλ4(1) >
8395909
64 − 479664λ+ 248208λ2 + 379368( 718)

3 + 542520( 718 )
4 +

65313( 718)
5 + 181143( 718 )

6 + 48384( 718)
7 + 4104( 718)

8, and this expression negative requires λ > 9
20 . For

λ > 9
20 we have that γλ4(1) >

8395909
64 −479664( 12)+248208( 920)2+379368( 920)3+542520( 920)4+65313( 920)5+

181143( 920)
6 = 7 31005 07803

64000000 > 0.

Step 7 If ξ(ω, λ) is such that Ψ[ξ(ω, λ)] < 0 and Γ[ξ(ω, λ)] < 0 for any ω ∈ (0, 1] and any λ ∈ (12 , 1),

then UBPR > UBC for any ω ∈ (0, 1] and any λ ∈ (12 , 1).
Proof From Ψ[ξ(ω, λ)] < 0 and Step 1 we infer that ξ(ω, λ) < x̂. From Γ[ξ(ω, λ)] < 0 and Step 3 we infer

that Γ(x̂) < 0, thus UBPR > UBC by Step 2 since λ > 1
2 .

Step 8 Let ξ(ω,λ) ≡






3
8ω +

1
4ωλ for ω ∈ (0, 58100 ]

1
3ω +

1
3ωλ for ω ∈ ( 58100 , 78 ]

4
15ω +

8
15ωλ− 2

15ωλ
2 for ω ∈ (78 , 1]

.Then Ψ[ξ(ω, λ)] < 0 for any ω ∈ (0, 1]

and any λ ∈ (12 , 1].
Proof For ω ∈ (0, 58100 ] we have

Ψ[ξ(ω, λ)] =
ω (2λ− 1)

128

�
λ (1− λ) (3 + 2λ)2 ω2 + 2 (3 + 2λ)



4λ2 + 4λ− 7

�
ω + 16− 32λ

�

We use ψλ5(ω) to denote the term inside the parenthesis and notice that ψλ5(ω) < 0 for any ω ∈ (0, 58100 ]
since ψλ5 is convex and ψλ5(0) = 16− 32λ < 0, ψλ5(

58
100) = −209

25 − 78231
2500 λ+

60523
2500 λ

2+ 4118
625 λ

3− 841
625λ

4 < 0

for λ ∈ (12 , 1).27
For ω ∈ ( 58100 , 78) we have

Ψ[ξ(ω, λ)] =
(2λ− 1) (1− λ)ω

27

�
2λ (λ+ 1)2 ω2 − 3 (2λ+ 3) (λ+ 1)ω + 9

�

We use ψλ6(ω) to denote the term inside the parenthesis and notice that ψλ6(ω) < 0 for any ω ∈ ( 58100 , 78 ]
since ψλ6 is convex and ψλ6(

58
100) =

189
50 − 5017

625 λ − 1334
625 λ

2 + 841
1250λ

3 < 189
50 − 5017

625 (
1
2) − 1334

625 (
1
2)
2 + 841

1250 =

− 59
625 < 0, ψλ6(

7
8) =

49
32λ

3 − 35
16λ

2 − 371
32 λ+

9
8 <

49
32 − 35

16(
1
2)
2 − 371

32 (
1
2 ) +

9
8 = −59

16 < 0. for λ ∈ (12 , 1).
For ω ∈ (78 , 1) we have

Ψ[ξ(ω, λ)] =
2ω (2λ− 1) (1− λ)

3375

�
4λ (7− 2λ)



λ2 − 4λ− 2

�2
ω2 − 30 (9− 2λ) (λ+ 1)



2− λ2 + 4λ

�
ω − 225λ+ 1125

�

Let ψλ7(ω) denote the term inside the parenthesis and notice that ψλ7(ω) < 0 for any ω ∈ ( 78 , 1) since

ψλ7 is convex and ψλ7(
7
8) =

1305
2 − 5807

4 λ − 301
4 λ2 + 553λ3 − 595

2 λ4 + 1127
16 λ5 − 49

8 λ
6 < 0, ψλ7(1) =

585− 1613λ− 34λ2 + 658λ3 − 380λ4 + 92λ5 − 8λ6 < 0 for λ ∈ (12 , 1).
26γ′′λ4 is increasing and γ

′′

λ4(1) = −6λ(1− λ)(26− 6λ
2 − 9λ)(14 + 9λ+ 6λ2)3 < 0.

27Precisely, ψλ5(
58

100
) is convex in λ and has negative value at λ = 1

2
(− 10759

625
) and at λ = 1 (− 51

5
).
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Step 9 For the same ξ(ω, λ) introduced in Step 8, the inequality Γ[ξ(ω, λ)] < 0 holds for any ω ∈ (0, 1]

and any λ ∈ (12 , 1]. In view of Steps 7 and 8, we conclude that U
B
PR > UBC for any ω ∈ (0, 1] and any

λ ∈ (12 , 1).
Proof For ω ∈ (0, 58100 ] we have

Γ[ξ(ω, λ)] =
ω (2λ− 1)

2048





−λ (2λ+ 11) (1− λ) (2λ+ 3)



4λ2 − 4λ+ 49

�
ω3

+24λ (1− λ) (2λ+ 3)


4λ2 + 12λ+ 73

�
ω2

+96 (2λ+ 3)


4λ2 − 12λ+ 7

�
ω + 1024λ− 1536






We use γλ5(ω) to denote the term in parenthesis and notice that γ
′′
λ5(ω) = −6λ (2λ+ 11) (1− λ) (2λ+ 3) (4λ2−

4λ + 49)ω + 48λ (1− λ) (2λ+ 3)


4λ2 + 12λ+ 73

�
is positive for ω ∈ (0, 58100 ].

28 Hence γλ5 is convex and

γλ5(ω) < 0 for any ω ∈ (0, 58100 ] because γλ5(0) = 1024λ− 1536 < 0 and γλ5(
58
100) = −9168

25 + 156457787
125000 λ−

111665747
125000 λ2− 8336108

15625 λ3− 633273
3125 λ4− 153062

3125 λ5+ 48778
15625λ

6 < −9168
25 + 156457787

125000 λ− 111665747
125000 λ2− 8336108

15625 (
1
2)
3−

633273
3125 (

1
2)
4 − 153062

3125 (
1
2)
5 + 48778

15625 =
1

62500(−27780197 + 156457787
2 λ− 111665747

2 λ2) < 0 for any λ ∈ ( 12 , 1).
For ω ∈ ( 58100 , 78 ] we have

Γ[ξ(ω, λ)] =
1

81
ω (2λ− 1)

�
−2λ (1− λ) (λ+ 4) (λ+ 1)



λ2 − λ+ 7

�
ω3 + 18λ (1− λ) (λ+ 1)



λ2 + 2λ+ 10

�
ω2

+27 (1− λ) (3− 2λ) (λ+ 1)ω + 54λ− 108

�

We use γλ6(ω) to denote the term in parenthesis and notice that γ
′′
λ6(ω) = −12λ(1−λ)(λ+4)(λ+1)(λ2−λ+

7)ω+36λ (1− λ) (λ+ 1) (λ2+2λ+10) is positive.29 Hence γλ6 is convex and γλ6(ω) < 0 for any ω ∈ ( 58100 , 78 ]
because γλ6(

58
100) = −3051

50 + 1129777
15625 λ − 2252517

62500 λ2 − 33553
2500 λ

3 − 354061
31250 λ

4 − 305283
62500 λ

5 + 24389
62500λ

6 < −3051
50 +

1129777
15625 λ− 2252517

62500 λ2− 33553
2500 (

1
2)
3− 354061

31250 (
1
2)
4− 305283

62500 (
1
2)
5+ 24389

62500 = −126336379
2000000 + 1129777

15625 λ− 2252517
62500 λ2 < 0

and γλ6(
7
8) = −2499

256 λ
5 − 3185

128 λ
4 − 11081

256 λ3 − 12117
256 λ2 + 6851

64 λ+ 343
256λ

6 − 297
8 < 0 for any λ ∈ (12 , 1).

For ω ∈ (78 , 1] we have

Γ[ξ(ω, λ)] =
2ω (2λ− 1)

50625





−2λ (1− λ)



4λ+ 2− λ2

� 

8λ+ 19− 2λ2

� 

4λ4 − 32λ3 + 78λ2 − 56λ+ 181

�
ω3

+90λ (λ− 1)


λ2 − 4λ− 2

� 

4λ4 − 32λ3 + 48λ2 + 64λ+ 241

�
ω2

+1350 (λ− 1)


λ2 − 4λ− 2

� 

2λ2 − 7λ+ 9

�
ω − 6750λ2 + 47250λ− 57375






We use γλ7(ω) to denote the term inside the parenthesis and notice that

γ′′λ7(ω) = −12λ (1− λ)


4λ+ 2− λ2

� 

8λ+ 19− 2λ2

� 

4λ4 − 32λ3 + 78λ2 − 56λ+ 181

�
ω

+180λ (λ− 1)


λ2 − 4λ− 2

� 

4λ4 − 32λ3 + 48λ2 + 64λ+ 241

�

is positive.30 Hence γλ7 is convex and γλ7(ω) < 0 for any ω ∈ (78 , 1] because γλ7(78 ) = −72225
2 + 9724463

128 λ−
5111089
128 λ2+ 2383829

256 λ3− 7039697
256 λ4−9079λ5+15484λ6− 49931

8 λ7+ 11123
8 λ8− 5831

32 λ9+ 343
32 λ

10 < 0, and γλ7(1) =

−33075+82274λ−41392λ2+6676λ3−33418λ4−11396λ5+20336λ6−8648λ7+2024λ8−272λ9+16λ10 < 0

for any λ ∈ (12 , 1).

6.7 Proof of Proposition 5

(i) From the remarks stated shortly before Proposition 5 we see that (i) for (q1, q2) ∈ Q3, uBPU (q1, q2) −
uBPR(q1, q2) = (1 − λ)σ; (ii) for (q1, q2) ∈ Q1 ∪ Q2, u

B
PU (q1, q2) − uBPR(q1, q2) > −λσ since uBPU (q1, q2) >

28Precisely, γ′′λ5 is decreasing and γ
′′

λ5(
58

100
) = 3

25
λ(1− λ)(2λ+ 3)(13569 + 3234λ+ 556λ2 − 232λ3) > 0.

29Precisely, γ′′λ6 is decreasing and γ
′′

λ6(
7

8
) = 3

2
λ (1− λ) (λ+ 1) (44 + 27λ+ 3λ2 − 7λ3) > 0.

30Precisely, γ′′λ7 is decreasing and γ
′′

λ7(1) = 48λ(1− λ)(2λ
2 − 8λ+ 11)(−λ2 + 4λ+ 2)3 > 0.
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q1 − cH and u
B
PR(q1, q2) ≤ q1 − cL − (1− λ)σ. Therefore

UBPU − UBPR > 2[(1− λ)σPr{(q1, q2) ∈ Q3} − λσPr{(q1, q2) ∈ Q1 ∪Q2}] = 2σ[Pr{(q1, q2) ∈ Q3} −
λ

2
]

in which the equality holds since Pr{(q1, q2) ∈ Q1 ∪ Q2 ∪ Q3} = 1
2 and thus Pr{(q1, q2) ∈ Q1 ∪ Q2} =

1
2 −Pr{(q1, q2) ∈ Q3}. For σ about 0 we find that Pr{(q1, q2) ∈ Q3} is about 12 , and hence UBPU −UBPR > 0.

(ii) We prove that UBPR > UBPU when ω > max{3(1+λ)2(3−λ) ,
3λ−1
2(1−λ)} by showing that uBPR(q1, q2) > uBPU (q1, q2)

for any feasible (q1, q2). Precisely, we show that for any feasible (q1, q2), uBPR(q1, q2) is larger than B’s

payoff under PU even if we suppose that the highest valuation supplier always wins under PU.31 That is

equivalent to prove that the suppliers’ rents are larger in PU than in PR. Notice thatmax{3(1+λ)2(3−λ) ,
3λ−1
2(1−λ)} =�

3(1+λ)
2(3−λ) if λ ≤ 3

5
3λ−1
2(1−λ) if λ > 3

5

.

Step 1 The case of λ ≤ 3
5 Suppose that ω ≥ 3(1+λ)

2(3−λ) and notice that
3(1+λ)
2(3−λ) ≤ 1 when λ ≤ 3

5 .

Step 1.1 ω ≥ 1 The condition ω ≥ 1 is equivalent to σ ≥ θ, thus any feasible (q1, q2) (such that q2 ≥ q1)

belongs to Q1 and from Corollary 2 we infer that

uBPU (q1, q2) = q1 − cL + λ (2− λ) t− (1− λ2)σ − λ
	
[t+ (1− λ)σ]2 − 4λ (1− λ) t2 (24)

−λ2tPr{1L def 2L}+ λ(1− λ)(σ − t)Pr{1L def 2H}

Since σ − t ≥ σ − θ ≥ 0 and Pr{1L def 2H} < 1, if follows that λ(1 − λ)(σ − t) Pr{1L def 2H} ≤
λ(1−λ)(σ−t). Using λ2tPr{1L def 2L} > 0 we conclude that uBPU(q1, q2) < q1−cL+λ (2− λ) t−(1−λ2)σ−
λ
	
[t+ (1− λ)σ]2 − 4λ (1− λ) t2+λ(1−λ)(σ−t) = q1−cL−(1−λ)σ+λt−λ

	
[t+ (1− λ)σ]2 − 4λ (1− λ) t2.

Moreover, for each (q1, q2) ∈ Q1 we know that u
B
PR(q1, q2) = q1 − cL − (1 − λ)σ − λ(1 − λ)(σ − t) and

thus uBPU (q1, q2) < uBPR(q1, q2) holds if q1 − cL − (1 − λ)σ + λt − λ
	
[t+ (1− λ)σ]2 − 4λ (1− λ) t2 ≤

q1−cL− (1−λ)σ−λ(1−λ)(σ− t). This inequality is equivalent to 2(1−λ)σ ≥ (3λ−1)t, which is satisfied
for any t ∈ [0, θ], given σ ≥ θ and λ ≤ 3

5 .

Step 1.2 3(1+λ)
2(3−λ) ≤ ω < 1 The inequality ω ≥ 3(1+λ)

2(3−λ) is equivalent to σ ≥
3(1+λ)
2(3−λ)θ, and since λ < 3(1+λ)

2(3−λ) ,

it implies that σ > λθ; thus q2 − q1 ≤ σ
λ holds for any feasible (q1, q2). Hence any feasible (q1, q2) (such

that q2 ≥ q1) belongs to Q1 if q2 − q1 ≤ σ, otherwise it belongs to Q2.

If (q1, q2) ∈ Q1, using σ ≥ t = q2− q1 we can argue like in Step 1.1 to find that the inequality 2(1− λ)σ ≥
(3λ−1)t implies uBPU (q1, q2) < uBPR(q1, q2). The inequality 2(1−λ)σ ≥ (3λ−1)t holds for any (q1, q2) ∈ Q1

given that σ ≥ t and λ ≤ 3
5 .

If conversely (q1, q2) ∈ Q2, then σ − t < 0 and therefore uBPU(q1, q2) < q1 − cL + λ (2− λ) t − (1 −
λ2)σ − λ

	
[t+ (1− λ)σ]2 − 4λ (1− λ) t2. Moreover, for each (q1, q2) ∈ Q2 we know that u

B
PR(q1, q2) =

q1 − cL − (1 − λ)σ and thus uBPU(q1, q2) < uBPR(q1, q2) holds if q1 − cL + λ (2− λ) t − (1 − λ2)σ −
λ
	
[t+ (1− λ)σ]2 − 4λ (1− λ) t2 ≤ q1−cL−(1−λ)σ. This inequality is equivalent to 3(1+λ)t ≤ 2(3−λ)σ,

which is satisfied for any t ∈ [σ, θ] given σ ≥ 3(1+λ)
2(3−λ)θ.

Step 2 The case of λ > 3
5 Assume that ω ≥ 3λ−1

2(1−λ) and notice that
3λ−1
2(1−λ) > 1 when λ > 3

5 . Then

ω > 1 holds and we can argue as in Step 1.1 to prove that the inequality 2(1 − λ)σ ≥ (3λ − 1)t implies

uBPU(q1, q2) < uBPR(q1, q2). The inequality 2(1− λ)σ ≥ (3λ− 1)t holds for any t ∈ [0, θ] given ω ≥ 3λ−1
2(1−λ) .

31That is, even if Pr{1L def 2L} = 0 and Pr{1L def 2H} = 1 for q1−cL > q2−cH , Pr{1L def 2H} = 0 for q1−cL < q2−cH .
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6.8 Proof of Proposition 6(ii)

Given λ = 1
2 , in this proof we show that UBPU > UBPR if ω < ω∗ and UBPU < UBPR if ω > ω∗. Then

Proposition 4 implies straightforwardly Proposition 6.

From Proposition 5(ii), with λ = 1
2 , we know that UBPR > UPU for ω ≥ 9

10 . Hence, for ω < 9
10 we

compare UBPU with U
B
PR = q−cL+ 1

12(4−6ω−3ω2+ω3)θ [derived in Corollary 1(i)]. Recall from Subsection
3.3 that t denotes the difference q2 − q1, and to fix the ideas (without loss of generality) we assume that

t ≥ 0. Given that λ = 1
2 , the inequality λt < σ reduces to t < 2σ and thus the set Q3 is empty if ω > 1

2 ,

whereas Q3 	= ∅ if ω ≤ 1
2 . Therefore we distinguish these two cases.

Step 1 The case of ω ≤ 1
2 We need to derive UBPU . From ω ≤ 1

2 we deduce that Q1, Q2, Q3 are all

non-empty sets, and when (q1, q2) ∈ Q1 ∪ Q2 — that is when t < 2σ — uBPU(q1, q2) is given by (24) with

λ = 1
2 . However, we can simplify this expression somewhat by defining τ ≡ t

σ , that is τ =
q2−q1
σ , since then

from (21) and p̂ = (1−λ)p̃+λ(t+cL) we obtain p̃ = cL+
1
2(1+

√
1 + 4τ)σ, p̂ = cL+

1
4(2τ+1+

√
1 + 4τ)σ,

and using (??), (??) we find

Pr{1L def 2L} =
1

2τ2
(1 + 2τ − 2τ2 +

√
1 + 4τ) ln

2τ + 1 +
√
1 + 4τ

1 +
√
1 + 4τ

− 1 +
√
1 + 4τ − 2τ

2τ

Pr{1L def 2H} =

√
1 + 4τ − 3

2(τ − 1)
+ τ

1− 2τ +
√
1 + 4τ

2 (τ − 1)2
ln

√
1 + 4τ − 1

τ(1 +
√
1 + 4τ − 2τ)

Therefore uBPU (q1, q2) = q1 − cL +
ω
4 θη(τ) with

η(τ) ≡ τ
1 +

√
1 + 4τ − 2τ

2(1− τ)
ln

√
1 + 4τ − 1

τ(1 +
√
1 + 4τ − 2τ)

−1 +
√
1 + 4τ + 2τ − 2τ2

2τ
ln
2τ + 1 +

√
1 + 4τ

1 +
√
1 + 4τ

+2τ−1−
√
1 + 4τ

We have thus obtained uBPU(q1, q2) when τ < 2. When instead τ ≥ 2, Corollary 2 reveals that uBPU(q1, q2) =

q1 − cL; hence

uBPU(q1, q2) =

�
q1 − cL if τ ≥ 2

q1 − cL +
ω
4 θη(τ) if τ < 2

Ex ante, from the point of view of the buyer, τ is a random variable with support [0, 1ω ], given our

assumption of t ≥ 0, and using the fact that the density for (q1, q2) is constantly equal to
2
θ2
in Q1∪Q2∪Q3,

we can obtain the c.d.f. Υ and the density Υ′ of τ , for τ ∈ [0, 1ω ]:

Υ(τ) = 2ωτ − ω2τ2 Υ′(τ) = 2ω − 2ω2τ

Thus UBPU =
� q+θ
q

� q+θ
q1

(q1 − cL)
2
θ2
dq2dq1 +

� 2
0
ω
4 θη(τ)(2ω − 2ω2τ)dτ = q − cL + (13 +

� 2
0
[12η(τ)ω

2 −
1
2η(τ)τω

3]dτ)θ, and using numerical methods we find
� 2
0
1
2η(τ)dτ = −2.15462,

� 2
0
(−1

2)η(τ)τdτ = 1.70024;

hence UBPU = q − cL + (13 − 2.15462ω2 + 1.70024ω3)θ. Since UBPR = q − cL +
1
12(4 − 6ω − 3ω2 + ω3)θ,

numerical methods reveal that UBPU > UBPR for ω < ω∗, and UBPR > UBPU for ω ∈ (ω∗, 12 ].

Step 2 The case of ω ∈ (12 ,
9
10) We prove that UBPR > UPU for each ω ∈ ( 12 ,

9
10). Since ω > 1

2 ,

the inequality t < 2σ holds for any feasible (q1, q2) and thus u
B
PU (q1, q2) is given by (24) with λ = 1

2 .

Hence uBPU (q1, q2) < q1 − cL +
3
4 t − 3

4σ − 1
2

�
tσ + 1

4σ
2 + 1

4(σ − t) if t ≤ σ (as Pr{1L def 2L} > 0 and

Pr{1L def 2H} < 1) that is uBPU (q1, q2) < q1 − cL − 1
2ωθ(1− τ + 1

2

√
1 + 4τ) if τ ≤ 1; on the other hand,

uBPU(q1, q2) < q1 − cL +
3
4 t − 3

4σ − 1
2

�
tσ + 1

4σ
2 if t > σ (as Pr{1L def 2L} > 0 and Pr{1L def 2H} > 0)
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that is uBPU(q1, q2) < q1 − cL − 1
2ωθ(

3
2 − 3

2τ +
1
2

√
1 + 4τ) if τ > 1. Therefore UBPU <

� q+θ
q

� q+θ
q1

(q1 −
cL)

2
θ2
dq2dq1+

� 1
0 (−1

2ωθ)(1−τ+ 1
2

√
1 + 4τ)(2ω−2ω2τ)dτ+

� 1

ω

1 (−1
2ωθ)(

3
2− 3

2τ+
1
2

√
1 + 4τ)(2ω−2ω2τ)dτ =

q− cL+(
7
12 − 3

4ω+
1
3ω

2− 3
40ω

3− 1
120 (ω + 4)2

	
ω(ω + 4))θ. Since UBPR = q− cL+

1
12 (4− 6ω− 3ω2+ω3)θ,

the inequality UBPR > UBPU reduces to d3(ω) ≡ −3 + 3ω − 7ω2 + 19
10ω

3 + 1
10(ω + 4)2

	
ω(ω + 4) > 0. For

each ω ∈ (12 , 910) the inequality
	
ω(ω + 4) > 3

4 +
3
2ω holds, thus d3(ω) > −3 + 3ω − 7ω2 + 19

10ω
3 + 1

10(ω +

4)2(34 +
3
2ω) = −9

5 + 6ω − 229
40 ω

2 + 41
20ω

3 ≡ d4(ω), and d4(ω) > 0 for each ω ∈ (12 , 910) since d4 is increasing
and d4(

1
2) =

1
40 > 0. Hence d3(ω) > 0 for any ω ∈ (12 , 910).
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