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Abstract

This paper examines competition in an oligopoly with multiproduct firms when some firms bundle

but other firms sell their products separately, whereas the existing literature on competitive bundling

focuses on the extreme cases of competition among bundles or among individual products. Our analysis

reveals each firm’s individual incentive to bundle, and allows to study a two-stage game in which first

each firm chooses its pricing strategy (bundling or independent pricing), then price competition occurs

given the price regime each firm has selected at stage one. When firms are ex ante symmetric, we find

that bundling is weakly dominated by independent pricing. In a setting in which a firm’s products have

higher quality than its rivals’ products, individual incentives to bundle emerge (eventually for all firms)

if the quality difference is large.
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1 Introduction

The use of bundling under monopoly is relatively well understood,1 but perhaps the same cannot be said for

bundling under oligopoly. There exists a literature (see below in this introduction) that studies competition

among multiproduct firms when each firm offers its products in a bundle, and compares the outcome with

the outcome of competition when no firm bundles.2 This allows to identify settings in which firms’ profits

are higher/lower if competition occurs under bundling/no bundling. However, to the best of our knowledge

there exists no study of competition among more than two firms given that some firms bundle and some do

not. This paper (partially) fills this gap. The results we obtain allow to analyze a two-stage game in which

first each firm decides whether to offer its products separately or in a bundle, then price competition takes

place. Our results suggest that among symmetric firms bundling is unprofitable for a firm, independently of

its rivals’ choices. We also consider a setting with a dominant firm which offers products of higher quality

with respect to the other firms’ products. We show that as the quality difference increases, incentives to

bundle arise first for the dominant firm alone, then also for the other firms.

In detail, we consider an oligopoly setting with  ≥ 3 symmetric firms, each offering two products  and
, and each consumer needs one unit of product  and one unit of product . The products of different

firms are differentiated. The market for each product is represented by a Salop’s circle [Salop (1979)] in

which firms are equidistantly located and consumers are uniformly distributed; firms are located in the same

way on the two circles. In this context we inquire the incentives of each single firm to bundle by examining

the following two-stage game:

• at stage one (the marketing stage), each firm chooses between independent sales and bundling;

• at stage two (the price competition stage), firms compete by choosing prices given the price regime
each firm has selected at stage one.

This timing is sensible in a situation in which a firm’s choice in stage one between bundling and indepen-

dent pricing is irreversible, perhaps because of technical reasons involving the way the firms’ products are

designed.3 One difficulty in our analysis is that when some firms bundle and some do not, we need to study

an asymmetric price competition game for which we have to apply a case-by-case approach that depends on

the total number  of firms, on the number of firms which bundle, and on the locations of these firms.4 This

forces us to restrict our analysis to  = 3 or  = 4.

For these cases we find that independent sales weakly dominate bundling for each firm. Thus, no firm

has any incentive to bundle, regardless of the marketing choices of the other firms.5 In particular, if we fix

a firm  and assume that all other firms choose independent sales, then firm  prefers independent sales to

bundling. In order to see why, suppose that firm  bundles. Then it is impossible for consumers to "mix and

match" one product of firm  and one product of another firm, and the revenue of firm  comes only from the

1See for instance Adams and Yellen (1976), McAfee, McMillan, and Whinston (1989), Fang and Norman (2006) and the

references therein.
2There also exists a literature which investigates the use of bundling as an instrument to deter the entry of competitors: See

for instance Whinston (1990) and Nalebuff (2004).
3Conversely, if a firm could costlessly and quickly switch from one price regime to the other, then it may be adequate to

merge the two stages, assuming that at a single stage each firm chooses bundling (and the price for the bundle) or independent

sales (and the prices for the individual products).
4For instance, if  = 4 and only one firm bundles, then the three firms that do not bundle are not in a symmetric position

because one of them is not adjacent to the bundling firm: See Subsection 3.3.2.
5 Since each consumer wants one unit of product  and one unit of product , a firm’s decision to bundle or not is irrelevant

in case that all other firms bundle. Hence, there also exists an equilibrium in which all firms bundle, but that requires that all

firms play a weakly dominated action.
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sales of its bundle. As a starting point, assume that the price of the bundle of firm  is the sum of the prices

of firm ’s individual products in the equilibrium under independent sales. Then consider the mix and match

consumers of firm  that under independent sales buy only one product of firm . These consumers must

decide whether to buy firm ’s bundle or not.6 It turns out that only a minority of them, those located not

far away from firm  on both circles, buy the bundle. Thus firm  loses most of its mix and match consumers,

which reduces its market share and profit: bundling reduces the options offered by firm  to consumers in a

way that affects adversely firm . Of course, bundling also affects the pricing incentives. In particular the

reduced market share makes a price cut more profitable for firm . Since prices are strategic complements,

this leads to a price reduction also by the other firms, so that price competition is more intense. At the

equilibrium prices, firm  recovers its original market share but with a substantially reduced price that makes

its profit smaller than in case of competition among individual products.

We also examine an asymmetric setting with three firms in which one firm offers products with higher

quality with respect to its competitors’ products; we say that this firm is dominant over its rivals, and use

a parameter   0 to represent the quality difference.7 In this setting, incentives to bundle emerge for the

dominant firm if  is larger than a threshold 0. Precisely, when  is sufficiently large, bundling only by the
dominant firm induces a majority of its mix and match consumers under independent sales to buy its bundle.

Indeed, when facing the alternatives to buy both products, or no product at all, of the dominant firm, even

a consumer located far away from it in one circle prefers the first alternative. Moreover, the value of  also

affects the intensity of price competition under bundling: a large  makes the demand of the bundling firm

less elastic, which softens price competition and increases the profit of all firms with respect to independent

sales.

When only the dominant firm bundles, competition occurs between the dominant firm’s bundle and the

individual products of the dominated firms. However, there exists an 00 larger than 0 such also a dominated
firm wants to bundle (given that the dominant firm bundles) when   00. Then competition occurs among
pure bundles, and the dominant firm faces less competition with respect to the case in which the dominated

firms do not bundle, as consumers cannot mix and match the products of the dominated firms. This reduced

competition increases the demand for the dominant firm, but also induces it to be less aggressive in pricing.

This latter effect benefits the dominated firms and ultimately, from their viewpoint, dominates the initial

effect of demand loss, increasing their profits if   00. Therefore all firms bundle when   00.
As we mentioned above, the literature on competitive bundling has examined the cases in which all firms

bundle their products. For instance, Matutes and Regibeau (1988) show that in a bidimensional Hotelling

duopoly, competition between bundles is fiercer than competition under independent sales and thus lowers

firms’ profits.8 However, more recent research shows that this result may not hold when more than two

firms compete. Precisely, in the random utility model of Perloff and Salop (1985), Zhou (2017) shows that

under suitable assumptions on the distribution of consumers’ valuations, bundling essentially reduces the

heterogeneity in consumer valuation. In particular, the density of the average per-product value has thinner

tails compared to the density of the original single-product valuation. If the number of competing firms is

sufficiently large, then thinner tails lead to higher profits for competition under bundling than competition

under separate sales. Kim and Choi (2015) use a spatial model in which the market for each product is

represented by a Salop’s circle and compare competition among bundles with competition among individual

products. They find that if there are at least four firms, then there exists a way to symmetrically locate the

6The other consumers do not alter their purchases because of the bundling of firm .
7Hurkens et al. (2018) examine a similar setting with two firms. But in that setting, as soon as a firm bundles, competition

occurs among bundles (see footnote 5). Hence, it cannot occur, in practice, that some firms bundle and some do not.
8 See also Economides (1989) and Nalebuff (2000). Hurkens et al. (2018) obtain different results assuming that firms are

asymmetric.
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firms in the two circles (but not in the same way on the two circles) such that bundling generates higher

profits than independent sales.

Whereas the above papers focus on the extreme cases of competition among individual products and

competition among bundles, our paper examines competition when some firms offer their products in a

bundle and other firms do not. We model product differentiation as in Kim and Choi (2015). For symmetric

firms we know from Kim and Choi (2015) that if all firms are located in the same way on the two circles,

then competition among bundles reduces each firm’s profit with respect to competition among individual

products; thus firms have no collective incentive to bundle. Our results establish that also no single firm has

an individual incentive to bundle, regardless of the actions of the other firms. Conversely, in the setting with

asymmetric firms a significant asymmetry generates incentives to bundle first for the dominant firm, and for

all firms if the asymmetry is sufficiently strong.

The rest of this paper is organized as follows: Section 2 introduces the model; Section 3 deals with the

price competition stage; Section 4 is about the marketing stage; Section 5 analyzes the asymmetric setting;

Section 6 contains a few suggestions for future research. The appendix includes the proofs of our results, but

since some parts of the proofs are long and not very instructive, they are left to the supplementary material.

2 The setting

We consider competition among  ≥ 3 symmetric firms, denoted firm 1, firm 2, ..., firm , each offering

two different products,  and . We use  () to denote product  (product ) offered by firm , for

 = 1  . Each consumer has a unit demand for product  and a unit demand for product .

The firms offer differentiated products and we represent product differentiation using a spatial model in

which each firm is located on two Salop’s circles (Salop (1979)). More precisely, like in Kim and Choi (2014,

2015) the market for each product is represented by a circle with unit length, in which a point is denoted

"origin". Each point on the circle is identified by a number  ∈ [0 1) which represents the distance between
the origin and that point, moving clockwise from the origin.

A point’s coordinate

on the circle

(Figure 1)

Distance between two

points  and  on the circle

(Figure 2)

x = lenght of
bold arc

origin

x

d(x,y) = squared
lenght of
bold arc

origin

x

y

Figure 1 Figure 2

Each firm  is located at a point  on the circle for product  and at a point  on the circle for product

 such that  = . We consider symmetric firms, hence we assume that on each circle firms are equally-

spaced (see for instance Figures 3 and 10 below). There is a unit mass of consumers and each consumer has

a location  on the circle for product  and a location  on the circle for product . These locations
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represent the consumer’s ideal versions of the two products. For a consumer with locations   that buys

product  from firm , product  from firm  (notice that  may be equal to ), the utility is given by

 − ( 

) +  − ( 


)− total consumer’s payment to firms  and  (1)

in which   0 represents the consumer’s gross utility from consuming his preferred version of product 

(of product ). With ( ) we denote the quadratic distance between two generic points  and  on the

circle: ( ) = ( ) and for any   such that 0 ≤  ≤   1 (without loss of generality) we have

( ) =

(
( − )2 if 0 ≤  −   1

2

(1−  + )2 if 1
2
≤  −   1

(2)

Hence, ( ) is the quadratic length of the shortest path that connects  to  on the circle. This sometimes

requires to move clockwise, sometimes counterclockwise as the shortest path may pass through the origin:

see Figure 2.

The term ( 

) in (1) is the distance between  and 


 on the circle for product  and it represents

the reduction in the consumer’s utility from consuming a version of product  which is different from his

ideal one. A similar interpretation applies to ( 

).

9

We assume that consumers’ locations are independently and uniformly distributed on the two circles,

and that  is high enough to make each consumer buy one product  and one product  in equilibrium.

Therefore,  and  can be seen not only as products that can be independently consumed, but also as

perfect complements, that is components of a system such that a consumer obtains a positive gross utility

(2 ) from consumption only if he consumes both a unit of  and a unit of ; for instance, a mobile phone

and a battery charger for mobile phones. Consistently with this interpretation, we will often refer to products

  as to "system ", sometimes denoted with  .

In this context we study each firm’s incentives to offer its products separately or in a bundle. When firm

 offers its products separately, we say that firm  practices independent pricing (IP). Thus it sets a price

for its product  and a price for its product , but since 

 = 


 for  = 1  , we focus on the case in

which firm  sets the same price  for both its products. The alternative to IP is that firm  practices pure

bundling (PB), that is it offers its products jointly and sets a price  for the bundle that includes  and

 (i.e., ). From the point of view of a consumer, if firm  chooses IP then the consumer can combine

(mix and match) product  () with product  () as long as also firm  has chosen IP. Conversely, if

firm  chooses PB then a consumer either buys the bundle of firm , or buys no product at all from firm .10

After the firms’ moves, each consumer faces a set of available alternatives to buy one unit of product 

and one unit of product . For instance, if there are three firms and firm 2 has chosen PB but firms 1 and

3 have both chosen IP, then 11 22 13 31 33 are the available systems, whereas 12 (for instance) is

not available. Among the feasible systems, each consumer chooses the one that yields the highest utility as

9We may multiply ( 

) and (  



) by a positive number  6= 1 to represent the importance for a consumer of

consuming a product different from his ideal version, but that would have a multiplicative effect on profits and would not

change our results qualitatively.
10When the products are viewed as perfect complements, it is possible to interpret the choice of IP or PB in terms of

compatibility or incompatibility between products of different firms. Compatibility means that a consumer may combine

products of different firms (i.e.,   with  6= ) without penalties in terms of a smaller utility. Incompatibility means that

combining products of different firms yields a system that does not work. Then, if firm  chooses IP it means  offers products

made according to an industry-wide standard which are compatible with the products of another firm  if also  has chosen

IP. If instead firm  chooses PB, then its products are incompatible with the products of each other firm. Under compatibility,

each battery charger can be used to recharge each mobile phone. Under incompatibility, a mobile phone can be recharged only

by its specific battery charger and a consumer is forced to buy both the phone and the battery charger from the same firm.
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evaluated in (1). That is equivalent to choosing the system with the lowest total cost given that 2 is the

same for each system. For a consumer located at ( ), the total cost of  is

( 

) + ( 


) + total payment to buy  (3)

For each firm , let  denote the marginal cost for product  and for product . We assume that 

is large enough such that each consumer buys only one unit of product , and only one unit of product

.11 Then, since marginal costs have an additive effect on prices, without loss of generality we simplify the

notation by setting  = 0 and interpret prices as profit margins.

Summarizing, we study a game with the following timing:

• Stage one: Each firm chooses whether it offers its products separately (IP) or in a bundle (PB); we call
this stage "the marketing stage".

• Stage two: Each firm simultaneously sets the prices of its single products or the price of its bundle; we

call this stage "the price competition stage".

• After stage two, consumers make their purchases as we have described above.
We denote the whole game with Γ. To it we apply the notion of Subgame Perfect Nash Equilibrium

(SPNE), which requires to determine a Nash Equilibrium (NE) for each subgame of Γ that may be entered

at stage two, that is for each possible price competition stage. Next section is devoted to this analysis.

3 The price competition stage

In this section we examine stage two in Γ, in which firms compete in prices given the price regimes determined

at stage one. Precisely, we determine the equilibrium prices for each possible combination of price regimes

(i.e., for each stage two subgame).

In order to distinguish different subgames at the price competition stage, we let  ≡ {1 2  } denote
the set of all firms;  0 is a generic subset of  . Then we use 

0
to denote the stage two subgame which is

entered after at stage one each firm in  0 has chosen PB and each firm in \ 0 has chosen IP. Hence, ∅ is
the subgame which is played after each firm has chosen IP; {} (or, more quickly, ) is the subgame which
is entered after only firm  has chosen PB; ...;  is the subgame played after all firms have chosen PB. It is

important to note that if  0 = \{} (for an arbitrary  in ), then 
0
is equivalent to  . Indeed, given

that all the − 1 firms in  0 have chosen PB, a consumer will buy the bundle of one firm in  0, or the two
products of firm ; in each case he will buy both products from a same firm, as in  . Hence, both in 

0

and in  competition occurs among the  bundles.

3.1 Competition under independent sales by all firms: Subgame ∅

Here we consider the subgame ∅ that is entered if each firm chooses IP at stage one. Given that each con-

sumer’s utility function is separable in the net utility obtained from the two products (see (1)), competition

for product  is independent of competition for product . Then it is immediate to identify a NE for each

single market, given that firms are equidistantly located: See Proposition 1 in Kim and Choi (2015).

Lemma 1 In subgame ∅ there exists a symmetric NE such that in the market for product  () the price

of each product is 1
2
. For each firm the equilibrium profit in each market is 1

3
and the total profit is 2

3
.

11Otherwise, in principle a consumer may buy the bundle of a firm  and then may want to buy a product  (for some firm

 6=  which offers its products separately) because his location for product  is closer to 


than to  . If  is sufficiently

large, then the price of product  will be large enough to discourage this purchase.
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3.2 Competition among bundles: Subgame  , or \{} for  = 1  

Here we consider the case in which at least  − 1 firms have chosen PB at stage one. Then the subgame
 (or an equivalent one) is entered. Given that  =  for  = 1   and that firms are equidistantly

located, Kim and Choi (2014) determine the following symmetric NE.

Lemma 2 (Kim and Choi (2014)) In subgame  there exists a symmetric NE such that the price for

the bundle of each firm, denoted  , is

 =

(
2

2+3
if  is odd

2
2+4

if  is even

The equilibrium profit for each firm is 1

 .

From Lemmas 1 and 2 it is immediate to see that each firm’s profit is greater in ∅ than in  , since
2
3

 1

 for each  ≥ 3. Therefore, all firms prefer that competition takes place among individual products

rather than among bundles.12

3.3 Competition among bundles and individual products: Asymmetric subgames

In this subsection we examine subgames of Γ in which at least one firm offers its products in a bundle, but

no more than  − 2 firms do so. We call these asymmetric subgames because in these subgames firms are
not in a symmetric situation. Precisely, a firm that has chosen PB at stage one is obviously in a different

situation with respect to a firm that has chosen IP, but actually even firms which have made the same stage

one choice may be asymmetric at stage two. For instance, consider subgame 3 when  = 4 and refer to

Figure 10 below. Firms 1, 2, 4 have chosen IP and firms 2 and 4 are symmetric, but 1 and 2 are not so

because one firm adjacent to firm 2 bundles (i.e., firm 3), whereas no firm adjacent to firm 1 bundles; thus

1 does not directly compete with a bundling firm, unlike 2. Asymmetric subgames are more complicated to

study than ∅ and  , and this prevents us from providing results which hold for each  (Lemmas 1-2 do

so for subgames involving symmetric firms). Rather, we focus on the asymmetric subgames of Γ when  = 3

or  = 4.13

3.3.1 Asymmetric subgames when  = 3

When there are three firms, the only asymmetric subgames are 1 2 3, which are entered after a single

firm has chosen PB.

To fix the ideas, here we examine 2, that is we suppose that only firm 2 has chosen PB, but the results

we obtain apply also if firm 1 or firm 3 is the unique bundling firm. In 2 it is computationally convenient

(but implies no loss of generality) to assume that in both circles firm 1 is located at 1
6
, firm 2 is located at

12Kim and Choi (2015) show that if  ≥ 4, then relaxing the assumption  =  for  = 1 , while still keeping firms

symmetrically located in each circle, affects the equilibrium prices and profits in  and in some cases leads to higher profits

in  than in ∅ .
13 If  = 2, then 1 and 2 are equivalent to 12; hence there are no asymmetric subgames and Lemmas 1-2 cover all the

subgames of Γ. Assuming  ≥ 3 rules out this trivial case.
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1
2
, firm 3 is located at 5

6
:14 see Figure 3:

Figure 3

Distribution of firms when  = 3

over the circle for each product

:

firm 1

firm 2

firm 3

origin

5/6

1/2

1/6
0

We denote with 1 (3) the price firm 1 (firm 3) charges on each of its products, and with 2 the price

charged by firm 2 for its bundle. Given that firms 1 and 3 are in a symmetric position, we focus on NE of

2 such that 1 = 3.

In 2, the available systems are 11 22 13 31 33, and each consumer buys the system that is cheapest

for him, given 1 2 3 and given his locations. Then, for a consumer located at ( ), (3) reveals that

the cost of 22 is, for each ( ) ∈ [0 1)× [0 1),

22( ) = ( − 1
2
)2 + ( − 1

2
)2 + 2 (4)

and the cost of  , for  = 1 3 and  = 1 3, is

( ) = () + (), in which

1() =

(
(− 1

6
)2 + 1 if 0 ≤   2

3

(1− + 1
6
)2 + 1 if 2

3
≤   1

and 3() =

(
(1
6
+ )2 + 3 if 0 ≤   1

3

(− 5
6
)2 + 3 if 1

3
≤   1

(5)

Now we illustrate how the demand function is derived for each firm. To this purpose, we exploit the fact

that since each consumer is characterized by two locations  ∈ [0 1) and  ∈ [0 1), the set of consumers
can be considered as the square [0 1)× [0 1), in which locations are uniformly distributed.

Demand function for the bundle of firm 2 In order to derive the demand function for the bundle of

firm 2, we identify the set of consumers for which 22 is the cheapest system, that is such that 22( ) 

min{11( ) 13( ) 31( ) 33( )}. We employ two steps as follows.
Step 1We pretend that consumers can buy only from firms 1 and 3, as if there were no firm 2, and derive

the resulting distribution of consumers among 11 13 31 33. Since 1 = 3 in equilibrium and firm 1 (3)

is located at 1
6
(at 5

6
), in each market a consumer buys from firm 1 (firm 3) if he is located between 0 and 1

2

(between 1
2
and 1). We let  denote the region of consumers that buy system  , for  = 1 3 and  = 1 3,

when there is no firm 2. Hence

11 = [0
1

2
)× [0 1

2
), 13 = [0

1

2
)× [ 1

2
 1), 31 = [

1

2
 1)× [0 1

2
), 33 = [

1

2
 1)× [ 1

2
 1) (6)

14The reason is that ( 1
2
) is equal to ( − 1

2
)2 for each  ∈ [0 1), whereas if  6= 1

2
then ( ) is a piecewise defined

function of  as in (2). Thus, 2 = 2 = 1
2
simplifies ( 

2
) + (  

2
).
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Figure 4

Consumers’ purchases when 22

is not available and 1 = 3

:

Q11 Q31

Q33Q13

0.5

0.5 xA

xB

1

1

Step 2 For each region in (6) we identify the consumers that prefer 22 to the best alternative offered

by firms 1, 3. Precisely, for  = 1 3 and  = 1 3 we solve 22( )  ( ) for ( ) in 

to determine the consumers that prefer 22 to  . For instance, consider  = 1,  = 3 and let  be the

common equilibrium value of 1 and 3. Then (5)-(4) yield 13( ) = ( − 1
6
)2 + ( − 5

6
)2 + 2 for

( ) ∈ 13 and 22( )  13( ) reduces to   1
3
− 3

2
(2 − 2) + . More generally,

for ( ) ∈ 11, 22( )  11( ) is equivalent to   2
3
+ 3

2
(2 − 2)− 

for ( ) ∈ 13, 22( )  13( ) is equivalent to   1
3
− 3

2
(2 − 2) + 

for ( ) ∈ 31, 22( )  31( ) is equivalent to   −1
3
+ 3

2
(2 − 2) + 

for ( ) ∈ 33, 22( )  33( ) is equivalent to   4
3
− 3

2
(2 − 2)− 

(7)

We let 22 denote the resulting subset of [0 1) × [0 1), which depends on 2 − 2 as follows: 22 is the

whole [0 1) × [0 1) if 2 − 2  −4
9
, is empty if 2 − 2 ≥ 2

9
. If 2 − 2 is between −49 and 2

9
, then

22 is a more complicated convex polygon which we describe by listing its vertices. In particular, given

x = ( ) ∈ [0 1)× [0 1), we use x̄ to denote the point that is obtained by permuting the coordinates of
x, that is x̄ = ( ). It turns out that 22 is the octagon in Figure 5 if −49 ≤ 2 − 2  −1

9
,15 is the

square in Figure 6 if − 1
9
≤ 2 − 2  2

9
,16 :

The set 22 of consumers that

buy the bundle of firm 2 in 2

given − 4
9
≤ 2 − 2  −19

(Figure 5), or given

−1
9
≤ 2 − 2  2

9
(Figure 6)

:

x1 x2

x3

x4

x
4

x
3

x
2

x
1

R22

xA

xB

1

1

y
1

y1

y2

y
2

R22

xA

xB

1

1

Figure 5 Figure 6

15 In Figure 5, x1 = ( 0), x2 = (1−  0), x3 = (1 ), x4 = (1 1− ), with  = 2
3
+ 3

2
(2 − 2).

16 In Figure 6, y1 = ( 1
2
 − 1

2
), y2 = ( 3

2
−  1

2
), with  = 2

3
+ 3

2
(2 − 2).
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The demand for the bundle of firm 2 is just the area of 22, hence

2(2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 2  2− 4

9

1− 2(2
3
− 3+ 3

2
2)

2 if 2− 4
9
≤ 2  2− 1

9

2(1
3
+ 3− 3

2
2)

2 if 2− 1
9
≤ 2  2+

2
9

0 if 2+ 2
9
≤ 2

(8)

The profit of firm 2 is 22(2), and we denote with 2( 
2) the profit maximizing value of 2, that

is the best reply of firm 2 given :17

2( 
2) =

⎧⎨⎩
2
3
+ 2

27
if  ≤ 5

36

4
3
− 8

27
+ 1

27

p
3242 − 144+ 70 if   5

36

(9)

Demand function for the products of firm 3 Here we are concerned with the demand function for

the products of firm 3, which depends on 1 2 3. Precisely, we derive the demand for firm 3 for 3 close

to 1, which allows to obtain a first order condition for 3 (recall that we are searching for a NE such that

1 = 3). This can be combined with the best reply function of firm 2 in (9) to identify prices   and a

candidate NE for 2 such that 1 = , 2 =  , 3 = . Lemma 3 establishes that this is indeed a NE of 2.

In deriving the demand for firm 3 for 3 close to 1, we follow two steps as we have done for firm 2.

Step 1 Given 3 slightly larger than 1, we examine the consumers’ purchases when only 11 13 31 33

are available, as if there were no firm 2. Since 3  1, solving 3() ≤ 1() (see (5)) reveals that the

consumers buying product 3 (3) are those with  () in the interval [ ), with  =
1
2
+ 3
4
(3−1)  1

2

and  = 2 − 2  1; conversely, the consumers with  () in [0 ) ∪ [ 1) buy product 1 (1). As a
consequence, we define the sets 11, 13, 31, 33 as follows (see Figure 7):

11 = ([0 ) ∪ [ 1))× ([0 ) ∪ [ 1)) , 13 = ([0 ) ∪ [ 1))× [ ),
31 = [ )× ([0 ) ∪ [ 1)) , 33 = [ )× [ )

(10)

Step 2 Since we are interested in the demand for firm 3, we neglect 11 but for the other regions in (10)

we identify the consumers that prefer a system offered by firms 1 and 3 to 22. Precisely, for  = 13 31 33 we

solve ( )  22( ) for ( ) ∈  . For instance, (4)-(5) reveal that in 33 the inequality

33( )  22( ) reduces to   4
3
+ 3
2
(23−2)−. Therefore, the set of consumers that buy

33 is given by region 33 in Figure 8.
18 Arguing likewise for 13 and 31 shows that the set of consumers

17We need to distinguish  ≤ 5
36
from   5

36
because in the first case it is optimal for firm 2 to choose 2 that makes 22

equal to a square as in Figure 6, and the optimal 2 is obtained using 2(2) = 2( 1
3
+ 3 − 3

2
2)

2; in the second case it is

optimal for firm 2 to choose 2 which makes 22 equal to an octagon as in Figure 5, and the optimal 2 is obtained using

2(2) = 1− 2( 23 − 3+ 3
2
2)

2.
18 In Figure 8, x1 = ( 3 − ), x2 = ( −  ) with  = 4

3
+ 3

2
(23 − 2).
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that buy just one product from firm 3 is 13 ∪31 in Figure 8.19

The sets 11 1331 33

in (10) (Figure 7)

and the sets 13 31 33

(Figure 8)

xA

xB

1

1

Q11 Q31 Q11

Q13 Q33 Q13

Q11 Q31 Q11

y

y

z

z

Figure 7 Figure 8

Thus, the demand for firm 3 given 3 slightly larger than 1 is equal to twice the area of 33 plus the area

of 13 ∪31. This yields

3(3) = 1 +
9

2
(1 − 3)− 9

2
(
2

9
+ 1 + 3 − 2)

2 (11)

In fact, it turns out that the demand for firm 3 has the expression in (11) also for 3 slightly smaller than 1.

Therefore, for 3 close to 1 the profit function of firm 3 is 33(3) with 3(3) in (11). From this we can

derive the first order condition for 3, which must be satisfied at 3 = 1. Combining it with (9) identifies

the equilibrium prices.

Lemma 3 When  = 3, consider the subgame 2 which is entered if firm 2 chooses PB and firms 1 and 3

choose IP at stage one. In 2 there exists a NE such that

∗1 = ∗3 =
3
√
4681− 137
720

= 00948,  ∗2 =

√
4681− 19
360

= 01373 (12)

The equilibrium profit of firm 2 is 00466; the equilibrium profit of each other firm is 00626.

Figure 9 represents the equilibrium distribution of consumers among the available systems:20

Figure 9

The distribution of consumers

in the NE of 2 among

11 13 31 33 22

R22

R11

R13 R33

R31

xA

xB

1

1

19Figure 8 is obtained under the assumption that 2 − 23  −1
9
, which indeed holds in equilibrium (see Lemma 3 below),

otherwise the vertical coordinate of x̄2 (the horizontal coordinate of x2) would be greater than  and 33 would be a triangle.
20The vertices in Figure 9 are the vertices in Figure 6 (see footnote 16) with the equilibrium prices in Lemma 3.
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From Lemmas 1-3 we see that in 2 the profit of each firm is smaller than in ∅ . Moreover, firm 2 (firm

1, firm 3) has a lower (higher) profit in 2 than in 123. In Section 4 we examine these results in some detail

and we discuss their consequences on firms’ choices at stage one.

3.3.2 Asymmetric subgames when  = 4

When there are four firms, to fix the ideas we assume that firms are located as follows on both circles, that

is firm  is located at  = − 1
4
for  = 1  4:

Figure 10

Distribution of firms over the

circle for each product when  = 4

:

firm 1

firm 2

firm 3

firm 4 3/4

1/2

1/4

0

When  = 4, the asymmetric subgames of Γ are the following:

• (a) 1 2 3 4, that is the subgames which are entered if only one firm has chosen PB;

• (b) 12 23 34 41, that is the subgames which are entered if two adjacent firms have chosen PB, and
the other two firms have chosen IP;

• (c) 13, 24, that is the subgames which are entered if two non-adjacent firms have chosen PB, and the
other two firms have chosen IP

As we have mentioned in Subsection 3.3, in these subgames firms are asymmetric not only because

of different choices at stage one, but (in some cases) because of their locations. Precisely, in subgames

1 2 3 4 the three firms that have chosen IP are not in a symmetric position because two of them are

adjacent to a firm that bundles and the third is adjacent to firms that do not bundle. Thus, only two firms’

individual products face direct competition from a bundle. Moreover, we need to distinguish 12 23 34 41

from 13, 24 because if exactly two firms choose PB at stage one, then it is important whether the two

firms are adjacent or not.

The analysis for the asymmetric subgames when  = 4 is longer and more complicated than for the

subgame 2 we examined in Subsection 3.3, and it is available from the authors upon request. Next lemma

identifies the equilibrium prices and profits for just one subgame for each of the classes (a), (b), (c) listed

above, as analogous results hold for the other subgames in the same class.

Lemma 4 Consider game Γ when  = 4

(i) in subgame 3 there exists a NE such that 1 = 00621, 2 = 00616, 3 = 00827, 4 = 00616. The

equilibrium profits are 1 = 00308, 2 = 00328, Π3 = 00181, 4 = 00328.

(ii) in subgame 23 there exists a NE such that 1 = 006, 2 = 3 = 01012, 4 = 006. The equilibrium

profits are 1 = 00313, Π2 = Π3 = 00242, 4 = 00313.

(iii) in subgame 13 there exists a NE such that 1 = 00824, 2 = 0061, 3 = 00824, 4 = 0061. The

equilibrium profits are Π1 = 00179, 2 = 00345, Π3 = 00179, 4 = 00345.
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4 The marketing stage

In this section we examine the marketing stage in which each firm chooses its pricing regime, either IP or

PB. To this purpose, we study the reduced game with simultaneous moves in which each firm’s set of feasible

actions is {IP, PB} and given any action profile (1 2  ) ∈ {IP,PB}, the firms’ profits are given by
the equilibrium profits in the price competition stage which is entered given (1 2  ). Note that (PB,

PB, ..., PB) is a NE of the reduced game for each . Indeed, if all firms different from firm  play PB, then

firm  has no incentive to deviate by choosing IP as \{} is equivalent to  . Hence, there always exists
a SPNE of Γ in which each firm bundles; we call it the trivial SPNE.

4.1 The reduced game when  = 3 and  = 4

Using Lemmas 1-3 we obtain the following reduced game when  = 3, in which firm 1 chooses a row, firm 2

chooses a column, firm 3 chooses a matrix:21

3 = IP 3 = PB

2 = IP 2 = PB

1 = IP 0.0741,0.0741,0.0741 0.0626,0.0466,0.0626

1 = PB 0.0466,0.0626,0.0626 0.0556,0.0556,0.0556

2 = IP 2 = PB

1 = IP 0.0626,0.0626,0.0466 0.0556,0.0556,0.0556

1 = PB 0.0556,0.0556,0.0556 0.0556,0.0556,0.0556

It is immediate to see that in this game, for each firm IP weakly dominates PB because 00741  00466,

00626  00556.

Likewise, when  = 4, Lemmas 1, 2, 4 allow to determine each firm’s profit as a function of (1  4).

However, instead of providing the complete normal form of the reduced game, we represent only the profit

of a firm — firm 3, without loss of generality — as a function of 1  4. In particular, in the table below the

second and third row represent each one choice of firm 3 (3 =IP or 3 =PB) and each column — except the

first — represents one of the possible triples 1 2 4:

3\1,2,4 IP,IP,IP PB,IP,IP IP,PB,IP IP,IP,PB PB,PB,IP PB,IP,PB IP,PB,PB PB,PB,PB

3 = IP 0.0313 0.0308 0.0328 0.0328 0.0313 0.0313 0.0345 0.025

3 = PB 0.0181 0.0179 0.0242 0.0242 0.025 0.025 0.025 0.025

Again, IP weakly dominates PB for firm 3. Hence, the same result holds for each other firm as well.

Proposition 1 In the reduced game for Γ when  = 3 or  = 4, IP weakly dominates PB for each firm and

the unique non-trivial SPNE of Γ is such that each firm plays IP at stage one.22

Proposition 1 establishes that unless firms coordinate on the trivial SPNE, the only equilibrium outcome is

that all firms choose IP and competition occurs among individual products. We have remarked in Subsection

3.2 that all firms are better off in ∅ than in  , hence starting from (IP, IP, ..., IP) firms have no collective

incentive to move (PB, PB, ..., PB). Proposition 1 establishes that no individual incentive for a firm to

bundle exists either, regardless of the marketing regimes chosen by the other firms. In the rest of this section

we explore in some detail the causes of this result when  = 3; see footnote 24 for a remark about the case

of  = 4.

21 In each entry, the th number is the profit of firm , for  = 1 2 3.
22The complete SPNE strategies (which include each firm’s behavior at stage two) are obtained from Lemmas 1-3 when  = 3,

from Lemmas 1, 2, 4 when  = 4.
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4.2 The unprofitability of bundling when  = 3

In this subsection we explain why, when  = 3, PB is weakly dominated by IP for each firm. We rely on two

notions described by Hurkens et al. (2018): the demand size effect and the demand elasticity effect.

Bundling is unprofitable when no other firm bundles Without loss of generality, we examine firm

2 and its incentive to bundle given 1 =IP, 3 =IP. For the demand size effect we start from the NE in ∅ ,

in which each firm offers separate products, each at price ∅ = 1
9
. Now suppose firm 2 bundles its products

and sets 2 equal to 2
∅ = 2

9
, the total equilibrium price of 2 2 in ∅ ; firms 1, 3 keep offering separate

products at the unit price ∅ . The demand size effect inquires the change in profit for each firm determined

by bundling of firm 2 with unchanged prices. From (8) we know that 2 = 2
∅ and 1 = 3 = ∅ make the

demand for the bundle of 2 equal to 2
9
, smaller than 1

3
, the demand for each product of firm 2 in the NE in

∅ . Therefore, firm 2 loses (firms 1, 3 gain) market share and profit with respect to ∅ .

In order to see why, notice that bundling makes unavailable the systems 12 21 32 23, hence each

consumer who buys one of these systems in ∅ must change his purchase in 2,23 and the revenue of firm 2

comes uniquely from the sale of 22. Figure 11 represents the sets of the consumers that buy one or both

products of firm 2 in ∅ , denoted with ∅ for  = 12 21 23 32 22. Figure 12 represents the set 22 of

consumers that buy 22 in 2 given 1 = 3 = ∅ , 2 = 2∅ . This set includes ∅22 and a subset of 
∅
12,

of ∅21, of 
∅
23, of 

∅
32; we focus on ∅32 to fix the ideas (similar arguments apply to ∅12 

∅
21 

∅
23). For

each consumer in ∅32, bundling doubles firm 2’s revenue from the consumer if he buys 22 (i.e., if he is

in 22), but reduces the revenue to 0 if the consumer buys a different system. As Figure 12 suggests, the

consumers in ∅32 that belong to 22 are fewer than those that do not; thus, relative to the set 
∅
32, bundling

makes firm 2 lose more consumers than those that end up buying 22. For instance, a consumer located at

x = (08 04) ∈ ∅32 buys 32 under 
∅ . But 32 becomes unavailable if firm 2 bundles, and for the consumer

31 is more convenient than 22 because these systems have the same monetary cost 2
∅ but x is closer to

31 than to 22. Therefore the demand size effect reduces firm 2’s market share and profit.

The sets of consumers

that buy at least one product

of firm 2 in the NE of ∅

(Figure 11), and the set of

consumers that buy 22 in

2 given 1 = 3 = ∅ ,

2 = 2
∅ (Figure 12)

R12
∅

R21
∅

R22
∅ R32

∅

R23
∅

1/3 2/3

1/3

2/3

xA

xB

1

1

Figure 11 Figure 12

The above analysis neglects the demand elasticity effect, that is the firms’ incentives to change prices

given that firm 2 bundles. Precisely, from (9) we see that given 1 = 3 = ∅ , the optimal price for firm 2

is 4
27
, smaller than 2∅ ; thus firm 2 wants to reduce 2. This occurs because the lower demand of firm 2

reduces the loss from reducing the price to inframarginal consumers, but also because firm 2’s demand in 2

23Conversely, bundling by firm 2 does not change the purchase of any consumer that in ∅ buys one of the other systems, as

they remain available and at the same price.
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is more reactive to a decrease in price than firm 2’s demand in ∅ . Firms 1 and 3, if 2 were fixed at 2
∅ ,

would want to increase slightly 1 3 above 
∅ . But since prices are strategic complements, the reduction

of 2 to
4
27
induces 1,3 to reduce 1 3 below ∅ . This pushes firm 2 to further reduce 2, and the NE is

reached at the prices in Lemma 3.

Combining the two effects yields the equilibrium outcome under 2, in which firm 2’s market share is

03392. Although this is greater than 1
3
, the price of 22 is low enough that firm 2 is worse off with respect

to ∅ , and also with respect to 123. The stronger price competition hurts also firms 1, 3 as they have about

the same market share as in ∅ but charge a price for each product lower than ∅ .24

Bundling is unprofitable when only another firm bundles Now we suppose that 1 =IP, 2 =PB

and illustrate why for firm 3 it is unprofitable to play PB. If firm 3 bundles its products, then 123 is entered.

We examine the demand size effect supposing that 1 = 3 = 2
∗ and 2 =  ∗2 (

∗ = 00948,  ∗2 = 01373
as in the NE in 2: see Lemma 3). Figure 13 describes how the set of customers of firm 3 changes in

moving from 2 to 123 with unchanged prices; see also Figure 9. Precisely, we denote with 2 the set

of consumers that buy  in the NE of 
2, for  = 13 31 33, and represent the boundaries of these sets

with dashed segments; the solid segments are the boundaries of the set 33 of consumers that buy 33 in

123.25 Firm 3 keeps all the consumers that buy 33 in 2 but, as Figure 13 suggests, loses most of the

consumers in 213 ∪231 because they buy 22 or 11 rather than 33.
26 For example, the consumer located

at x = (085 04) and the consumer located at x0 = (085 02) both buy 31 in 2, but in 123 the first

consumer buys 22, the second consumer buys 11. Hence, the demand size effect is negative for firm 3.

Figure 13

The set 33 of consumers that buy

33 in 123, given 1 = 2
∗, 2 =  ∗2 ,

3 = 2
∗ (∗  ∗2 are the NE prices
in 2: see Lemma 3)

Also in this case there is a demand elasticity effect that modifies the firms’ incentives about pricing.

In particular, at 2 =  ∗2 , 1 = 3 = 2∗ firms 1 and 3 want to reduce 1 3, whereas firm 2 wants to

increase 2.
27 Consistently with these incentives, the equilibrium price for each bundle in 123 is 1

6
, such

that  ∗2  1
6
 2∗. At the equilibrium prices, the market share of firm 3 is slightly higher than in 2, 1

3

instead of 03304, but the price 1
6
of its bundle is smaller than 2∗; this makes its profit 00556 smaller than

the profit 00626 under 2. Thus, firm 3 has no incentive to bundle when 1 =IP, 2 =PB.

24A similar argument applies to the subgame 3 when  = 4. Firm 3 suffers a sizable negative demand size effect (which

benefits firms 2, 4 but does not affect firm 1), and the demand elasticity effect induces firm 3 to decrease 3 significantly. This

induces firms 2, 4 to reduce 2 4, which further hurts firm 3. In the NE of 3 (see Lemma 4(i)), firms 2, 4 are better off than

in ∅ because of the market share lost by firm 3; firm 1 is worse off because of the more aggressive pricing by firms 2, 4.
25 In Subsection 5.4 and in the proof of Lemma 8 we provide details about the derivation of 33.
26Precisely, the demand for the bundle of firm 3 is 02779, whereas 3’s market share in 2 is 03304 in both markets.
27This occurs because in 123, firm 2 faces softer competition than in 2 as systems 13 31 are not available. In Subsection

5.5 we provide more details about this effect.
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5 An asymmetric setting

In this section we examine a setting in which one firm is dominant with respect to the other firms in the sense

that it offers products with higher quality than its competitors’ products. Our purpose is to inquire whether

this sort of asymmetry among firms generates incentives to bundle, or instead leads to results analogous to

Proposition 1.

For simplicity we suppose that there are three firms, and (without loss of generality) that (i) firm 2 is the

dominant firm; (ii) firms are located, in both circumferences, as described by Figure 3. The dominance of

firm 2 is represented by a higher gross utility,  +  instead of  , with   0, that each consumer receives

if he consumes a product of firm 2 rather than a product of another firm. Equivalently, we can think that

the dominance of firm 2 reduces by  the cost of  if this system includes exactly one product of firm

2, reduces by 2 the cost of 22. For instance, if firm 2 chooses PB, then the cost of 22 for a consumer

located at ( ) is (
1
2
) + ( 

1
2
) + 2 − 2. We use Γ to denote the game which differs from Γ

only because firm 2 is dominant, and with 
0

 the stage two subgame of Γ that is entered if 
0 ⊆ {1 2 3}

is the set of the firms that at stage one choose PB.

We remark that the dominance of firm 2 introduces an ex ante asymmetry among firms which was absent

in the previous sections (but of course, Γ0 = Γ). In particular, Lemmas 1 and 2 do not apply to 
∅
 and to

123 , respectively, and we need to distinguish between 2 and 3 (
1
 is equivalent to 

3
 up to a relabeling

of firms) because it makes a difference if the unique bundling firm is the dominant firm or a dominated firm.

However, it is still the case that 12  13  23 are each equivalent to 123 .

5.1 Independent sales: Subgame ∅

Here we consider the subgame that is played if each firm has chosen IP at stage one. Under independent

pricing, competition for product  is independent of competition for product  even though firm 2 is

dominant. Hence, we focus on the market for product  and for a consumer located at  the cost of

product , for  = 1 3, is () in (5); the cost of product 2 is 2() = ( − 1
2
)2 + 2 − .

Since firms 1, 3 are in a symmetric position, we examine NE of ∅ such that they charge the same price.

Given 1 = 3 = , in order to derive the demand function for firm 2 we solve the inequality 2() 

min{1() 3()}, in which min{1() 3()} = 1() if  ∈ [0 12), min{1() 3()} =
3() if  ∈ [12  1). Hence, 2()  min{1() 3()} holds for each  ∈ [0 1) if 2  +  − 2

9
,

holds for  ∈ (13 + 3
2
(2 −  − ) 2

3
+ 3

2
( +  − 2)) if  +  − 2

9
≤ 2   +  + 1

9
, is violated for each

 ∈ [0 1) if 2 ≥ + + 1
9
. Therefore the demand function for firm 2 is

2(2) =

⎧⎪⎨⎪⎩
1 if 2  + − 2

9

3+ 3− 32 + 1
3

if + − 2
9
≤ 2  + + 1

9

0 if + + 1
9
≤ 2

(13)

and it is immediate to see that the best reply for firm 2 is

2( 
∅
 ) =

(
1
18
+ 1

2
+ 1

2
 if +   5

9

+ − 2
9

if +  ≥ 5
9

(14)

Now we derive the demand function of firm 3. Assume that firms 1 and 3 have both a positive market

share in NE. Given the price  charged by firm 1 in equilibrium, it turns out that for 3 close to 1,
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3()  min{1() 2()} reduces to  ∈ (23 + 3
2
(3 + − 2) 1− 3

2
(3 − ));28 hence

3(3) =
1

3
+
3

2
(+ 2 − − 23) (15)

From (15) we derive a first order condition for 3, which combined with (14) delivers the equilibrium prices

when all firms have a positive market share. Next lemma also determines when firm 2 captures the whole

market.

Lemma 5 In game Γ, consider the subgame 
∅
 which is entered if each firm chooses IP at stage one. In

this subgame, for each market there exists a NE such that 1 = 3 = ∗ and 2 = ∗2 with

∗ =
1

9
− 1
5
 ∗2 =

2

5
+

1

9
if  ∈ (0 5

9
) (16)

∗ = 0 ∗2 = − 2
9

if  ≥ 5
9

(17)

In the following of this section we only consider the case in which each firm has positive market share

and profit in ∅ , that is we restrict to  ∈ (0 59).

5.2 Bundling by firm 2 only: Subgame 2

In subgame 2, only the dominant firm bundles. Therefore, this game is similar to the subgame 2 we

examined in Subsection 3.3, with the only difference that the bundling firm offers products with higher

quality than its competitors’ products. This has the effect that 22( ) is not given by (4), but is equal

to ( − 1
2
)2 + ( − 1

2
)2 + 2 − 2.

As in Subsection 3.3, we consider NE in which firm 1 and firm 3 charge a same price for each single

product they offer. If  is the common value of 1 and 3, it is simple to obtain the demand function and

the best reply of firm 2 because firm 2’s per-product advantage  has the same effect as an increase in  by

. As a consequence, from (8) and (9) we obtain

2(2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 2  2+ 2− 4

9

1− 2(2
3
− 3(+ ) + 3

2
2)

2 if 2+ 2− 4
9
≤ 2  2+ 2− 1

9

2(1
3
+ 3(+ )− 3

2
2)

2 if 2+ 2− 1
9
≤ 2  2+ 2+

2
9

0 if 2+ 2+ 2
9
≤ 2

(18)

and

2( 
2
) = 2(+  2) =

⎧⎨⎩
2
3
+ 2

3
+ 2

27
if +  ≤ 5

36

4
3
(+ )− 8

27
+ 1

27

p
324(+ )2 − 144(+ ) + 70 if +   5

36

(19)

For firm 3 we can argue like in Subsection 3.3 to derive the demand function for 3 slightly larger than 1.

Precisely, we pretend momentarily that 22 is unavailable and find that  in (10) is the set of consumers

that buy  , for  = 11 13 31 33, with  = 1
2
+ 3

4
(3 − 1),  = 2− 2. Then for  = 13 31 33 we solve

( )  22( ) for ( ) ∈  to identify the set of consumers that prefer  to 22. When

 is about 0, the set 33 of consumers that buy 33 and the set 13 ∪31 of consumers that buy just one
product from firm 3 are similar to the analogous sets in Figure 8.29 As a consequence,

3(3) = 1 +
9

2
(1 − 3)− 9

2
(
2

9
+ 2+ 1 + 3 − 2)

2 (20)

28 If 3 is slightly larger than , then 2
3
+ 3

2
(3 +  − 2)  1 − 3

2
(3 − ) because firm 3 has a positive market share in

equilibrium, hence + − 2
9
 2.

29But in the vertices described in footnote 18,  is equal to 4
3
+ 3

2
(23 + 2− 2)
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The profit of firm 3 is 33(3), hence we derive a first order condition for 3, which combined with

(19) (when  +  ≤ 5
36
) identifies the equilibrium prices when  is close to zero: see ∗  ∗2 in (22) below

in Lemma 6. In this case the set [0 1) × [0 1) of consumers is partitioned among the available systems as
described by Figure 14, which is similar to Figure 9:30

Equilibrium partition of

consumers in 2 among

11 22 13 31 33 when

 ≤ 13
180

(Figure 14)

and when  ∈ ( 13
180

 5
9
)

(Figure 15)

:
R22

R33R13

R31R11

xA

xB

1

1

R22

R33R13

R31R11

xA

xB

1

1

Figure 14 Figure 15

In order for the equilibrium prices to be given by (22), it is necessary that the set 22 is a square as in

Figure 14. This is the case only if  ∗2 ≥ 2∗+2− 1
9
, but ∗  ∗2 in (22) violate this condition when   13

180
.

In such case, the consumers partition in equilibrium as described by Figure 15.31 In this case, when 3 is

slightly larger than 1 the sets 33 and 13 ∪31 are described in Figure 16.32

Figure 16

The sets 33 13 31 when   13
180

and 3 is slightly larger than 1

:

The demand for firm 3, 3(3), is the area of 13 ∪31 plus twice the area of 33, hence

3(3) =
63

2
23+(45−181−

45

2
−10)3+9

2
 2+

9

2
1−18+4+9

2
21−91+182+21−8+

8

9
(21)

From this we derive a first order condition for 3 and combine it with (19) (when +   5
36
) to obtain the

equilibrium prices (23) in next lemma.

30The vertices in Figure 2
(1)

are the vertices in footnote 16 with  = 2
3
+ 3

2
(∗2 − 2− 2∗) and ∗ ∗2 given by (22).

31The vertices of the octagon 22 are the vertices in footnote 15 with  = 2
3
+ 3

2
(∗2 − 2− 2∗) and ∗ ∗2 in (23).

32 In Figure 16, x1 = ( 0), x2 = (  − ), x3 = (1 ), x4 = (  − ), with  = 1
3
+ 3

2
(+ 3 + 2− 2).
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Lemma 6 In game Γ, consider the subgame 
2
 which is entered if firm 2 chooses PB and firms 1 and 3

choose IP at stage one. In 2 there exists a NE with 1 = 3 = ∗ and 2 =  ∗2 such that

∗ = 1
240

√
51842 + 10 224+ 4681− 7

10
− 137

720

 ∗2 =
1
360

√
51842 + 10 224+ 4681 + 1

5
− 19

360

if  ≤ 13
180

(22)

∗ = 1
855

√
81002 − 3600+ 2110− 2

19
+ 4

171

 ∗2 =
24
19
+ 7

855

√
81002 − 3600+ 2110− 16

57

if 13
180

   5
9

(23)

5.3 Bundling by firm 3 only: Subgame 3

Here we study the case in which only firm 1 or only firm 3 bundles. Since the subgame 1 is equivalent to

3 (up to a relabelling of firms), we examine 
3
. This subgame is more complicated than 2 as there is no

symmetry between any two firms: firm 2 has a quality advantage firms 1, 3 do not have, and firm 3 bundles

but the others do not. In 3, a NE is a triplet (
∗
1 
∗
2 

∗
3 ).

If  is close to 0, then 3 is only slightly different from the subgame 
2 examined in Subsection 3.3 (apart

from the fact that in 3 it is firm 3 that bundles rather than firm 2). This suggests that given ∗ and  ∗2 in
Lemma 3, for  close to 0 the equilibrium prices ∗1 

∗
2 are close to 

∗, and  ∗3 is close to 
∗
2 . This is useful

because it is cumbersome to derive the complete demand functions in 3. It is simpler to derive them for

1 2 close to 
∗ and 3 close to 

∗
2 . Precisely, in this case we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1(1) =
(93 − 92 + 9− 13

2
)1 − 9

2
21 − 9

2
2 − 93 + 7

9

+92 − 5
2
− 9

2
 23 + 932 + 23 − 9

2
22 +

5
2
2

2(2) =
(93 − 91 + 9− 13

2
)2 − 9

2
22 − 9

2
2 − 93 + 7

9

+91 +
13
2
− 9

2
 23 + 931 + 23 − 9

2
21 +

5
2
1

3(3) =
9
2
 23 − (91 + 92 − 9+ 2)3 + 1

18
(91 + 92 − 9+ 2)2

(24)

From 123 in (24) we derive first order conditions for 1 2 3 (see (51) in the appendix) which

yield a NE of 3 for  ≤ 26
77
. For this case, the equilibrium partition of consumers among the available

systems is described by Figure 17. In order to reduce the cluttering in Figures 17 and 18, we point out only

a small number of vertices in Figure 17 with the purpose to clarify the difference between the two figures;33

more details are given in the proof of Lemma 7.

Figure 17 Figure 18

33 In Figure 17, x1 = (0 1
3
− 3
2
(∗1−∗2+)), x2 = (1 13− 3

2
(∗1−∗2+)), x3 = ( 56+ 3

4
(∗1−∗2+) 94∗1− 3

2
∗3 +

3
4
(∗2−)+ 1

6
).
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When  is larger than 26
77
, the prices derived from the first order conditions which descend from (24) are

not a NE of 3 because they imply that x
3 in Figure 17 lies above the horizontal segment connecting x1 to

x2 (likewise, x̄3 lies to the right of the vertical segment connecting x̄1 to x̄2); formally, this means that the

equilibrium prices violate the inequality 1 ≤ 2
5
3 +

1
5
(2 − ) + 2

45
. This suggests to derive the expressions

of the demand functions when 1 
2
5
3 +

1
5
(2 − ) + 2

45
, and then we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1(1) =
981
32

21 −
¡
153
8
3 +

369
16
(2 − ) + 77

8

¢
1 − 99

32
2 − 117

8
3 +

61
72

+99
16
2 − 25

8
+ 9

8
 23 +

117
8
32 +

13
4
3 − 99

32
22 +

25
8
2

2(2) =

¡
153
16

+ 63
8
3 − 99

16
1 − 53

8

¢
2 − 153

32
22 − 153

32
2 − 63

8
3 +

55
72

+99
16
1 +

53
8
− 45

8
 23 +

117
8
31 +

7
4
3 − 369

32
21 +

25
8
1

3(3) =
9
4
 23 +

¡
9
4
1 − 45

4
(2 − )− 5

2

¢
3 − 153

16
21 +

63
16
2 − 117

8
1 +

7
36

− 63
8
2 − 7

4
− 153

16
21 +

117
8
12 +

13
4
1 +

63
16
22 +

7
4
2

(25)

From (25) we derive first order conditions for 1 2 3 (see (53) in the appendix) which yield a NE of 
3


for  ∈ (26
77
 5
9
). In this case the consumers partition among the available systems as described in Figure 18.

For subgame 3 (unlike for 
2
) we do not have a closed form expression for the equilibrium prices because

the system of the first order conditions is highly non-linear and cannot be solved in closed form. For this

reason we resort to a numerical approach, but Lemma 7 verifies that the solution we obtain numerically

constitutes a NE of 3. Figure 19 plots the equilibrium prices

Figure 19

Equilibrium prices in 3

∗1 (thin), 
∗
2 (dashed), 

∗
3 (thick)

αp1
*

p2
*

P3
*

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

Lemma 7 In game Γ, consider the subgame 
3
 which is entered if only firm 3 chooses PB at stage one.

(i) The demand functions in (24) yield first order conditions that identify a NE of 3 for  ∈ (0 2677 ].
(ii) The demand functions in (25) yield first order conditions that identify a NE of 3 for  ∈ (2677  59).

5.4 Bundling by all firms: Subgame 123

In subgame 123 , all the three firms bundle. Therefore this game is similar to 123 mentioned in Subsection

3.2, with the only difference that firm 2 offers products with higher quality than the other firms’ products.

Since firms 1 and 3 are in a symmetric position, we focus on NE of 123 in which firms 1 and 3 charge a same

price for their bundles. Using  to denote the common value of 1 and 3, we define  =
1
2
2 − 1

2
 − .

The demand for firm 2, 2(2), is the area of the set of ( ) which satisfy

22( )  min{11( ) 33( )} (26)

and it is possible to see that (26) holds for each ( ) if   −29 ; hence2(2) = 1 in this case. Conversely,

if  ≥ 1
9
then (26) is violated for each ( ) and 2(2) = 0. In the intermediate case of  ∈ [−29 − 1

18
),
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the set of ( ) such that (26) holds is the convex decagon in Figure 20,
34 with area 1− 15(2

9
+ )2.

The set of consumers that

buy 22 in 123 given

that  = 1
2
2 − 1

2
 − 

is between − 2
9
and − 1

18

(Figure 20), or  is between

− 1
18
and 1

9
(Figure 21)

:

x1 x2 x3

x4

x5

x
5x

4

x
3

x
2

x
1

R22

xA

xB

1

1

y1

y2

y3

y
3

y
2

y
1

R22

xA

xB

1

1

Figure 20 Figure 21

If  ∈ [− 1
18
 1
9
), then the set of ( ) which satisfy (26) is the hexagon in Figure 21,

35 with area 3(1 −
3)(1

9
− ). Since  = 1

2
2 − 1

2
 − , the demand function for firm 2 can be written as function of 2:

2(2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 2   + 2− 4

9

1− 15(2
9
+ 1

2
2 − 1

2
 − )2 if  + 2− 4

9
≤ 2   + 2− 1

9
1
12
(9 + 18− 92 + 2) (3 + 6− 32 + 2) if  + 2− 1

9
≤ 2 ≤  + 2+ 2

9

0 if  + 2+ 2
9
≤ 2

(27)

From (27) we derive 2 that maximizes firm 2’s profit 22(2):

2( 
123
 ) =

(
2
3
 + 4

3
+ 8

27
− 1

27

p
81( + 2)2 + 72( + 2) + 28 if  + 2 ≤ 31

90

2
3
 + 4

3
− 8

27
+ 1

27

q
81( + 2)2 − 72( + 2) + 404

5
if  + 2  31

90

(28)

The demand for firm 3 is the area of the set of ( ) which satisfy

33( )  min{11( ) 22( )} (29)

We define  = 3−1,  = 3−2+2, and consider 3 close to 1, that is  close to 0. First we examine

the case of  close to zero, which implies that 3 is close to 2 in equilibrium, therefore also  is close to

zero. Then the set of ( ) which satisfy (29) is the union of the three convex sets in Figure 22: the two

34 In Figure 20, x1 = ( 2
3
+ 3 0), x2 = ( 1

3
− 3 0), x3 = ( 7

9
−  2

9
+ ), x4 = (1 2

3
+ 3), x5 = (1 1

3
− 3).

35 In Figure 21, y1 = ( 5
9
+  1

9
+ 2), y2 = ( 7

9
−  2

9
+ ), y3 = ( 8

9
− 2 4

9
− ).
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quadrilaterals with vertices x1 x4 and x̄1  x̄4, and the hexagon with vertices x5x6  x̄5:36

The set of consumers that

buy 33 in 123 given that

 = 3 − 1 is close to 0

and  = 3 − 2 + 2 close to 0

(Figure 22), or  is greater

than 1
9
(Figure 23)

:

Figure 22 Figure 23

This is a disconnected set with area equal to

3(3) =
9

4
 23 +

µ
9

2
− 9

4
1 − 9

4
2 − 2

¶
3 − 91+ 9

2
12 (30)

−9
8
 21 −

9

8
 22 + 1 − 9

2
2 +

9

2
2 − 2+ 2 +

1

3

Precisely, this expression for 3(3) applies as long as
1
2
 + 1

9
≥ ,37 and from it we obtain a first order

condition for 3 which together with (28) (for the case of  + 2 ≤ 31
90
) yields prices  ∗  ∗2 . Lemma 8(i)

proves that these prices constitute a NE of 123 if and only if  ≤ 71
630
, which corresponds to the condition

 ≤ 1
9
(or equivalently  ≥ − 1

18
).

For the case of   71
630
, we still consider  close to 0 but  greater than 1

9
. Then the set of ( )

which satisfy (29) is the union of the three convex sets in Figure 23: the two triangles with vertices y1y2y3

and ȳ1 ȳ2 ȳ3, and the quadrilateral with vertices y4y5 ȳ5 ȳ4.38 The area of this set is

3(3) = 3 23 +

µ
21

2
− 3

4
1 − 21

4
2 − 7

3

¶
3 − 3

8
 21 − 31 (31)

+
3

2
12 +

2

3
1 +

15

2
2 − 15

2
2 − 10

3
+

15

8
 22 +

5

3
2 +

10

27

and it delivers a first order condition for 3 which together with (28) (for the case of  + 2  31
90
) yields

the equilibrium prices in Lemma 8(ii).

Lemma 8 In game Γ, consider the subgame 
123
 which is entered if at least two firms choose PB at stage

one. In 123 there exists a NE with 1 = 3 =  ∗ and 2 =  ∗2 such that
(i) if  ≤ 71

630
, then  ∗  ∗2 satisfy the first order condition derived from (30) and  ∗2 = 2(

∗ 123 );

(ii) if 71
630

   5
9
, then  ∗ = 5

117
− 5

26
 + 1

1638

√
99 2252 − 44 100+ 29 470 and  ∗2 = 33

26
 − 11

39
+

19
8190

√
99 2252 − 44 100+ 29470.

36 In Figure 22, x1 = ( 1
2
+ 3

4
 0), x2 = ( 5

9
+  − 1

2
 1

9
+ 1

2
 − ), x3 = ( 7

9
+ 1

2
 −  2

9
− 1

2
 − 1

2
), x4 = (1 − 3

2
 0) and

x5 = ( − 1
2
+ 8

9
 1
2
 + 1

2
+ 4

9
), x6 = (1 3

4
+ 1

2
), x7 = (1 1− 3

2
).

37Otherwise the vertical coordinate of x2 (the horizontal coordinate of x̄2) in Figure 22 is negative, and the horizontal

coordinate of x5 (the vertical coordinate of x̄5) is greater than 1.
38 In Figure 23, y1 = ( 3

2
+ 1

3
 0), y2 = ( 7

9
+ 1

2
−  2

9
− 1

2
− 1

2
), y3 = (1− 3

2
 0) and y4 = (1 3

2
+ 1

3
), y5 = (1− 3

2
 1).
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Figures 24 and 25 describe the equilibrium partition of consumers among 11 22 33 for the two cases

of  ≤ 71
630

and 71
630

   5
9
:39

Equilibrium partition of

consumers in 123

among 11 22 33 when

 ≤ 71
630

(Figure 24), or

when  ∈ ( 71
630

 5
9
) (Figure 25)

:

Figure 24 Figure 25

5.5 The marketing stage

Here we study the firms’ marketing choices at stage one of Γ. Thus, we consider the reduced game with

simultaneous moves in which, for each (1 2 3) ∈ {IP,PB}3, the firms’ profits given (1 2 3) are equal
to the profits in the stage two subgame which is determined by (1 2 3): see Lemmas 5-8. Precisely, we

denote with Π∅ the profit of firm  in ∅ (i.e., 1 = 2 = 3 =IP), with Π

 the profit of firm  in  (i.e.,

 =PB,  =  =IP), and with Π
123
 the profit of firm  in 123 (i.e., at least two firms have chosen PB).

In the normal form below, firm 1 chooses a row, firm 2 chooses a column, firm 3 chooses a matrix.

3 = IP 3 = PB

2 = IP 2 = PB

1 = IP Π∅1 Π
∅
2 Π

∅
3 Π21Π

2
2Π

2
3

1 = PB Π11Π
1
2Π

1
3 Π1231 Π1232 Π1233

2 = IP 2 = PB

1 = IP Π31Π
3
2Π

3
3 Π1231 Π1232 Π1233

1 = PB Π1231 Π1232 Π1233 Π1231 Π1232 Π1233

We have mentioned in Section 4 that (PB,PB,PB) is a NE for each , hence in the following we examine

the existence of other NE. To this purpose, it is useful to compare:

• Π22 with Π∅2 and Π1232 with Π32, in order to inquire the dominant firm’s incentives to bundle when no

other firm bundles, or when only one other firm bundles.

• Π33 with Π∅3 , Π1233 with Π13, and Π
123
3 with Π23 in order to learn the incentive to bundle of a dominated

firm when no other firm bundles, or only the other dominated firm bundles, or only the dominant firm

bundles.

We use Lemmas 5-8 and numeric analysis to perform the above comparisons. For instance, Figure 26

below plots Π22 and Π
∅
2 as a function of  (the appendix includes the plots of the profit functions involved

39The vertices in Figure 24 (Figure 25) are obtained from the vertices in Figures 21 and 22 (20 and 23), given the equilibrium

prices; notice that  = −2 at the equilibrium prices.
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in the other comparisons)

Figure 26

Π22 (solid) vs Π
∅
2 (dashed)
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As a result we conclude that

Π22  Π∅2 if  ∈ (0 0), Π22  Π
∅
2 if  ∈ (0 5

9
), with 0 = 01953 (32)

Π1232  Π32 if  ∈ (0 01709), Π1232  Π32 if  ∈ (01709 5
9
) (33)

From (32)-(33) we deduce that (i) if   01709, then firm 2 plays IP in any NE (neglecting the NE

(PB,PB,PB)); (ii) if   0, then PB is weakly dominant for firm 2; (iii) if  is between 01709 and 0, then
firm 2’s best reply is IP if 1 = 3 =IP, is PB if 1 =PB or 3 =PB.

The profit comparisons for firm 3 reveal that

Π33  Π∅3 if  ∈ (0 0496), Π33  Π
∅
3 if  ∈ (0496 5

9
) (34)

Π13  Π1233 for each  ∈ (0 5
9
) (35)

Π1233  Π23 if  ∈ (0 0051) ∪ (01 00), Π1233  Π23 if  ∈ (0051 01) ∪ (00 5
9
), with 00 = 01981 (36)

From (34)-(36) we see that firm 3 never wants to bundle if 1 =PB, 2 =IP, but wants to bundle if 1 = 2 =IP

and   0496, or if 1 =IP, 2 =PB and  is between 0051 and 01, or is greater than 00.
With these informations we can identify the NE of the reduced game, distinguishing three intervals for

: (0 0), (0 00), (00 5
9
).

In the interval (0 0), firm 2 may want to play PB only if at least one of the other firms plays PB and

  01709. However, for   0 firm 3 (firm 1) has an incentive to play PB only if 1 =IP, 2 =PB and

 ∈ (0051 01). Hence (IP,IP,IP) is the unique NE different from (PB,PB,PB). This extends Proposition 1,

which covers the case of  = 0.

We obtain different results when  ∈ (0 00), because then firm 2 wants to bundle even if no other firm

does so. However, (36) reveals that firm 3 (firm 1) does not want to bundle if only firm 2 bundles. Hence

(IP,IP,IP) is not a NE, but (IP,PB,IP) is.

Finally, for  ∈ (00 5
9
) there is a change in the preference of firm 3 (firm 1): now firm 3 wants to bundle

given that only firm 2 bundles. Hence, in each NE at least two firms bundle and each NE is equivalent to

(PB,PB,PB). Next proposition summarizes these results.

Proposition 2 In the reduced game for Γ, () is a NE for each  and

(i) when  ∈ (0 0), there exists a unique other NE, (   );
(ii) when  ∈ (0 00), there exists a unique other NE, (   );
(iii) when  ∈ (00 5

9
), each other NE is equivalent to ().
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Unlike Proposition 1, Proposition 2 establishes that in the asymmetric setting we are considering, firms

sometimes have individual incentives to bundle. These incentives depend on the magnitude of the asym-

metry and on the marketing choices of the other firms. Precisely, the difference between Proposition 1 and

Proposition 2 lies in Proposition 2(ii—iii), which is determined by the inequalities Π22  Π
∅
2 and Π

123
3  Π23

in (32) and (36). In the rest of this section we explore why these inequalities are satisfied for   0 and for
  00, respectively, even though they fail to hold when  = 0.

Bundling is profitable for firm 2 when no other firm bundles and   0 When  is equal to 0, we

have explained in Section 4 that PB reduces the profit of firm 2 (given 1 = 3 =IP) because of a negative

demand size effect and because the demand elasticity effect makes price competition fiercer. However, a

different result emerges if   0 is not small. Starting with the demand size effect, we consider 2 with

1 = 3 = ∗, 2 = 2∗2 (
∗ ∗2 are the NE prices in ∅ : see (16)). As in Subsection 4, we focus on the

set ∅32 of consumers that buy 32 in ∅ ,
40 which is the rectangle [2

3
+ 3

5
 1)× [1

3
− 3

5
 2

3
+ 3

5
) shown in

Figure 27 with three dashed edges. Since 32 is unavailable in 
2
, each consumer in 

∅
32 will buy one system

among 22 33 31. With respect to 32, all these systems reduce a consumer’s utility, but simple algebra

shows that the utility decrease with the choice of 22 is decreasing in , whereas the utility decrease with

33 or 31 is increasing in , in such a way that more than half of the consumers in ∅32 buy 22 if   5
36
.

Essentially, when   5
36
for a majority of consumers in ∅32 it is not convenient to give up product 2,

even though that requires to buy 2 which they like less than 3. Figure 27 also represents the set 22 of

consumers that buy 22 in 2 when   5
36
and 1 = 3 = ∗, 2 = 2∗2.

Figure 27:

The set ∅32 (with dashed edges) of the

consumers that in ∅ buy 32, and

the set 22 (with solid edges) of

consumers that buy 22 in 2

given 1 = 3 = ∗, 2 = 2∗2
(∗ ∗2 are NE prices in ∅ : see (16))

Therefore the demand size effect for firm 2 is negative if   5
36
but is positive if   5

36
(compare Figure

12 with Figure 27). We also remark that this effect is weak if  is close to 5
9
, as then the market share of

firm 2 is already very large in ∅ , hence the set 
∅
32 is small.

Also the demand elasticity effect depends on : given 1 = 3 = ∗, we find that at 2 = 2∗2, 2 is

elastic if   03115, is inelastic if   03115. In Section 4 we have mentioned the first case when  = 0;

the second case is simple to see when  = 5
9
, as then the equilibrium prices for ∅ are 

∗
1 = ∗3 = 0, 

∗
2 =

1
3

and all consumers buy both products from firm 2. Then, from (18), 2(2) = 1− 1
2
(32 − 2)2 if 2 is equal

to or slightly larger than 2∗2 =
2
3
and 0

2(
2
3
) = 0, which means that 2 is very inelastic at 2 =

2
3
: if 2

increases by a small ∆2  0 above
2
3
, then the reduction in demand for 22 is of order (∆2)

2.41

40 Similar arguments apply to the sets ∅12 
∅
21 

∅
23, and there is no change in the purchases of consumers that in ∅ buy

no product of firm 2, or both products of firm 2.
41This is because the sets of consumers in [0 1) × [0 1) firm 2 loses because of the increase in 2 are four right triangles at

the corners of [0 1)× [0 1), each with edges proportional to ∆2. Hence their combined area is proportional to (∆2)
2.
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The incentive of firm 2 to reduce 2 for   03115 has the effect of inducing firms 1, 3 to reduce their

prices, as we remarked for the case of  = 0. Moreover, except for values of  close to zero, firms 1, 3 have

incentive to reduce 1 3 below ∗ even if 2 = 2∗2. This harms firm 2 and has the effect that   5
36
does

not suffice to make firm 2 prefer 2 to 
∅
 ; indeed (32) reveals that Π

2
2  Π

∅
2 holds if and only if   0.

As a final remark, notice that for  larger than 04395, firms 1, 3 prefer 2 to 
∅
 , that is Π

2
3  Π

∅
3 . This

is immediate when  = 5
9
since then Π∅3 = 0, and in 2 firm 2 wants to increase 2 above 2

∗
2 because 2

is very inelastic. The increase in 2 implies that firm 3 (firm 1) earns a positive market share and profit if

3  0 (1  0) is close to 0; hence Π23  Π
∅
3 = 0.

42 The inequality Π23  Π
∅
3 is satisfied also for  smaller

than (but close to) 5
9
, as in this case there is a demand size effect which is negative for firms 1, 3, but is

weak and is dominated by the demand elasticity effect that induces firm 2 to increase 2 above 2
∗
2.

Bundling is profitable for firm 3 if firm 2 bundles and   00 In Section 4 we have explained why

firm 3 prefers IP to PB given 1 =IP, 2 =PB when  = 0. Now we illustrate why the opposite holds, that

is Π1233  Π23, when   00.
We first notice that the demand size effect is negative for firm 3. Comparing the NE of 2 with the

outcome in 123 given 1 = 3 = 2∗, 2 =  ∗2 (
∗  ∗2 are the NE prices of 

2
: see Lemma 6 and (23))

reveals that in the latter case the market share and profit of firm 3 is reduced. In order to see why, notice

that 00  13
180
, therefore in 2 the equilibrium partition of consumers is described by Figure 15. Moving to

123 with unchanged prices makes 13 31 unavailable, and firm 3’s profit derives only from the sale of 33.

The consumers that buy 33 in the NE of 
2
 continue to buy 33 in 123 , hence the demand size effect is

determined by the purchases of the consumers that buy 31 in 2 (similar arguments apply to 13); let 
2
31

denote this set. In 123 , suppose for one moment that 22 is not available. Then the consumers in 231 split

equally between 11 and 33 since 1 = 3 and one half of them is closer to 11, the other half is closer

to 33. However, the presence of 22 has a relevant effect since for the consumers in 231, 11 and 33 are

inferior to 31 but the consumers at the border between 
2
31 and 

2
22 (see Figure 15) are actually indifferent

between 22 and 31. Hence, the consumers in 231 close to this border prefer 22 to both 11 and 33 and

less than one half of the consumers in 231 buy 33; this makes the demand size effect negative for firm 3.

Therefore, moving from 2 to 
123
 with unchanged prices improves the situation of firm 2 by reducing the

competition it faces as 13 31 are not available anymore. This can be seen in Figure 20, in which the union

between the two triangles x2x3x4 and x̄2x̄3x̄4 is the set of consumers firm 2 wins over in 123 with respect

to 2.

Nevertheless, also firm 3 (firm 1) prefers 123 to 2 for large  because firm 2 is less aggressive in 123

than in 2. Precisely, suppose that 1 = 3 =  in 2 and 1 = 3 = 2 in 123 ; therefore system 11 (33)

has the same price in 2 as in 123 , but in 2 also the systems 13 31 are available. Comparing (19) with

(28) shows that 2(2 
123
 )  2( 

2
), that is the best reply for firm 2 is greater in 123 than in 2.

This occurs because a higher number of inframarginal consumers for firm 2 in 123 than in 2 (due to the

positive demand size effect for firm 2) makes it more profitable for firm 2 to increase 2, and also because

a same increase in 2 in 2 and in 123 leads to a smaller loss of consumers in 123 than in 2 (this is a

consequence of how the triangles x2x3x4 and x̄2x̄3x̄4 in Figure 20 depend on 2). Although the demand

size effect is negative for firm 3, when  is large that effect is weak as the market share of firm 2 is already

very large in 2. From the point of view of firm 3, this effect is dominated by the demand elasticity effect

which induces less aggressive pricing by firm 2, and allows firm 3 (firm 1) to increase 3 (1) and earn a

higher profit than in 2. Thus, by reducing the own competitiveness through a reduction of the number of

systems, firm 3 (firm 1) increases the own profit because in a less competitive environment firm 2 charges a

42This is similar to what happens in Hurkens, Jeon, Menicucci (2018), in a case with two firms for which footnote 7 applies.
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higher price.

6 Conclusions

In this paper we have examined an oligopoly model in which some firms, but not all, bundle. Our results

provide indications about the firms’ individual incentives to bundle, and suggest that such incentives may

exist only among asymmetric firms.

Our analysis is carried out under the assumption that firms offer spatially differentiated products ac-

cording to Salop’s circular city model. This implies that the outcome of competition depends both on the

number and on the locations of the firms that bundle. An alternative approach is to rely on the random

utility model of Perloff and Salop (1985), as in Zhou (2017). In this model any two firms that bundle (any

two firms that do not bundle) are in the same situation. Hence, the analysis of each stage two subgame only

depends on the number of firms that bundle, and not on their identities.

Another possible line of research consists in analyzing the game with a single stage in which simultaneously

each firm chooses bundling or independent sales, and the price for its bundle (in the first case) or the prices

for its individual products (in the second case). As we mentioned in the introduction, our model seems

appropriate to represent a situation in which the choice between bundling and independent pricing cannot

be undone, whereas a single stage game is adequate if a firm can easily switch from one price regime to the

other. In such a game there are no subgames, but a firm may alter its pricing regime in response to the

strategies of the other firms; thus more powerful deviations may exist than in the game we have analyzed.

7 Appendix

7.1 Proof of Lemma 3

From (11) we derive the following first order condition for 3, at 3 = 1 = :

−9
2
 22 + 272+ 22 − 362 −

21

2
+

7

9
= 0 (37)

Together with 2 =
2
3
+ 2

27
from (9) (given   5

36
), (37) identifies the prices in Lemma 3. In this proof we

show that such prices constitute a NE for 2. We use ∗ to denote the common value of ∗1 and ∗3.
For firm 2, from (9) we know that  ∗2 = 2(

∗ 2) is a best reply given that 1 = 3 = ∗.
In the rest of this proof we suppose that firm 1, firm 2 play 1 = ∗, 2 =  ∗2 . We derive the complete

demand function for firm 3 and prove that playing 3 = ∗ is a best reply for firm 3.

The demand function of firm 3 First we consider 3  ∗ and argue as in Steps 1 and 2 of Subsection
3.3, assuming initially that 22 is not available. The inequality 3()  1() holds for  ∈ [0 ) ∪ [ 1),
with  = 3

2
(∗ − 3),  =

1
2
− 1

2
. Therefore the consumers partition among 11 13 31 33 as follows:⎧⎪⎨⎪⎩

11 = [ )× [ ), 
13 = [ )× [0 ), 

13 = [ )× [ 1),

31 = [0 )× [ ), 

31 = [ 1)× [ ), 
33 = [0 )× [0 ),


33 = [ 1)× [0 ), 

33 = [0 )× [ 1), 
33 = [ 1)× [ 1)

(38)

27



see Figure 28:

The sets in (38) (Figure 28)

and the sets 
33  

33 


33  

33  
31  


31 


13 


13

when 3  ∗ (Figure 29)
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We neglect 11 and solve 22( )  ( ) in  for  6= 11 to determine the set  of

consumers that prefers  to 22: see Figure 29. We use A() to denote the area of the set .

In 
33 , 22( )  33( ) reduces to   3

4
 ∗2 − 3

2
3 −  +

1
3
, which is satisfied for each

( ) ∈ 
33 , for each 3  ∗. Hence 

33 = 
33 and A(

33 ) = 2.

In 
33 , 22( )  33( ) reduces to   3

4
 ∗2 − 3

2
3 +

1
2
 − 1

6
, which holds for each

( ) ∈ 
33 , for each 3  ∗. Hence 

33 = 
33 and A(

31 ) = (1− ). Likewise, 
33 = 

33 and

A(
33 ) = (1− ).

In 
33 , 22( )  33( ) is equivalent to   4

3
+ 33 − 3

2
 ∗2 − . Hence 


33 coincides

with 
33 except for a triangle in the left bottom of 

33 with vertices ( ), x2 = (4
3
+ 33 − 3

2
 ∗2 −  ),

x̄2 = ( 4
3
+ 33 − 3

2
 ∗2 − ) (see Figure 29) and A(33) = (1− )2 − 1

2
( 4
3
+ 33 − 3

2
 ∗2 − 2)2.

In 
31 , 22( )  31( ) is equivalent to   3

2
 ∗2 − 3

2
∗ − 3

2
3 − 2 + 2

3
, which holds for

each ( ) ∈ 
31 , for each 3  ∗. Hence 

31 = 
31 and A(

31 ) = ( − ). Likewise, 
13 = 

13 and

A(
13) = ( − ).

In 
31, 22( )  31( ) reduces to   3

2
 ∗2 − 1

3
− 3

2
∗ − 3

2
3 + , which makes 


31 equal

to 
31 minus a triangle in the top left of 


31 with vertices ( ), x

1 = ( 3
2
 ∗2 − 1

3
− 3

2
∗ − 3

2
3 + ),

x2 (see Figure 29). Hence A(
31) = ( − )(1 − ) − 1

2
( 1
3
+ 3

2
∗ + 3

2
3 − 3

2
 ∗2 )

2. Likewise, A(
13) =

( − )(1− )− 1
2
(1
3
+ 3

2
∗ + 3

2
3 − 3

2
 ∗2 )

2.

Hence the total demand of firm 3 when 3  ∗ is

2A(
33 ) + 2A(

33 ) + 2A(
33 ) + 2A(

33 ) +A(
31) +A(

31) +A(
13) +A(

13)

= 1 +
9

2
∗ − 9

2
3 − 9

2
(
2

9
+ ∗ + 3 −  ∗2 )

2

Now we consider 3  ∗. Then 3()  1() holds for  ∈ [ ) with  = 1
2
+ 3

4
(3 − ∗),  = 2− 2,

and the consumers partition among 11 13 31 33 as follows:

11 = ([0 ) ∪ [ 1))× ([0 ) ∪ [ 1)) , 
13 = [0 )× [ ), 

13 = [ 1)× [ ),

31 = [ )× [0 ), 

31 = [ )× [ 1), 33 = [ )× [ )
Solving 22( )  ( ) in


13  


13 


31 


3133 yields the sets


13  


13 


31 


31 33 such that

3(3) = 2A(33) +A(
13) +A(

31) +A(
13) +A(

31). In fact, since A(
31) = A(

13) and A(
31) =

A(
13), we can evaluate 3(3) as 2A(33) + 2A(

13 ) + 2A(
13). In 33, 22( )  33( )

is equivalent to   −3
2
 ∗2 + 33 −  +

4
3
. In 

13 , 22( )  13( ) is equivalent to  
3
2
∗− 3

2
 ∗2 +

3
2
3++

1
3
. In 

13, 22( )  13( ) is equivalent to   3
2
∗− 3

2
 ∗2 +

3
2
3−2+ 7

3
.
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• If ∗  3 
2
45
+ 1

5
∗ + 2

5
 ∗2 , then the sets 33, 


13 , 


13, 


31, 


31 are as in Figure 8 and 3(3) =

1 + 9
2
∗ − 9

2
3 − 9

2
(2
9
+ ∗ + 3 −  ∗2 )

2 as in (11).

• If 2
5
 ∗2 +

1
5
∗+ 2

45
 3 

1
4
 ∗2 +

1
2
∗+ 1

9
(that is, if 01183  3  01928) then the sets 33, 


13 , 


13,


31, 


31 are as in Figure 30,

43 and 3(3) =
981
32

23 − (1538  ∗2 +
369
16

∗ + 77
8
)3 +

9
8
( ∗2 )

2 + 117
8
 ∗2 

∗ +
13
4
 ∗2 − 99

32
(∗)2 + 25

8
∗ + 61

72
.

• If 1
4
 ∗2 +

1
2
∗+ 1

9
 3  2

∗
2 −3∗+ 2

9
(that is, if 01928  3  02124) then the sets 


13 , 


13, 


31, 


31

are as in Figure 31,44 and 3(3) =
405
32

23−( 818  ∗2 + 81
16
∗+ 45

8
)3+

9
4
 ∗2 +

9
8
∗+ 81

8
 ∗2 

∗− 243
32
(∗)2+ 5

8
.

• If 2 ∗2 − 3∗ + 2
9
 3 

1
2
 ∗2 +

2
9
(that is, if 02124  3  02909), then the sets 


13 , 


13, 


31, 


31

are as in Figure 32,45 and 3(3) =
27
2
( 2
9
+ 1

2
 ∗2 − 3)

2.
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Summarizing, the complete demand function for firm 3 is

3(3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + 9
2
∗ − 9

2
3 − 9

2
( 2
9
+ 3 + ∗ −  ∗2 )

2 if 0 ≤ 1 ≤ 1
5
∗ + 2

5
 ∗2 +

2
45

981
32

23 − ( 1538  ∗2 +
369
16

∗ + 77
8
)3 +

9
8
( ∗2 )

2

+117
8
 ∗2 

∗ + 13
4
 ∗2 − 99

32
(∗)2 + 25

8
∗ + 61

72

if 1
5
∗ + 2

5
 ∗2 +

2
45

 1 ≤ 1
2
∗ + 1

4
 ∗2 +

1
9

(1
2
+ 9

4
∗ − 9

4
3)(

5
4
− 27

8
∗ + 9

2
 ∗2 − 45

8
3) if 1

2
∗ + 1

4
 ∗2 +

1
9
 1 ≤ 2 ∗2 − 3∗ + 2

9
27
2
(2
9
+ 1

2
 ∗2 − 3)

2 if 2 ∗2 − 3∗ + 2
9
 3 ≤ 1

2
 ∗2 +

2
9

0 if 1 
1
2
 ∗2 +

2
9

(39)

43 In Figure 30, x1 = ( 3
2
∗2 − 3

2
∗+− 3

2
3− 1

3
), x2 = ( 3

2
∗2 − 3

2
∗+ − 3

2
3− 1

3
), x3 = ( 3

4
∗− 3

4
∗2 − 1

2
+ 3

4
3+

7
6
 ),

x4 = (− 3
2
∗2 + 33 −  + 4

3
).

44 In Figure 31, x1 = ( 3
2
∗2 − 3

2
∗+− 3

2
3− 1

3
), x2 = ( 3

2
∗2 − 3

2
∗+ − 3

2
3− 1

3
), x3 = ( 3

4
∗− 3

4
∗2 − 1

2
+ 3

4
3+

7
6
 ),

x4 = ( 3
4
∗ − 3

4
∗2 − 1

2
 + 3

4
3 +

7
6
 ).

45 In Figure 32, x1 = ( 3
2
∗ − 3

2
∗2 +

3
2
3 +

1
3
 0), x2 = (  − 3

2
∗ + 3

2
∗2 − 3

2
3 − 1

3
), x3 = (1 3

2
∗ − 3

2
∗2 +

3
2
3 +

1
3
),

x4 = ( 3
4
∗ − 3

4
∗2 − 1

2
 + 3

4
3 +

7
6
 ).
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Proof that 3 = ∗ is a best reply for firm 3 Since 3(3) = 33(3), from (39) we obtain

03(3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−27
2
23 + (18

∗
2 − 18∗ − 13) 3 − 9

2
( ∗2 )

2

+9 ∗2 
∗ + 2 ∗2 − 9

2
(∗)2 + 5

2
∗ + 7

9

if 0 ≤ 1 ≤ 1
5
∗ + 2

5
 ∗2 +

2
45

2943
32

23 − (1534  ∗2 +
369
8
∗ + 77

4
)3 +

9
8
( ∗2 )

2

+ 117
8
 ∗2 

∗ + 13
4
 ∗2 − 99

32
(∗)2 + 25

8
∗ + 61

72

if 1
5
∗ + 2

5
 ∗2 +

2
45

 1 ≤ 1
2
∗ + 1

4
 ∗2 +

1
9

1215
32

23 − ( 814  ∗2 + 81
8
∗ + 45

4
)3

+9
4
 ∗2 +

9
8
∗ + 81

8
 ∗2 

∗ − 243
32
(∗)2 + 5

8

if 1
2
∗ + 1

4
 ∗2 +

1
9
 1 ≤ 2 ∗2 − 3∗ + 2

9

81
2
23 − (27 ∗2 + 12) 3 + 27

8
( ∗2 )

2 + 3 ∗2 +
2
3

if 2 ∗2 − 3∗ + 2
9
 1 ≤ 1

2
 ∗2 +

2
9

and now we prove that 03(3)  0 for 3 ∈ (0 ∗), 03(3)  0 for 3 ∈ (∗ 12 ∗2 + 2
9
).

For 3 in the interval [0
1
5
∗+ 2

5
 ∗2 +

2
45
], 03(0) = 1281  0, 

0
3(
∗) = 0 (see (37)), 03(

1
5
∗+ 2

5
 ∗2 +

2
45
) =

−0355, and since 03 is a concave quadratic function for 3 in the interval, it is positive for 3 ∈ (0 ∗), it
is negative for 3 ∈ (∗ 15∗ + 2

5
 ∗2 +

2
45
). For 3 in the interval (

1
5
∗ + 2

5
 ∗2 +

2
45
 1
2
∗ + 1

4
 ∗2 +

1
9
] we have

03(
1
5
∗+ 2

5
 ∗2 +

2
45
)  0, and 03(

1
2
∗+ 1

4
 ∗2 +

1
9
) = −0375; since 03 is convex in this interval, it follows that

03()  0 for each  in the interval. For the intervals (
1
2
∗+ 1

4
 ∗2+

1
9
 2 ∗2−3∗+ 2

9
] and (2 ∗2−3∗+ 2

9
 1
2
 ∗2+

2
9
]

we can apply the same argument as 03(
1
2
∗ + 1

4
 ∗2 +

1
9
)  0, 03(2

∗
2 − 3∗ + 2

9
) = −0367, 03( 12 ∗2 + 2

9
) = 0

and 03 is convex both in (
1
2
∗ + 1

4
 ∗2 +

1
9
 2 ∗2 − 3∗ + 2

9
] and in (2 ∗2 − 3∗ + 2

9
 1
2
 ∗2 +

2
9
].

7.2 Proof of Lemma 5

Suppose that  ∈ (0 5
9
). Since 3(3) = 33(3), from (15) we obtain that the first order condition for 3,

at 3 = , is 3
2
 − 3

2
 + 3

2
2 +

1
3
− 6 = 0. Combining this with (14) yields ∗ ∗2 in (16). In order to see

that the prices in (16) constitute a NE of ∅ when  ∈ (0 59 ), notice that given 1 = 3 = ∗, we know from
(14) that ∗2 is a best reply for firm 2. From the point of view of firm 3, given 1 = ∗, 2 = ∗2 notice that
the inequality 3()  min{1() 2()} is equivalent to  ∈ (0 16 − 3

10
− 3

2
3)∪ ( 12 + 9

10
+ 3

2
3 1)

if 3 ∈ (0 ∗), is equivalent to  ∈ (12 + 9
10
 + 3

2
3

7
6
− 3

10
 − 3

2
3) if 3 ∈ (∗ 29 − 2

5
), is violated for

each  ∈ [0 1) if 3 ≥ 2
9
− 2

5
. Hence, for each 3 ∈ (0 29 − 2

5
), 3(3) is equal to

2
3
− 33 − 6

5
 and it is

immediate that 3 is maximized at 3 = ∗
Suppose that  ≥ 5

9
. In order to see that the prices in (17) constitute a NE of ∅ , notice that each

consumer buys only from firm 2, hence the profit of firm 3 is 0. Hence no 3  0 is a profitable deviation

for firm 3, as it leaves firm 3’s demand equal to 0. For firm 2, (14) implies that ∗2 is a best reply for firm 2,

given that  = 0,  ≥ 5
9
.

7.3 Proof of Lemma 6

In Subsection 5.2 we have established that given 1 = 3 = , the best reply for firm 2 is given by 2( 
2
)

in (19). Here we consider the point of view of firm 3 (a similar argument applies for firm 1). Given that firm

1, firm 2 play 1 = , 2 =  , we derive the demand function of firm 3 for 3  , which allows to derive the

first order condition from which (jointly with (19)) ∗  ∗2 in Lemma 6 are obtained. In the Supplementary
Material we derive firm 3’s complete demand function and show that 3 = ∗ is a best reply for firm 3.

7.3.1 Demand function for firm 3 for 3  

First we notice that the demand for firm 3 is 0 if 3  + 2
9
, because then each consumer prefers product

1 to 3 and product 1 to 3. Given 3 ∈ ( + 2
9
], we solve the inequality ( )  22( )

in region  , for  = 13 31 33, where 13 3133 are described in (10), with  = 1
2
+ 3

4
(3 − ) and

30



 = 2− 2. Moreover, we distinguish between 
13 and 

13, and 
31 and 

31 as described by Figure 33:

Figure 33

The sets 
13  


13 


31


31

33 in 2 when 3  

:

xA

xB

1

1

Q31
S

Q13
W Q33 Q13

E

Q31
N

y

y

z

z

(40)

Region 33 In region 33, the inequality 22( )  33( ) is equivalent to

  3− 3
2
 + 33 −  +

4

3
≡ 1()

We use 33 to denote the area of the subset of 33 that satisfies the inequality. We find that (i) if 1()  ,

that is if 3   −  − 2 − 2
9
, then 33 = ( − )2; (ii) if   1()  , that is if  −  − 2 − 2

9


3  2
5
 + 1

5
 − 4

5
 + 2

45
, then 33 = ( − )2 − 1

2
(1()− )

2
; (iii) if 1()    1(), that is if

2
5
 + 1

5
 − 4

5
 + 2

45
 3  1

4
 + 1

2
 − 1

2
 + 1

9
, then 33 =

1
2
( − 1())

2; (iv) if   1(), that is if
1
4
 + 1

2
− 1

2
+ 1

9
 3, then 33 = 0. Summarizing,

33 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( − )2 if 3   − − 2− 2
9
(i.e., if 1()  )

( − )2 − 1
2
(1()− )

2 if  − − 2− 2
9
 3 

2
5
 + 1

5
− 4

5
+ 2

45

(i.e., if   1()  )

1
2
( − 1())

2 if 2
5
 + 1

5
− 4

5
+ 2

45
 3 

1
4
 + 1

2
− 1

2
+ 1

9

(i.e., if 1()    1())

0
if 1
4
 + 1

2
− 1

2
+ 1

9
 3

(i.e., if   1())

(41)

Region 
13 In region 

13 , the inequality 22( )  13( ) is equivalent to

 
3

2
− 3

2
 + 3+

3

2
3 +  +

1

3
≡ 2()

We use 
13 to denote the area of the subset of 


13 that satisfies the inequality. We find that (i) if 2()  ,

that is if 3   −  − 2 − 2
9
then 

13 = ( − ); (ii) if   2()  , that is if  −  − 2 − 2
9


3  2
5
 + 1

5
 − 4

5
 + 2

45
, then 

13 = ( − ) − 1
2
(2()− )

2
; (iii) if   2() and 2(0)  , that is

if 2
5
 + 1

5
 − 4

5
 + 2

45
 3  2 − 3 − 4 + 2

9
, then 

13 = ( +  − 1
2
2() − 1

2
2()) ( − ); (iv) if

  2(0)  , that is if 2 − 3 − 4 + 2
9
 3 

1
2
 −  + 2

9
, then 

13 =
1
2
( − 2(0))

2; (v) if   2(0),

31



that is if 1
2
 − + 2

9
 3, then 

13 = 0. Summarizing,


13 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( − ) if 3   − − 2− 2
9
(i.e., if 2()  )

( − )− 1
2
(2()− )2

if  − − 2− 2
9
 3 

2
5
 + 1

5
− 4

5
+ 2

45

(i.e., if   2()  )

( +  − 1
2
2()− 1

2
2()) ( − )

if 2
5
 + 1

5
− 4

5
+ 2

45
 3  2 − 3− 4+ 2

9

(i.e., if   2(), 2(0)  )

1
2
( − 2(0))

2 if 2 − 3− 4+ 2
9
 3 

1
2
 − + 2

9

(i.e., if   2(0)  )

0 if 1
2
 − + 2

9
 3 (i.e., if   2(0))

(42)

Region 
13 In region 

13, the inequality 22( )  13( ) is equivalent to

 
3

2
− 3

2
 + 3+

3

2
3 − 2 + 7

3
≡ 3() (43)

We use 
13 to denote the area of the subset of 


13 that satisfies the inequality. We find that (i) if 3()  ,

that is if 3 
2
5
 + 1

5
 − 4

5
 + 2

45
, then 

13 = (1− )( − ); (ii) if   3() and 3(1)   (this implies

3()  ), that is if 2
5
 + 1

5
− 4

5
+ 2

45
 3  2 −3−4+ 2

9
, then 

13 = (1−)(−)− 1
4
(3()− )

2
;

(iii) if 3()   and   3(1), that is if 2 − 3 − 4 + 2
9
 3  1

4
 + 1

2
 − 1

2
 + 1

9
, then 

13 =

(− 1
2
3()− 1

2
3(1))(1− ); (iv) if   3() and 3(1)  , that is if 1

4
 + 1

2
− 1

2
+ 1

9
 3 

1
2
 −+ 2

9
,

then 
13 =

1
4
( − 3(1))

2
; (v) if   3(1), that is if

1
2
 − + 2

9
 3, then 

13 = 0. Summarizing,
46


13 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− )( − )
if 3 

2
5
 + 1

5
− 4

5
+ 2

45

(i.e., if 3()  )

(1− )( − )− 1
4
(3()− )

2 if 2
5
 + 1

5
− 4

5
+ 2

45
 3  2 − 3− 4+ 2

9

(i.e., if   3(), 3(1)  )

( − 1
2
3()− 1

2
3(1))(1− )

if 2 − 3− 4+ 2
9
 3 

1
4
 + 1

2
− 1

2
+ 1

9

(i.e., if 3()  ,   3(1))

1
4
( − 3(1))

2 if 1
4
 + 1

2
− 1

2
+ 1

9
 3 

1
2
 − + 2

9

(i.e., if   3(), 3(1)  )

0
if 1
2
 − + 2

9
 3

(i.e., if   3(1))

(44)

Total demand We have neglected the regions 
31 and 

31 as 

31 = 

13 and 
31 = 

13 . Therefore, the

total demand for firm 3 is 3(3) = 233 + 2

13 + 2


13, and from (41), (42), (44) we obtain

3(3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 − 2 if 3   − − 2− 2
9

2 − 2 − (1()− )
2 − (2()− )2 if  − − 2− 2

9
 3 

2
5
 + 1

5
− 4

5
+ 2

45

( − 1())
2
+ (2 + 2 − 2()− 2()) ( − )

+2(1− )( − )− 1
2
(3()− )

2 if 2
5
 + 1

5
− 4

5
+ 2

45
 3  2 − 3− 4+ 2

9

( − 1())
2
+ ( − 2(0))

2

+(2 − 3()− 3(1))(1− )
if 2 − 3− 4+ 2

9
 3 

1
4
 + 1

2
− 1

2
+ 1

9

( − 2(0))
2
+ 1

2
( − 3(1))

2
if 1
4
 + 1

2
− 1

2
+ 1

9
 3 

1
2
 − + 2

9

0 if 1
2
 − + 2

9
 3

(45)

46 In fact, 
13 in (44) applies as long as  ≥ 1

2
 − + 2

63
, which is equivalent to 2 − 3 − 4+ 2

9
≤ 1

4
 + 1

2
 − 1

2
 + 1

9
.

Although the opposite inequality holds in NE for  close to zero, in these cases the expression of 
13 does not depend on

whether  ≥ 1
2
 −  + 2

63
holds or not, as long as 3 is close to . We provide a complete analysis in the Supplementary

Material.
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7.3.2 The Candidate Equilibrium

The case of  ≤ 13
180

Consider   such that  − − 2− 2
9
≤  ≤ 2

5
 + 1

5
− 4

5
+ 2

45
, and +   5

36
;

these inequalities hold for the NE when  = 0: see Lemma 3. Then, for 3 slightly larger than  we find,

from (45), 3(3) = 2 − 2 − (1()− )
2 − (2()− )2, which is the expression in (20). Hence

03(3) = −
27

2
23 + (18 − 18− 36− 13)3 +

9

2
+ 1− 9

2
(+ 2−  +

2

9
)2 (46)

and the first order condition for 3, at 3 = , is− 9
2
 2+27+18+2−362−54− 21

2
−182−4+ 7

9
=

0. Jointly with  = 2
3
 + 2

3
 + 2

27
from (19), this yields ∗  ∗2 in (22), which satisfy the inequalities

 −  − 2 − 2
9
≤  ≤ 2

5
 + 1

5
 − 4

5
 + 2

45
and  +  ≤ 5

36
for each  ≤ 13

180
, but violate the latter two if

  13
180
.

The case of  ∈ ( 13
180

 5
9
) For   13

180
, we know that in NE the inequality 2

5
 + 1

5
 − 4

5
 + 2

45
 

holds, which is equivalent to   1
2
 −  + 1

18
. However, with reference to (45),   2 − 3 − 4 + 2

9

cannot hold as it is equivalent to   1
2
 −  + 1

18
. Then we consider   such that  +   5

36
and

2 −3− 4+ 2
9
   1

4
 + 1

2
− 1

2
+ 1

9
and for 3 slightly larger than , we have 3(3) = ( − 1())

2
+

( − 2(0))
2
+ (2 − 3()− 3(1))(1− ), which is the expression in (21). Then

03(3) =
189

2
23+(90− 36− 45 − 20) 3+

9

2
 2+

9

2
−18+4+9

2
2−9+2+182−8+8

9
(47)

and the first order condition with respect to 3, at 3 = , is 9
2
 2− 81

2
−18+4 +632+81−18+

182 − 8 + 8
9
= 0. Jointly with  = 1

27

p
324(+ )2 − 144(+ ) + 70 + 4

3
( + ) − 8

27
from (19), this

yields ∗  ∗2 in (23), which satisfy 2 −3−4+ 2
9
 1

4
 + 1

2
− 1

2
+ 1

9
and +  5

36
for each  ∈ ( 13

180
 5
9
).

7.4 Proof of Lemma 7

For each  ∈ (0 5
9
), we consider NE of 3, (

∗
1 
∗
2 

∗
3 ), such that 

∗
2−  ∗1, 

∗
1  ∗2−+ 2

9
, 1
2
 ∗3  ∗2−+ 2

9
.

While the first inequality is intuitive as   0, the second and third inequality are necessary for firm 1 and

firm 3 to have positive demand. For instance, if ∗1 ≥ ∗2 −  + 2
9
then each consumer prefers product A

(B) of firm 2 to product A (B) of firm 1, hence buys no product of firm 1. If there exists a NE such that

∗1 ≥ ∗2 − + 2
9
, then also firm 3 has zero demand (that is 1

2
 ∗3 ≥ ∗2 − + 2

9
), or else firm 1 can profitably

deviate by setting 1 =
1
2
 ∗3 . Moreover, it is necessary that 

∗
2 −  + 2

9
= 0,47 and ∗1 ≥ 0,  ∗3 ≥ 0 with at

least one equality. But then it is profitable for firm 2 to slightly increase 2 because firm 2’s demand has

zero elasticity at the equilibrium, such that a small price increase makes firm 2 lose a very small amount of

customers but increases the firm’s revenue from inframarginal consumers.

Given 1 2 such that 2 −   1  2 − + 2
9
, we examine how a consumer located at  ∈ [0 1) for a

product (which could be  or ) chooses between the product of firm 1 and the product of firm 2 if there

is no firm 3: (
for  ∈ [0 2

3
), 2()  1()⇐⇒    ≡ 1

3
− 3

2
(1 − 2 + )

for  ∈ [2
3
 1), 2()  1()⇐⇒    ≡ 5

6
+ 3

4
(1 − 2 + )

(48)

and notice that  ∈ (0 1
3
),  ∈ ( 5

6
 1) since 0  1− 2+  2

9
. As a consequence, we partition [0 1)× [0 1)

47 If ∗2 −+ 2
9
 0, then firm 2 may increase 2 and still sell both products to all consumers. If 

∗
2 −+ 2

9
 0, then setting

1  0 smaller than ∗2−+ 2
9
is a profitable deviation for firm 1 (for firm 3 it is profitable to set 3 smaller than 2

∗
2−2+ 4

9
).
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into the following subsets:⎧⎪⎪⎪⎨⎪⎪⎪⎩

11 = [0 )× [0 ), 

21 = [ 1
3
)× [0 ), 

21 = [1
3
 )× [0 ), 

11 = [ 1)× [0 ),

12 = [0 )× [ 1

3
), 

22 = [ 1
3
)× [ 1

3
), 

22 = [1
3
 )× [ 1

3
), 

12 = [ 1)× [ 1
3
),


12 = [0 )× [ 1

3
 ), 

22 = [ 1
3
)× [1

3
 ), 

22 = [ 1
3
 )× [ 1

3
 ), 

12 = [ 1)× [1
3
 ),


11 = [0 )× [ 1), 

21 = [ 1
3
)× [ 1), 

21 = [1
3
 )× [ 1), 

11 = [ 1)× [ 1)

(49)

Figure 34

The partition of [0 1)× [0 1)
described in (49)
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In order to derive the demand function for firm 1, with reference to the regions in (49) we need to

determine the area of the ( ) that satisfy the inequality 11( )  33( ) in the regions


11 , 


11 , 


11 , 


11 . Likewise, we need to determine the area of the ( ) that satisfy the inequality

21( )  33( ) in the regions 

21 , 


21 , 


21 , 


21 , the area of the ( ) that satisfy

the inequality 12( )  33( ) in the regions 

12 , 


12 , 


12 , 


12 .48 This is done in the

Supplementary Material in which, for 1 between max{2 −  1
2
3} and 2

5
3 +

1
5
(2 − ) + 2

45
, we find

1(1) as in (24); for 1 between
2
5
3 +

1
5
(2 −) + 2

45
and 1

3
3 +

1
3
(2 −) + 2

27
we find 1(1) as in (25).

In order to derive the demand function for firm 2, with reference to the regions in (49) we solve the

inequality 22( )  33( ) in the regions 

22 , 


22 , 


22 , 


22 , the inequality 21( ) 

33( ) in the regions 

21 , 


21 , 


21 , 


21 , the inequality 12( )  33( ) in the regions


12 , 


12 , 


12 , 


12 . This is done in the Supplementary Material in which, for 2 between −23+51− 29

and + 1, we find 2(2) as in (24); for 2 between −3+31− 2
9
and − 23+51− 2

9
we find 2(2)

as in (25).

In order to derive the demand function for firm 3, with reference to the regions in (49) we solve the

inequality 33( )  11( ) in the regions 

11 , 


11 , 


11 , 


11 , the inequality 33( ) 

21( ) in the regions 

21 , 


21 , 


21 , 


21 , the inequality 33( )  22( ) in the regions


22 , 


22 , 


22 , 


22 , the inequality 33( )  12( ) in the regions 


12 , 


12 , 


12 , 


12 .

This is done in the Supplementary Material, in which for 3 between
5
2
1− 1

2
(2−)− 1

9
and 1+2−+ 2

9
,

we find 3(3) as in (24); for 3 between max{41−2(2−)− 4
9
 1
2
1+

3
2
(2−)− 1

9
} and 5

2
1− 1

2
(2−)− 1

9

we find 3(3) as in (25).

Summarizing, (24) applies if(
max{2 −  1

2
3}  1 ≤ 2

5
3 +

1
5
(2 − ) + 2

45
 − 23 + 51 − 2

9
≤ 2  + 1

5
2
1 − 1

2
(2 − )− 1

9
≤ 3  1 + 2 − + 2

9

(50)

48 In fact, we can neglect 
11 , as in 

11 the set of ( ) that satisfy the inequality 11( )  33( ) has

the same area as the set of ( ) that satisfy 11( )  33( ) in 
11 . A similar remark explains why we can

neglect 
12 , 

12 , 

12 , 

12 , and also applies to the derivation of the demand functions of firms 2 and 3.
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and from (24) we obtain the following first order conditions for 1 2 3:
49⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(183 − 18(2 − )− 13) 1 − 27
2
21 − 9

2
 23

+93(2 − ) + 23 − 9
2
(2 − )2 + 5

2
(2 − ) + 7

9
= 0

−27
2
22 + (18+ 183 − 181 − 13) 2 − 9

2
2 − 93

+91 +
13
2
− 9

2
 23 + 931 + 23 − 9

2
21 +

5
2
1 +

7
9
= 0

3 − ( 131 − 1
3
+ 1

3
2 +

2
27
) = 0

(51)

By solving (51) numerically, we obtain a solution that satisfies (50) for  ∈ (0 26
77
] but not for   26

77
. In

particular, for   26
77
the inequality 1 ≤ 2

5
3+

1
5
(2−)+ 2

45
is violated, therefore also −23+51− 2

9
≤ 2

and 5
2
1 − 1

2
(2 − )− 1

9
≤ 3 are violated. However, (25) applies if(

2
5
3 +

1
5
(2 − ) + 2

45
 1 

1
3
3 +

1
3
(2 − ) + 2

27
 − 3 + 31 − 2

9
 2  − 23 + 51 − 2

9

max{41 − 2(2 − )− 4
9
 1
2
1 +

3
2
(2 − )− 1

9
}  3 

5
2
1 − 1

2
(2 − )− 1

9

(52)

and (25) yields the following first order conditions for 1 2 3:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2943
32

21 −
¡
153
4
3 +

369
8
(2 − ) + 77

4

¢
1 +

9
8
 23 +

13
4
3

+117
8
3(2 − )− 99

32
(2 − )2 + 25

8
(2 − ) + 61

72
= 0

−459
32

22 +
¡
153
8
+ 63

4
3 − 99

8
1 − 53

4

¢
2 − 153

32
2 − 63

8
3 +

99
16
1

+53
8
− 45

8
 23 +

117
8
31 +

7
4
3 − 369

32
21 +

25
8
1 +

55
72
= 0

27
4
 23 +

¡
9
2
1 − 45

2
(2 − )− 5¢3 − 153

16
21 +

13
4
1

+ 117
8
1(2 − ) + 63

16
(2 − )2 + 7

4
(2 − ) + 7

36
= 0

(53)

By solving (53) numerically, we obtain a solution that satisfies (52) for each  ∈ (26
77
 5
9
). In the Supplementary

Material we show that the solution we obtain is a NE for each  ∈ (0 5
9
).

7.5 Proof for Lemma 8

Here we provide some details about the derivation of (27)-(28), (30)-(31), and the derivation of the prices

 ∗  ∗2 in Lemma 8. In the Supplementary Material we provide full details and prove that Lemma 8 identifies
a NE of 123 for each  ∈ (0 5

9
).

7.5.1 Demand function for firm 2

Given 1 = 3 =  and  = 1
2
2 − 1

2
 − , in order to determine the set of ( ) which satisfy (26) we

partition [0 1)× [0 1) into the following nine regions, represented in Figure 35:

 = [0 1
3
)× [0 1

3
),  = [1

3
 2
3
)× [0 1

3
),  = [2

3
 1)× [0 1

3
),

 = [0 1
3
)× [1

3
 2
3
),  = [1

3
 2
3
)× [1

3
 2
3
),  = [2

3
 1)× [1

3
 2
3
),

 = [0 1
3
)× [2

3
 1),  = [1

3
 2
3
)× [2

3
 1),  = [2

3
 1)× [2

3
 1).

(54)

49The first order condition for 3 is written taking into account that the derivative of the profit function of firm 3, given 3 in

(24), factors into 27
2


3 − ( 131 − 1

3
+ 1

3
2 +

2
27
)
 
3 − (1 − + 2 +

2
9
)

, and since 1

3
1− 1

3
+ 1

3
2+

2
27

 1−+2+
2
9

(because 1+− 2
9
 2 in equilibrium, otherwise firm 1 has zero demand), it follows that 3 = 1−+ 2+

2
9
is a minimum

point for the profit of firm 3, 3 =
1
3
1 − 1

3
+ 1

3
2 +

2
27
is a maximum point.
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Figure 35:

the partition of [0 1)× [0 1)
described in (54)

QSW QSM QSE

QMW QMM QME

QNW QNM QNE

xA

xB

1

1

This partition is useful because

22( )  33( )⇔

⎧⎪⎪⎪⎨⎪⎪⎪⎩
  1

3
−  +

3
2
 if ( ) ∈ 

  1
2
 − 1

6
+ 3

2
 if ( ) ∈  ∪

  1
3
+ 2 − 3 if ( ) ∈  ∪

  4
3
−  − 3 if ( ) ∈  ∪ ∪ ∪

(55)

22( )  11( )⇔

⎧⎪⎪⎪⎨⎪⎪⎪⎩
  2

3
−  + 3 if ( ) ∈  ∪ ∪ ∪ 

  2 − 4
3
+ 3 if ( ) ∈  ∪

  2
3
+ 1

2
 − 3

2
 if ( ) ∈  ∪

  5
3
−  − 3

2
 if ( ) ∈ 

(56)

From (55)-(56) it is immediate to derive 2(2) = 1 if   −29 , 2(2) = 0 if  ≥ 1
9


For  ∈ [−2
9
− 1

18
), (55)-(56) identify the decagon in Figure 20.50 Using x6 = (0 0), x7 = (1 0),

x8 = (1 1), we see that the area of the decagon is equal to 1 minus A(x̄1x6x1)+A(x2x7x4x3)+A(x5x8x̄5)+
A(x̄2x̄3x̄4x̄7), in which A(z1z) is the area of the polygon with vertices z1z. Since A(x̄1x6x1) +
A(x2x7x4x3)+A(x5x8x̄5)+A(x̄2x̄3x̄4x̄7) = ( 2

3
+3)2+2

¡¡
2
3
+ 3 + 2

9
+ 
¢
(2
9
+ )1

2
+ 1

2
( 4
9
+ 2)( 2

9
+ )

¢
=

15( 2
9
+ )2, it follows that 2(2) = 1− 15( 29 + )2.

If  ∈ [− 1
18
 1
9
), then (55)-(56) identifies the hexagon in Figure 21. We use L(z1z2) to denote the length of

the segment that connects point z1 to point z2, and find that L(y1ȳ1) = √2(4
9
− ), L(y2ȳ2) = √2(5

9
− 2),

L(y1y3) = 3√2( 1
9
− ), hence A(y1y2ȳ1) = ¡√2( 4

9
− ) +

√
2(5
9
− 2)¢ 1

2
· 3√2(1

9
− ) = 3(1− 3)( 1

9
− ).

From  = 1
2
2 − 1

2
 −  we obtain (27), and from Π2(2) = 22(2) we obtain Π

0
2(2) below, which

yields (28):

Π02(2) =

(
−45

4
 22 + (15 + 30− 20

3
)2 + 1− 15(12 + − 2

9
)2 if  + 2− 4

9
≤ 2   + 2− 1

9
27
4
 22 − (9 + 18+ 4)2 + 1

12
(3 + 6+ 2) (9 + 18+ 2) if  + 2− 1

9
≤ 2   + 2+ 2

9

(57)

50Precisely, if  ∈ [− 2
9
− 1

9
) then (55)-(56) is satisfied for each ( ) ∈  ∪  ∪  ∪  ∪  and the

points x1 x5 x̄1  x̄5 all lie in  ∪  ∪  ∪  , whereas if  ∈ (−1
9
− 1

18
], then x1x2x4x5 x̄5 x̄4 x̄2 x̄1

belong to  ∪ ∪ ∪ . But in both cases the area of the decagon is evaluated as described in the following.
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7.5.2 Demand function of firm 3 and candidate equilibrium

Given 1 =  and  = 3 −  ,  = 3 − 2 + 2, in order to determine the set of ( ) which satisfy

(29), we notice that

33( )  22( )⇔

⎧⎪⎪⎪⎨⎪⎪⎪⎩
 ≤ 1

3
−  − 3

4
 if ( ) ∈ 

 ≤ 1
2
 − 1

6
− 3

4
 if ( ) ∈  ∪

 ≥ 1
3
+ 2 +

3
2
 if ( ) ∈  ∪

 ≥ 4
3
−  +

3
2
 if ( ) ∈  ∪ ∪ ∪

(58)

33( )  11( )⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 ≤ −32−  if ( ) ∈ 

 ≤ 2 − 3
2
− 1 if ( ) ∈ 

 ≤ 1−  − 3
2
 if ( ) ∈ 

 ≥ 3
4
+ 1

2
 +

1
2

if ( ) ∈ 

 ≥ 3
4
−  + 1 if ( ) ∈ 

 ≥ 3
4
+ 1

2
 if ( ) ∈ 

 ≤ 1−  − 3
2
 if ( ) ∈ 

 ≤ 2 − 3
2
 if ( ) ∈ 

 ≤ 2−  − 3
2
 if ( ) ∈ 

(59)

When  is close to 0, in equilibrium both  and  are close to 0. In this case the set of ( ) which

satisfy (58)-(59) is described by Figure 22 and its area is A(x1x2x3x4)+A(x̄1x̄2x̄3x̄4)+A(x5x6x7x̄7x̄6x̄5),
which reduces to (30). Precisely, 3(3) is given by (30) as long as 3 is between

1
2
 −  + 1

2
2 − 1

9
and

22−4−+ 2
9
. HenceΠ03(3) =

27
4
 23+

¡
9− 9

2
 − 9

2
2 − 4

¢
3+

9
2
2−9− 98 2+− 922+ 9

2
2−2−

9
8
 22+2+

1
3
and the first order condition for 3, at 3 =  , is 9

8
 2−3− 9

2
2+ 9

2
2−2− 9

8
 22+2+

1
3
= 0.

Combining this with (28) (for the case of  + 2 ≤ 31
90
) yields

 ∗ =
1

13− 54
µ
1082 + 108( ∗2 )

2 − 270 ∗2 − 23−
727

18
− 89() + 89(18− 972

2 − 173)
2916()

¶
(60)

 ∗2 = +
11

18
+ () +

9722 − 18+ 173
2916()

(61)

in which () = 1
18

3

r
1622 − 453− 76

3
+ (13− 54)

q
−4324 − 1843 − 857

3
2 − 506

3
− 27869

729
.51 The

prices in (60)-(61) satisfy 1
2
 −  + 1

2
2 − 1

9
≤  ≤ 22 − 4 −  + 2

9
for  ∈ (0 71

630
], but violate the

second inequality if   71
630
.

Then, considering 3 larger than 22 − 4 −  + 2
9
, 3(3) is the area of the disconnected set in

Figure 23, that is A(y1y2y3) +A(ȳ1ȳ2ȳ3) +A(y4y5ȳ5ȳ4), which reduces to (31). Hence Π03(3) = 9 23 +¡
21
2
− 3

4
 − 21

4
2 − 7

3

¢
23+3

¡
1
2
 − + 1

2
2 +

2
9

¢2
+ 1
2

¡
3
2
2 − 3+ 2

3

¢2− 9
8
 2 and the first order condition

with respect to 3, at 3 =  , is 57
8

¡
 − (2 + 4

9
− 2)¢ ¡ − ( 5

19
2 +

20
171
− 10

19
)
¢
= 0. Combining this

with (28) (for the case of  + 2  31
90
) yields  ∗2  

∗ in Lemma 8(ii).

51 Solving the system consisting of 9
8
 2 − 3 − 9

2
2 + 9

2
2 − 2− 9

8
 22 + 2 +

1
3
= 0 and (28) leads to the following third

degree equation in  : −3 3+( 53
6
−3) 2+(62+ 59

18
− 226

81
)− 10

9
2− 40

81
+ 227

972
= 0, for which no solution can be expressed

in terms of real radicals. For this reason () is a complex number, although ∗ and ∗2 in (60)-(61) are real numbers.
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7.6 Profit comparisons for the study of the reduced game in Γ: (33)-(36)

Here we report the plots of the profit functions linked to (33)-(36):

Π1232 , solid curve, vs

Π32, dashed curve: see (33)

(Figure 36)

Π33, solid curve, vs

Π∅3 , dashed curve: see (34)

(Figure 37) α
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Figure 36 Figure 37

Π1233 , solid curve, vs

Π13, dashed curve: see (35)

(Figure 38)

Π1233 , solid curve, vs

Π23, dashed curve: see (36)

(Figure 39)

Figure 38 Figure 39
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