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Abstract

Modeling crude oil volatility is of substantial interest for both energy researchers and pol-

icy makers. Many authors emphasize the link between this volatility and some exogenous

economic variables. This paper aims to investigate the impact of the U.S. Federal Reserve

monetary policy on crude oil future price (COFP) volatility. By means of the recently

proposed generalized autoregressive conditional heteroskedasticity-mixed data sampling

(GARCH-MIDAS) model, the Effective Federal Fund Rate (EFFR) - as a proxy of the

monetary policy - is plugged into the mean-reverting unit GARCH(1,1) model. Strong

evidence of an inverse relation between the EFFR and COFP volatility is found. This

means that an expansionary monetary policy is associated with an increase of the COFP

volatility. Conjecturing that the unusual behavior of the COFP in 2007-2008 was driven

by a monetary policy shock, we test the presence of mildly explosive behavior in the

prices. The sup Augmented Dickey-Fuller test (SADF) confirms the presence of a bubble

in the COFP series that started in October 2007 and ended in October 2008. We expect

that the COFP-EFFR association could be affected by such a bubble. Therefore, we ap-

ply the same experimental set-up to two sub-samples - before and after October 2007.

Interestingly, the results show that EFFR influence on COFP volatility is greater in the

aftermath of the bubble.
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1. Introduction

According to the consolidated literature, volatility is a central aspect in finan-

cial markets (Poon and Granger, 2003). Kroner et al. (1995) argues that com-

modity prices have historically experienced periods of great volatility. Within the

vast universe of commodities, modelling crude oil volatility is of substantial inter-

est for both energy researchers and policy makers. In fact, persistent changes in

crude oil volatility may affect the risk exposure of both producers and industrial

consumers, altering the incentives to invest in inventories and facilities for pro-

duction and transportation (Pindyck, 2004). Therefore, more risky markets lead

to economic instability for both energy net-exporter and net-importer countries

(Narayan and Narayan, 2007). Several authors, for instance Sadorsky (2006), Efi-

mova and Serletis (2014) and Agnolucci (2009), have addressed the modelling of

the volatility in these markets using generalized autoregressive conditional het-

eroskedasticity (GARCH) models. However, the classic GARCH structure relies

on the (squared log) daily returns, not taking into account the association between

the volatility and exogenous variables sampled at different frequencies. This could

lead to less accurate volatility estimates, mainly when macroeconomic shocks af-

fect financial stability.

This paper aims to investigate the impact of such a monetary policy on the

crude oil future price (COFP) volatility. In general, the debate about the influence

of monetary policy on asset volatility has been a controversial and much disputed

subject (Bernanke and Gertler, 1999). The influence of the COFP on the mone-

tary authorities’ decisions has been highlighted by a number of studies (Bernanke

and Blinder, 1992; Ferderer, 1997), while little attention has been devoted to the

discussion of a possible reverse causality. Several authors (as few example Bo-

rio and White (2004), Bordo and Jeanne (2002)) point out that monetary policies

could seriously influence asset price movements but, as far as we know, investi-

gating whether the monetary policy affects COFP volatility is still an open issue.

This study aims to offer some insights into this debate. By means of the GARCH-

MIDAS model proposed by (Engle et al., 2013) it is possible to plug some ex-

ogenous economic variables into the GARCH equation. We choose the Effective

Federal Fund Rate (EFFR) as a proxy for U.S. monetary policy. It is worth not-

ing that the relevance of this topic has increased in recent years because the U.S.

monetary authorities hugely cut the EFFR in order to face the latest crisis. Such

an aggressive expansionary monetary policy coincided with an unusual surge in

COFP followed by a sharp decrease. This pattern is consistent with mildly explo-

sive behavior in the asset prices. In fact, the SADF test proposed by Phillips et al.
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(2011) detects such behavior from October 2007 to October 2008. Thus, we carry

out the same experimental set-up, dividing the full sample into two sub-samples,

before and after-October 2007.

The rest of the paper is structured as follows. Section 2 briefly introduces the

GARCH-MIDAS model and the SADF test. Section 3 describes the data used to

implement the empirical analysis and illustrates the empirical results. Section 4

provides a discussion of the main findings and their policy implications. Section

5 concludes.

2. The methodology

The GARCH-MIDAS model

During the last decades, many different approaches have been proposed to

model volatility. Among these, a particular role is played by the GARCH (Boller-

slev, 1986) models. Within this framework, the volatility of an asset depends

on its past information. The volatility may also be linked with some exogenous

variables. For instance, Schwert (1989) has noted that the volatility of some eco-

nomic variables (such as bond returns, inflation rates and so forth) varies through

time together with that of the stock returns. Other studies have showed that the

risk premiums are counter-cyclical (Fama and French, 1989). Endowed with this

knowledge, new models specifying volatility as a product or a sum of different

components have arisen. Engle and Lee (1993) consider a GARCH model with

two components of volatility, a long- and a short-run one. More recently, Adrian

and Rosenberg (2008) identify a short-run component, capturing a market skew-

ness risk, interpreted by the authors as a measure of the tightness of financial

constraints and a long-run component, related to business cycle risk. Although

there are many models considering volatility driven by multiple components (see,

among others, Ding and Granger (1996), Gallant et al. (1999), Alizadeh et al.

(2002) and Chernov et al. (2003)), few are those that directly link these compo-

nents with exogenous variables. The GARCH-MIDAS model, recently proposed

by Engle et al. (2013), allows to explicitly consider these links in a one-step proce-

dure. Such a model has been derived from the combination of the Spline-GARCH

model (Engle and Rangel, 2008) with the mixed data sampling (MIDAS) frame-

work (Ghysels et al., 2005).

In the GARCH-MIDAS context, the general conditional heteroskedastic model

is defined as:

ri,t = µ +
√

τt×gi,tεi,t , ∀i = 1, · · · ,Nt , (1)
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where ri,t represents the log-return for day i of the period t, which has Nt days. The

period t may be a week, a month, a quarter, and so forth, depending on frequency

of the exogenous variable. Note that Nt may differ across the periods t. Moreover,

µ stands for the (unconditional) mean of the ri,t process, and εi,t |Φi−1,t ∼ N(0,1),
where Φi−1,t denotes the information set-up to day i−1 of period t.

Therefore, within the GARCH-MIDAS framework, the conditional variance,

namely (τt × gi,t), is given by the product of two components, one varying each

period t and one each day i. The former can be considered a long-run component,

the latter as a short-run one. The short-run component follows a mean-reverting

unit GARCH(1,1) process, incorporating the effects of the long-run component as

follows:

gi,t = (1−α−β )+α
(ri−1,t−µ)2

τt

+βgi−1,t , (2)

with α > 0, β ≥ 0 and α +β < 1. The long-run component τt is obtained as a

filter of the exogenous variable Xt :

τt = exp

(

m+θ
K

∑
k=1

δk(ω)Xt−k

)

, (3)

where the exponential transformation is needed in order to have τt > 0, given that

the exogenous variable Xt can also assume negative values. Equation (3) says that

the long-term component is a function of the K lagged observed variable Xt , where

each lagged value is weighted according to the Beta function:

δk(ω) =
(k/K)ω1−1(1− k/K)ω2−1

∑
K
j=1( j/K)ω1−1(1− j/K)ω2−1

(4)

The Beta function is very flexible, allowing for equally, increasing or decreas-

ing weighted schemes, provided that ωn ≥ 1, with n = 1,2. For instance, ω1 =
ω2 = 1 yields the equally weighted scheme, ω1 >ω2 the monotonically increasing

weighted scheme (farther observations are weighted more) and ω1 <ω2 the mono-

tonically decreasing weighted scheme (closer observations are weighted more).

The number of lags K is normally determined by profiling the likelihood or a

properly chosen information criteria.

Under this configuration, the unconditional variance of ri,t is not fixed but
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varies over periods t:

Et−1

[

(ri,t−µ)2
]

= τtEt−1 (gi,t) = τt . (5)

However, if θ = 0 in equation (3), then the long-term component reduces to a

constant ∀t, such that the unconditional variance of ri,t returns to be invariant

through time:

Et−1

[

(ri,t−µ)2
]

= exp(m)Et−1 (gi,t) = exp(m). (6)

This formalization of the GARCH-MIDAS model considers the fixed estimator

for the specification of the MIDAS filter (equation (3)), given that τt is constant

within each period t while it varies across periods1

The parameter space of the GARCH-MIDAS model just presented is Θ =
{µ,α,β ,m,θ ,ω1,ω2}. The estimation of the unknown parameters is carried out

by maximizing the following log-likelihood:

LLF =−
1

2

T

∑
t=1

[

Nt

∑
i=1

[

log(2π)+ log(gi,tτt)+
(ri,t−µ)2

gi,tτt

]]

(7)

The SADF test

According to Phillips et al. (2011), one of the most debated issues in macroe-

conomics and finance in recent years is the investigation of the unusual periodic

surges and falls in asset prices. In this paper, we consider this kind of behaviors a

rational bubble2.

Gürkaynak (2008) provides an extensive review of the literature on bubble de-

tection dating back to the early 1980s. In particular, the author highlights the theo-

retical limits and the econometric problems affecting the methodologies proposed

at that time. Phillips et al. (2011) address these issues by proposing a recursive

1Engle et al. (2013) propose also a version of the MIDAS filter that allows for daily variation

of the long-term τt , which would become τi,t (rolling estimator). However, as pointed out by the

authors, there are negligible differences between the long-term component obtained by using a

fixed or a rolling estimator.
2We consider as rational bubble a generic deviation (typically a huge surge followed by a sharp

reverse correction) of the asset price from its fundamental value driven by rational expectation.
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unit root test, namely the SADF test. The test is based on sequential implemen-

tation of a right-tail unit root test in a recursive sub-sample with a fixed starting

point and an expanding window. The test statistic is the sup value3 of the corre-

sponding ADF statistic sequence. Therefore, the SADF test identifies period by

period the presence of a unit root against the alternative of explosive behavior.

Moreover, the recursive implementation allows to identify both the starting and

the ending points of the explosive autoregressive process.

Formally, the asset price process pt can be generalized as follows:

pt = µ +δ pt−1 +
l

∑
i=1

φi∆pt−i + εt , with t = 1, · · · ,T, (8)

where εt
iid
∼ N(0,σ2), µ is the intercept, l is the maximum number of lags, φi∆pt−i

with i = 1 · · · l are the different lag coefficients, and εt is the error term. Contrary

to the notation of the GARCH-MIDAS model, here the time unit t represents a

day.

According to Phillips et al. (2012b), since adding lag orders can potentially

bias the estimation results, we set l = 0. The recursive formalization of the SADF

test is:

pP
t = dT−η +δ pP

t−1 + εt , with P = t +w, · · · ,T. (9)

In equation (9), pP
t denotes the price series from the period t throughout the period

P. This formalization allows for the window to be enlarged. At the beginning, the

window has a length of w, and at the end a length of T − t. Moreover, as done by

Phillips et al. (2012b), the drift µ changes in dT−η .

Following Phillips et al. (2012a), we assume that the intercept does not affect

the limit distribution. This means that the implied drift in the process is negligible

as it has a smaller order than the stochastic trend4. In other words, we assume

the risk premium component is negligible, allowing us to consistently distinguish

run-ups generated by the explosive behavior from a unit root process for a fixed

and constant d.

Therefore, the null and alternative hypotheses are:

3That is, the supremum which corresponds to the highest value of the original test statistic.
4Phillips et al. (2012a) showed that when η > 0.5 the finite samples distribution moves toward

the asymptotic ADF distribution as η increases i.e. the order of the drift decreases.
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{

H0 : δ = 1

H1 : δ > 1

Under the null hypothesis the regression model is consistent with a random

walk process with an asymptotically negligible drift. Therefore, d and η and θ

are equal to unity. However, under the alternative δ > 1, the price sequence is

diverted from a random walk process, providing evidence of explosive behavior

in the series.

3. Data and empirical results

In this paper we use data on crude oil and the U.S. interest rate over the period

1998-2013.

Crude oil future price

Since crude oil is the most actively traded physical commodity worldwide,

crude oil futures allow traders and investors to take positions in this key compo-

nent of the global economy. In what follows, we consider light sweet crude oil

futures traded on the New York Mercantile Exchange (NYMEX), a division of

the CME Group, which is the most liquid global forum for the exchange of raw

materials on the market, characterized by the greatest trading volume of the ex-

change of futures contracts for commodities. The CMEs Light Sweet Crude Oil

(WTI) futures contract is the benchmark contract for U.S. crude oil. It is traded

in units of 1,000 barrels and the delivery point is Cushing (Oklahoma); it is also

accessible to the international spot markets via pipelines. We collected daily data

on the price in these contracts from the Bloomberg dataset. Many authors show

that for most futures contracts, at any given time, one contract will typically be

traded much more actively than others. Since the most traded volume is typically

concentrated in the front-month contract (i.e. the contract nearest to expiration),

the price sequence is constructed considering the rolling nearby futures price (i.e.

using prices until near the maturity date and then switching to the subsequent ma-

turing contract prices). In other words, on each day t, we use the price of the

shortest duration contract that could be purchased in the futures market5. It is

5In particular, we use data which reflect the price registered at the end of both the CME Globex

(the electronic futures trading platform) and the Pit (a physical area of trading floor) sessions.
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worth highlight that front month contracts are generally the most liquid of futures

contracts, in addition to having the smallest spread between the futures price and

the spot price for the underlying commodity.

Effective Federal Fund Rate

As a proxy for the monetary policies implemented by the U.S. we use the

monthly percent (not seasonally adjusted) series of EFFR collected from the Fed-

eral Reserve Bank of St. Louis Economic Data (FRED). Since each bank has

an obligation to hold a certain percentage of deposits at its local Federal Reserve

branch office each night to meet the reserve requirement, the Federal Fund rate is

the rate that banks charge each other for overnight loans to meet this requirement.

In particular, EFFR is the weighted average of all these interest rates. EFFR is

traditionally considered the most important tool of U.S. monetary authorities, in

order to manage the monetary policy. In fact, when the Federal Reserve decides

on an expansionary monetary policy, it purchases securities (typically short-term

government bonds) from its member banks. This operation increases the reserve

of each bank pushing the institutions which have surplus balances in their reserve

accounts (relative to the mandatory requirement) to lower the rate at which they

lend out overnight the extra funds to other banks in need of larger balances. Ob-

viously, when the Federal Reserve targets a higher and more restrictive monetary

policy, it does the opposite. In what follows, we chose to use the EFFR monthly

differences (rather than the level) in order to identify the monetary policy regime

switches (expansionary or restrictive).

Descriptive analysis

The descriptive analysis of our data highlights that both the series present rel-

evant shocks in the considered period. In particular, in mid-2007 the U.S. mon-

etary authorities made a huge cut in the EFFR in order to face the incoming cri-

sis (the EFFR level decreased from 5.26% in July 2007 to 0.16% in December

2008). Such an aggressive expansionary monetary policy anticipated a shock to

the COFP which starting in the late 2007 experienced a rapid increases over its

historical peak in July 2008 (reaching US$ 145 a barrel) and then fell (until US$

33 a barrel) in December of the same year (see Figure1 below).
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Figure 1: Monetary Policy and Crude Oil future prices from 1998 to 2013
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Empirical results6

Before introducing the results of the GARCH-MIDAS estimation, with refer-

ence to the maximization of the log-likelihood in (7), we remark that the start-

ing points of the parameters as well as the number of lags K quite affect the

convergence of the chosen algorithm, namely the Broyden, Fletcher, Goldfarb

and Shanno (BFGS) method (Shanno, 1985). The following discussion concerns

our choice about the starting points of Θ and K in order to initialize the log-

likelihood. First of all, we set K = 12 in order to include one year of observations

for the macroeconomic variable in the long-term component. Then, we set µ = 0,

α = 0.01 and β = 0.90, according to widespread empirical evidence. The greatest

variability of the starting log-likelihood values derives from the parameters m and

θ . We let θ = 0 because we are interested in the sign together with the power of

the exogenous variable explaining the volatility. Setting θ = 0 without any con-

straints makes the parameter free to go either in a positive or negative domain.

With reference to the initial values of ω1 and ω2, these weight parameters are

fixed to their lower bound, that is ω1 = ω2 = 1. Finally, given the just discussed

initial values just discussed, m is fixed such that the starting log-likelihood value

is maximum. With the data and time period under consideration, this happens

setting m =−8.

The results from the GARCH-MIDAS model are summarized in Table 1. For

comparison purposes, we also report the GARCH(1,1) estimated coefficients.

Table 1: Parameter Estimates of GARCH(1,1) and GARCH-MIDAS models

Sample µ α β m θ ω1 ω2

GARCH(1,1)
0.0007 0.0529 0.9404 - - - -

(2.24) (4.00) (62.27) - - - -

GARCH-MIDAS
0.0007 0.0725 0.9134 -7.4316 -0.5342 14.4893 4.5516

(2.19) (8.98) (85.48) (88.52) (4.01) (41.42) (18.31)

Notes: The numbers in parentheses are robust t-stats computed with HAC standard errors

First of all, we note that the common parameters of the two models are quite

similar and highly significant. Figure 2 below shows graphically the differences

6The results of this work concerning the ADF test have been carried out by means of an

Eviews Add-in developed by Itamar Caspi. All the remaining empirical applications have been

implemented by R. The R code is available upon request.
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between the volatility estimated through a GARCH(1,1) model (black line) and

that estimated by means of the GARCH-MIDAS model. The two models follow

the same pattern but, considering the contribution of the long-run component, the

estimated volatilities diverged according to the period of greater instability.

Figure 2: GARCH (1,1) vs GARCH-MIDAS
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With reference to the GARCH-MIDAS model, we are mainly interested in the

significance, the sign and the magnitude of the coefficient θ . In fact, it deter-

mines how much the exogenous variable affects the asset volatility. In our case,

θ is statistically different from zero and shows an inverse relation between EFFR

and COFP volatility. Furthermore, the parameters ω1 and ω2 determine both the

transmission lag and the elasticity of monetary policy on the COFP volatility. Ac-

cording to Engle et al. (2013), the elasticity is calculated as follows:

ε = expθ ·δk(ω)−1, (10)

In particular, the maximum weighted EFFR is the nine month lagged one. As

a consequence, a 1% decrease of the EFFR today (expansionary monetary policy)

would increase the COFP long-run volatility by 15.76% nine months later.

As discussed before, in mid-2007 the incoming crisis forced the monetary au-

thorities to decide on an expansionary monetary policy. This shock anticipated an

unusual surge of the COFP followed by a rapid sharp decrease. The SADF test is
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used in order to control if this unusual pattern of the COFP may be associated with

a bubble. Effectively, the SADF test (Figure 3) confirms the presence of mildly

explosive behavior in the COFP series from October 2007 to October 20087.

Figure 3: Results from SADF test and critical values
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Figure 3 shows, at a glance, the presence and the timing of such a bubble in

the COFP. In particular, the starting point of a bubble is the first chronological ob-

servation in which a value of ADF test sequence crosses the corresponding critical

value from below. Instead, the ending point is the first chronological observation

in which a value of the ADF test sequence crosses the corresponding critical value

from above. This procedure signals the presence of multiple bubbles. However,

the bubbles that burst before the 2008 are not considered as relevant because of

the moderate intensity and/or the short time-span. Conversely, the latest bubble

is very considerable because of the magnitude and the duration. According to the

SADF results, it started in October 2007 and ended in October 2008.

7According to Gilbert (2010), the initial window w for the recursion test is set to 22 observa-

tions, which corresponds to about one month. The critical values necessary for the inference and

data-stamp procedure are calculated with a significance level of 95% and derived as a by-product

of 2000 recursive Monte Carlo simulations obtained using a finite sample size. The resulting

SADF test statistic is 2.78 with a p-value of 0.0005
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As a consequence, we expect that the COFP-EFFR association could be af-

fected by such a bubble. Therefore, we aim to test whether the influence of the

monetary policy changes in accordance with the bubble. In particular, we apply

the same experimental set-up to two sub-samples - before and after October 2007.

The estimated coefficients of the full sample and first and second sub-samples

are reported in Table 2.

Table 2: Parameter Estimates of GARCH-MIDAS model

Sample µ α β m θ ω1 ω2

Full sample
0.0007 0.0725 0.9134 -7.4316 -0.5342 14.4893 4.5516

(2.19) (8.98) (85.48) (88.52) (4.01) (41.42) (18.31)

1st sub-sample
0.0010 0.0677 0.8605 -7.5745 -0.8427 1.0062 7.6336

(2.25) (5.72) (34.16) (122.55) (7.16) (8.19) (52.18)

2nd sub-sample
0.0004 0.1649 0.8025 -7.5886 -1.8280 5.4596 2.4101

(0.85) (4.66) (21.29) (9.03) (21.63) (31.24) (5.98)

Notes: The numbers in parentheses are robust t-stats computed with HAC standard errors

The results confirm the inverse relation between EFFR and COFP volatility

in both sub-samples. However after October 2007, the impact of the monetary

policy is much larger (θ is more than double the estimate for the full sample and

the first sub-sample). As an example, in this case a 1% decrease of the EFFR today

(expansionary monetary policy) would increase the COFP long-run volatility by

31.63% nine months later8.

4. Discussion and policy implications

Results from the GARCH-MIDAS estimation show that EFFR is inversely as-

sociated with COFP volatility. This is not a brand new result. The proactive role of

monetary policies on the asset prices (and the endogeneity of financial instability

with respect to the monetary policies) has been a heavily debated economic issue

in recent years (Bernanke and Gertler, 1999, 2001; Cecchetti et al., 2000). In ad-

dition, a number of empirical analyses (as an example Krichene (2006)) argue that

during a demand shock, falling interest rates causes oil prices to rise. However,

8Interestingly, as happened for the full sample, a modification of the EFFR this month will

produce the greatest volatility change in the next nine months.
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as far as we know, for the first time these results arise from a one-step empirical

estimation, i.e. by plugging the proxy for the monetary policy directly into the

volatility equation. Furthermore, the results from the SADF test and those from

GARCH-MIDAS on two sub-samples allow us to conjecture that the inverse rela-

tion between monetary policy and COFP volatility is much stronger when the cut

of the interest rate causes mildly explosive behavior in the asset prices. The hy-

pothesized mechanism is consistent with the literature on rational bubbles: first,

prices increased in line with the beliefs of investors who expected that counter-

cyclical monetary policy would be effective and the crisis would end soon with

few consequences on the real economy. Then, when the persistence of the down-

turn changed investors’ beliefs, the threat of a prolonged recession led the crude

oil future prices to collapse and the COFP volatility to increase as a consequence.

This paper provides some warnings to policy makers aiming to stimulate demand

by means of an expansionary monetary shock. In fact, the results suggest that

an unexpected increase of COFP volatility should offset (at least partially) the

stimulus package.

5. Conclusion

The aim of this paper has been to investigate the impact of monetary policy

on COFP volatility. The considered data cover the period from January 1998 up

to December 2013. By means of the GARCH-MIDAS model we plugged EFFR

(as a proxy for U.S. monetary policy) as a volatility determinant into the GARCH

equation. In particular, GARCH-MIDAS allows to split the volatility into two

components: the short-run and the long-run ones. The long-run component filters

the macroeconomic variable through a weight function. This long-run compo-

nent varies monthly and affects the short-run one. The latter component, in turn,

follows a mean-reverting unit GARCH(1,1) process varying daily.

The main findings of this paper can be summarized as follows. The full sam-

ple results show that monetary policy affects COFP volatility. Furthermore, the

weighting function casts light on the transmission lag of monetary policy on COFP

volatility. In particular, the maximum weighted EFFR is the nine month lagged

one. As a consequence, a 1% decrease of the EFFR today (expansionary mone-

tary policy) would increase the COFP long-run volatility by 15.76% nine months

later. Since the SADF test signals the presence of a bubble in the asset prices

(starting in October 2007), we repeat the analysis considering two sub-samples.

The results confirm the inverse relation between EFFR and COFP volatility in

both sub-samples. However after October 2007, the impact of the monetary pol-
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icy is much larger (θ is more than double the estimate for the full sample and the

first sub-sample). As an example, in this case a 1% decrease of the EFFR today

(expansionary monetary policy) would increase the COFP long-run volatility by

31.63% nine months later. Given these results, we conjecture that the negative

association between monetary policy and COFP volatility is much stronger when

the interest rate cut determines mildly explosive behavior in the asset prices. The

hypothesized mechanism is consistent with a rational bubble: First, the bubble

inflated according to the belief of some investors that counter-cyclical monetary

policy would be effective and the crisis would end soon with few consequences on

the real economy. Then, when the persistence of the downturn changed investors’

beliefs, the bubble burst and the threat of a prolonged recession led future prices

to collapse.

This research has thrown up many questions in need of further investigation. A

number of possible future studies using GARCH-MIDAS models are apparent. To

give just one example, further research might investigate the contribution of addi-

tional macroeconomic variables to volatility. Moreover, not only the levels of the

macroeconomic variable but also the variance could be taken into consideration.

Any further contribution in this direction will be relevant to improving commodity

prices forecasts, providing effective guidance for policy makers’ decisions.
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