
         

      

Working Papers - Economics

Endogenous Volatility in the Foreign Exchange Market

Leonardo Bargigli, Giulio Cifarelli
Version 2.0, May 2022

Working Paper N. 17/2020
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Abstract

We study two sources of heteroscedasticity in high-frequency finan-
cial data. The first source is the behavior of market participants. The
second source is the flow of information. We estimate the impact of
the two sources by means of a Markov switching (MS) structural VAR
model. Following the original intuition of Rigobon (2003), we achieve
identification for all coefficients by assuming that the structural errors
of the MS-SVAR model follow a GARCH-DCC process. Using trans-
action data of the EUR/USD interdealer market in 2016, we firstly
detect three regimes of volatility. Then we show that both sources of
volatility matter for the transmission of shocks, and that information
is channeled to the market mostly through price variations. This sug-
gests that, on the EUR/USD market, liquidity providers are better
informed than liquidity takers, who act mostly as feedback traders.
The latter are able to profit from trade because, unlike noise traders,
they respond immediately to informative price shocks.

Keywords: heteroscedasticity, asset pricing model, heterogeneous beliefs,
foreign exchange market, Markov switching, GARCH,SVAR, high frequency
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JEL codes: G12, D84, F31, C32, C55

1



1 Introduction

The efficiency of financial markets is a subject of great controversy among
economists. Usually the claim that markets are efficient is associated to the
supposed perfect rationality of market participants and to the free avail-
ability of information. Thus, if some agents hold private information or if
some others are unable to properly elaborate the available public informa-
tion, markets are doomed to be inefficient and market excess volatility and
eventually bubbles ensue. At the same time, a growing stream of litera-
ture assumes that market participants might deviate from the paradigm of
perfect rationality. In particular, models with heterogeneous agents (HAM)
assume that the deviations of the price of assets from their fundamental
value arise because the heterogeneous beliefs of market participants are my-
opic and evolve endogenously (Brock and Hommes, 1998). In parallel, the
market microstructure (MM) approach provides powerful insights into the
working of financial markets under conditions of asymmetry of information.
These conditions seem very important also for the FX market, contrary to
what we might assume from the fact that the fundamental value of a currency
reflects only public information (Vitale, 2007; Osler, 2009; King et al., 2013).
In this paper we incorporate both approaches in a model which explains how
the heteroscedasticity of price variations and demand might arise, at least in
part, as a consequence of endogenous factors which depend on the decisions
of bounded rational market participants. At the same time we argue that
volatility also depends on exogenous forces, since the market must adjust to
real world events which are highly unpredictable and unevenly distributed
over time.

In order to quantify both sources of volatility, we apply an articulated
econometric framework to high-frequency spot transaction data provided by
the NEX EUR/USD interdealer market platform. The main result of our
analysis is that endogenous as well as exogenous factors play a role in de-
termining the volatility of the market. The two sources of volatility tend
to correlate so that, when exogenous information arrives, the market reacts
more strongly to shocks and this amplifies volatility further. In these sit-
uations we observe that demand reacts positively to a positive price shock,
while price reacts negatively to a positive demand shock. This result suggests
that liquidity providers are better informed than liquidity takers, so that the
price posted by the former reflects the relevant information. Accordingly, we
might claim that the EUR/USD market is efficient, notwithstanding bounded
rationality and asymmetric information. Indeed, in our framework price re-
flects the available information exactly because liquidity providers are better
informed than liquidity takers and do not want to be outplayed by them. The
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latter are nevertheless able to gain because, acting as feedback traders, they
react quickly to price shocks. At the same time, other market participants
trade with a loss, since we observe a negative correlation of the structural
errors. This result is in line with the established view that noise traders act
as market stabilizers on the foreign exchange market (Black, 1986; Evans and
Lyons, 2002; King et al., 2013).

The remaining of the paper is organized as follows. In Sec. 2 we present
our theoretical model. In Sec. 3 we describe the data set we employ for our
empirical analysis. In Sec. 4 we describe our estimation strategy. In Sec. 5
we present the main results of the analysis. Finally, Sec. 6 concludes.

2 The model

Our model incorporates two basic assumptions. The first one, coming from
the MM literature, is the dependency of price variations on the contempo-
raneous net order flow, which is defined as buy-initiated transactions minus
sell-initiated transactions over a given period (Evans and Lyons, 2002). The
second one, coming from the literature on models with heterogeneous agents
(HAM), is the dependency of current demand on price variations (Brock and
Hommes, 1998). The first assumption is motivated either by the quoting
decisions of market makers in a quote-driven market (Madhavan and Smidt,
1993), or by the effect of market orders on prices in an order-driven market.
The second assumption is motivated by the myopic nature of speculators who
form their expectation of tomorrow’s returns based on the returns observed
to date. This general mechanism of expectation formation encompasses dif-
ferent typologies of speculators which are popular in the literature, such as
chartists, fundamentalists, contrarians etc. Many of these strategies fall un-
der the domain of technical trading, which is profitable in the FX market and
is widely employed by FX market professionals, under the label of feedback
or momentum trading (Menkhoff and Taylor, 2007; Menkhoff, 2010) 1.

One shortcoming of HAM models is that, while they are generally esti-
mated with a low frequency, they assume that agents react to price signals
with a delay of one period. Although bounded rationality might represent
a good representation for the actual behavior of at least a fraction of mar-
ket participants, it is not very realistic to assume that the latter do not

1The adoption of price contingent strategies, such as stop-loss and profit-taking orders,
which are associated with feedback trading, is widespread in the FX market (Osler, 2003,
2005; Dańıelsson and Love, 2006; Osler, 2011). Froot and Ramadorai (2005) find that even
flows from institutional investors, which should be more correlated with fundamentals, are
instead strongly positively related, at short horizons, to transitory exchange rate shocks.
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react as quickly as possible to price variations. Indeed, we should expect
the contrary. For this reason, in this paper we adopt the assumption that
speculators adjust their demand within the same period in which price vari-
ations occur. One possible objection to this assumption comes from the fact
that demand must necessarily follow the price over time both in order-driven
and in quote-driven markets. In the latter, the price is set by the dealer at
request of her customers, who then decide the amount they want to trade. In
the former, the price is set by market participants who post limit orders, and
trading occurs when either limit orders cross or market orders are submitted
for immediate execution.

The temporal precedence of price over demand in both market settings
has been used to justify the restriction adopted firstly by Hasbrouck (1991),
and then accepted by the MM literature, that there is no contemporaneous
effect of price variations on net order flows. On the other hand, Dańıelsson
and Love (2006) have proven that, even assuming that price always precedes
demand over time, a bivariate model will yield empirical estimates where
price and demand simultaneously affect each other whenever the data is
subject to time aggregation. In a subsequent paper, Love and Payne (2008)
find that simultaneous feedback effects from price variations to net order flows
are positive and significant at the 1 minute frequency for three major rates.
Based upon these results, we consider the assumption of a simultaneous
feedback effect from price variations to demand in our model as a realistic
approximation, which is consistent with the subsequent empirical estimation
of the model at the 5 minutes frequency.

Participants in an order-driven market can supply or demand liquidity by
submitting respectively limit or market orders. Accordingly, in our model we
have two basic categories of agents who interact in an order-driven market
for a zero yielding asset. The first category is a representative liquidity
provider, who posts limit orders to the market. The second category are
a large number of heterogeneous liquidity takers, subdivided in types, who
post market orders. We assume for simplicity that the liquidity provider has
perfect foresight of the demand of each type of liquidity taker. Moreover, the
model takes into account the institutional specificity of the FX market, which
is a two tiered market. In the first tier, which is largely over the counter,
FX dealers trade with customers in a quote-driven market. In the second
tier, dealers trade between themselves in an order-driven market. While our
agents are supposed to trade on the latter, the other tier plays a key role.
In fact, we suppose that liquidity providers are always able to trade over
the counter with customers, at the current interdealer market price, for an
amount which is at least equal to the net demand of the liquidity takers. This
supposition is consistent with the evidence that prices for customers reflect

4



interdealer prices (Osler, 2009), and that dealers accumulate inventories by
trading with their customers when they take a speculative position (Bjønnes
et al., 2021).

The liquidity provider computes her optimal price, taking into account
a quadratic cost which reflects her aversion to inventory risk as well as her
position limits. Then she posts a sequence of limit orders of the size required
to match the demand of liquidity takers. The latter submit market orders
according to their optimal demand in such a way that, at the end of the
period, the net variation of the inventory position of the liquidity provider
is zero and the interdealer market is balanced. We remark that, under the
assumed market framework, both the liquidity provider and the liquidity
takers find optimal to trade. On the other hand, the customers of the liquidity
provider are bound to loose money. This is in line with the evidence that
commercial customers on the FX market have different trading motivations
than currency speculation (Osler, 2009). In other words, they behave as noise
traders2. Instead, the assumed behavior of liquidity providers and takers is
in line with the evidence that the FX dealers earn most of their profits from
active currency speculation (Bjønnes and Rime, 2005).

According to the previous remarks, the profit of the liquidity provider is
specified as follows:

Πd,t = (pt − pt−1) zt −
ωt
2
z2
t (1)

where zt is the net market demand of liquidity takers and ωt

2
> 0 quantifies

the time varying impact of the quadratic inventory term z2
t on Πd,t. We

remark that, according to our hypotheses, the inventory cost is linked to zt
since at the end of each period the inventory is brought down to zero. In
practice, it is the opportunity cost of holding an amount of risky asset equal
to zt > 0 until it is resold to liquidity takers3. We remark that, in eq. (1),
pt−1 is the price at which liquidity providers trade over the counter at t with
their customers for the amount −zt, and pt is the price associated with their
limit orders at t for the amount zt on the interdealer market.

The liquidity provider maximizes Πd,t with respect to pt. Taking into
account the effect of the optimization variable on zt the FOC reads:

2We recall the following definition of liquidity, or noise, traders provided by Dow and
Gorton (2008): “Noise traders are economic agents who trade in security markets for non-
information-based reasons”. One of the possible rational motivations of noise/liquidity
trading is insurance / hedging, but other explanations have been proposed (Vitale , 2000).
See Ramiah et al. (2015) for a recent review of the literature on this topic.

3In the case in which zt < 0, the risky asset must be exchanged against some other
asset that is costly to hold too.

5



zt + (pt − pt−1)
d

dpt
zt − ωtzt

d

dpt
zt = 0 (2)

Setting γ0,t ≡ d
dpt
zt, we obtain

∆pt =

(
ωt −

1

γ0,t

)
zt (3)

Regarding liquidity takers, we follow the literature on asset pricing men-
tioned in Sec. 1. In the HAM setting speculators are myopic mean-variance
maximizers, since their future wealth is uncertain. Accordingly, we assume
that liquidity takers of each type i maximize their expected risk adjusted
profit in the next period:

max
zit

{
Eit [Πi,t+1]− 1

2D
Vit [Πi,t+1]

}
(4)

where D−1 is a risk aversion parameter linked to the variance of future
profit Vit [Πi,t+1]. Indeed the profit of liquidity takers at t + 1 is determined
by their net demand at t and they ignore the future market price when taking
their decision. The current profit of liquidity takers of type i is written as
follows:

Πit = (pt − pt−1) zi,t−1 (5)

where the right hand side of the equation above represents the profit
obtained buying the amount zi,t−1 at the price pt−1 and reselling the same
amount at the price pt.

Then we have:

Eit [Πi,t+1] = (Eit [pt+1]− pt) zit (6)

Vit [Πi,t+1] = Vit [pt+1] z2
it (7)

Taking into account Eqs. (6) and (7), writing Vit [pt+1] = σ2
it, and finally

letting this term be absorbed by D−1
it = σit/D, we may rewrite the objective

as follows:

max
zit

{
Eit[∆pt+1] zit −

z2
it

2Dit

}
(8)

where Eit[∆pt+1] stands for the type i’s expectation of ∆pt+1. We solve
the FOC for zit to obtain the optimal demand of a generic liquidity taker of
type i:
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zit = DitEit[∆pt+1] (9)

Then the total market demand is

zt =
S∑
i=1

DitEit[∆pt+1]Nit (10)

where Nit is the number of liquidity takers of type i at t and S is the
number of different types of liquidity takers on the market. We introduce
the following specification for Eit[∆pt+1]:

Eit[∆pt+1] =
K∑
k=0

gik∆pt−k (11)

where the gik are type specific fixed coefficients which measure the impact
of the price increment at lag k on the expectation of liquidity takers of type
i. Substituting (11) in (10) we obtain

zt =
S∑
i=1

DitNit

K∑
k=0

gik∆pt−k (12)

Changing the order of summation we obtain

zt =
K∑
k=0

∆pt−k

S∑
i=1

DitNitgik (13)

and defining

γk,t ≡
S∑
i=1

DitNitgik (14)

we obtain that market demand is a time varying function of current and
past prices:

zt =
K∑
k=0

γkt∆pt−k (15)

We see that, according to (15), ∂zt
∂pt

= γ0t which is consistent with our pre-

vious definition in Eq. (3). Thus we end up with a system of 2 simultaneous
equations in (∆pt, zt) plus lagged values of price increments:
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∆pt =

(
ωt − 1

γ0,t

)
zt + ε0,t

zt =
∑K

k=0 γk,t∆pt−k + ε1,t

(16)

The bivariate random process εt = (ε0,t, ε1,t) is added to take into account
all the exogenous factors which impact price and demand through the actions
of liquidity providers and takers respectively. We expect that this process has
more structure than a simple i.i.d. white noise, since it reflects the uneven
flow of information to the market.

The system (16) is equivalent to a restricted SVAR model of order K
with time varying coefficients:

[
∆pt zt

] [ 1 −γ0,t

−
(
ωt − 1

γ0,t

)
1

]
=

=
[

∆pt−1 ∆pt−2 . . . ∆pt−K
] 

0 γ1,t

0 γ2,t

. . . . . .
0 γK,t

+

+
[

∆zt−1 ∆zt−2 . . . ∆zt−K
] 

0 0
0 0
. . . . . .
0 0

+
[
ε0,t ε1,t

]
(17)

In the empirical estimation we prefer to lift the restrictions on the r.h.s.,
since there is evidence that microstructural effects on the market lead to au-
tocorrelation of both price variations and demand. In particular, we assume
that zt is autocorrelated because of order splitting (Osler, 2009; Tóth et al.,
2015). Although the lack of autocorrelation of price increments has been
widely documented at the lower frequencies, autocorrelation of ∆pt cannot
be ruled out at short frequencies. Indeed, there is evidence of negative first-
order autocorrelation of prices in high-frequency FX markets (Zhou, 1996;
Cont, 2001). So, setting y′t = (∆pt, zt), we end up with the following formu-
lation:

A0,tyt = A1,tyt−1 + · · ·+ AK,tyt−K + εt (18)

where

A0,t =

[
1 −

(
ω − 1

γ0,t

)
−γ0,t 1

]
(19)
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and the coefficients in A1,t, . . . , Aq,t are unrestricted.

3 Data description

For our empirical analysis we employ tick-by-tick transaction data, recorded
on the EBS FX Spot trading platform and provided by NEX data. We
recall that the participation to this order-driven platform is reserved to FX
professionals, aka FX dealers. For the purpose of our analysis, the data
is sampled with a 5 minutes frequency. More precisely, we investigate the
following time series: the (last) Euro/ Dollar midpoint between bid and
offer prices (pt) expressed in USD cents; the total values in period t of the
bid (BSZt) and offer (OSZt) transactions expressed in Millions of Euros.
The sample spans the time interval from 3 January 2016, 17:55 (5.55 pm.),
to 30 December 2016, 21.55 (9.55 pm.). It includes relevant events related
to the final spasms of the EMU crisis, which interact with the vagaries of
the British Brexit referendum campaign. A painstaking synchronization of
the time series has reduced the sample length to 36,207 observations per
continuous time series. Weekends, holidays and late-evening / night periods
are excluded. The cleaning of data is aimed at removing the most important
sources of daily and weekly seasonal patterns of volatility.

Fig. 1 exhibits the EUR/USD exchange rate in first differences (∆pt),
together with the 5 minutes difference between the total values of the offer
and bid transactions, which is our measure of net demand: zt = OSZt −
BSZt. The outcome of the Brexit referendum (June 24) and the election
of Donald Trump as president of the US (November 9) are marked with a
thick vertical line in the graph. The appreciation of the dollar in the wake
of the two major events of 2016 clearly stands out, although the price and
demand movements which are associated with them are by no means the
largest in magnitude. Indeed, the largest price swings followed a controversial
announcement by the ECB of a further expansion of Quantitative Easing on
March 10 4 and the announcement of weak US jobs data on June 35, both of
which lead to a stark appreciation of the Euro. The largest demand swing
instead was triggered by the Euro falling below the critical 1.04 $ benchmark
for the first time in 14 years on December 15 6.

It should be noted that large demand swings do not necessarily correspond
to large price swings and vice versa. The explanation is twofold: on the one
hand, public information is incorporated directly into price and, on the other,

4https://www.ft.com/content/02ec97ea-e6d9-11e5-bc31-138df2ae9ee6
5https://www.ft.com/content/eb77d7d6-2937-11e6-8ba3-cdd781d02d89
6https://www.ft.com/content/25fba186-fc9f-3bf2-a020-82efe29f1f7b
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Figure 1: Time series plots. The dashed vertical lines correspond to the
following events: QE announcement from ECB (March 10); weak US jobs
data (June 3); Brexit referendum (June 24); Trump election (November 9);
EUR/USD passing the 1.04 threshold (December 15)

the EUR/USD market is liquid enough to absorb large demand imbalances
without large price effects. This goes without denying that the two variables
influence each other: indeed the Pearson correlation coefficient between ∆pt
and zt is 0.305. The source of this correlation is twofold. On the one hand,
we have the behavioral interaction of market participants as depicted by the
model of Sec. 2. On the other, we have the exogenous flow of information
affecting price and demand at the same time. The purpose of the estimation
described the next section is to distinguish and quantify each of the two
sources.

4 Estimation Strategy

Previous attempts to estimate a model such as (18)-(19) are apparently not
available in the econometric literature. Primiceri (2005) has proposed a
Bayesian approach to estimate a time-varying SVAR model, where both the
regression coefficients and the covariance matrix of the shocks are allowed to
vary over time. But this comes at the cost of imposing the usual a priori
identification restrictions on A0,t, which are unfortunately unwelcome in our
case. Indeed, we have seen in Sec. 2 that feedback trading is ubiquitous
in the FX market. Following the arguments of Dańıelsson and Love (2006),
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feedback trading implies γ0,t 6= 0, which means rejecting the γ0,t = 0 restric-
tion adopted by the MM literature following Hasbrouck (1991). Neither we
can suppose that ωt = 0, since the latter restriction would imply that FX
dealers are not adverse to inventory risk, contrary to a widespread evidence
(King et al., 2013). Finally, we cannot assume that ωt − 1

γ0,t
= 0, since this

would contradict one of the most fundamental results of the MM literature,
namely that net order flows correlate with price variations.

A well established option, when a priori restrictions cannot be made, is to
find good instruments. This is the approach pursued by Dańıelsson and Love
(2006). An increasingly popular alternative exploits the fact that, if the vari-
ances of the structural shocks change over time, we can obtain the coefficients
of interest using the different reduced-form covariances (Rigobon, 2003). Un-
der this approach, we need to make some assumptions on the process which
generates the covariance matrices. Some commonly used options are variance
regimes (Rigobon, 2003; Lanne et al., 2010), restricted or unrestricted multi-
variate ARCH or GARCH processes (Rigobon, 2002; Sentana and Fiorentini,
2001), constant or dynamic conditional correlation processes (Weber, 2010),
stochastic volatility (Lewis, 2018)7. In our study we envisage that a GARCH
specification for volatility is the best option in order to make the best use
of the information contained in our data set, provided the preliminary de-
tection of ARCH effects in the data (not shown). In addition, according
to simulation studies, a GARCH based Gaussian ML approach provides the
best results when the underlying d.g.p. is conditionally heteroscedastic even
if the distribution of the structural errors is misspecified (Herwartz et al.,
2019), so that this approach lends itself naturally to quasi-ML estimation 8.

We estimate the model (18)-(19) under the assumption that the participa-
tion of the heterogeneous liquidity takers to the market and the unconditional
volatility of the structural errors follow the same hidden Markov process. For
this purpose it is convenient to introduce the regime vector ξt:

ξt =

 1 {st = 1}
...
1 {st = M}

 (20)

where 1 {st = i} represents the indicator function that the system is in
state i at t. Thus, for a generic number of states M , we specify the time

7A detailed review is provided by Kilian and Lütkepohl (2017).
8In particular Herwartz et al. (2019) employ skewed and leptokurtic distributions which

reflect the characteristics of financial time series.
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varying structural coefficients in (18) and (19) as follows:

Aj,t =
M∑
i=1

ξi,tA
i
j (j = 0, . . . K) (21)

where the matrices Aij contain the structural parameter values at lag j
when the prevailing regime is i.

The estimation proceeds through the following steps. Firstly, the param-
eters of the reduced form MS-VAR model are estimated using the standard
approach of (Hamilton, 1989):

yt = B1,t yt−1 + · · ·+BK,t yt−K + ut (22)

ut ∼ N (0,Σt) with Σt =
M∑
i=1

ξi,tΣi (23)

where

Bj,t = A−1
0,tAj,t =

M∑
i=1

ξi,tB
i
j (j = 1, . . . K) (24)

Bi
j = Ai0

−1
Aij (25)

In the second step we employ the residuals of the VAR submodels obtained
from the estimation of eq. (22), which we denote with uit, for i = 1, . . . ,M .
In particular, we maximize the following log-likelihood:

L(θ) =
T∑
t=1

ln ft (θ) (26)

where

ft(θ) =
M∑
i=1

P (st = i|It−1) fi,t(θ) (27)

fi,t(θ) = 2π−
n
2 |H i

t |−
1
2 exp

{
−1

2
uit
′
Ai0
′
H i
t

−1
Ai0u

i
t

}
(28)

For this purpose, we obtain the conditional probability P (st = i|It−1) from
the MS-VAR model at the first step, and we suppose that Ht follows a state-
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dependent GARCH(1,1) process:

εt = H
1
2
t vt (29)

vt ∼ N (0, I) (30)

Ht =
M∑
i=1

ξi,tH
i
t (31)

H i
t = diag(hit) (32)

hit = hi + diag(αi)(A
i
0u
∗
t−1)� (Ai0u

∗
t−1) + diag(βi) h

i
t−1 (i = 1, . . . ,M)

(33)

The vector θ of eq. (26) contains the regime dependent parameters ω =
(ω1, . . . ωM) and γ0 = (γ0,1, . . . , γ0,M), plus the regime dependent parameters
of the GARCH equation (Lanne et al., 2010; Herwartz and Lütkepohl, 2014).
We remark that the MS-VAR model estimated at the first step is nested in
the specification for the second step, and is obtained if the Ai0 are supposed
to be lower triangular matrices and the GARCH coefficients αi and βi are
supposed to be zero.

In Appendix A we provide the details of the estimation procedure for
the MS-SVAR-GARCH model described by eqs. from (22) to (33), together
with a discussion of the identification conditions of the structural parameter
vectors γ0 and ω. Here we limit ourselves to the following considerations.
The identification condition of Rigobon (2003) for a linear model is based on
the existence of two distinct non proportional covariance matrices. This con-
dition is reinforced by the GARCH setting of this paper, since introducing
additional non proportional covariance matrices makes the structural coef-
ficients of the linear model overidentified. Indeed, the non proportionality
of the time varying covariance matrices is a. s. assured if there are ARCH
effects in the errors. Following this line of reasoning, Milunovich and Yang
(2013) have provided a set of sufficient identification conditions for linear
models with ARCH type errors, which state that identification in a GARCH
setting is achieved if no structural shock is degenerate (i.e. h > 0 in eq.
(33)) and at most one structural shock i is homoscedastic (i.e. αi = 0 for at
most one shock in (33)). These conditions can be verified directly from the
GARCH estimation. That they are sufficient but not necessary is obvious
because, according to the argument of Rigobon, a SVAR-GARCH model (i.e.
a model where the coefficients of the conditional mean equations do not vary
over time) is a. s. overidentified if the GARCH process satisfies the con-
ditions stated by Milunovic and Yang. This leaves us with enough degrees
of freedom to estimate the value of the structural parameters for a limited
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number of different regimes as we do9.
As a final step, we extend further our analysis by relaxing the assumption

of orthogonality of H i
t and specify the state dependent covariance matrix with

a Dynamic Conditional Correlation (DCC) model (Engle, 2002):

H i
t = Di

tR
i
tD

i
t (34)

Di
t = diag(

√
hit) (35)

Ri
t = diag(Qi

t)
− 1

2Qi
tdiag(Qi

t)
− 1

2 (36)

Qi
t = (1− ai− bi)Qi + ai

(
(Di

t−1)−1Ai0u
i
t−1

) (
(Di

t−1)−1Ai0u
i
t−1

)′
+ biQ

i
t−1 (37)

where ai, bi are scalars and hit is still given by eq. (33). This extension
relaxes the identification restrictions of the approaches based on conditional
heteroscedasticity, which require that the structural errors are uncorrelated
(Rigobon, 2002, 2003; Love and Payne, 2008; Ehrmann et al., 2011). This
is accomplished thanks to a two step estimation procedure similar to the
standard DCC model (Engle, 2002). Indeed, given eq. (34), the regime
dependent likelihood (28) can be written as follows:

fi,t(θ2|θ1) = 2π−
n
2 |Di

t|−1|Ri
t|−

1
2 exp

{
−1

2
uit
′
Ai0
′
Di
t

−1
Ri
t

−1
Di
t

−1
Ai0u

i
t

}
(38)

The parameter vector θ1 contains the same parameters of the bivariate
GARCH model. The parameter vector θ2 contains the unknown parameters
of eq. (37), which are a, b and Q. These parameters are estimated condition-
ally on the value of the parameters in θ1

10. The specification (38) is reduced
to the specification (28) by assuming that the ai and bi are zero and that Qi

is diagonal.
Thanks to the proposed MS-SVAR-GARCH-DCC framework, we are

able to decompose the conditional heteroscedasticity of data in two com-
ponents. The first component relates to the time variations of At0, as a
consequence of the changing behavior of market participants, and of the un-
conditional, regime dependent, volatility H t. The second component relates
to the GARCH process, which reflects more closely the uneven flow of infor-
mation within each regime. We believe that the possibility of discriminating
between these two components of volatility is the main advantage of the
proposed approach.

9In detail, following Rigobon (2003) we can state that, for N = 0, 1, 2, . . . , if there are
N + 2 distinct and non proportional conditional covariance regimes in the d.g.p., then no
more than N + 1 coefficients in ω and γ0 can be identified.

10The DCC estimation employs the routines of the rugarch and rugarch packages (Gha-
lanos, 2019, 2020). The maximization of likelihood is obtained using mle2 from the bbmle
package.
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5 Results

We start by estimating three alternative reduced-form models: a VAR model
with K = 24 lags11, along with 2-state and 3-state Markov Switching models
with the same number of lags as the VAR. Additionally, in the 2-state setting
we restrict the coefficients respectively of the price and demand equation to
be fixed across regimes in order to evaluate if regime shifts are relevant for
both or just one of the two equations.

In our theoretical setting, the VAR model should fit better to the data
only in the unlikely case that heterogeneity is absent. Indeed we see from
Tab. 1 that the VAR model is strongly penalized according to all informa-
tion criteria. Both restrictions on the 2-states MS-VAR model are rejected
by the LR test, showing that non linearity matters for both price and de-
mand. The 3-state model is selected against the 2-state model according to
all information criteria.

The expected duration of regimes is on the scale of a few periods (Tab.
2). In real time, this means that the highest expected duration in the 3-states
model is of 30 minutes and lowest of a bit less than 15 minutes. With low
frequency data it is customary to explain regime shifts in terms of exogenous
events which trigger a structural change in the system under study. In our
case, considered the low duration of regimes, it seems unlikely that these
might be correlated with exogenous “once-in-a-year” events. The order of
the expected duration rules out, as well, that our results are related to daily
or weekly patterns of volatility. Instead, the regime shifts apparently reflect
the adjustment of the market to the high-frequency flow of ordinary news,
which trigger seamless actions and reactions from market participants.

If this hypothesis is true, the regime shifts should reflect themselves in
variations of volatility, since the arrival of news is likely to coincide with
spikes of volatility. Indeed from Tab. 3 we see that the regimes are dras-
tically separated in terms of volatility, whose values change by one order of
magnitude. In particular, we see that the high and low volatility regimes
of the 2-state model split further, in the 3-state model, into an extremely
high volatility regime and an intermediate one. By looking at the transition
probabilities of this model (Tab. 4), we see that the market is not likely
to calm down immediately, after a spike of volatility, since the intermediate
volatility state 3 is most likely to succeed to the high volatility state 2. On
the overall, the market jumps between the low and intermediate volatility
states most of the time. Entering into a high volatility state is less likely, but

11K is set as the maximal value among the number of lags obtained as optimal using a
number of information criteria (AIC, HQ, BIC, FPE).
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Model L AIC BIC LR
VAR -120,964 242,123 242,956 -
2-states MS-VAR (price restr.) -104,935 210,181 211,605 286.94∗∗∗

2-states MS-VAR (demand restr.) -104,981 210,271 211,696 377.86∗∗∗

2-states MS-VAR -104,792 209,992 211,867 -
3-states MS-VAR -102,100 204,818 207,658 -

*** significant at the 1% level. Note: L = likelihood; AIC = −2 × L +

2 × n of free parameters; BIC = −2 × L + T × n of free parameters; LR =

loglikelihood ratio test statistics.

Table 1: Comparison of reduced-form models

2-State MS-VAR 3-State MS-VAR
State 1 9.84 6.05
State 2 2.94 2.98
State 3 4.28

Table 2: Expected duration periods of regimes for the 2-state and 3-state
MS-VAR models

2-State MS-VAR 3-State MS-VAR

Σ2
1

[
0.0008 0.1862
0.1862 323.13

] [
0.0006 0.1091
0.1091 160.18

]

Σ2
2

[
0.0064 1.6684
1.6684 4930.63

] [
0.0152 3.9384
3.9384 12471.93

]

Σ2
3

[
0.0020 0.5185
0.5185 1205.87

]

Table 3: State dependent covariance matrices of the MS-VAR model

once this regimes takes hold, it is likely to persist for some time.

Since the MS-VAR model (22) is a non-linear model, we must adapt im-
pulse response analysis. Ehrmann et al. (2003) have proposed to calculate
the impulse response functions (IRFs) under the assumption that a partic-
ular regime is prevailing over the entire time span covered by the IRFs. In
practice, they propose to employ the IRFs of the VAR sub-models of the
MS-VAR model. The problem with this approach is that the probability
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State 1 State 2 State 3
State 1 0.83 0.00 0.17
State 2 0.01 0.50 0.06
State 3 0.16 0.50 0.77

Table 4: Transition matrix of the 3-state MS-VAR model

that these IRFs are representative of the dynamics of the MS-VAR model is
rapidly converging to zero along with the probability of staying in the initial
regime. We follow instead the approach proposed by Krolzig (2006) who, in
the spirit of Koop et al. (1996), proposes the following definition:

IRFu(i, h) =
∂E [yt+h|ut, ξt]

∂ui,t
(39)

where ξt is the regime vector (20). This means that the IRFs are con-
ditioned on the prevailing regime at t but not bounded to stay in a specific
regime for the subsequent periods12.

From the cumulative IRFs computed according to definition (39) (Fig. 2),
we see that in all regimes demand responds positively and price negatively to
their own shocks, as expected (see Sec. 2). The cross-effects between price
and demand are negative. In particular, considering that price variations
are expressed in USD cents and the unit of demand is one million Euros,
a positive demand shock worth approximately one standard deviation (38
million Euros) causes a (negative) price variation worth as little as -0.0023
USD cents across regimes in the subsequent 2 hours (i.e. h = 24 periods),
equivalent to the 4.88% of the sample volatility of price. Instead, a positive
EUR/USD price shock worth one standard deviation (0.0466 cents) causes
a subsequent drop of demand of up to 6.15 millions Euros across regimes
in the subsequent 2 hours, equivalent to the 16% of the sample volatility of
demand. A small price impact of past demand shocks is what we expect in
an efficient and extremely liquid market, like the one we consider. Instead, a
more pronounced impact of past price shocks on demand is what we expect as
an effect of order-splitting. We interpret the negative reaction of one variable
to shocks associated with the other as a sign that trades executed with a lag
come mostly from noise traders, who don’t speculate on the exchange rate.

The residuals of the MS-VAR estimation strongly reject the null hypoth-
esis of homoscedasticity for a number of tests. In particular, both series
display ARCH effects as required by the identification conditions discussed
in Sec. 4 (data not shown). Then we are justified in going to the second

12For the detailed computation of the IRFs introduced in this Section, see Appendix B.
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step of the estimation as described in the same section. In Tab. 5 we sum-
marize the results obtained from the maximization of the likelihood function
defined by eqs. (26)-(28). All the GARCH coefficients are highly significant,
as we expected from the analysis of the MS-VAR residuals. The standardized
residuals and squared residuals obtained from the GARCH estimation show
no signs of serial correlation (data not shown). The signs of the parameters
in the vectors ω and γ0 are consistent with the basic hypotheses of the model

in Sec. 2 (ω > 0), the results of the MM literature
(
ω − 1

γ0
> 0
)

and the

prevalence of positive feedback traders among liquidity takers across regimes
(γ0 > 0). From the 95% confidence intervals reported in the table we see
that all parameters are significantly different across regimes with the only
exception of αzt,i. In particular, we see that, contrary to αzt,i, the impact of
idiosincratic innovations on the conditional volatility of price variations, as
measured by α∆pt,i, is stronger in the high volatility regimes 2 and 3. These
results are consistent with the interpretation that price innovations carry
more information than demand innovations.

The economic implication of our estimates of ωi and γ0,i is interesting,
since it shows that the exchange rate is stabilized by the existence of feedback
traders. From Eq. (3) we get that the simultaneous price impact of demand
is equal to ωt − 1

γ0,t
. From the table we see that this quantity is reduced

by one order of magnitude thanks to the contribution of the positive values
of γ0. According to our model, the economic interpretation of this result
is the following: thanks to the fact that a price variation coincides with a
simultaneous net order flow of the same sign, the profits of liquidity providers
are maximized with a smaller price increase than if this positive feedback
was absent, because the actual net demand is larger in size because of this
feedback.

In the high volatility states 2 and 3, liquidity providers are much less
adverse to inventory build up, while liquidity takers are much more reactive
to price variations. It might appear contradictory that liquidity providers
become less risk adverse when volatility is high, but it all depends on who
owns valuable information. Only if liquidity takers are better informed, it
is rational for liquidity providers to become more risk adverse since, in this
case, the valuable information is contained in demand shocks. Otherwise,
information is mostly reflected in price shocks and liquidity takers will be
the ones who need to react adjusting demand as quickly as possible to the
latter. Indeed, this interpretation is consistent with the fact that liquidity
takers become much more reactive to price variations when volatility is high.

We can get some additional indications from the CIRFs obtained from
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our estimates, which are depicted in Fig. 3. These are computed by adapting
the definition (39) as follows:

IRFε(i, h) =
∂E
[
yt+h|A−1

0,ξt
εt, ξt

]
∂εi,t

(40)

Now that the coefficients in A0,t are taken into account, we see that the
cross effects between price and demand are both positive thanks to the si-
multaneous positive impact of both shocks. The initial positive effects tend
to fade away over time except that in the high volatility state 2, where a
positive price shock is still causing demand to increase after 2 hours. In this
regime a positive price shock worth one sample standard deviation causes
an increase in Euro demand worth 750 millions after 2 hours, equal to 15
times the sample standard deviation of demand itself. Instead, a positive
demand shock worth one sample standard deviation causes a price deviation
of 0.00045 cents after two hours, equal to less than 1% of the sample standard
deviation of price variations. Given the arguments above, these results sug-
gest that liquidity providers have a leading role on the market when volatility
is high, i.e. when valuable information arrives.

The last step is the estimation of the conditional correlation of the struc-
tural shocks according to Eqs. (37)-(38). The results are summarized in the
following specifications of eq. (37):

Q1,t =

(
1− 0.0204771

(0.0098303)
− 0.8617819

(0.064483)

)[
3.337646 −2.182013
−2.182013 6.669357

]
+

+ 0.0204771
(0.0098303)

(
D−1

1,t−1A0,1u1,t−1

) (
D−1

1,t−1A0,1u1,t−1

)′
+ 0.8617819

(0.064483)
Q1,t−1 (41)

Q2,t =

(
1− 0.0060686

(0.0057174)
− 0.624934

(0.3467275)

)[
0.178610 −0.0697310
−0.069731 0.125956

]
+

+ 0.0060686
(0.0057174)

(
D−1

2,t−1A0,2u2,t−1

) (
D−1

2,t−1A0,2u2,t−1

)′
+ 0.624934

(0.3467275)
Q1,t−1 (42)

Q3,t =

(
1− 0.0100202

(0.003503)
− 0.9646926

(0.0160226)

)[
1.262542 −0.149306
−0.149306 1.160134

]
+

+ 0.0100202
(0.003503)

(
D−1

3,t−1A0,3u3,t−1

) (
D−1

3,t−1A0,3u3,t−1

)′
+ 0.9646926

(0.0160226)
Q3,t−1 (43)

The parameters ai and bi are not significantly different from zero in the
high volatility regime 2. The higher standard errors in this regime suggest
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i = 1 i = 2 i = 3

ωi 0.0064991 0.0035581 0.0039837
(0.0000112) (0.0000423) (0.0000091)

[0.0064772 - 0.0065211] [0.0034752 - 0.003641] [0.0039658 - 0.0040015]

γ0,i 173.6589 324.4846 262.3099
(0.0007859) (0.0000744) (0.0003244)

ωi − 1
γ0,i

0.0007407 0.0004763 0.0001714

(0.0000127) (0.0000425) (0.0000096)

[0.0007158 - 0.0007656] [0.000393 - 0.0005596] [0.0001526 - 0.0001902]

h∆pt,i 0.0000001 0.0013232 0.0000033
(0.0000001) (0.0000619) (0.0000028)

[0.0007158 - 0.0007656] [0.000393 - 0.0005596] [0.0001526 - 0.0001902]

α∆pt,i 0.0003687 0.1503969 0.0941901
(0.0000092) (0.0000001) (0.0000002)

[0.0007158 - 0.0007656] [0.000393 - 0.0005596] [0.0001526 - 0.0001902]

β∆pt,i 0.9985587 0.8496011 0.9058078
(0.0000608) (0.0000006) (0.0000003)

[0.0007158 - 0.0007656] [0.000393 - 0.0005596] [0.0001526 - 0.0001902]

hzt,i 14.788997 123.796196 99.604687
(1.1891061) (0.0007992) (0.0059000)

[12.4583 - 17.1196] [123.7946- 123.7978] [99.5931 - 99.6162]

αzt,i 0.0129100 0.0129630 0.0124810
(0.0018168) (0.0033295) (0.0018544)

[0.0093491 - 0.0164709] [0.0064372 - 0.0194888] [0.0088464 - 0.0161156]

βzt,i 0.8311710 0.9870290 0.8860270
(0.0117554) (0.0004208) (0.0025591)

[0.8081304 - 0.8542116] [0.9862042 - 0.9878538] [0.8810112 - 0.8910428]

Note: standard errors in round brackets; 95% confidence intervals in square brackets.

Table 5: MS-SVAR-GARCH parameters’ estimates (eqs. (26)-(33)).
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that these parameters are weakly identified. The parameters in the remaining
regimes are significantly positive but their 95% confidence intervals ovelap.
These results suggest that the conditional correlation depends only weakly
on the regimes.

The time evolution of the expected conditional variances h0,t and h1,t and
the expected conditional correlation ρt are depicted in Fig. 413. We mark
with a vertical line the following critical days (see Sec. 3): March 10 (QE
expansion); June 3 (US Jobs announcement); June 24 (Brexit referendum);
November 9 (Trump election); December 15 (Euro falls below $ 1.04). We see
that price volatility appears to be much more reactive to exogenous events
(March 10, June 3, June 24, Nov 9), although the two volatilities are highly
correlated (0,82). The expected unconditional correlation of the structural
shocks is negative (-0.27), and the conditional correlation is mostly negative
with only some few exceptions. These results are robust to an alternative
estimation performed assuming that the errors follow a Student distribution
(data not shown). Indeed, exogenous events do not appear to have large
effects on ρt, with the big exception of June 3 and December 15, when ρt
becomes strongly positive. Moreover, the movements of ρt result to be neg-
atively correlated to those of h0,t and h1,t (-0.11).

A candidate explanation for the negative correlation of the structural
errors is the action of liquidity / noise traders on the foreign exchange market.
The latter are generally assumed to trade with a loss, a feature which might
explain why a positive (negative) price shock occurs along with a negative
(positive) demand shock. Moreover, the effect of the negative correlation is
to balance the market. This stabilizing role is exactly the one assigned to
liquidity / noise traders from the MM literature (Evans and Lyons, 2002; King
et al., 2013). Under this perspective, it is consistent that the magnitude of
the negative correlation between the structural errors becomes stronger when
h0 and h1 are higher (i.e. when external information arrives), because it is
exactly in those moments that noise traders are likely to lose more.

In order to account for the covariance of the structural errors, we adapt
our definition of impulse response function as follows:

IRFv(i, h) =
∂E
[
yt+h|A−1

0,ξt
H

1
2
ξt
vt, ξt

]
∂vi,t

(44)

where Hξt is the (regime dependent) unconditional covariance matrix of
the structural errors. We can also define a time varying counterpart which

13Expectations are taken with respect to the filtered probabilities of the hidden Markov
process.
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Figure 4: GARCH-DCC filters. The vertical red lines correspond to a set of
“critical” days as described in the text.

depends on the regime dependent conditional covariance of the structural
errors:

IRFtv(i, h) =
∂E
[
yt+h|A−1

0,ξt
H

1
2
t,ξt
vt, ξt

]
∂vi,t

(45)

In both equations, we need to compute the square root of the covariance
matrix. Since we do not wish to impose restrictions upon the result, we
rely on spectral instead of Cholesky decomposition. We obtain the following
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results for the square roots of the unconditional covariances Hξt :

H
1
2
1 =

[
−0.0112667 −0.0231178
13.6319410 −0.0000191

]
(46)

H
1
2
2 =

[
−0.0483672 −0.0928677
104.6265531 −0.0000429

]
(47)

H
1
2
3 =

[
−0.0052479 −0.0450544
31.8160628 −0.0000074

]
(48)

(49)

We see that there is a stark asymmetry in the square rooted matrices.
While demand is expected to react positively to an orthogonal price shock,
price variations are expected to react negatively to an orthogonal demand
shock. The CIRFs obtained from Eq. (44), and depicted in Fig. 5, reflect this
asymmetry. We see that the cumulative impact of a demand shock on price
deviation turns negative under all regimes. This is consistent with the idea
that orthogonal demand shocks don’t carry relevant information. Instead
the impact of am orthogonal price shock on demand is still positive and
non decreasing under all regimes, largest by magnitude in the high volatility
regime 2. These result confirm the leading informational role of liquidity
providers.

We represent the conditional CIRFs obtained using eq. (45), for h = 24,
by means of the box plots in Fig. 6. We see that the cumulative impact
of price and demand shocks shifts its magnitude over time. A first look at
the graph suggests that the actual reactions of the EUR/USD market to
exogenous shocks are conditioned both by regime dependent volatility, as
measured by A0,ξt and Hξt , and by idiosincratic volatility, as measured by

the time variation of H
1
2
t,ξt

. A 2-sample KS test rejects the null of equal distri-
bution for all pairwise combinations of conditional CIRF distributions across
regimes, showing that the regime dependent component of volatility matters
for all kinds of shock transmissions. All the median values of IRFtv(i, h) are
significantly different from zero and conserve the same sign across regimes.
In particular, the distribution of the conditional CIRFs shifts upwards, under
regime 2, when the impact of price shocks on demand is considered (lower
left panel), while the opposite happens when the impact of demand shocks on
price is considered (upper right panel). This is consistent with the results of
Fig. 5. A simple decomposition of variance shows that the transition among
regimes explains only 14% of the variability of the impact of price shocks
on price variations, while it explains 95% of the variability of the impact of
demand shocks on demand itself. Similarly, the variability of cross impacts

25



S
ta

te
 1

0
10

20

-2
.2-2

-1
.8

-1
.6

-1
.4

10
-3

v
0

 
 

 p
t

0
10

20

-0
.0

26

-0
.0

24

-0
.0

22

-0
.0

2

-0
.0

18

v
1

 
 

 p
t

0
10

20

1314151617

 v
0

 
 z

t

0
10

20

-4
.5-4

-3
.5-3

-2
.5

 v
1

 
 z

t

(a
)

S
ta

te
 2

0
10

20

-1
0-50

10
-3

v
0

 
 

 p
t

0
10

20
-0

.1
2

-0
.1

15

-0
.1

1

-0
.1

05-0
.1

v
1

 
 

 p
t

0
10

20
10

0

12
0

14
0

16
0

 v
0

 
 z

t

0
10

20

-5
5

-5
0

-4
5

-4
0

-3
5

 v
1

 
 z

t

(b
)

S
ta

te
 3

0
10

20

-2-10
10

-3
v

0
 

 
 p

t

0
10

20

-0
.0

48

-0
.0

46

-0
.0

44

-0
.0

42

-0
.0

4

-0
.0

38

v
1

 
 

 p
t

0
10

20

32343638404244

 v
0

 
 z

t

0
10

20

-1
3

-1
2

-1
1

 v
1

 
 z

t

(c
)

F
ig

u
re

5:
C

u
m

u
la

ti
ve

IR
F

s
fo

r
th

e
M

S
-S

V
A

R
-G

A
R

C
H

-D
C

C
m

o
d
el

(s
ee

E
q
.

(4
4)

)

26



State 1 State 2 State 3

-0.2

-0.1

0

CIRF t
v

0
   p

t
(h=24)

State 1 State 2 State 3

-0.3

-0.2

-0.1

0

CIRF t
v

1
   p

t
(h=24)

State 1 State 2 State 3
0

50

100

150

200

CIRF t
v

0
  z

t
(h=24)

State 1 State 2 State 3
-200

-150

-100

-50

0

CIRF t
v

1
  z

t
(h=24)

Figure 6: Box plots of time dependent CIRF functions with h = 24 (see
Eq.(45)).

is largely explained by regime shifts (88% for the return impact of demand
shocks; 98% for the demand impact of price shocks). These results indicate
that price shocks are the only significant source of idiosincratic, exogenous,
information on the foreign exchange market, while demand varies almost
exclusively as a consequence of the endogenous response to price shocks.

6 Conclusions

The results of the reduced form MS-VAR estimation support the claim that
financial markets are affected by the shifting expectations of heterogeneous
speculators and their changing participation to the market. On the other
hand, the reduced form coefficients explain only a small fraction of the volatil-
ity of price and demand in the FX market. This is by no means a surprise
because the EUR/USD currency pair is exchanged on a highly liquid market,
where we expect that lagged effects are small. Indeed, Dańıelsson and Love
(2006) have proved that, when data is aggregated at relatively high frequen-
cies like the one we used, the most important component of price and demand
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interactions will manifest themselves under the form of simultaneous effects,
which contribute to the heteroscedasticity of the reduced form errors of the
MS-VAR model. We have called this component of conditional volatility en-
dogenous since, according to the model of Sec. 2, it depends on the actions of
the participants to the interdealer FX market. We have addressed the task of
quantifying endogenous volatility by means of the MS-SVAR-GARCH-DCC
model. The results obtained from this model show that, in the FX market,
the simultaneous impact coefficients of price variation on demand and vice
versa are positive across regimes (Tab. 5). This result is consistent with
those of the MM literature, which require that ω − 1

γ0
> 0, and with the

prevalence of positive feedback traders among liquidity takers, which implies
that γ0 > 0. The latter result, on its part, confirms the previous empirical
results of Dańıelsson and Love (2006), and rejects the restriction γ0 = 0,
proposed by Hasbrouck (1991).

After taking into account the regime dependent unconditional covariance
matrices of the structural errors, the cumulative effect of a demand shock
on price turns out to be negative in all regimes, while the opposite holds for
the cumulative effect of a price shock on demand (Fig. 5). We relate this
asymmetry to the leading informational role of liquidity providers. Indeed
any piece of valuable information that is likely to raise / lower the price posted
by liquidity providers is also likely to raise /lower the demand of liquidity
takers at the same time. Thus the fact that demand increases with a positive
price shock means that valuable information is reflected first in the price, i.e
in the information set of the liquidity providers. Conversely, the fact that
the price drops after a positive demand shock means that liquidity takers are
less informed than the liquidity providers. In fact, if the former were better
informed, the rational reaction of the latter would be to raise and not to lower
prices. Instead, lowering (raising) the price is rational if the buyer (seller) is
considered to be uninformed, in order to prevent liquidity based speculation
to catch on (Vitale , 2000; Jeanne and Rose, 2002). Moreover, according
to our results, when volatility rears up, the liquidity providers becomes less
inventory adverse (ωt falls). This result can only be rationalized if liquidity
takers are no more informed than liquidity providers themselves.

Our results seem at odds with the intuition according to which informed
traders should opt for aggressive trades, and thus place market orders. Ac-
cording to this view, liquidity takers should always be better informed. Nev-
ertheless, our results are in line with those of Bjønnes et al. (2021), who
show that the largest, and better informed, banks place profitable limit or-
ders, along with market orders, on the FX market. We may synthesize our
results by claiming that the FX market is efficient notwithstanding the exis-
tence of bounded rational traders and of asymmetry of information. In our
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framework, the price posted by liquidity providers leads the market exactly
because they have access to privileged information, which may be acquired
either by trading over the counter with informed customers or by their own
efforts (Bjønnes et al., 2021). The liquidity takers, although less informed,
are able to trade according to their expectations of the future exchange rate.
On the other hand, the negative correlation of the structural errors sug-
gests that other market participants trade with a loss. Confirming this, the
temporal evolution of the conditional correlation of the structural errors is
weakly correlated with the evolution of regime dependent volatilities. This
suggests that the conditional correlation is weakly related to the behavior of
market participants described in our model. Since the effect of a negative
conditional correlation of price and demand shocks is to help balancing the
market, our interpretation is consistent with the stabilizing role assigned to
liquidity / noise traders by the MM literature (Evans and Lyons, 2002; King
et al., 2013).

A Identification conditions and estimation pro-

cedure

It is known that, if the identification conditions based on conditional het-
eroscedasticity hold, the values of the estimated parameters are unique up
to a reordering, change of sign and renormalization of the columns of A0

(Rigobon, 2003; Ehrmann et al., 2011; Lewis, 2018). This means that we need
additional information to identify the structural coefficients of the model.

In order to see why this is necessary, let’s start from a generic bivariate
simultaneous system:

xt = a yt + ε′0,t (A.1)

yt = b xt + ε′1,t (A.2)

where xt and yt are observed variables and ε′0,t and ε′1,t unobserved errors.
After exchanging the order of the equations, the system can be rewritten
equivalently as follows:

xt =
1

b
yt + ε′′0,t (A.3)

yt =
1

a
xt + ε′′1,t (A.4)

Indeed, since we don’t observe the errors, we cannot distinguish between

ε′0,t and ε′′0,t = − ε′1,t
a

or between ε′1,t and ε′′1,t = − ε′1,t
b

. From the two equiva-
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lent formulations we obtain the same representation, which is the only one
amenable for estimation:

xt = θ0 yt + ε0,t (A.5)

yt = θ1 xt + ε1,t (A.6)

In order to simplify the argument, we follow Rigobon (2003) and we
assume that there are two different regimes s = 0, 1 for the variance of
ε′0,t and ε′1,t. In this case the system (A.1)-(A.2) satisfies exactly the order
condition under the assumption that ε′0,t and ε′1,t are uncorrelated under each
regime. In particular, a and b satisfy the following couple of equations:

a =
w0,1,s − w1,1,sb

w0,0,s − w0,1,sb
s = 0, 1 (A.7)

where, under each regime, w0,0,s, w1,1,s, w0,1,s are the variances and covari-
ance of xt and yt, which can be estimated from the data. In order to derive
(A.7), these estimates are equated to their theoretical counterparts which are
on their part obtained from the following reduced form solutions for xt and
yt:

xt =
ε′0,t + ε′1,ta

1− ab
(A.8)

yt =
ε′0,tb+ ε′1,t

1− ab
(A.9)

Since these reduced form solutions do not depend from the ordering of
equations, not even eqs. (A.7) depend from these ordering. Equating the
r.h.s. of the system (A.7) we obtain a quadratic equation which yields two
distinct real and finite solutions for b when the following holds (Rigobon,
2003):

w0,0,0w0,1,1 − w0,0,1w0,1,0 6= 0 (A.10)

If we solve the equations (A.7) for b we obtain instead the following
system:

b =
w0,0,sa− w0,1,s

w0,1,sa− w1,1,s

s = 0, 1 (A.11)

Equating the r.h.s of these equations it’s easy to check that, if b∗ is a
solution for (A.7), then a∗ = 1

b∗
is a solution for (A.11). This shows that the

two solutions obtained from either (A.7) or (A.11) correspond to the values
of the estimated parameters θ0 and θ1 of eqs. (A.5)-(A.6), so that only the
latter are identified while a and b are not.
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Most of the existing literature addresses this problem by imposing in-
equality restrictions on the coefficients of the model (Ehrmann et al., 2011;
Herwartz and Lütkepohl, 2014; Lütkepohl and Netšunajev, 2014; Lanne and
Luoto, 2020). In our case, we can show that the constraint imposed by the
theoretical model of Sec. (2) on the reduced form coefficients allows the iden-
tification of one of the two structural coefficients. For the sake of expositional
simplicity we assume that A0 is not time varying, since the argument can
be replicated for each regime dependent matrix Ai0 and the corresponding
structural coefficients.

In order to illustrate the main point, let’s write in vector form the two
ways in which the reduced form errors can be written:

ut = A−1
0 εt

A0 =

[
1 1

γ0
− ω

−γ0 1

]
(A.12)


u∗t = A∗0

−1 εt

A∗0 =

[
1 − 1

γ0
γ0

1−γ0ω 1

]
(A.13)

Now let’s suppose that θ0 and θ1 are the reduced form coefficients of either
A0 or A∗0. This yields the following two systems:{

θ0 = ω − 1
γ0

θ1 = γ0
(A.14)

θ0 =
1

γ0

θ1 =
γ0

γ0ω − 1

(A.15)

Let’s solve the two systems for the structural parameters. In the first
case, we obtain:  ω = θ0 +

1

θ1

γ0 = θ1

(A.16)

In the second case instead we obtain:
ω = θ0 +

1

θ1

γ∗0 =
1

θ0

(A.17)

We see that ω is identified independently from the ordering of the system

while γ0 is not identified, except in the unlikely case that θ1 =
1

θ0

.
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Since γ0 and γ∗0 yield by construction the same value of the likelihood,
we estimate, for each regime, θi0 and θi1 firstly and afterwards ωi, γ0,i and
γ∗0,i according to the two orderings (A.12) and (A.13). In detail, we take the
following steps:

1. Estimate the MS-VAR model (22)

2. Estimate equation-by-equation a GARCH model14 on the regime de-
pendent reduced form errors uit

3. Use the GARCH parameters obtained with the previous step as starting
values for an equation by equation maximization of the likelihood (26)-
(28), in order to obtain the estimates θ̂i0, θ̂

i
1 for each regime i = 1, 2, 3

4. Compute the estimates ω̂ and γ̂0 according to the ordering (A.12):
these are the ones reported in the main text

5. Compute the estimates γ̂∗0 according to the ordering (A.13), which are
reported in Tab. 6

From the comparison of Tab. 6 with Tab. 5 we see that the values
of γ̂∗0,i are much larger than the value of γ̂0 reported in the main text. As
explained above, the literature tries to overcome this source of indeterminacy
relying mainly on restrictions imposed on A0. For instance, if we deal with
a standard demand-supply system, we might impose sign restrictions on the
structural coefficients which translate into sign restrictions of the reduced
form coefficients, making the former identifiable. In our model, the only
theoretical restriction we might think of is the positivity of the adjustment
coefficient in the price equation in each regime, i.e.

θi0 = ωi −
1

γ0,i

> 0 i = 1, . . . ,M (A.18)

which is strongly supported by the MM literature. This constraint could
have been informative if one of the two reduced form coefficients was negative
and the other positive in at least one regime. But unfortunately this is not
the case with our estimation.

If the issue is one of forecasting the response of endogenous variables to
shocks, as we do in the paper, discriminating between γ̂0 and γ̂∗0 is unim-
portant, since the IRFs depend only on the reduced form coefficients θi0 and

14The GARCH estimations at all steps employ the routines of the rugarch package
(Ghalanos, 2020). The maximization of likelihood is obtained using mle2 from the bbmle
package.
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i = 1 i = 2 i = 3

γ∗0,i 1349.50 5835.31 2223.84
(20.44) (186.08) (309.59)

Note: standard error in parentheses.

Table 6: Comparison of reduced-form models

θi1. But, even if choosing between γ̂0 and γ̂∗0 is unimportant from an empir-
ical standpoint, we nevertheless need to make a decision for the purpose of
presentation. We have chosen to rely on the plausibility of the respective
magnitude of the coefficients. Taking into consideration the regime depen-
dent unconditional standard deviations of Tab. 3 and the two alternative
estimates γ0 and γ∗0 , we can compute the values for the instantaneous re-
sponse of demand zt to a price shock equal to σ(∆pt), relative to its own
standard deviation σ(zt), which are reported in Tab. 7. The values on the
first row range between 75% and 87% of σ(zt), while those in the second row
range between 167% and 722% of σ(zt). We consider the latter values to
be less plausible since they entail that the average instantaneous response of
zt to an average price shock is much larger than the average volatility of zt
itself.

B Impulse Response Functions for Markov

Switching Models

In this appendix we detail the computation of the IRFs given by eqs. (39)-
(40) and (44)-(45). For this purpose we adjust the approach of Krolzig (2006)
which employs a linear state space representation of MS models. In the first
place we write the system (18) in a stacked form:

33



State 1 State 2 State 3

γ0 × σ(∆pt)
σ(zt)

0.75 0.87 0.22

γ∗0 ×
σ(∆pt)
σ(zt)

1.67 2.60 7.22

Table 7: Expected simultaneous impact of a shock equal to the unconditional
s.d. of ∆pt, relative to the unconditional s. d. of zt.
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yt−1

yt−2
...

yt−K

+


εt
0
...
0

 (B.1)

where n is the dimension of yt. Eq. (B.1) can be written as

A0,t yt = Ct + A1,t yt−1 + εt (B.2)

It is convenient to rewrite the system (B.2) in reduced form:

yt = Dt + B1,t yt−1 + ut (B.3)

We can decompose the vectors yt of Eq. (B.3) and ξt of Eq. (20) as
follows:

yt = E [yt|ξt−1] + u∗t (B.4)

ξt = E [ξt|ξt−1] + ηt (B.5)

where u∗t and ηt are martingale difference sequences. Then, introducing
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1n as a column vector of ones of size n, we can write ξ1,tyt
...

ξM,tyt

 =

 p11D1 . . . pM1D1
...

...
...

p1MDM . . . pMMDM


 ξ1,t−11n

...
ξM,t−11n

+

+

 p11B1 . . . pM1B1
...

...
...

p1MBM . . . pMMBM


 ξ1,t−1yt−1

...
ξM,t−1yt−1

+

 ξ1,tu
∗
t

...
ξM,tu

∗
t

 (B.6)

or in short:
ψy,t = Dψξ,t−1 + Bψy,t−1 + εy,t (B.7)

The same arrangement can be made for the regime vector:

 ξ1,t1n
...

ξM,t1n

 =

 p111n1
′
n . . . pM11n1

′
n

...
...

...
p1M1n1

′
n . . . pMM1n1

′
n


 ξ1,t−11n

...
ξM,t−11n

+

 ξ1,tηt
...

ξM,tηt


(B.8)

or in short:
ψξ,t = Fψξ,t−1 + εξ,t (B.9)

We see that the system (B.7)-(B.9) can be written as follows:

ψt = B∗ψt−1 + εt (B.10)

where

B∗ =

[
F 0
D B

]
(B.11)

Hence the moving average representation of ψt+h given ψt is

ψt+h = B∗hψt +
h∑
j=1

B∗jεt+j (B.12)

We can write the conditional expectation of yt+h given yt and ξt as a
function of the conditional expectation of ψt+h given ψt:

E [yt+h|yt, ξt] =
M∑
i=1

E [ξi,t+h yt+h|ξi,tyt] =

=

0n . . .0n︸ ︷︷ ︸
n×nM

In . . . In︸ ︷︷ ︸
n×nM

E [ψt+h|ψt] =

= H E [ψt+h|ψt] (B.13)
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Using Eq. (B.12) we obtain:

E [ψt+h|ψt] = B∗hψt (B.14)

and finally we compute the IRFs:

IRFu(i, h) =
∂E [yt+h|ut, ξt]

∂ui,t
= H B∗h


0nm×1

ξ1,tei
...
ξM,tei

 (B.15)

IRFε(i, h) =
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[
yt+h| A−1

0,ξt
εt, ξt

]
∂εi,t

= H B∗h


0nm×1
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0,1ei
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ξM,tA
−1
0,Mei

 (B.16)
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Lütkepohl, H., Netšunajev, A. (2014), Disentangling Demand and Supply
Shocks in the Crude Oil Market: how to Check Sign Restrictions in Struc-
tural VARS. J. Appl. Econ., 29: 479-496.

Madhavan, A., Smidt, S. (1993), An Analysis of Changes in Specialist Inven-
tories and Quotations, The Journal of Finance, 48(5), pp. 1595-1628.

Menkhoff, L. (2010), The use of technical analysis by fund managers: Inter-
national evidence, Journal of Banking and Finance, 34(11), pp. 2573-2586.

Menkhoff, L., Taylor M. P. (2007), The Obstinate Passion of Foreign Ex-
change Professionals: Technical Analysis, Journal of Economic Literature,
45 (4): 936-972.

Milunovich, G., Yang, M. (2013). On identifying structural VAR models via
ARCH effects. Journal of time series econometrics, 5(2), 117-13

Osler, C.L. (2003), Currency Orders and Exchange Rate Dynamics: An Ex-
planation for the Predictive Success of Technical Analysis. The Journal of
Finance, 58: 1791-1819.

Osler, C. L. (2005), Stop-loss orders and price cascades in currency markets,
Journal of International Money and Finance, Volume 24, Issue 2, pp. 219-
241.

Osler, C. L. (2009), Market Microstructure, Foreign Exchange. In: Meyers
R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New
York.

Osler, C. L., Savaser, T. (2011), Extreme returns: The case of currencies,
Journal of Banking & Finance, 35(11), p. 2868-2880.

Primiceri, G. (2005). Time Varying Structural Vector Autoregressions and
Monetary Policy. The Review of Economic Studies, 72(3), 821-852.

Ramiah, V., Xu, X., Moosa, I. A. (2015). ”Neoclassical finance, behavioral
finance and noise traders: A review and assessment of the literature,”
International Review of Financial Analysis, vol. 41(C), pages 89-100.

Rigobon, R. (2002), The Curse of non-investment Grade Countries, Journal
of Development Economics, 69, pp. 423-449.

39



Rigobon R. (2003), Identification through Heteroskedasticity, The Review of
Economics and Statistics, 85(4), pp. 777.792.

Sentana, E., Fiorentini, G. (2001), Identification, estimation and testing of
conditionally heteroskedastic factor models,Journal of Econometrics, Vol-
ume 102, Issue 2, pp. 143-164.

Tóth, B., Palit, I., Lillo, F. and Farmer, J. D. (2015), “Why is Order Flow
So Persistent?”, Journal of Economic Dynamics and Control 51, 218-239.

Vitale, P. (2000), Speculative noise trading and manipulation in the foreign
exchange market, Journal of International Money and Finance 19 (5), 689-
712.

Vitale, P. (2007), A Guided Tour of the Market Microstructure Approach to
Exchange Rate Determination, Journal of Economic Surveys, 21: 903-934.

Weber, E. (2010), Structural Conditional Correlation, Journal of Financial
Econometrics, Vol. 8, No. 3 , 392–407.

Zhou, B. (1996). High-Frequency Data and Volatility in Foreign-Exchange
Rates. Journal of Business & Economic Statistics, 14(1), 45-52.

40


