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Abstract

Gentry, Li, Lu (2017) (GLL henceforth) study an auction model with endogenous entry

in which, before the entry decision, each bidder observes a private signal; a higher signal

implies a better distribution for the bidder’s valuation. GLL claim that the optimal reserve

price is greater than the seller’s value for the object on sale and that the optimal entry

fee is positive. We prove that these claims are incorrect: The seller may want to subsidize

entry to stimulate competition in the auction (through a negative entry fee or through

a reserve price below the seller’s value), or to provide appropriate entry incentives if a

suitable reserve price is effective at maximizing total surplus and at extracting bidders’

rents. We provide conditions under which the claims in GLL hold true.

JEL Classification: D44, D82.
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1 Introduction

This note is about the optimal reserve price and entry fee for an auction with endogenous

and costly entry. In a recent paper, Gentry, Li, Lu (2017) (GLL henceforth) assume that

each (potential) bidder first observes a signal that reveals her value distribution, then

decides whether to enter. Entry requires to incur an entry cost but allows a bidder to

learn the own value and to bid in the auction. A higher signal is associated to a better

distribution in the sense of first order stochastic dominance; this is consistent with various

settings for which the information the signal conveys is very different. For instance, at

an extreme is the model of Levin and Smith (1994), in which the value distribution is

constant with respect to the signal; at another extreme is the setting of Menezes and

Monteiro (2000), in which the bidder’s value coincides with the bidder’s signal.

For this model, GLL prove a Revenue Equivalence Theorem that covers a wide set

of standard auction mechanisms and prove that the total surplus is maximized when the

reserve price is equal to the seller’s value 0 and the entry fee is zero (in the following,

sometimes we use   to indicate the value of the reserve price and the value of the entry

free, respectively). Furthermore, GLL claim that the revenue maximizing reserve price

is strictly greater than 0 and the revenue maximizing entry fee is strictly positive; the

former (the latter) indication covers also the case in which  is exogenously fixed at zero

( is exogenously fixed at 0), the socially efficient level. Therefore, revenue maximization

is always socially inefficient in the sense of inducing too rare entry and too little sales.

In this paper we show that these claims are incorrect, that is sometimes it is optimal

for the seller to give an entry subsidy to bidders (  0) or to set  below 0, for instance

to induce more than efficient entry and stimulate competition in the auction. We explain

why the proofs in GLL of the above claims are incorrect and we provide (restrictive)

conditions under which the claims in GLL hold true.

In detail, GLL determine an equilibrium in which each bidder enters if and only if

her signal exceeds a threshold , and claim that the bidders’ ex ante expected rents are

decreasing in . However, we find that such monotonicity may not hold. We emphasize

the presence of a trade-off: the higher the threshold, the lower the probability to enter

(this contributes to reduce the expected rent), but the lower the intensity of competition

faced by active bidders (this contributes to increase the expected rent). In some cases, this

second effect dominates the first effect and makes rents (locally) increasing in . Then,

when  is exogenously fixed at 0, a small negative  may be optimal because it has a tiny

effect on total surplus (as the surplus maximizing entry fee is zero) but subsidizes bidders’

entry and reduces , thus increasing the revenue via a reduction in bidders’ rents. When

 is fixed at zero, a similar mechanism applies as  smaller than 0 facilitates entry. Even

though it induces too much entry and bidders buy the object too often with respect to

the social optimum, in some cases   0 increases revenue by reducing rents.

When the seller can choose both  and  freely,  is set to maximize the revenue for a
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given , and  is used to achieve the desired ; thus  does not affect entry. We show that

the optimal  may not be greater than 0 if 0 = 0, and that the optimal may be negative.

The first result arises because, for a given , the bidders’ rents are approximately constant

with respect to  when  is close to 0. About the second result, as we mentioned above

a negative  may help to decrease bidders’ rents, but also a very different reason may

apply: for some information structures there exists an  that (approximately) maximizes

total surplus and extracts all rents. Then, by participating in the auction, bidders earn a

payoff that is nearly zero and does not cover the entry cost. Then a negative entry fee is

needed in order for some entry to occur.

In order to gain a perspective on these results, it is useful to recall that in the model

of Levin and Smith (1994) (LS in the following), the optimal pair   is 0 0. GLL claim

that any devation from LS (within GLL’s framework) leads a revenue maximizing seller

to set   0,   0. We show that this is not the case, and in fact we prove that even

very small deviations from LS yield ambiguous results about the optimal , unless some

further assumptions are imposed. Thus, the precise details of the information setting are

important for a revenue maximizing seller, even from a qualitative point of view.

2 The model

A (male) seller auctions off an object and faces  ≥ 2 potential (female) bidders; the
seller and the bidders are risk neutral. At a first stage, each bidder  privately observes

a signal  ∈ [0 1] which affects the distribution of her private valuation  for the object

on sale. Precisely, the support for  is [0 ̄] with ̄  0, and  (·|) is the c.d.f. of 
given  (with continuous density (·|)) such that 0   implies  (|0) ≤  (|) for
each  ∈ [0 ̄], with strict inequality for at least one . The bivariate random variables

( ), ( ) are stochastically independent for each  6= , and each  is uniformly

distributed over [0 1].

After observing the own signal, each bidder decides whether to enter the auction or

not. Entry requires a bidder to incur a cost   0 and the bidders’ entry decisions are

simultaneous. In a second stage each bidder that entered learns the own valuation and

submits a bid in the auction. To fix the ideas, we can think that the auction is a second

price auction, but GLL establish a Revenue Equivalence Theorem covering a class of

auctions that extends well beyond the second price auction.

The seller has a value 0 ∈ [0 ̄) for the object on sale and can charge an entry fee 
to each entrant; the entry fee is actually a subsidy if   0. The seller can also impose a

reserve price  ≥ 0 in the auction. In the following, given a function Φ of two variables, we
use Φ to denote the partial derivative of Φ with respect to its -th variable, for  = 1 2.

GLL identify a Bayes-Nash Equilibrium characterized by a signal value  ∈ [0 1] which
is the entry threshold: bidder  enters if and only if  ≥ , for  = 1  . To this purpose,
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it is useful to define

 ∗( ) = +

Z 1



 (|)

which is the probability that a given bidder does not enter, or enters and has a value

smaller than . Notice that  ∗ is increasing with respect to  as 
∗
2( ) = 1− (|) ≥ 0.

If bidder  enters and discovers to have value , then  ∗( ) is her probability to
beat another given bidder; ( ∗( ))

−1 is her probability to beat all other bidders.
By Lemma 1 in Myerson (1981), the bidder’s payoff is the integral of her probability

to win the object, over the interval of values smaller than ; hence it is 0 if  ≤ , isR 

( ∗( ))

−1
 if   . At the entry stage, the payoff from entering for a bidder

with signal  is
R ̄


¡R 

( ∗( ))

−1
¢
(|), or

R ̄

(1−  (|)) ( ∗( ))−1 .

The entry threshold  is determined by the payoff of a bidder with signal  =  compared

with the total entry cost +. Therefore,  = 0 if
R ̄

(1−  (|0)) ( ∗( 0))−1  ≥ +,

 = 1 if
R ̄

(1−  (|1))  ≤ +  (notice that ( ∗( 1))

−1
= 1 for each ), otherwise 

is in the interval (0 1) and bidder  with signal  =  is indifferent between entering and

staying out. Hence  is a solution of the following equation in :Z ̄



(1−  (|)) ( ∗( ))−1  = +  (1)

In fact,  is determined uniquely as the left hand side in (1) is increasing in . Notice that,

for fixed  , for any given entry threshold , the seller can induce that entry threshold

by choosing  that satisfies (1) when  = . This allows to consider  (rather than ) as

a seller’s policy instrument, with the interpretation that selecting a certain  means that

the seller picks the  that induces the chosen .

In order to determine the seller’s revenue we derive the total surplus and the bidders’

rents. The former is

( ) = 0 (
∗
( ))


+

Z ̄



 ( ∗( ))
 −(1− ) (2)

For a bidder with signal  ≥ , the net rent from entering is
R ̄

(1−  (|)) ( ∗( ))−1 −

 − , which reduces to
R ̄

( ∗( ))

−1
( (|)−  (|))  after using (1). Therefore

a bidder’s rent before observing the signal is

Π( ) =

Z ̄



( ∗( ))
−1

µZ 1



( (|)−  (|)) 
¶
 (3)

Notice that  (|) ≥  (|) for each    implies Π( ) ≥ 0 for each  . The

revenue is the difference between the total surplus and the total bidders’ rents, hence

( ) = ( )−Π( ) (4)
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In the following we are interested in maximizing  with respect to  and/or , and we

assume that Z ̄

0

(1−  (|0)) ( ∗( 0))−1    

Z ̄

0

(1−  (|1))  (5)

The second inequality in (5) rules out the uninteresting case in which it is optimal for

the seller to induce no entry ( = 1), as that maximizes total surplus if
R ̄
0
(1−  (|1))  ≤

 and makes bidders’ rents equal to 0. About the first inequality in (5), if it is violated

and  
R ̄
0
(1−  (|0)) ( ∗( 0))−1  then  = 0 when ( ) = (0 0), that is each

bidder  enters for each  ∈ [0 1]. This makes it profitable for the seller to increase  (for
instance) at least up to the point where (1) holds given  = 0,  = 0. For the sake of

brevity we focus on the case in which (5) holds, which implies that the entry threshold 

is in (0 1) when ( ) = (0 0) and any change in  () away from 0 (from 0) affects .

An important result in GLL refers to the maximization of , for which it is useful

to define 0 as follows:

0 is the solution of (1) when ( ) = (0 0) (6)

GLL prove that 0 (0) is the socially efficient value of  (of ).

Lemma 1 (from GLL) The total surplus  is maximized at  = 0,  = 0.

As we show in next section, Lemma 1 is linked to the following key proposition in

GLL.

Proposition 5 in GLL (Optimal entry fee and reserve) The optimal entry fee ∗

must be nonnegative and the optimal reserve ∗ must weakly exceed 0. Furthermore,

if entry is strictly selective in the sense that 0   implies  (|0)   (|) for some
 ∈ [0 ̄], then the following statements hold:
(i) If the seller may set both  and  freely, then ∗  0 and ∗  0;

(ii) If the reserve is constrained efficient ( = 0), then the constrained optimum ∗  0;
(iii) If the entry fee is constrained zero ( = 0), then the constrained optimum ∗  0.

We prove in next section that this proposition is incorrect. To this purpose, we consider

the following specific setting: For each bidder ,  (|) = ()+(1−)() with ,
 c.d.f. such that ()  () for each  ∈ (0 ̄); moreover,  () has a continuous

density  () which is positive at least in (0 ̄). Hence, the c.d.f. for bidder ’s valuation

given  is a mixture of a strong c.d.f. () and a weak c.d.f. () in which  is the weight

of the strong c.d.f. In next section we also give sufficient conditions for the claims (i-iii)

in Proposition 5 in GLL to hold in this context.
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3 On the optimal entry fee, reserve price

In this section we show that in some settings it is revenue maximizing to set   0 or

  0. To this purpose, it is useful to start with an analysis of the effect the entry

threshold has on bidders’ rents.

3.1 The effect of  on bidders’ rents

An important intermediate claim in GLL concerns the monotonicity of Π in (3) with re-

spect to . It may be intuitive that bidders’ rents decrease as the entry threshold increases,

because that reduces the set of bidders that enter and there are fewer opportunities for

bidders to earn a positive payoff by participating in the auction. However, it is important

to recall that for a bidder that enters and turns out to have value   , the payoff from

playing the auction is
R 

( ∗( ))

−1
 and  ∗ is increasing in . This effect, which

reduces the intensity of competition in the auction, goes in the opposite direction with

respect to the effect above and in some cases dominates it. Indeed, although Lemma 4(iii)

in GLL claims that Π is decreasing with respect to  (i.e., Π2( ) ≤ 0 for each  ), we

prove that this is not always the case.1

Lemma 2a The partial derivative of Π with respect to  is

Π2( ) =
( + 1) (1− )

2

Z ̄



( ) (7)

with

( ) = ( ∗( ))
−2

µ
 − 1
 + 1

− − (1− )()− 

 + 1
(1− )

2
(()−())

¶
(()−())

It is immediate that Π2( ) ≤ 0 if  ≥ −1
+1

, or if (a weaker condition)
−1
+1

−
1− −() ≤

0; otherwise it is possible thatΠ2( )  0. Next lemma provides first a sufficient condition

for Π2( )  0 for each  , then a sufficient condition for Π2( )  0 for some  . To

this purpose, we pick  such that () = −1
+1

and, given 0  −1
+1

, we pick  such

that () = (−1
+1
− 0)(1− 0).

Lemma 2b (i) Given any , suppose that () is very close to () for each  ∈ (0 ].
Then Π2( )  0 for each  ∈ [0 ̄),  ∈ [0 1).
(ii) Given any  and any 0  −1

+1
, suppose that () is very close to () for each

 ∈ [  ̄). Then Π2( )  0 if    and   0.

1The proof of Lemma 4(iii) in GLL is incorrect because of a mistake in taking the partial derivative

with respect to  of ( ∗( ))
−1 in (3).
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Lemma 2b establishes that Π2( )  0 if  almost coincide for small valuations,

but Π2( )  0 holds if   are both not too large and  are very similar for large

valuations. In next subsections we examine examples such that Π2( )  0, and show

that this generates results which contrast with Proposition 5 in GLL. Before that, in order

to gain further insights on the sign of Π2( ) we examine below two particular cases.

The case of degenerate  Let ̂ (̂) denote the c.d.f. such that ̂() = 0 if

  ̄, ̂(̄) = 1, and ̂() = 1 for each  ∈ [0 ̄].2 Hence, ̂ attaches probability 1 to

 = ̄, ̂ attaches probability 1 to  = 0. If  = ̂,  = ̂, then for each bidder  the

valuation is either 0 or ̄ and  is the probability of  = ̄. From Lemma 2a we obtain

Π2( ) =
1−
2
(1
2
+ 1
2
2)−2(̄− )(−2+( −1)−1), hence Π2( )  0 for each   if

 ≤ 5, but for  ≥ 6 there exists an interval  ⊂ (0 1) of values of  which is centered
in −1

2
and such that Π2( )  0 for each  ∈  ; the extremes of  tend to 0 and to

1, respectively, as  grows to infinity.

Lemma 2c If  are close to ̂ ̂, then Π2( )  0 for each   if  ≤ 5; when
 ≥ 6, Π2( ) is negative if  is close to 0 or to 1.

The case of  close to  This case is in a sense opposite to the previous one since

we assume that  is very similar to . Precisely, given any  with density  such that

()  0 for each  ∈ [0 ̄], we consider a function  : [0 ̄]→ R and  such that

(0) = (̄) = 0, ()  0 for each  ∈ (0 ̄),  is continuously differentiable in [0 ̄];

() = () + () for each  ∈ [0 ̄], with  ≥ 0 close to 0
(8)

If  = 0, then  in (8) coincides with . Hence  is constant with respect to  and

Π( ) = 0 for each  , thus Π2( ) = 0. If   0,
3 then ()  () for each  ∈ (0 ̄)

and the effect on Π2( ) of a small increase in  above 0 is determined by

Π2( )



¯̄̄̄
=0

=
( + 1) (1− )

2

Z ̄



(+(1−)())−2(
 − 1
 + 1

−− (1−)())()

(9)

It is immediate that for each given , (9) is negative if  is a very weak c.d.f. (i.e., if

()  −1
+1

even for small ); (9) is positive if   −1
+1

and  is a very strong c.d.f. (i.e.,

 is close to 0 for a wide subset of (0 ̄)). Formally, recall from above that  satisfies

() = −1
+1

and let  satisfy () = (
−1
+1
− )(1− ). Then

2These c.d.f.s violate our assumption that  () has a density, but the arguments here apply even if

 have continuous densities and  () attaches a high probability to values close to ̄ (close to 0).
3Notice that  is a c.d.f. if and only if () ≥ 0 for each  ∈ [0 ̄]. This condition is satisfied if

 ≤ ̃ ≡ min∈[0] ()(−min∈[0]0()), and ̃  0 in view of our assumptions on  and in (8).

Therefore we consider  ∈ [0 ̃].
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Lemma 2d Suppose that  is close to  in the sense that (8) holds. Then

(i) Π2( )  0 if  is sufficiently close to 0;

(ii) Π2( )  0 if   −1
+1

and  is sufficiently close to ̄.

When  = 2, we can determine a necessary and sufficient condition for (9) to be

negative for each  . Given  = 2, the integral in (9) is equal to
R ̄

(1
3
−  − (1 −

)())(), a linearly decreasing function of . Hence (9) is negative for each   if

and only if
R ̄
0
(1
3
−())()  0.4

3.2 On the optimal  when  = 0 (Proposition 5(ii) in GLL)

When  is fixed at 0, Lemma 1 implies that  = 0 maximizes the total surplus (0 ).

If Π2(0 ) ≤ 0 for each , then −Π(0 ) is increasing in  and since (0 ) =

(0 )−Π(0 ), it follows that the value of  that maximizes (0 ) is not smaller

than 0. Actually, it is greater than 0 if Π2(0 0)  0 as then 2(0 0) = 0 implies

2(0 0)  0; hence a positive  is optimal. This is the argument in the proof of

Proposition 5(ii) in GLL and it holds as long as Π2(0 ) ≤ 0 for each , for instance if

Lemma 2b(i), or 2c, or 2d(i) applies.

However, in Subsection 3.1 we have remarked that Π2( )  0 in some cases.
5 Next

example exhibits a setting such that Π2(0 0)  0 and the optimal  is negative.

Example 1 Suppose that  = 2, [0 ̄] = [0 1], 0 = 025, () = 10, () = 6, and

 =
R 1
0
(1−  (|002)) ( ∗( 002))  = 0060143, so that 0 = 002. Then Π2(0 0) =

0001293 and (0 ), (1) reduce, respectively, to

(0 ) = −00051714 − 00607853 − 05062982 + 001774+ 0804514
00034483 + 0050762 + 0555878 + 0049005 = 0060143 +  (10)

The revenue is maximized at  = 0017464, which is smaller than 0 and therefore the

optimal  is negative. Indeed, the optimal  satisfies (10) with  = 0017464, that is it is

equal to −0001415  0. ¤
In Example 1, subsidizing entry through a (small) negative entry fee facilitates en-

try, that is reduces  below 0, therefore too much entry occurs from a social point of

view. But this is profitable for the seller because the reduction in total surplus is tiny (as

2(0 0) = 0) and the reduction in  reduces bidders’ rents as the more intense com-

petition among active bidders dominates their more likely entry. Therefore the revenue

increases, which establishes the following proposition:

4When  = 2, a sufficient condition for Π2( ) ≤ 0 for each   is that there exists  close to zero

and  ∈ (0 1) such that ()  1 −  for each  ≥  and () − ()   in an interval included in

( ̄) with lenght at least 4
3
.

5We could rely on Lemmas 2b(ii), 2d(ii) to identify a setting such that Π2( )  0. However, in

Example 1 we select a simpler setting than those covered by the above lemmas.
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Proposition 1 If the reserve price is constrained at 0, then the optimal entry fee may

be negative.

3.3 On the optimal  when  = 0 (Proposition 5(iii) in GLL)

When  is fixed at 0, the entry threshold given  is obtained by solving (1) and is denoted

̃().6 Notice that (6) implies ̃(0) = 0, and ̃0() is positive by implicit differentiation.
Given that  = 0, it is useful to define total surplus, rents, revenue as a function

of  only: f() = ( ̃()), Π̃() = Π( ̃()), ̃() = ( ̃()). Then ̃(0) = 0

and Lemma 1 imply that f is maximized at  = 0, hence f0(0) = 0. Moreover, if
Π2( ) ≤ 0 for each   then Π̃ is decreasing as Π̃0() = Π1( ̃()) + Π2( ̃())̃

0() is
negative or zero since Π1( ) ≤ 0, ̃0()  0. Therefore, the value of  that maximizes ̃ is
not smaller than 0; actually, it is greater than 0 if Π2(0 0)  0 since then f0(0) = 0
implies ̃0(0)  0. This is the argument in the proof of Proposition 5(iii) in GLL and

holds as long as Π2( ) ≤ 0 for each  , for instance if Lemma 2b(i), or 2c, or 2d(i)

applies.

However, in Example 1 above we have seen that Π2(0 0)  0 and this makes Π̃

increasing for  close to 0.
7 Hence ̃ is decreasing for  close to 0 and we find that the

optimal  is smaller than 0.

Example 2Consider the same setting as in Example 1.8 ThenΠ1(0 0) = −2349×10−6,
Π2(0 0) = 0001293, and from ̃0() = (1− (|̃()))∗(̃()) 1


((()−())∗(̃())+(1− (|̃()))2)

 0 we obtain

̃0(0) = 003605. Thus Π̃0(0) = 4425 × 10−5  0 and Π̃ is increasing for  around 0;

therefore ̃ is decreasing for  around 0. This suggests that the optimal  is smaller

than 0 = 025, and indeed numerical analysis shows that the optimal  is 0170822. The

resulting entry threshold is ̃(0170822) = 0017508  0 = 002. ¤
The intuition for Example 2 in part coincides with that for Example 1. Reducing 

slightly below 0 reduces , and the net effect on Π is determined by a positive direct

effect of  plus a negative indirect effect through ; the second effect dominates over the

first, hence Π is reduced. Too much entry and too many sales reduce total surplus, but

since f0(0) = 0 this effect is negligible with respect to the rent reduction. Therefore

the revenue increases, which establishes the following proposition:

Proposition 2 If the entry fee is constrained at 0, then the optimal reserve price may be

lower than 0

6In fact, ̃() is obtained by solving (1) (given  = 0) if
R ̄

(1−  (|0)) ( ∗( 0))−1  ≤  ≤R ̄


(1 −  (|1)). In case the first (second) former inequality is violated, then ̃() = 0 (̃() = 1).

Assumption (5) guarantees that there exists a neighborhood of 0 such that ̃() solves (1) for each  in

the neighborhood; this suffices for our point in this subsection.
7The effect of Π2(0 0)  0 dominates over Π1(0 0)  0 because Π1(0 0) is very close to zero.
8The neighborhood of 0 = 025 mentioned in Footnote 6 is [0 08681]; ̃() = 1 if   08681.
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3.4 On the optimal   (Proposition 5(i) in GLL)

When there are no constraints on  , the seller can choose freely   to maximize his

revenue in (4); we use ∗ ∗ ∗ to denote the optimal   , respectively.

3.4.1 If 0 = 0, then ∗ may not be larger than 0

About ∗, GLL notice that for each ,  is maximized with respect to  at  = 0 and that

Π is decreasing with respect to  as Π1( ) = −( ∗( ))−1
R 1

( (|)− (|)) ≤ 0;

hence ∗ ≥ 0. As we mentioned in the introduction, LS proves that if each bidder has no

information about the own value before entry, then ∗ = 0 
∗ = 0. This occurs because

bidder ’s signal  conveys no information about ’s value if  is constant with respect

to ; then Π( ) in (3) is constantly zero and   are used to maximize . Proposition

5(i) in GLL claims that, outside the setting in LS, ∗ is larger than 0. This in fact holds
true as long as Π1(0 )  0, but even when  depends on , this inequality is violated

if 0 = 0 because  (0|) = 0 for each . Then Π1(0 ) = 0,9 and a small increase in

 above 0 has a second order effect on  and Π, hence it is not necessarily profitable.

Precisely, it is possible that Π decreases with respect to  more slowly than , which

leads to ∗ = 0. Next proposition gives sufficient conditions for ∗ = 0, and for ∗  0.10

Proposition 3 When 0 = 0,

(i) the optimal reserve price is zero if

()−() ≤ () + () for each  ∈ (0 ̄) (11)

(ii) the optimal reserve price is positive if (0) = 0, 0(0) = 0, 0(0)  0.

A sufficient condition for (11) to hold is that () is close to () for each  ∈ (0 ̄).
This is linked to the result of LS: In our mixture model,  is constant with respect to 

if and only if  coincides with ; then (11) holds and ∗ = 0 = 0 consistently with LS.

Proposition 3(i) extends this result to cases in which  is different from  but is close.

Therefore ∗ = 0 still holds for settings close to LS if 0 = 0. Finally, we notice that

another sufficient condition for (11) if that  is convex, as then () ≤ () for each .

3.4.2 The optimal  may be negative

About ∗, following GLL we can use (2)-(4) to derive

2( ) = (0 − )
( ∗( ))




−

Z ̄



( ∗( ))
−1[1−  (|)] +−Π2( )

9The effect of an increase in  on Π is determined by the effect on the gross rents of bidders with

signal above , minus the effect on the gross rent of the bidder with signal equal to . Both rents are

decreasing in , but when 0 = 0 a small positive  has a zero first order effect on the difference.
10Proposition 5(i) in GLL holds relative to ∗ if 0 ∈ (0 ̄) and  is strictly decreasing in the signal

for each  ∈ (0 ̄). For instance, this holds in our mixture model as ()  () for each  ∈ (0 ̄).
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Then suppose that ∗ ∗ satisfies 2(∗ ∗) = 0,11 and use (1) to obtain

∗ =
1


(0 − ∗)

( ∗(
∗ ∗))


−Π2(

∗ ∗) (12)

When 0 = 0 and Proposition 3(i) applies, we have that 
∗ = 0 and (12) reduces to

∗ = −Π2(0 ∗). Then Lemmas 2b-d provide sufficient conditions for ∗  0, but relying
on the logic of Subsection 3.2 we can identify examples such that ∗  0. For instance,

Example 1 with 0 = 0 is such that  is convex, hence (11) is satisfied and ∗ = 0.

Although 0 = 00138, the optimal  is 00117, smaller than 0, and ∗ = −00017  0.
When 0  0, we have that ∗  0 and

(∗(∗∗))


 0. Therefore 1


(0 −

∗)(
∗
(

∗∗))


 0 and since Π2(

∗ ∗) may have either sign, further assumptions are
needed to derive a conclusion about the sign of ∗. For instance, Π2(∗ ∗) needs to be
sufficiently negative in order to for ∗ to be positive.12 In the following we examine the
two particular cases we have introduced in Subsection 3.1.

The case of degenerate  When  = ̂ and  = ̂, it is optimal for the seller

to set  slightly lower than ̄ and  negative. The reason is that for each bidder  the

valuation is either 0 or ̄, hence each  in (0 ̄] maximizes total surplus in the auction

(the object is sold if and only if at least a bidder has value ̄), but  close to ̄ also

extracts almost all bidders’ rents from playing the auction. As a consequence, no bidder

can expect to recover the entry cost: even if the bidder turns out to have value ̄ and

wins the auction, she will pay at least  for the object, which is close to ̄. Therefore a

negative  is needed to induce some entry, and since the seller leaves virtually no rents to

bidders, it is optimal to select  in order to induce the socially efficient entry.

Proposition 4 If  are close to ̂ ̂, then ∗ is close to ̄ and ∗  0.

We remark that in this setting the argument of Subsection 3.2 for   0 does not

apply. Indeed, if  = 2 (for instance) then Π is monotonically decreasing with respect

to  by Lemma 2c. Actually, here a suitable  is effective at extracting bidders rents

(without hurting total surplus), hence there is no point in using a subsidy to induce a

socially excessive entry in order to stimulate competition among bidders. Rather, the role

of the entry subsidy is to cover almost entirely the entry cost, otherwise no entry occurs.

11This is not necessarily the case if ∗ = 0 as then 2(
∗ ∗) may be negative.

12The proof of Proposition 5(i) in GLL considers
(∗(

∗∗))


as negative (whereas it is positive, as

GLL note elsewhere in the paper), hence it considers 1

(0−∗)(

∗
(
∗∗))


as positive since 0−∗  0,

and finally considers Π2(
∗ ∗) as negative or zero (whereas it may be positive). Therefore it incorrectly

concludes from (12) that ∗  0.
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The case of  close to  Suppose that  satisfy (8). Hence  coincides with  if

 = 0, and then ∗ = 0, 
∗ = 0 by LS. We use 0 to denote the resulting entry threshold

from (1), which is also the socially optimal entry threshold when  = 0. We examine the

effect of a small increase in  above 0 (which implies ()  () for each  ∈ (0 ̄))
on ∗ ∗ ∗. To this purpose, we define () as 0 + (1 − 0)(); () coincides with

 ∗(0) if  = .

Lemma 3 Suppose that 0 ∈ (0 ̄) and that  is close to  in the sense described by

(8). Let ∗() ∗() ∗() denote the optimal    as a function of . Then

∗0(0) =
(1− 0)(0)

2(0)
, ∗0(0) =

(1− 0)( + 1)
R ̄
0
() (())

−2 ¡
()− −1

+1

¢


( − 1) R ̄
0
(())

−2
(1−())

2


∗0(0) =
1− 0

2

µ
( + 1)

Z ̄

0

() (())
−2

(()−  − 1
 + 1

) −(0) ((0))
−1 1−(0)

(0)

¶
Since 0  0, from ∗0(0) = (1−0)(0)

2(0)
we see that a small increase in  unambiguously

increases ∗, consistently with Footnote 10. Conversely, ∗0(0) may have either sign. In
order for ∗0(0) to be positive it suffices that

R ̄
0
() (())

−2
(()− −1

+1
)  0 and

0 is close to zero, as then (0) ((0))
−1 1−(0)

(0)
is about zero. Next proposition relies

on some sufficient conditions for
R ̄
0
() (())

−2
(()− −1

+1
)  0.

Proposition 5 Suppose that  is close to  in the sense that (8) holds for a small   0,

that 0 is close to 0 and either 0 
−1
+1

, or  is close to 0. Then ∗  0, 
∗  0.

When Proposition 5 cannot be applied, typically  plays a role in determining the

sign of ∗0(0). For instance, if [0 ̄] = [0 1],  is the uniform distribution, () = (1−),
then 0(0)  0 for each 0 ∈ (0 1), 0 ∈ (0 1). But if we change () into (1− )2, then

 puts less weight on low values than when () = (1− ) and ∗0(0)  0 if 0  0276,
∗0(0)  0 if 0  1

3
; the sign of ∗0(0) depends also on 0 if 0 is between 0276 and

1
3
.

4 Conclusions

GLL examine an entry model under relatively weak assumptions on how significant each

bidder’s information is at the entry stage. Whereas some of their results hold for each

particular specification of the model, we prove that this is not the case for their claims

regarding the optimal entry fee and reserve price. More specifically, contradicting their

conclusions, we show examples in which the seller may increase the revenue by favoring

bidders’ participation in the auction either with a negative entry fee, or with a reserve

price lower than his value for the object. In general, the optimal auction may require

a participation either lower or higher than the socially optimal level depending on the

specific details of the context, and no broad conclusion is possible.
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5 Appendix

5.1 Proof of Lemma 2a

From (3) we obtain

Π2( ) =

Z ̄



Ã
( − 1)( ∗( ))−2 (1−  (|)) R 1


( (|)−  (|)) 

+( ∗( ))
−1 R 1


2(|)

!


Then  (|) = () + (1 − )() yields
R 1

( (|)−  (|))  = 1

2
(1 − )2(() −

()) and
R 1

2(|) = −(1− )(()−()). Hence

Π2( ) = (1− )

Z ̄



( ∗( ))
−2

µ
 − 1
2

(1− ) (1−  (|))−  ∗( )

¶
(()−()) 

Since  ∗( ) =  + 1−
2
(() +() + ()− ()), simple manipulations lead to

(7).

5.2 Proof of Lemma 2b

(i) For each   , ()  −1
+1

hence −1
+1
−  − (1 − )()  0 and ( )  0.

Taking  into account, we see that if  ≤   ̄, then ( )  0 for each  ∈ ( ̄);
hence Π2( )  0. If   , then ( )  0 for each  ∈ ( ̄). For  ∈ ( ],
( ) may be positive but is close to zero as () − () is close to zero. HenceR ̄

( ) =

R 


( ) +
R ̄


( )  0 and Π2( )  0.

(ii) We notice that ( ) = ( ∗( ))
−2(()−())( ) with ( ) = −1

+1
−

−(1−)()− 
+1

(1− )
2
(()−()), and consider  ∈ (0 ),   0. If () were

equal to (), then( ) would be −1
+1
− − (1− )()  −1

+1
− − (1− )() =

13



(1−)
µ

−1
+1

−
1− −

−1
+1

−0
1−0

¶
 0. Moreover,( ) is decreasing in() hence( )  0

given ()  (), thus ( ) = ( ∗( ))
−2(() − ())( )  0 for each

 ∈ (0 ). Therefore, given    ,
R 


( )  0 and
R ̄


( ) may be

negative but is close to zero as ()−() is close to zero in the interval (  ̄). ThusR ̄

( ) =

R 


( ) +
R ̄


( )  0 and Π2( )  0.

5.3 Proof of Proposition 3

When 0 = 0, from (2)-(4) we obtain 1( ) =
(1−)

2
( ∗( ))

−1
( ) with ( ) =

()− ()−()− () + (() + ()−()− ()).

(i) We prove that (11) implies ( ) ≤ 0 for each  . First notice that ( ) is linear in
, and the inequality ( 0) ≤ 0 is equivalent to ()−() ≤ ()+(), which is just

(11). Moreover, ( 1) ≤ 0 reduces to −2() ≤ 0, which holds for each . Therefore

(11) suffices for ( ) ≤ 0 for each  .

(ii) It is immediate that (0 ) = 0. In the following we prove that 1(0 ) = 0, 11(0 ) 

0 (11 is the second derivative of , twice with respect to ) hence 1( )  0 for   0

close to 0 and finally ( )  0 for   0 close to zero. Therefore a small positive reserve

price is superior to  = 0. In detail, 1( ) = −0()− 0() + 0()− 0()− 2()
and 1(0 ) = −2(0) is zero as (0) = 0. Moreover, 11( ) = −0()−00()−30()−
00() + (0() + 00()− 0()− 00()) and 11(0 ) = −(3 + )0(0)− (1− )0(0) is
positive as 0(0) = 0, 0(0)  0.

5.4 Proof of Proposition 4

From (2)-(4) and integration by parts we obtain

( ) = (0 − ) ( ∗( ))

+ ̄ −

Z ̄



( ∗( ))

 −(1− )

−
Z ̄



( ∗( ))
−1

µZ 1



( (|)−  (|)) 
¶


Since  (|) = 1−,  ∗( ) = 1
2
+1
2
2, the revenue boils down to ̄−(̄ − 0)

¡
1
2
+ 1

2
2
¢−

(1− )−
¡
1
2
+ 1

2
2
¢−1 1

2
(1− )

2
(̄ − ). This is increasing in , which suggests to

set  = ̄ or slightly smaller. The socially optimal  maximizes ̄− (̄ − 0)
¡
1
2
+ 1

2
2
¢ −

(1 − ), and denoting it with 0 we conclude that the optimal  is obtained from (1)

with  = 0. Hence it is equal to 0(
1
2
+ 1

2
20)

−1(̄ − ) − , which is negative given 

about ̄.
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5.5 Proof of Lemma 3

From ( ) in the proof of Proposition 4 we obtain

1( ) =
(1− )

2
( ∗( ))

−1
((0 − )(2() + (1− )()) + (1− )())

2( ) = 

µ
(0 − )( ∗( ))

−1[1−  (|)]−
Z ̄



( ∗( ))
−1[1−  (|)] + −Π2( )

¶
in which () = 0(). Therefore ∗ ∗ solve the system

(  ) = 0, (  ) = 0 (13)

with (  ) = (0 − )(2() + (1 − )()) + (1 − )() and (  ) = (0 −
)( ∗( ))

−1[1−  (|)]− R ̄

( ∗( ))

−1[1−  (|)] + −Π2( ). Since () =

() + (), it follows that  ∗( ) =  + (1 − )() +
(1−)2
2

(), 1 −  (|) =
1−()−(1−)(), Π2( ) = (+1)(1−)

2

R ̄

(+(1−)()+ (1−)2

2
())−2((−1

+1
−

− (1− )())()− 
+1

(1− )
2
22()).

Now we apply the Implicit function theorem to the system (13) at (  ) = (0 0 0) to

derive ∗0(0) ∗0(0) ∗0(0). We obtain1(0 0 0) = −2(0), 2(0 0 0) = 0, 3(0 0 0) =
(1 − 0)(0), from which ∗0(0) in Lemma 3 follows. Moreover, 1(0 0 0) = 0,

2(0 0 0) = −(−1)
R ̄
0
(())−2 (1−())

2
, 3(0 0 0) = (+1)(1−0)

R ̄
0
()

(())−2(()− −1
+1

), hence ∗0(0) in Lemma 3 is obtained.

Finally,  =
R ̄

(1−()− (1− )())

³
+ (1− )() +

(1−)2
2

()
´−1

− from
(1), therefore ∗0(0) = ∗0(0)

¡− (1−(0)) ((0))
−1¢+ ∗0(0)( − 1) R ̄

0
(())−2(1−

())2− 1
2
(+1)(1−0)

R ̄
0
()(())−2(()−−1

+1
), which yields ∗0(0) in Lemma

3.
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